
Blocking Analysis of Spin Locks under

Partitioned Fixed-Priority Scheduling

Alexander Wieder

A dissertation submitted towards the degree

Doctor of natural sciences (Dr. rer. nat.)

of the faculty of mathematics and computer science

of Saarland University

Saarbrücken

January 2017

Colloquium

Date: 29.11.2017

Place: Saarbrücken

Dean: Prof. Dr. Frank-Olaf Schreyer

Examination Board

Chair: Prof. Dr. Sebastian Hack

Supervisor and Reviewer: Dr. Björn Brandenburg

Reviewer: Prof. Dr. Rupak Majumdar

Reviewer: Prof. Dr. Jan Reineke

Reviewer: Prof. Dr. Jian-Jia Chen

Scientific Assistant: Dr. Martin Zimmermann

© 2017

Alexander Wieder

ALL RIGHTS RESERVED

1

Abstract

Partitioned fixed-priority scheduling is widely used in embedded multicore

real-time systems. In multicore systems, spin locks are one well-known

technique used to synchronize conflicting accesses from different processor

cores to shared resources (e.g., data structures). The use of spin locks can

cause blocking. Accounting for blocking is a crucial part of static analysis

techniques to establish correct temporal behavior.

In this thesis, we consider two aspects inherent to the partitioned fixed-

priority scheduling of tasks sharing resources protected by spin locks: (1) the

assignment of tasks to processor cores to ensure correct timing, and (2) the

blocking analysis required to derive bounds on the blocking.

Heuristics commonly used for task assignment fail to produce assignments

that ensure correct timing when shared resources protected by spin locks

are used. We present an optimal approach that is guaranteed to find such

an assignment if it exists (under the original MSRP analysis). Further, we

present a well-performing and inexpensive heuristic.

For most spin lock types, no blocking analysis is available in prior work,

which renders them unusable in real-time systems. We present a blocking

analysis approach that supports eight different types and is less pessimistic

than prior analyses, where available. Further, we show that allowing nested

requests for FIFO- and priority-ordered locks renders the blocking analysis

problem NP -hard.

2

Zusammenfassung

Partitioned Fixed-Priority Scheduling ist in eingebetteten Multicore-Echtzeit-

systemen weit verbreitet. In Multicore-Systemen sind Spinlocks ein bekannter

Mechanismus um konkurrierende Zugriffe von unterschiedlichen Prozessork-

ernen auf geteilte Resourcen (z.B. Datenstrukturen) zu koordinieren. Bei der

Nutzung von Spinlocks können Blockierungen auftreten, die in statischen

Analysetechniken zum Nachweis des korrekten zeitlichen Verhaltens eines

Systems zu berücksichtigen sind.

Wir betrachten zwei Aspekte von Partitioned Fixed-Priority Scheduling in

Verbindung mit Spinlocks zum Schutz geteilter Resourcen: (1) die Zuweisung

von Tasks zu Prozessorkernen unter Einhaltung zeitlicher Vorgaben und

(2) die Analyse zur Entwicklung oberer Schranken für die Blockierungs-

dauer.

Übliche Heuristiken finden bei der Nutzung von Spinlocks oft keine Task-

zuweisung, bei der die Einhaltung zeitlicher Vorgaben garantiert ist. Wir

stellen einen optimalen Ansatz vor, der dies (mit der ursprünglichen MSRP

Analyse) garantiert, falls eine solche Zuweisung existiert. Zudem präsentieren

wir eine leistungsfähige Heuristik.

Die meisten Arten von Spinlocks können mangels Analyse der Blockierungs-

dauer nicht für Echtzeitsysteme verwendet werden. Wir stellen einen Analy-

seansatz vor, der acht Spinlockarten unterstützt und weniger pessimistische

Schranken liefert als vorherige Analysen, soweit vorhanden. Weiterhin zeigen

wir, dass die Analyse bei verschachtelten Zugriffen mit FIFO- und prioritäts-

geordneten Locks ein NP -hartes Problem ist.

3

To my brother,

Maximilian Florian Wieder.

I tell you: one must still have chaos in oneself

to give birth to a dancing star.

I tell you: you still have chaos in yourselves.

—Friedrich Nietzsche, Thus Spoke Zarathustra

4

Meinem Bruder,

Maximilian Florian Wieder.

Ich sage euch: man muss noch Chaos in sich haben,

um einen tanzenden Stern gebären zu können.

Ich sage euch: ihr habt noch Chaos in euch.

—Friedrich Nietzsche, Also sprach Zarathustra

5

Contents

1 Introduction 11

1.1 The Blocking Analysis Problem 12

1.2 The Partitioning Problem . 14

1.3 Scope of this Thesis . 15

1.4 Contributions . 16

1.4.1 Partitioning for Task Sets using Non-Nested Spin Locks 16

1.4.2 Blocking Analysis for Non-Nested Spin Locks 17

1.4.3 Computational Complexity of Blocking Analysis for

Nested Spin Locks . 18

1.5 Organization . 19

2 Background 20

2.1 System Model and Assumptions 20

2.1.1 Task Model . 20

2.1.2 Hardware Architecture 21

2.1.3 Scheduling . 22

2.1.4 Shared Resources . 22

2.2 Task Schedulability and Response Time Analysis 24

2.3 Priority Assignment . 25

2.4 Mutex Locks and Locking Protocols 27

2.4.1 Mutex Lock Programming Interface and Semantics . . 27

6

2.4.2 Spin Locks . 30

2.4.3 Suspension-Based Locks 39

2.4.4 The Multiprocessor Stack Resource Protocol 43

2.5 Blocking and Blocking Analysis 43

2.5.1 Blocking Analysis for the MSRP 45

2.6 Computational Complexity 47

2.6.1 Reductions . 48

2.6.2 Complexity Classes . 51

2.6.3 NP -Hardness and NP -Completeness 52

2.6.4 Classic Combinatorial Problems 53

2.6.5 Approximation Schemes 54

2.7 Overheads . 54

3 Related Work 55

3.1 Task Models . 55

3.2 Priority Assignment and Partitioning 57

3.2.1 Priority Assignment for FP 57

3.2.2 Partitioning for P-FP 58

3.3 Real-Time Locking Protocols 59

3.4 Other Synchronization Primitives 62

3.5 Complexity of Scheduling Problems 64

4 Partitioning Task Sets Sharing Resources Protected by Spin

Locks 66

4.1 Introduction . 66

4.2 Partitioning Heuristics . 67

4.3 The Case for Optimal Partitioning 71

4.4 Optimal MILP-based Partitioning 72

4.4.1 A Lower Bound on the Maximum Interference 76

4.4.2 A Lower Bound on the Maximum Spin Delay 77

7

4.4.3 A Lower Bound on Maximum Arrival Blocking 79

4.4.4 ILP Extensions . 83

4.5 Greedy Slacker: A Simple Resource-Aware Heuristic 85

4.6 Evaluation . 88

4.6.1 Runtime Characteristics of Optimal Partitioning . . . 88

4.6.2 Partitioning Heuristic Evaluation 91

4.7 Summary . 95

5 Qualitative Comparison of Spin Lock Types 97

5.1 Introduction . 97

5.2 Dominance of Spin Lock Types 98

5.3 Non-Preemptable and Preemptable Spin Locks are Incomparable 99

5.4 F|* and P|* Locks Dominate U|* Locks 102

5.5 F|* and P|* Locks Are Incomparable 104

5.6 PF|* Locks Dominate both F|* and P|* Locks 107

5.7 Summary . 108

6 Analysis of Non-Nested Spin Locks 110

6.1 Introduction . 110

6.2 Pessimism in Prior Analyses for Spin Locks 111

6.2.1 Classic MSRP . 111

6.2.2 Holistic Analysis . 112

6.2.3 Inherent Pessimism in Execution Time Inflation . . . 115

6.3 A MILP-Based Blocking Analysis Framework for Spin Locks 119

6.3.1 Generic Constraints 124

6.3.2 Constraints for F|N Spin Locks 129

6.3.3 Constraints for P|N Spin Locks 131

6.3.4 Constraints for PF|N Spin Locks 137

6.3.5 Generic Constraints for Preemptable Spin Locks . . . 144

6.3.6 Constraints for F|P Spin Locks 145

8

6.3.7 Constraints for P|P Spin Locks 147

6.3.8 Constraints for PF|P Spin Locks 155

6.3.9 Constraint Summary 166

6.4 Aggregating Blocking Variables 167

6.5 Integer Relaxation . 174

6.6 Analysis Accuracy and Computational Complexity 175

6.6.1 Accuracy . 175

6.6.2 Computational Complexity 176

6.7 Evaluation . 179

6.7.1 Implementation . 180

6.7.2 Experimental Setup 180

6.7.3 Experimental Results 184

6.7.4 Summary of Experimental Results 193

6.8 Summary . 196

7 Analysis Complexity of Nested Locks 199

7.1 Introduction . 199

7.2 Blocking Effects with Nested Locks 200

7.2.1 Transitive Nested Blocking 201

7.2.2 Guarded Requests . 202

7.3 Background . 203

7.3.1 Definitions and Assumptions 203

7.3.2 The Multiple-Choice Matching Problem 207

7.3.3 The Worst-Case Blocking Analysis Problem 209

7.4 Reduction of MCM to BDF 214

7.4.1 An Example BDF Instance 214

7.4.2 Construction of the BDF Instance 215

7.4.3 Basic Idea: Maximum Blocking Implies MCM Answer 217

7.4.4 Properties of the Constructed Job Set 219

7.5 Reduction of MCM to BDP 223

9

7.5.1 Main Differences to BDF Reduction 224

7.5.2 Construction of the BDP Instance 226

7.5.3 Properties of the Constructed Job Set 228

7.6 A Special Case: Blocking Analysis for Unordered Nested Locks

within Polynomial Time . 232

7.6.1 An Example Blocking Graph 234

7.6.2 Blocking Graph Construction 236

7.6.3 Blocking Analysis . 239

7.7 Summary . 242

8 Conclusion 244

8.1 Summary . 244

8.2 Future Work . 246

8.2.1 Partitioning . 246

8.2.2 Blocking Analysis . 247

8.2.3 Blocking Analysis Complexity 248

10

Chapter 1

Introduction

Following the trend in other domains, embedded real-time systems increas-

ingly often employ multicore architectures. The parallelism offered by multi-

core architectures, however, often requires that accesses to shared resources

(such as data structures in shared memory or peripheral devices) are syn-

chronized to ensure consistency in the face of parallel conflicting accesses.

One well-known synchronization primitive is the mutex lock that ensures

mutual exclusion.

To establish that all timing requirements of a real-time system will always

be met, static analysis techniques are commonly employed. The use of

mutex locks to synchronize accesses to shared resources, however, can cause

delays directly impacting the temporal behavior. Hence, accounting for such

delays analytically is a fundamental part of any analysis to establish whether

timing requirements can be guaranteed to be satisfied even in a worst-case

scenario.

Bounding the duration of these delays (i.e., blocking) is the goal of the

blocking analysis problem.

11

1.1 The Blocking Analysis Problem

The blocking analysis problem is to derive safe bounds on the blocking delay

that can be incurred when accessing shared resources due to conflicting

requests. The blocking delay is driven by the following factors:

• the requests issued by the application for shared resources;

• the order in which requests are served as determined by the lock type;

• the scheduling policy employed for the application; and

• the interplay of the blocking and execution of critical sections with the

scheduler.

Real-time applications can often be decomposed into a set of recurring

tasks that each correspond to a particular functionality with specific timing

requirements and resource access patterns. For instance, in an automotive

system, a task to control or monitor the combustions in the engine is invoked

at a higher rate and has tighter timing requirements than, for instance, a

task gathering ambient and indoor temperature for air conditioning. For

the sake of real-time analyses, abstract task models are used to express the

workload and timing requirements for a given set of tasks that constitutes

an application. In this thesis, unless otherwise mentioned, the sporadic task

model is assumed (detailed in Section 2.1.1).

Accesses of different tasks to the same resources need to be synchronized

to ensure the consistency of the resource state despite concurrent accesses.

Mutex locks and other synchronization primitives are commonly provided on a

programming language level (e.g., as part of java.util.concurrent in Java,

or as part of System.Threading in .NET) or by the operating system (e.g.,

POSIX [9], AUTOSAR [1]). AUTOSAR, an operating system standard

for automotive applications, specifies spin locks, one type of mutex locks,

12

for synchronizing requests from different processor cores. For scheduling

tasks on multicore processors, AUTOSAR specifies partitioned fixed-priority

scheduling (P-FP, detailed in Section 2.1.1), a common approach for real-time

systems under which each task is assigned to one processor core, and the

tasks on each core are scheduled according to pre-assigned priorities.

In this work, we focus on instances of the blocking analysis problem as

they can arise for applications running on AUTOSAR-compliant operating

systems (as used in automotive systems). That is, we consider the blocking

analysis problem for multiprocessor systems using a partitioned fixed-priority

scheduling policy, and shared resources protected by spin locks.

This problem is not novel in itself, and indeed, approaches for blocking

analysis in this setting exist (see Section 2.5 and Section 3.3). However, we

show that the techniques used in prior approaches yield inherently pessimistic

blocking bounds (see Section 6.2) that, ultimately, can result in a waste

of resources, which can translate to an increase of power consumption and

monetary cost. Further, while multiple different types of spin locks are of

practical relevance (see Section 2.4.2 for an overview of spin lock types and

their implementation), for most of them no prior analysis is available. Namely,

out of FIFO-ordered, priority-ordered, hybrid FIFO-priority-ordered, and

unordered spin locks, with either preemptable or non-preemptable spinning,

analyses have been presented in prior work only for non-preemptable FIFO-

ordered spin locks, rendering the other types unusable when the timing

behavior of an application needs to be formally analyzed.

Partitioned fixed-priority scheduling, as used in AUTOSAR-compliant op-

erating systems, inherently requires each task to be mapped to exactly one

processor core. This task set partitioning has impact on the blocking that can

be incurred by each task, and hence, the partitioning also affects whether the

timing requirements of a task can be satisfied. The blocking analysis problem

13

asks for safe blocking bounds given a task set and a partitioning as input.

Finding a partitioning for a task set under which all timing requirements

are satisfied is in itself not trivial, especially when blocking due to resource

sharing needs to be taken into account. This partitioning problem for task

sets with shared resources is considered next.

1.2 The Partitioning Problem

Partitioned scheduling inherently requires the developer to partition the task

set. That is, each task must be statically assigned to exactly one processor

core on which it is executed. Without shared resources, the partitioning

problem bears similarity to the bin-packing problem: each task (item) with

a given processor demand (size) has to be assigned to a processor (bin) such

that all tasks meet their timing requirements (the set of items assigned to

each bin does not exceed its capacity). The bin-packing problem is known to

be computationally hard (see Section 2.6 for an overview of computational

complexity). However, efficient heuristics exist, and they can be used for the

task set partitioning problem as well (see Section 3.2.2).

With shared resources, the task set partitioning problem goes beyond bin

packing: tasks accessing shared resources can block each other across pro-

cessor boundaries, and hence, the blocking a task can incur does not only

depend on the tasks assigned to the same processor, but also on the concrete

mapping of tasks to other processors. Generic bin-packing heuristics are

oblivious to such blocking effects (as they do not occur in the bin-packing

problem), and may fail to produce a mapping of tasks to processors such that

all timing requirements are satisfied although such a mapping exists.

Resource-aware partitioning heuristics, taking blocking effects into account,

have been presented in prior work. For task sets sharing resources protected

14

by spin locks, however, no suitable approach is available, leaving the de-

veloper with the burden of task set partitioning—a problem getting more

and more challenging as the number of processor cores and application size

increase.

1.3 Scope of this Thesis

In this thesis, we present novel approaches to the blocking analysis problem

and the partitioning problem for task sets sharing resources protected by spin

locks on multiprocessor platforms under partitioned fixed-priority scheduling,

as supported by AUTOSAR-compliant operating systems. In particular, for

the partitioning problem, we present two partitioning methods: an optimal

approach and a heuristic. The optimal approach is guaranteed to find a

partitioning under which all timing requirements are satisfied, if such a

partitioning exists (under the original blocking analysis of the MSRP, a

classic locking protocol summarized in Section 2.4.4). For instances in which

the optimal approach is computationally too expensive, we developed a

partitioning heuristic that

• improves over generic bin-packing heuristics and resource-aware heuris-

tics for other lock types by accounting for blocking due to the use of

spin locks for protecting shared resources; and

• is computationally tractable despite the inherent hardness of the un-

derlying (simpler) bin-packing problem.

For the blocking analysis of non-nested spin locks, we present an analysis

approach that

• reduces the pessimism inherent in prior approaches;

• supports a range of different types of spin locks, such as FIFO- and

15

priority-ordered spin locks, and combinations thereof; and

• does not rely on manually characterizing worst-case scenarios to derive

safe blocking bounds.

1.4 Contributions

In this section, we summarize the contributions made as part of this the-

sis.

1.4.1 Partitioning for Task Sets using Non-Nested Spin Locks

Partitioned fixed-priority scheduling inherently requires assigning each task

to exactly one processor, and we developed two approaches to systematically

compute such a partitioning for task sets sharing resources protected by spin

locks.

For FIFO-ordered non-preemptable spin locks, which are used for synchro-

nization between processor cores by the Multiprocessor Stack Resource

Protocol [72](MSRP, described in Section 2.4.4), we developed an optimal

partitioning approach based on Mixed Integer Linear Programming (MILP).

The MILP formulation encodes both a classic blocking analysis presented for

the MSRP (summarized in Section 2.5.1) and an analysis to establish whether

the timing requirements of a given task set are satisfied. This approach is

optimal in the sense that it is guaranteed to find a partitioning under which

all timing requirements are met under the original MSRP analysis, if such a

partitioning exists.

The computational cost of the MILP-based optimal partitioning approach

can become prohibitive with increasing number of processor cores, tasks, and

resource contention. For such cases, we developed a simple and computation-

16

ally less expensive resource-aware partitioning heuristic. We conducted an

experimental evaluation to compare our partitioning heuristic with resource-

oblivious (i.e., ignoring resource sharing) and other resource-aware partition-

ing heuristics. The evaluation results show that our partitioning heuristic

performs well on average, without being tailored to a specific type of lock or

requiring configuration parameters to be tuned by the developer.

1.4.2 Blocking Analysis for Non-Nested Spin Locks

We developed a novel blocking analysis for task sets accessing shared resources

protected by spin locks under partitioned fixed-priority scheduling. Our

analysis is based on a technique using linear programming that has been

previously presented for the analysis of suspension-based locks. In contrast

to prior analysis approaches not based on linear programming, our approach

does not rely on identifying or characterizing worst-case scenarios, but rather

encodes lock type specific properties as linear programming constraints to

rule out impossible scenarios. With our approach, we were able to support

a variety of different types of spin locks, including lock types for which no

prior analysis was available.

We conducted an experimental evaluation considering many different config-

urations to compare prior analysis approaches with our analysis and also to

compare the different spin lock types. The evaluation results demonstrate

that our analysis can reduce the pessimism inherent in prior analyses. As

a consequence, in many cases the timing requirements of task sets can be

guaranteed to be satisfied under our analysis, but not under prior analyses.

Further, our evaluation results enable us to provide concrete suggestions

for the support and use of the considered spin lock types in AUTOSAR-

compliant and other embedded real-time systems.

Our analysis of spin locks requires critical sections to be not nested, that is, at

17

any time, each job can hold at most one lock, which must be released before

acquiring a different lock. Solving the linear programs we use as part of our

analysis for non-nested spin locks is computationally affordable. Allowing

the nesting of critical sections, however, requires analysis techniques that are

computationally inherently more expensive.

1.4.3 Computational Complexity of Blocking Analysis for

Nested Spin Locks

Allowing critical sections to be nested gives rise to cases of blocking that

are impossible without nesting: nested critical sections can lead to transitive

blocking, where a request can be delayed by requests for a different resource.

Deriving blocking bounds without incurring excessive pessimism then requires

analyzing a variety of different cases in which requests can interact. For

spin lock types that enforce strong ordering among requests, namely FIFO-

order priority-ordering, we show that the (decision variant of the) blocking

analysis problem is in fact NP -hard. In particular, we present reductions

from the multiple-choice matching problem (a combinatorial NP -complete

problem summarized in Section 2.6.4 and detailed in Section 7.3.2) to FIFO-

and priority ordered locks. Notably, the hardness results we present are not

restricted to spin locks and fixed-priority scheduling, but hold for a broader

range of settings: the reductions to FIFO- and priority-ordered locks do not

make any assumptions about the scheduler (as long as it is work-conserving),

whether the locks are spin- or suspension-based, and whether preemptions

while spinning are allowed. Our hardness results imply that the analysis for

nested spin locks, in contrast to non-nested spin locks, is computationally

inherently hard, and hence, unless P = NP , the blocking analysis cannot be

carried out using a (non-integer) linear program (that has polynomial size

with respect to the problem size).

18

1.5 Organization

The remainder of this thesis is organized as follows.

In Chapter 2 we provide background on the problems considered in this

work, state the assumptions made and present the notation used. Chapter 3

overviews related work.

Chapter 4 presents our approaches for partitioning sets of tasks that share

resources protected by spin locks. We present the results of a qualitative

comparison of various types of spin locks in Chapter 5. In Chapter 6 we

present our linear programming based blocking analysis approach for non-

nested spin locks, and in Chapter 7 we present the hardness results we

obtained for the blocking analysis problem for nested spin locks. Chapter 8

summarizes the contributions of this thesis and discusses directions for future

work.

19

Chapter 2

Background

2.1 System Model and Assumptions

In this section, we state the assumptions we make and introduce the notation

we use in the remainder of this thesis.

2.1.1 Task Model

We consider a real-time workload consisting of n sporadic [106] tasks τ =

{T1, . . . , Tn}, where each task releases a (potentially infinite) sequence of

jobs. We denote a job released by Ti as Ji. Any two jobs released by

the same task Ti are separated by at least pi time units (Ti’s period or

minimum inter-arrival time). Each job of Ti completes after at most ei time

units of execution (worst-case execution time, WCET), and, once released,

each job of Ti must complete within di time units. That is, di denotes the

relative deadline of each of Ti’s jobs. Each job of Ti is eligible for execution,

i.e., released, at most ji time units after its arrival (release jitter). Unless

explicitly noted otherwise, we assume that jobs do not incur release jitter,

that is, ji = 0. We assume implicit deadlines, that is, di = pi unless stated

20

otherwise. We require the task period and cost to be strictly positive, that

is, pi > 0, ei > 0. For a task set τ and a task Ti, we let τ i denote the set of

tasks τ without Ti: τ
i , τ \ {Ti}.

We say that a job Ji is pending at time t if Ji was released on or before t, and

Ji is incomplete at time t. For any task Ti, we denote the maximum time

that any of Ti’s jobs can be pending as Ti’s worst-case response time. We let

njobs(Tx, t) denote an upper bound on the number of jobs of Tx that can be

pending during any time interval of length t. For a sporadic task, njobs(Tx, t)

is given by njobs(Tx, t) ,
⌈
t+rx
px

⌉
[43]. We define φ to be the ratio of the

maximum and the minimum period; formally φ = maxi{pi}/mini{pi}.

We assume that tasks do not self-suspend during regular execution.1 Further,

we assume discrete time; that is, all time intervals and bounds on execution

time have an integral length.

2.1.2 Hardware Architecture

Throughout this work, we consider a multicore system consisting of m pro-

cessor cores P1, . . . , Pm that each can execute independently. The processor

cores are identical, all running at the same speed and with the same capabil-

ities. Each processor core can execute at most one job at any time. For a

task Ti, we let P (Ti) denote the processor Ti is assigned to.

The system is equipped with a shared memory. That is, each part of the

main memory is accessible from all processor cores. The execution on each

processor core can be interrupted by interrupts caused by certain system

events (e.g., triggered by a different processor core or an expired timer).

Interrupts can be (temporarily) disabled and re-enabled at runtime.2

1The use of locks, however, may cause suspensions. See Section 2.4.3.
2Exceptions such as non-maskable interrupts (NMIs) exist to signal non-recoverable

low-level faults and errors. Since faults are not considered throughout this work, we do
not consider NMIs and generally assume that interrupts can be disabled.

21

2.1.3 Scheduling

Throughout this thesis, we assume the tasks to be scheduled by a partitioned

fixed-priority (P-FP) scheduler. That is, each task is statically assigned to

exactly one processor core, and the tasks on each processor core are scheduled

by a local fixed-priority (FP) scheduler. We let P (Ti) denote the processor

core to which Ti has been assigned, and we call the mapping of tasks to

processor cores defined by P (·) a partitioning. As a convention, we let the

index i of each task Ti denote the scheduling priority of Ti, where i < x

implies that Ti has higher priority than Tx.

Other notable scheduling policies primarily differ from P-FP scheduling in

how the jobs to be scheduled are determined and on which processor cores

they may execute. Under earliest deadline first (EDF) scheduling, the order

in which jobs are scheduled is determined based on their respective deadlines

rather than task priorities. Under global scheduling, each task is not statically

assigned to one processor core, and its jobs can execute on any processor

core. Under clustered scheduling, each task is statically assigned to a set of

processor cores, and hence, clustered scheduling generalizes both partitioned

and global scheduling. Partitioned, global and clustered scheduling can be

combined with FP and EDF to, for instance, global earliest deadline first

(G-EDF) and global fixed-priority (G-FP) scheduling.

2.1.4 Shared Resources

Tasks may access shared resources that are explicitly managed by software

(as opposed to resources managed by hardware, e.g., a memory bus). In this

thesis, we consider serially reusable resources that can only be used in mutual

exclusion, such as shared data structures in memory, peripheral devices, or

a shared communication bus. We call the code section that needs to be

22

executed in mutual exclusion critical section. We denote the shared resources

in the system as `1, . . . , `nr , the set of all resources as Q, and their number

as nr, that is, nr = |Q|. For each `q with `q ∈ Q we denote the maximum

number of times that a single job of Ti may access lq with Ni,q. Since a

resource not accessed by any task has no impact on the system behavior, we

assume without loss of generality that each resource in Q is accessed at least

once by some task, i.e., ∀`q ∈ Q : ∃i, 1 ≤ i ≤ n : Ni,q > 0.

We denote the vth request issued by jobs of Ti for resource `q as Ri,q,v. The

index v in Ri,q,v does not imply a particular order in which the requests

are assumed to be issued, rather it is used to enumerate them. Further, no

information on the order in which requests are issued is provided by the

assumed task model. The maximum critical section length of a request Ri,q,v

is denoted as Li,q,v, and the maximum critical section length of any of Ti’s

requests for `q is denoted as Li,q. If Ni,q = 0, we set Li,q = 0. The execution

of critical sections is included in the execution time of each task. That is,

the execution time ei of a task Ti accounts for the execution of a job Ji both

inside and outside critical sections. Any potential delays due to scheduling

or resource contention (such as blocking, which is considered in Section 2.5),

however, are not included in ei, and hence, ei accounts for all “useful” work

of Ji. Since we assume discrete time, all critical sections have an integral

length.

Each resource is either global or local, and we let Qg and Ql denote the set

of global and local resources, respectively. A local resource is shared only by

tasks that are all assigned to the same processor, while a global resource is

accessed by at least two tasks that are assigned to different processors. We

assume that all shared resources are protected by locks to ensure mutual

exclusion of concurrent accesses: global resources are protected by spin locks

(detailed in Section 2.4.2), and local resources are protected by suspension-

based locks (see Section 2.4.3). Unless stated otherwise, we assume that

23

requests are not nested. That is, at any time, each job accesses at most one

shared resource.

2.2 Task Schedulability and Response Time

Analysis

We say that a task set is schedulable under a given partitioning and priority

assignment if all timing requirements can be guaranteed to be satisfied. In

the sporadic task model that we consider in this work, a task Ti is schedulable

if all jobs released by Ti complete before their respective deadline. Formally,

let Ji denote an arbitrary job of Ti that is released at time ta and completes

at time tf . The response time tr is the duration Ji is pending: tr = tf − ta.

The job Ji meets its deadline if tf ≤ ta + di (or, equivalently: tr ≤ di). We

say that a task Ti is schedulable if all jobs issued by Ti have a response

time lower than or equal to Ti’s relative deadline di. Similarly, we say that

a task set is schedulable if all its tasks are schedulable. To establish the

schedulability of a task set a priori, response-time analysis is employed to

derived safe bounds on the response time analytically for each task.

In the case of a set of independent tasks (i.e., without resource sharing) under

partitioned scheduling, tasks assigned to different processor cores cannot

interfere with each other, and hence, each processor core (and the tasks

assigned to it) can be treated as a uniprocessor system. With a fixed-priority

scheduler, a safe upper bound on the response time can be determined by

solving the following recurrence [19, 87] via fixed-point iteration (starting

with ri = ei):

ri =
∑

Th,P (Th)=P (Ti)∧h<i

⌈
ri
ph

⌉
· eh. (2.1)

24

With implicit deadlines (i.e., di = pi), if the recurrence does not converge

for some task, or if the determined response time exceeds the task’s relative

deadline, then the given task set cannot be guaranteed to be schedulable

using this analysis. Otherwise, it can be guaranteed that all tasks will always

meet their deadlines, even in the worst case.

Note that, with shared resources, the response-time analysis also needs to

account for additional sources of delay (described in Section 2.5).

In the experimental evaluation of our partitioning scheme (Chapter 4) and

blocking analysis for non-nested spin locks (Chapter 6) we measure schedula-

bility as a function of task set size or lock contention to compare different

partitioning approaches, blocking analyses, and spin lock types, respectively.

A sample plot is shown in Figure 2.1. The interpretation of the schedulability

plot is as follows: among all generated task sets with 14 tasks, a fraction of

0.12 were schedulable in case A and a fraction of 0.73 were schedulable in

case B.

2.3 Priority Assignment

To establish response-time bounds, the response-time analysis described above

assumes that a priority assignment is given.3 For independent tasks with

implicit deadlines, the rate-monotonic (RM) priority assignment scheme [99]

has been found to be optimal. Under RM, priorities are assigned inversely

proportional to task periods, that is, tasks with shorter periods are assigned

higher priorities. This scheme is optimal in the sense that it yields a pri-

ority assignment under which all tasks are schedulable if any such priority

assignment exists.

3The response-time analysis also relies on a partitioning to be provided; we cover the
task partitioning problem in Chapter 4.

25

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 4 6 8 10 12 14 16 18 20

sc
h
e
d

u
la

b
le

number of tasks

case A
case B

Figure 2.1: Example schedulability plot: fraction of generated task sets that
are schedulable as a function of task set size.

For tasks with arbitrary deadlines (shorter or longer than the period), RM is

not optimal. Instead, task priorities can be assigned using Audsley’s optimal

priority assignment (OPA) [20] algorithm. Although in this work we only

consider tasks with implicit deadlines, the OPA for tasks with arbitrary

deadlines is of particular relevance for this work since it forms the basis

for the partitioning heuristic we present in Chapter 4. The pseudocode is

shown in Algorithm 1. The OPA iteratively assigns priorities starting with

the lowest one and tries to find a task that is schedulable if assigned the

lowest priority (and all other tasks having higher priorities). If found, the

task is assigned the lowest priority, and the algorithm proceeds by trying to

find a task that can be assigned the next higher priority. If the algorithm

fails to find a task suitable for any priority level, it declares the task set

unschedulable, and otherwise terminates with a priority assignment under

which all tasks are schedulable.

For our partitioning heuristic presented in Chapter 4, we use a related

approach to find both a priority assignment and partitioning for tasks sharing

resources protected by spin locks.

26

Algorithm 1 Audsley’s Optimal Priority Assignment (OPA) algorithm.

1: function AssignPriority(τ)
2: assign priority 1 to all tasks
3: unassigned ← τ
4: assigned ← ∅
5: for priority π = n down to 1 do
6: success ← False
7: for each task T ∈ unassigned do
8: assign priority π to T
9: if T schedulable then

10: unassigned ← unassigned \ T
11: assigned ← assigned ∪ {T}
12: success ← True
13: break . continue with next priority level
14: else
15: assign priority 1 to T
16: end if
17: end for
18: if ¬success then
19: return unschedulable
20: end if
21: end for
22: return schedulable
23: end function

2.4 Mutex Locks and Locking Protocols

Mutex locks are a synchronization mechanism that can be used to ensure

mutual exclusion among concurrent requests (e.g., [60, 61]). We assume

that a unique lock is associated with each shared resource: each global

resource is protected by a spin lock, and each local resource is protected by

a suspension-based lock. For simplicity, we use the notation for a shared

resource to also refer to its associated spin lock in the context of spin lock

operations.

2.4.1 Mutex Lock Programming Interface and Semantics

The basic programming interface for mutex locks defines (at least) operations

to acquire and release a mutex lock. In the remainder of this work, we

denote these operations with acquire(`q) and release(`q) to acquire and

27

release the lock protecting `q, respectively. Note that the names of these

operations vary across different programming languages and frameworks,

and throughout this work, we use acquire(`q)/release(`q) to denote these

operations, as done, for instance, in the Java programming language.4

The operation acquire(`q) is called just before the critical section, and the

operation release(`q) is called just after the critical section. Crucially, the

lock implementation guarantees that, at any time and for any resource `q, at

most once one critical section accessing `q is executing.

We say that a job Ji issues a request for the resource `q when calling

acquire(`q). The operation acquire(`q) does not return until the lock

on `q has been successfully acquired. Depending on the type of mutex

lock, the operation acquire(`q) either busy-waits (in the case of a spin

lock) or suspends (in the case of a suspension-based lock) until the lock

is acquired. Note that the time that a job Ji spends busy-waiting or is

suspended while waiting to acquire a lock does not count towards its execution

demand ei.

Once the lock on `q has been acquired, acquire(`q) returns and Ji starts

executing its critical section. We say that a request is pending at a time t if

it has been issued but the lock has not been acquired yet. We say that a

request is completed at time t if the execution of its critical section is finished

and the lock has been released. We say that Ji holds the lock on `q after the

lock was successfully acquired and before it is released.

Figure 2.2 shows an example with two jobs on two processors. Job J1 is

assigned to processor P1, and J2 is assigned to P2. Note that the resource

`1 in this example is a global resource (since it is accessed by J1 and J2

that execute on different processor cores) and hence, we assume that `1 is

protected by a spin lock. The terminology introduced above, however, applies

4As part of the java.util.concurrent.Semaphore interface.

28

50 10

J1

J2

P1

P2

job executing

job spinning while
waiting for resource

job executing
critical section

job holding resource `1`1

job release

`1

`1

Figure 2.2: Example schedule with two jobs accessing a shared resource `1.

for both spin locks and suspension-based locks. Both jobs in Figure 2.2, J1

and J2, are released at time t = 0 and start executing from this time on. At

time t = 2, job J1 calls acquire(`1) and immediately successfully acquires

the lock on the resource `1. Job J1 then executes its critical section until

time t = 4 when J1 releases the lock. Hence, J1 holds the lock during the

time interval [2, 4), and J1’s request is completed at time t = 4. Job J1

continues regular execution until it finishes at time t = 6.

Job J2 calls acquire(`1) at time t = 3 while the lock on `1 is held by J1.

Hence, J2 cannot successfully acquire the lock on `1 until time t = 4 when

J1 releases it. During the time interval [3, 4), J2’s request is pending. From

t = 4 to t = 6, job J2 executes its critical section, releases the lock on `1

at time t = 6, and continues regular execution until it completes at time

t = 9.

The operations acquire(`q) and release(`q) can only be used in a pair

embracing a critical section. That is, acquire(`q) must be followed by

a corresponding release(`q). The locks considered in this work are not

reentrant, that is, a job cannot call acquire(`q) if it is already holding the

resource `q.

29

2.4.2 Spin Locks

Spin locks are one class of mutex locks that spin (i.e., busy wait) during the

acquire(·) operation until the lock is successfully acquired. In the example

schedule depicted in Figure 2.2, job J2 spins during the time interval [3, 4).

Throughout this work we assume that preemptions are disabled while a

job holds a spin lock. That is, after starting the execution of a critical

section protected by a spin lock, a job is scheduled until the critical section

is completed and the lock is released. While spinning (i.e., after issuing a

request and before successfully acquiring a lock), preemptions may or may

not be allowed depending on the type of spin lock.

The spin lock semantics do not specify in which order conflicting requests

are served. In case multiple requests for the same resource are pending

at the same time, the order in which these pending requests are served is

determined by an ordering policy. In this work, we consider four different

ordering policies:

• FIFO-order (F): Requests are served in the order of the time they were

issued (first come, first serve). Ties between requests issued at the

same time are broken arbitrarily.

• Priority-order (P): Requests are served with respect to a priority

assigned to each request. Priority-ordered locks ensure that each request

can be blocked at most once by a request with lower priority. Ties

between requests issued with the same priority are broken arbitrarily.

• Prio-FIFO-order (PF): Similar to priority-order, requests are ordered

according to their priority, but requests with same priority are served

in FIFO-order.

• Unordered (U): Requests are served in arbitrary order.

30

Similarly, the spin lock semantics do not specify whether preemptions are

allowed while spinning. We consider both options and call a spin lock pre-

emptable (P) if preemptions are allowed while spinning, and non-preemptable

(N) otherwise. For spin locks with preemptable spinning, we assume pre-

emptions while spinning cause a pending request to be cancelled. Cancelled

requests are re-issued once the issuing job resumes execution (and continues

spinning), and the previously issued request is discarded. A request is not

served if the issuing job was preempted (while spinning), and the ordering

policy is enforced with respect to the latest re-issued request (and not with

respect to an earlier issued request later discarded) in case a spinning job is

preempted.

An example schedule for a non-preemptable FIFO-ordered spin lock is de-

picted in Figure 2.3. The jobs J2 and J3 each issue a request for `1 simultane-

ously at time t = 1. FIFO-ordering specifies that ties are broken arbitrarily

in that situation, and J3 successfully acquires the lock on `1 and executes its

critical section until t = 4. Job J2 spins from time t = 1 on while waiting to

acquire the lock. At time t = 3, J4 also issues a request for `1 that is held

by J3 at that time, and hence J4 starts spinning. At time t = 4, when J3

releases the lock, both J2 and J4 are waiting to acquire the lock on `1. Since

requests are served in FIFO-order and J2’s request was issued before J4’s

request, J2 acquires the lock at time t = 4 and executes its critical section

until time t = 7. Job J4 acquires `1 after the lock is released at time t = 7.

Note that at time t = 3 the job J1 is released while J2 spins, and both J1

and J2 are assigned to the same processor core P1. Although J1 has a higher

scheduling priority than J2 (recall that indices indicate scheduling priority)

J2 is scheduled until it successfully acquires the lock and finishes its critical

section because a non-preemptable spin lock type is used and critical sections

are non-preemptable under any spin lock type.

For each ordering policy, we consider the cases where preemptions while

31

50 10

J1

J2

P1

P2

P3 J4

J3

`1

`1

`1

`1

Figure 2.3: Example schedule for non-preemptable FIFO-ordered spin lock.

spinning are either allowed or disallowed, yielding in total eight spin lock

types considered in this work. We abbreviate each type with the combination

of ordering policy and preemptability of spinning (e.g., F|N for FIFO-ordered

spin lock with non-preemptable spinning), as shown in Table 2.1. We use

the wildcard symbol “*” to simplify the notation for classes of spin locks.

For instance, we write *|N to denote all non-preemptable and F|* to denote

all FIFO-ordered spin lock types.

If no preemptions while spinning can occur (i.e., when preemptions while

spinning are disabled or no higher-priority task is assigned to the same

processor), FIFO-ordered spin locks ensure a straightforward property, which

we exploit in multiple instances throughout this work.

Lemma 1. Let `q denote a global resource protected by a FIFO-ordered

spin lock. If a job Jx issues a request Rx,q,s for `q and Jx is not preempted

while spinning, the request Rx,q,s can be blocked by at most one request for

`q from each other processor.

Proof. Follows trivially since jobs are sequential and since later-issued re-

quests cannot block in a FIFO queue. �

32

short guaranteed order preemptable representative
name of requests spinning implementation(s)

U|N unordered no TestAndSet

U|P unordered yes Algorithm 2 in Section 2.4.2
F|N FIFO no [15, 76, 104]
F|P FIFO yes [56, 90, 125]
P|N priority/unordered no [108]
P|P priority/unordered yes [108]
PF|N priority/FIFO no [56, 86, 103]
PF|P priority/FIFO yes [56, 86, 103]

Table 2.1: Overview of spin lock types considered in this work.

All of the spin lock types in Table 2.1 have been implemented in prior

work. Note that we also consider unordered spin locks although they do

not offer any guarantees on the ordering of requests. Nevertheless, their

simple implementation and low hardware requirements often make them

an attractive choice in cases of low resource contention. We next overview

the synchronization support provided by hardware and their use in the

implementation of spin locks.

Spin Lock Implementation and Hardware Support

Hardware architectures provide low-level instructions to enable an efficient

implementation of spin locks and other higher-level synchronization primitives.

One of the most basic operations is TestAndSet that atomically reads the

value of a bit and sets it to 1. A basic unordered spin lock can be implemented

with TestAndSet (BTS instruction on x86) as shown in Algorithm 2. In this

example implementation, the spin lock data structure only consists of the

variable lock that is set to 0 if the spin lock is free and 1 if it is held.

Note that the implementation prevents preemptions while the lock is held

by disabling all interrupts (via SuspendAllInterrupts()). While spinning,

interrupts are temporarily resumed to enable preemptions.

A ticket lock [114] ensures FIFO-ordering and can be easily implemented

33

Algorithm 2 Implementation of a basic unordered spin lock with preempt-
able spinning using TestAndSet.
lock← 0

GetSpinLock(lock):

1: SuspendAllInterrupts()
2: while TestAndSet(lock) = 1 do
3: ResumeAllInterrupts()
4: SuspendAllInterrupts()
5: end while

ReleaseSpinLock(lock):

1: lock ← 0
2: ResumeAllInterrupts()

using FetchAndAdd (similar to the regular XADD instruction with LOCK prefix

on x86). FetchAndAdd adds a value to a specified destination operand

(e.g., a variable) and returns its previous value. Algorithm 3 shows the

implementation of a ticket spin lock using FetchAndAdd.

Algorithm 3 Implementation of a ticket spin lock with non-preemptable
spinning using FetchAndAdd.
next ticket← 0
current ticket← 0

GetSpinLock(lock):

1: SuspendAllInterrupts()
2: my ticket← FetchAndAdd(next ticket, 1)
3: while current ticket 6= my ticket do
4: // skip
5: end while

ReleaseSpinLock(lock):

1: FetchAndAdd(current ticket, 1)
2: ResumeAllInterrupts()

CompareAndSwap or CAS, (CMPXCHG instruction with LOCK prefix on x86)

atomically checks whether the value of a destination operand matches an

expected value given as a parameter, and if so, the destination operand is set

to a specified value, otherwise the destination operand is not modified. The

return value of CompareAndSwap indicates whether the operation succeeded

(i.e., the destination operand matched the expected value). CompareAndSwap

34

is used to efficiently modify data structures (e.g., a linked list in the spin

lock implementation as proposed by Mellor-Crummey and Scott [104]). The

basic CompareAndSwap instruction operates on a single word, but variants

for two words (double- or multi-word CAS) exist as well.

The implementations shown in Algorithm 2 and Algorithm 3 have hot spots

that can lead to limited performance in case of lock contention. In particular,

the variables lock (in Algorithm 2), next ticket and current ticket (in

Algorithm 3) are not local to any processor and yet frequently accessed from

all spinning processors. This non-locality of frequently accessed memory can

cause significant overhead, and other implementations address this short-

coming with data structures exhibiting better locality (e.g., [15, 76, 104]) or

reducing the use of—comparably expensive—atomic instructions [117].

Without requiring a particular type or implementation, spin locks are man-

dated by the AUTOSAR operating system specification for protecting global

resources. Next, we describe the spin lock API mandated by AUTOSAR,

point out limitations of the API and propose a solution.

Spin Locks in AUTOSAR

AUTOSAR [1] is an operating system specification based on the OSEK [8]

specification developed for embedded control systems (implemented by, e.g.,

[3, 5–7]). AUTOSAR specifically targets automotive embedded systems and

is implemented by a variety of free open-source (e.g., [4] for AUTOSAR

version 3.1) and commercial (e.g., [3, 5]) operating systems. The AUTOSAR

specification mandates the use of a suspension-based locking protocol for

protecting local resources (considered in the next section), and spin locks

for global resources. AUTOSAR does not mandate that spin locks serve

requests in any particular order. For using spin locks, AUTOSAR specifies

the API calls GetSpinlock(<LockID>) and ReleaseSpinlock(<LockID>),

35

which correspond to the operations acquire(·) and release(·) as described

previously.

The API calls GetSpinlock(<LockID>) and ReleaseSpinlock(<LockID>)

alone do not prevent preemptions, neither while spinning nor while executing a

critical section. Preemptions have to be explicitly prevented by (temporarily)

disabling interrupts (that may trigger the release of a higher-priority task,

and hence, a preemption) via separate API calls: SuspendAllInterrupts()

and ResumeAllInterrupts(). Algorithm 4 shows how these API calls can

be combined to implement a non-preemptable lock, maintaining the request

ordering guarantees provided by a spin lock implementation in the particular

OS (recall that AUTOSAR doesn’t specify a particular ordering).

Latency-sensitive tasks may require preemptable locks to avoid blocking due

to spinning lower-priority tasks. Algorithm 4, however, cannot be easily

adapted to allow preemptions while spinning and prevent any preemptions

while executing the critical section. When preemptions are disabled just

after the lock was acquired (i.e., lines 1 and 2 in Algorithm 4 are swapped), a

preemption could still take place just after the lock was acquired and before

preemptions are disabled. In this case, other jobs waiting to gain access the

same resource incur additional delays determined by the regular execution

time of the preempting job. Hence, this approach does not yield a predictable

implementation of a spin lock with preemptable spinning.

Preemptable spin locks can be implemented with the API call

TryToGetSpinlock(<LockID>) specified by AUTOSAR. In contrast to

GetSpinlock(<LockID>), this call does not spin until the lock is acquired,

but tries to acquire the lock without blocking, and then returns a value

indicating whether the attempt was successful. Algorithm 5 shows how this

can be used to implement a spinlock with preemptable spinning. Preemptions

are disabled (line 1) before TryToGetSpinlock(<LockID>) is invoked (line

36

Algorithm 4 Non-preemptable spin lock in AUTOSAR.

1: SuspendAllInterrupts()
2: GetSpinLock(lock)
3: // critical section
4: ReleaseSpinLock(lock)
5: ResumeAllInterrupts()

2), and if successful, the critical section is executed, the lock is released and

preemptions are enabled again. If TryToGetSpinlock(<LockID>) does not

succeed, preemptions are immediately enabled (line 3), and the process is tried

again. Note that re-enabling preemptions just before retrying allows potential

higher-priority jobs to be scheduled and cause a preemption for the job try-

ing to acquire the lock. At the same time, if TryToGetSpinlock(<LockID>)

succeeds, preemptions remain disabled until the critical section completes,

and hence, preemptions of lock-holding jobs are prevented.

The approach for implementing spin locks with preemptable spinning de-

picted in Algorithm 5, however, has the drawback that the ordering guar-

antees that the spin lock may provide are lost. The underlying reason

is that any ordering policy can only be applied to pending requests, but

TryToGetSpinlock(<LockID>) immediately succeeds or fails, in which case

the request is not pending and hence not subject to the implemented ordering

policy. As an example, consider the case of a single resource protected by a

FIFO-ordered spin lock implemented using Algorithm 5, and three jobs, J1,

J2 and J3, accessing it. Job J1 initially holds the lock, and J2 tries to acquire

it. This attempt fails, as it is already held. Then J1 releases the lock and J3

tries to acquire it before J2 invokes TryToGetSpinlock(<LockID>) for the

second time. Job J3 successfully acquires the lock, as it is not held any more

at this point. In this interleaving of events, J3 acquires the lock although J2’s

request was issued before, which clearly violates FIFO-ordering. In fact, the

implementation of preemptable spin locks in Algorithm 5 cannot provide any

ordering guarantees, although the underlying spin lock may provide strong

guarantees when accessed via GetSpinlock(<LockID>).

37

Algorithm 5 Preemptable unordered spin lock in AUTOSAR.

1: SuspendAllInterrupts()
2: if TryToGetSpinLock(lock) 6= TRYTOGETSPINLOCK SUCCESS then
3: ResumeAllInterrupts()
4: go to 1
5: else
6: // critical section
7: end if
8: ReleaseSpinLock(lock)
9: ResumeAllInterrupts()

To support spin locks with preemptable spinning and ordering guarantees,

we propose a new API call for AUTOSAR:

GetPreemptableSpinlock(<LockID>). When invoked,

GetPreemptableSpinlock(<LockID>) spins until the requested lock is ac-

quired similar to GetSpinlock(<LockID>), but interrupts are atomically

disabled on lock acquisition. Performing both steps atomically prevents

preemptions while the lock is already held. At the same time, the request

remains pending while spinning which allows enforcing the type-specific

ordering policy among the set of pending requests.

Algorithm 6 shows how GetPreemptableSpinlock(<LockID>) can be used

for spin locks with preemptable spinning. Note that, in contrast to Algo-

rithm 4 for non-preemptable spin locks, interrupts are resumed after the

lock is released (line 4), but not suspended before it is acquired. With

GetPreemptableSpinlock(<LockID>), according to the proposed seman-

tics, suspending interrupts is implicitly done upon successful lock acquisition,

and hence, explicitly suspending them is not required (which would prevent

preemptions while spinning, and hence, defeat the purpose).

The proposed API call, GetPreemptableSpinlock(<LockID>), would make

it easy to use preemptable spin locks with strong ordering guarantees on

AUTOSAR-compliant operating systems. Note that similar behavior could

be achieved if a spin lock could be configured to atomically disable in-

terrupts upon successful lock acquisition. Although AUTOSAR specifies

38

Algorithm 6 Proposed API for preemptable spin locks.

1: GetPreemptableSpinLock(lock) // atomically disables interrupts on success
2: // critical section
3: ReleaseSpinLock(lock)
4: ResumeAllInterrupts()

an API to configure spin locks to disable interrupts on lock acquisition

(OsSpinlockLockMethod), it does not specify that this is performed atom-

ically, which is crucial to prevent ordering violations as illustrated above.

While AUTOSAR mandates the use of spin locks for protecting global re-

sources, local resources have to be protected by a suspension-based lock.

2.4.3 Suspension-Based Locks

Suspension-based locks provide a programming interface similar to the one

offered by spin locks: the operations acquire(`q) and release(`q) (also

named lock(`q)/unlock(`q) or P(`q)/V(`q)) are called before and after a

critical section, respectively, and the implementation ensures that, for any

resource `q, at any time, the lock on `q can be held by at most one job. The

crucial difference to spin locks is that the operation acquire(`q) does not

spin until the lock is successfully acquired, but rather suspends the calling

job, and hence allows another pending job on the same processor core to be

scheduled.

Suspension-based locks can conceptually also be used for global resources.

However, throughout this work, we assume that suspension-based locks are

only used for local resources, and spin locks are used for global resources, as

mandated by the AUTOSAR specification.

Suspension-based locks are used as part of two classic locking protocols for

uniprocessor systems, the Priority Ceiling Protocol and the Stack Resource

Protocol, which we describe next.

39

The Priority Ceiling Protocol

The Priority Ceiling Protocol (PCP) [121] is a classic real-time locking

protocol designed for uniprocessor systems under fixed-priority schedul-

ing, but it can also be used for local resources in a partitioned multi-

core system. For each local resource `q the PCP defines the priority ceil-

ing Π(`q) to be the highest scheduling priority of any task accessing `q:

Π(`q) = minTi{πi|Ni,q > 0}. Further, the PCP defines the system ceiling

Π̂(t) at time t to be the maximum priority ceiling of any resource held

at time t: Π̂(t) = min`q
{
{Π(`q)| `q is locked at time t} ∪ {n + 1}

}
, where

Π̂(t) = n+ 1 indicates that no resource is locked at time t.

The PCP (simplified without support for nested requests) defines the following

locking rules:

• If a job Ji requests the resource `q and Ji’s priority i is higher than the

system ceiling at time t, i.e., i < Π̂(t), then Ji’s request is served and

Ji can enter its critical section. If Ji’s priority is at most the system

ceiling at time t, i.e., i ≥ Π̂(t), then Ji’s request is blocked.

• If a job Ji holds a resource `q and a higher-priority job Jh (with

h < i) requests resource `q, then Ji inherits Jh’s higher priority until

Ji releases `q.

Jobs are scheduled according to a fixed-priority scheduler, taking into account

that jobs may temporarily inherit higher scheduling priorities according the

locking rules stated above. Notably, in contrast to critical sections protected

by spin locks, the PCP allows preemptions during the execution of critical

sections.

The schedule in Figure 2.4 illustrates the behavior of the PCP. At time t = 1

the job J3, acquires the lock on resource `1 and starts executing its critical

section. The job J2 is released at time t = 2 and preempts J3 since J2 has a

40

50 10

J1

J2P1

J3

`1 job executing

job executing
critical section

job holding resource `1`1

job release

`1 job suspended while
waiting for resource

Figure 2.4: Example schedule for the PCP.

higher priority. At time t = 4 the job J1 is released, preempts J2 and issues

a request for `1 at time t = 5. Since `1 is still held by J3, job J1 is blocked

and J3 inherits J1’s priority. Job J3 continues the execution of its critical

section during the interval [5, 6) and then releases the lock on `1, allowing J1

to acquire the lock and execute its critical section.

AUTOSAR-compliant systems use a variant of the PCP as described above,

the Immediate Priority Ceiling Protocol or OSEK PCP. The only difference

under the immediate PCP is that a job’s priority is immediately increased

to the resource ceiling once the lock on a resource is acquired (effectively

replacing the second rule stated above). Notably, the immediate PCP exhibits

the same worst-case behavior as the PCP with regard to the delay that jobs

may incur, but allows for an easier implementation.

Next, we summarize the Stack Resource Protocol, which is related to the

PCP and forms the basis of a locking protocol supporting multicore systems.

The Stack Resource Protocol

The Stack Resource Protocol (SRP) [23] is another classic real-time locking

protocol for uniprocessor systems, that can, similar to the PCP, also be used

for local resources in a multicore system under partitioned fixed-priority

41

scheduling. For the sake of simplicity, we describe a simplified variant of the

SRP that omits the concept of preemption levels as used in [23], which is

required for the analysis of the SRP under EDF scheduling. The SRP is based

on notion of resource ceilings, similar to the PCP. The SRP, however, aims

to reduce the number of context switches between jobs with the following

locking rule:

• A newly released job Ji may only start executing at time t if i < Π̂(t).

This rule ensures that, at the time Ji starts executing, all (local) resources

that Ji might access are available. Compared with the PCP, this rule of the

SRP causes a job to incur delay before starting to execute, while under the

PCP the delay is incurred when Ji issues a request for a resource that is

already held. The total worst-case delay that a job can incur under the SRP,

however, is the same as under the PCP (and hence also the same as under

the immediate PCP used in AUTOSAR-compliant systems5).

As an example, consider the jobs and their arrival times in Figure 2.5. At

time t = 2, when J2 is released, the system ceiling Π̂(2) is Π̂(2) = 1, since J3

holds resource `1, which is also accessed by J1. Hence, since 2 6< Π̂(2) holds,

J2 does not start executing until time t = 3, when J3 releases its lock on `1

and the system ceiling is lowered to Π̂(3) = n+ 1 = 4. At time t = 4, job J1

is released and starts executing immediately (preempting J2) since Π̂(4) = 4

and hence 1 < Π̂(4).

The SRP is used as part of the Multiprocessor Stack Resource Protocol, a

locking protocol suitable for both local and global resources under partitioned

fixed-priority.

5In fact, the immediate PCP can be considered to be an implementation of the SRP
since the immediate priority increase effectively ensures the locking rule we stated for the
SRP.

42

50 10

J1

J2P1

J3

`1

`1

Figure 2.5: Example schedule for the SRP.

2.4.4 The Multiprocessor Stack Resource Protocol

The Multiprocessor Stack Resource Protocol (MSRP) [72], in contrast to the

PCP and the SRP, also supports global resources. It does so by combining

different classes of mutex locks within one locking protocol. In particular,

local and global resources are treated differently under the MSRP: the SRP

is used for local resources, and F|N spin locks are used for global resources.

Nesting of requests for global resources is not allowed under the MSRP.

Recall from Sections 2.4.2 and 2.4.3 that AUTOSAR mandates the use of

the immediate PCP for local resources and spin locks for global resources.

From the perspective of worst-case delay incurred by jobs, the MSRP hence

exhibits the same behavior as locks under AUTOSAR (assuming F|N locks

for global resources), and analysis methods for bounding this delay under the

MSRP are applicable to AUTOSAR-compliant systems. We next summarize

the classic blocking analysis for the MSRP.

2.5 Blocking and Blocking Analysis

Enforcing mutual exclusion of concurrent requests for the same resource can

inherently result in jobs being blocked. For instance, in the example shown

in Figure 2.3, job J2 is blocked by J3 during the time interval [1, 4) (since

43

during that time J3 holds `1, which J2 tries to acquire), and J4 is blocked

by both J2 and J3 during the interval [3, 7).

Such blocking effects contribute to the response time of each task, and hence,

impact the schedulability of a task set. The worst-case blocking duration

depends on the task set properties and how it is deployed on the system,

namely

• the requests for shared resources issued by tasks,

• the mapping of tasks to processor cores,

• the scheduling priority assigned to each task,

• the type of lock used and type-specific parameters (if any) such as

request priority.

The goal of a blocking analysis is to take these factors into account and

derive safe bounds on the blocking duration that hold for any possible

schedule. These blocking bounds can then be incorporated into a response-

time analysis (described in Section 2.2 for independent task sets) to establish

schedulability.

The MSRP, as described in Section 2.4.4, uses the SRP for local resources

and F|N locks for global resources. Gai et al . [72] proposed a blocking

analysis for the MSRP that distinguishes between these two cases, and hence,

implicitly incorporates a blocking analysis for F|N locks. Notably, for the

other spin lock types considered in this thesis (see Table 2.1 for an overview)

no blocking analysis was available prior to the method presented in this

thesis (Chapter 6). Next, we summarize the blocking analysis for the MSRP

originally proposed by Gai et al . [72].

44

2.5.1 Blocking Analysis for the MSRP

Under the MSRP, three types of blocking can be distinguished: local blocking

due to the SRP, and non-preemptive blocking and remote blocking due to

spin locks. The former two types both cause priority inversions [40, 121],

whereas the latter results in spinning. We briefly review the analysis of each

blocking type.

Local Blocking A job Ji incurs local blocking under the SRP if, at the

time of Ji’s release, a job of a local lower-priority task Tl (i.e., i < l) executes

a request for a local resource `q with Π(`q) ≤ i. Under the SRP, Tl’s request

for `q causes the system ceiling Π̂(t) to be set to at least Π(`q). If Ti releases

a job while Tl is holding `q, Ji is delayed since Π̂(t) ≤ i, and hence Ji is

blocked by Tl’s job.

Each job of Ti can be locally blocked at most once (upon release) for a

duration of at most βloci time units, where

βloci = max
Tl,q
{Ll,q|Nl,q > 0 ∧Π(`q) ≤ i < l ∧ `q is local}.

Here and in the following, we define max(∅) , 0 for brevity of notation.

Remote Blocking Since the MSRP uses F|N spin locks, a job Ji that

requested a global resource `q spins non-preemptably until successfully ac-

quiring the lock on `q. Due to the strong progress guarantee of F|N locks,

each request for `q can be blocked at by at most one request for `q from each

other processor core. Hence, the maximum spin time per request, denoted

as Si,q, is bounded by the sum of the maximum critical section lengths on

45

each other processor (with respect to `q):

Si,q =


∑

Pk 6=P (Ti)

max{Lx,q|P (Tx) = Pk} if Ni,q > 0,

0 if Ni,q = 0.

Since Si,q bounds the spin time for each of Ji’s request for `q, the total spin

time βremi can be bounded by the sum of spin times for each of Ji’s requests:

βremi =
∑

`q
Ni,q · Si,q.

Non-Preemptive Blocking A local lower-priority job Jl spinning or

executing non-preemptably can cause a job of Ti become blocked upon

release. The maximum duration βNP
i of such blocking is bounded by Tl’s

worst-case spin time and critical section length for a single request:

βNP
i = max

{
Sl,q + Ll,q | P (Ti) = P (Tl) ∧ i < l ∧ `q is global

}
.

The blocking bounds βloci , βremi and βNP
i can be incorporated into a response-

time analysis to derive bounds on the response time.

Schedulability Analysis The response-time analysis for independent task

sets in Equation (2.1) can be extended to account for the blocking under the

MSRP. Under the MSRP, a safe bound on Ti’s response time ri is given by

a solution to the following recurrence [72]:

ri = ei + βremi + max
{
βNP
i , βloci

}
+

∑
h<i

P (Ti)=P (Th)

⌈
ri
ph

⌉
· e′h, (2.2)

where e′h = eh + βremh denotes Th’s inflated execution cost. The method

of execution time inflation to account for blocking in the blocking analysis

is revisited in Section 6.2, where we point out inherent drawbacks in that

46

approach and present an analysis method to overcome them. Similar to

independent task sets, the schedulability of a task set with shared resources

protected using the MSRP can be established by comparing each task’s

response time and deadline: a task Ti is schedulable if ri ≤ di.

The analysis for the MSRP summarized above is computationally inexpensive,

and so is our spin lock analysis approach for non-nested spin locks presented

in Chapter 6 (albeit more expensive). The blocking analysis for nested spin

locks, in contrast, is a substantially more difficult problem, as we show in

Chapter 7. The difficulty of carrying out a blocking analysis, or solving any

other computational problem, can be characterized as the computational

complexity of the problem. To reason about the complexity of the blocking

analysis problem, we provide background on computational complexity in

the following.

2.6 Computational Complexity

The difficulty of computational problems, such as finding blocking bounds,

is studied as part of computational complexity theory. The difficulty of such

problems is studied independently of actual algorithms solving them, but

rather focusing on the abstract problem itself. In this work we consider two

types of computational problems: combinatorial (or discrete) optimization

problems and decision problems [17].

Combinatorial optimization problems ask for a minimum (or maximum)

solution among a set of feasible solutions. As an example of a combinatorial

optimization problem, consider the problem of computing the distance be-

tween two vertices in a graph, that is, the minimum length of a path between

two vertices (if such a path exists).

For decision problems the solution is always a truth value (i.e., of Boolean

47

form: True or False, 1 or 0). An example of a decision problem is a variant of

the previous problem, namely the problem of deciding whether the distance

between two vertices in a graph is at most a given length. Both variants are

closely related, and in Chapter 7 we consider both the optimization and the

decision variants of the blocking analysis problem to obtain our hardness

results.

The difficulty of a problem can be characterized in terms of the resources

required to solve it, such as computation time. The time complexity of a

computational problem is the minimum asymptotic worst-case number of

simple operations or steps (such as CPU instructions or transitions taken by

a Turing machine) required by any algorithm to find a solution [17]. Note

that studying the complexity of a problem does not require the knowledge of

any concrete algorithm actually solving it. The complexity of problems can

be compared by means of reductions.

2.6.1 Reductions

Let X and Y denote two computational problems. Intuitively, if a solution to

problem X can be obtained by solving Y instead (and potentially performing

some additional work), then problem Y is at least as difficult as problem X.

In that case, we say that problem X can be reduced to Y [17, Ch. 2.2]. In this

work, we make use of polynomial-time reductions. That is, reductions that,

for some polynomial function poly(n) of n, take at most poly(n) time for any

input of size n. We use two different types of polynomial-time reductions:

Turing reductions (Section 7.3.3) and many-one reductions (Sections 7.3.2,

7.4 and 7.5).

48

Turing Reductions

Let X and Y be decision problems.6 A reduction from X to Y is a polynomial-

time Turing reduction [54] if and only if for any input x to X of size n

• the reduction solves the instance X(x) by

• using at most a polynomial number of instances of Y with respect to

n, and

• performing at most a polynomial number of steps with respect to n

outside of invocations of Y .

Polynomial-time Turing reductions are also known as Cook reductions.

As an example, let X denote the problem of deciding whether in a given

undirected graph G = (V,E) there exists an edge e with e ∈ E contained

in all paths between two given distinct vertices v1 and v2 with {v1, v2} ⊆ V

and v1 6= v2. That is, X is the problem of deciding whether there is a bridge

(as defined, e.g., in [34]) between v1 and v2. Formally:

X: Test Bridge Exists

Input undirected connected graph G = (V,E), vertices v1 and v2 with

{v1, v2} ⊆ V ∧ v1 6= v2

Output True if and only if there is an edge e with e ∈ E such that all

paths p = v1, . . . , v2 in G contain e

Further, let Y denote the problem of deciding whether two vertices v1 and

v2 are disconnected in a given graph G. Formally:

6Turing reductions can be applied to other types of problems (e.g., function problems)
as well, but for the sake of simplicity, we focus on decision problems here.

49

Y : Test Disconnected

Input undirected graph G = (V,E), vertices v1 and v2 with {v1, v2} ⊆

V ∧ v1 6= v2.

Output True if and only if no path p = v1, . . . , v2 exists in G.

A (valid albeit naive) Turing reduction from X to Y can be constructed as

follows: for each edge e ∈ E (of which there are at most |V |2), construct

the graph G′ = (V,E′) with E′ = E \ {e}, and solve the problem instance

Y (G′, v1, v2). If Y (G′, v1, v2) returns True for any edge e (i.e., there is no

path between v1 and v2 in G′), then return True as well (since the removal

of edge e disconnects v1 and v2). Otherwise, return False (since any single

edge can be removed without disconnecting v1 and v2, and hence there is no

bridge). Note that this reduction relies on solving multiple instances of the

problem Y (one for each edge) to solve X.

Many-One Reductions

Let X and Y be decision problems, and let X(x) denote the instance of

X applied to the input x. A reduction from X to Y is a polynomial-time

many-one reduction [89] if and only if, for any input x to X, the reduction

produces an input y to Y within polynomial time with respect to the size of x

such that Y (y) yields the solution to the problem instance X(x). Many-one

reductions are also known as Karp reductions.

Note that a many-one reduction only transforms X’s input x, and exactly

one instance of Y is invoked to solve the problem instance X(x). Many-one

reductions are therefore special cases of Turing reductions (which allow a

polynomial number of invocations of Y).

As an example for a many-one reduction, let X ′ denote the problem of

deciding whether in a given undirected connected graph G = (V,E) all paths

50

between two given vertices v1 and v2 with {v1, v2} ⊆ V and v1 6= v2 contain

a given edge e with e ∈ E. That is, X ′ is the problem of deciding whether e

is a bridge between v1 and v2. Formally, let X ′ be defined as follows:

X ′: Test Bridge

Input undirected connected graph G = (V,E), vertices v1 and v2 with

{v1, v2} ⊆ V ∧ v1 6= v2, edge e with e ∈ E.

Output True if and only if all paths p = v1, . . . , v2 in G contain e.

Let Y be defined as above, that is, Y is the problem of deciding whether

two vertices in a given graph are disconnected (i.e., no path between them

exists). Then a many-one reduction from X ′ to Y can be constructed as

follows: for a given instance X ′(G, v1, v2, e), construct the graph G′ = (V,E′)

with E′ = E \ {e}, and return the solution of Y (G′, v1, v2). If the outcome of

Y (G′, v1, v2) is False, then there is a path in G between v1 and v2 that does

not contain e, and hence e is not a bridge. If the outcome of Y (G′, v1, v2)

is True, then e is a bridge between v1 and v2 in G since these vertices

are disconnected as e is removed. Hence, the construction is a many-one

reduction from X ′ to Y .

2.6.2 Complexity Classes

Problems can be categorized into complexity classes based on the compu-

tational resources (i.e., time or space) required to solve them. For decision

problems, the complexity classes P and NP (among a variety of others that

are beyond the scope of this work) have been widely studied. The classes P

and NP are defined as follows:

• P : The set of decision problems that, given an input of size n, can be

solved by a deterministic Turing machine in poly(n) time.

• NP : The set of decision problems that, given an input of size n, can

51

be solved by a non-deterministic Turing machine in poly(n) time.

Note that the class P is contained in NP , since any computation carried out

by a deterministic Turing machine can be carried out by a non-deterministic

Turing machine as well. The question whether these two classes are equal,

that is, whether P =NP holds true or not, is still open [54].

2.6.3 NP-Hardness and NP-Completeness

The problems contained in the same complexity class may differ in difficulty.

To express that a problem X is one of the most difficult problems in NP ,

the problem X is called NP-complete (with respect to a specific type of

reduction). Formally, X is called NP -complete [54, 89, 91] if and only if

• X is in NP , and

• every problem in NP can be reduced to X within polynomial time.

If the latter condition is satisfied, X is at least as difficult as the most difficult

problems in NP , and in this case, X is called NP-hard. Hence, a problem X

is NP -complete if it is NP -hard and also contained in NP .

The complexity of NP -hard problems with numerical input can be further

characterized as strongly or weakly NP -hard. A problem X is called strongly

NP-hard (or NP-hard in the strong sense) if it is NP-hard even when the

numerical input is polynomially bounded in the input size [73]. This is

equivalent to NP -hardness of a problem when assuming that numerical

input is represented in unary form (rather than binary), in which case the

numerical values are naturally polynomially bounded by their representation

size. A problem X that is NP -hard but not strongly NP -hard is called

weakly NP-hard. NP -hard problems without numerical input are considered

strongly NP-hard.

52

2.6.4 Classic Combinatorial Problems

Karp compiled a collection of combinatorial problems [89], which are now

known as Karp’s 21 NP-complete problems. A plenitude of problems have

since been established to be NP -complete, and in the following we briefly

summarize two classic NP -complete problems of relevance to this work.

The Bin-Packing Problem

The bin-packing problem is strongly NP -hard and asks how many bins

are required to fit a number of items of varying size. Formally, let A ,

{a1, . . . , an} denote a set of items, and let s(ai) denote the size of item ai

that ranges in (0, 1]. For a given set A and item sizes s(·), the bin-packing

problem asks how many bins are required such that

• each item is assigned to exactly one bin, and

• the sum of the sizes of all items assigned to the same bin does not

exceed 1.

The decision variant of the problem [52] takes an additional numeric param-

eter k and asks whether it is possible to fit the items in A with sizes s(·)

into k bins such that the above conditions hold. The decision variant has

been shown to be strongly NP -complete. As we explain in Section 3.2.2,

the bin-packing problem is related to the partitioning problem, a problem

inherent in P-FP scheduling.

The Multiple Choice Matching Problem

The multiple choice matching (MCM) problem [74, GT55] is a strongly

NP -complete [83] graph matching problem. The MCM takes as input

an undirected graph G = (V,E), disjoint edge partitions E1, . . . , Ej with

53

E1∪· · ·∪Ej = E, and a positive integer k. The problem is to decide whether

there exists a subset E′ with E′ ⊆ E and |E′| ≥ k such that E′ contains at

most one edge from each edge partition: ∀i, 1 ≤ i ≤ j : |Ei ∩ E′| ≤ 1. In

Chapter 7 we use the MCM problem to obtain our hardness result for the

blocking analysis of nested locks.

2.6.5 Approximation Schemes

Approximating the solution to an optimization problem can be easier than

computing the exact solution. Approximation schemes differ in computational

complexity and in the worst-case discrepancy between approximate and

exact solution. One type of approximation algorithm is a polynomial-time

approximation scheme (PTAS) that, for a fixed parameter ε with ε > 0,

computes a solution that is within a factor of (1 + ε) for minimization

problems (or (1 − ε) for maximization problems) in polynomial time with

respect to the input size. Notably, the run time of a PTAS can differ for

different values of ε, and the run time is not required to be polynomial with

respect to 1/ε. A PTAS with a run time that is polynomial in both n and

1/ε is called fully polynomial-time approximation scheme (FPTAS).

2.7 Overheads

In a real system, tasks are subject to overheads such as context switch costs or

the loss of cache affinity when preempted. We assume that all non-negligible

overheads have already been factored into the relevant task parameters (i.e.,

mainly ei and each Li,q) using standard accounting techniques (see [43, Chs.

3 and 7] for a detailed discussion).

54

Chapter 3

Related Work

3.1 Task Models

In this work, we assume the sporadic task model [106]. Other models

have been proposed as well, differing in expressiveness and the difficulty of

analyzing them. The periodic task model [99] is more restrictive than the

sporadic task model in that tasks release jobs in regular intervals (rather

than with a minimum separation between consecutive jobs). Other task

models allow expressing different job release patterns: e.g., the event-stream

model [12, 77] allows specifying bounds on the number of job releases per time

interval rather than minimum separation between jobs, and the generalized

multiframe model [107] allows encoding different execution times for jobs of

the same task.

More recent task model proposals based on directed graphs (e.g., [124]) also

allow encoding different inter-arrival times between different types of jobs.

An overview of different graph-based task models for uniprocessor systems is

provided by Stigge and Yi [123]. Multicore systems, in contrast to unipro-

cessor systems, enable parallel execution, and various task models have been

55

presented to express concurrency and opportunities for parallelism within one

task. For instance, task models for capturing synchronous parallel tasks (e.g.,

in fork-join parallelism or parallel for loops in OpenMP and other languages)

have been presented [93, 118]. Baruah et al . and Bonifaci et al . presented

generalized task models for parallel computations [29, 35]. Focusing on the

engineering aspect of embedded systems, Giotto [80, 81] provides an abstract

programming model for control applications that supports communicating

periodic tasks, as well as sensors and actuators. Notably, Giotto programs

capture functionality and timing-requirements in a platform-independent way,

and can be compiled for platforms with different hardware characteristics or

scheduling approaches.

Discovering the task set properties that can be expressed in a task model

is challenging on its own. Task properties such as deadline and period

(or minimum inter-arrival time) can often be inferred from the application

requirements and physical properties of the given system. In contrast,

deriving execution time bounds is challenging [136]. Overviews of methods

for worst-case execution time analysis are provided by Wilhelm et al . [137] and

Abella et al . [11]. Measuring the execution times in the actual system [96, 111]

is one option, but does not guarantee that the worst case will be observed.

Static analysis, e.g., [49, 50, 84, 97, 138, 139], relies on a model of the

hardware architecture and analytically finding the execution path exhibiting

the longest execution time.

A different line of research aims to make the execution more predictable [21,

127], which benefits approaches both based on measurement and static

analysis to find worst-case execution time bounds. This requires hardware

architectures with predictable timing behavior [63, 98, 100, 120, 129] and

programming languages with explicit timing semantics (e.g., [14] tailored for

PRET architectures [98]).

56

3.2 Priority Assignment and Partitioning

P-FP scheduling, as mandated, for instance by operating systems complying

to the AUTOSAR [1] operating system specification, inherently requires

each task to be mapped to one processor core, and assigned a scheduling

priority. The problem of assigning priorities has already been studied in the

context of uniprocessor systems under FP scheduling.

3.2.1 Priority Assignment for FP

For independent periodic tasks with implicit deadlines (i.e., relative deadlines

are equal to the period) and synchronous release (i.e., all tasks release a

job simultaneously release a job at system start), Liu and Layland found

that assigning priorities inversely proportional to task periods (i.e., tasks

with shorter periods are assigned higher priorities) is optimal [99]. That is,

if there exists any task-level priority assignment such that all deadlines are

guaranteed to be met, then all deadlines will be met under this rate-monotonic

(RM) priority assignment as well.

For periodic tasks with constrained deadlines (i.e., relative deadlines do

not exceed the period), Leung and Whitehead have shown that a deadline-

monotonic (DM) priority assignment scheme is optimal [95]. Audsley et al .

show that DM priority assignment is also optimal for sporadic tasks [18]. For

periodic tasks with asynchronous release and arbitrary deadlines, Audsley

showed that neither RM nor DM are optimal [20], and presented an optimal

algorithm for assigning priorities. We summarize this algorithm called

Audsley’s optimal priority assignment (OPA) in Section 2.3. The OPA

forms the basis for our partitioning heuristic presented in Chapter 4. A

recent overview of priority assignment techniques is provided by Davis

et al . [57].

57

3.2.2 Partitioning for P-FP

Partitioned scheduling requires the partitioning of the task set, that is, each

task has to be mapped to one processor core. This partitioning problem

resembles an instance of the classic bin-packing problem (e.g., [74]), which is

known to be strongly NP -complete [89]. For independent tasks, Baruah [31]

and Baruah and Bini [27] presented approaches for solving the partitioning

problem based on Integer Linear Programming (ILP) under EDF and FP

scheduling. To avoid the inherent complexity of solving the partitioning

problem exactly, well-performing (albeit potentially non-optimal) bin-packing

heuristics exist [85], and they have also been applied to the partitioning

problem (e.g., [25, 30, 45, 53, 59, 70, 71, 102]).

Chattopadhyay and Baruah presented a partitioning approach for EDF

scheduling that does not rely on bin-packing heuristics: lookup-tables with a

configurable accuracy parameter are pre-computed offline for each system

platform, which can then be used to efficiently partition tasks for EDF

scheduling [48]. A PTAS (summarized in Section 2.6.5) for partitioning

under EDF scheduling was presented by Baruah [26]. Apart from timing

aspects, the partitioning problem has also been studied with a focus on other

objectives, such as energy efficiency [22] and fault tolerance [69].

Resource sharing complicates the partitioning problem since jobs can interfere

across processor boundaries on resource contention. Generic bin-packing

heuristics do not account for these effects, and hence, bin-packing heuristics

that are oblivious to resource sharing can be inefficient in such settings.

For task sets with precedence constraints, Zheng et al . presented an ILP-based

approach that takes into account interference due to an implicitly shared

resource, a shared bus [143]. Zheng and Di Natale incorporated blocking

due to local (i.e., resources shared among tasks from only a single processor)

58

resources into an ILP-based partitioning approach [142]. Lakshmanan et al .

presented a partitioning heuristic [92] for explicitly shared resources protected

by the MPCP [113], a suspension-based multiprocessor real-time locking

protocol. This heuristic aims to group tasks sharing the same resources

and tries to assign these groups to the same processor. A similar approach

was presented by Nemati et al . with BPA [109], a partitioning heuristic

for the MPCP that incorporates advanced cost heuristics to determine how

groups of tasks can be split up with low overall blocking. These sharing-aware

heuristics tailored to a specific locking protocol can often successfully produce

a valid partitioning (i.e., a partitioning under which all tasks are schedulable)

where sharing-oblivious heuristics fail. However, these heuristics are specific

to the MPCP and are not directly applicable to spin locks. In Chapter 4,

we present an efficient partitioning heuristic for spin locks and an optimal

ILP-based partitioning approach.

Next, we provide an overview of locking protocols for real-time systems.

3.3 Real-Time Locking Protocols

In Section 2.4, we introduced spin locks as one type of mutex lock, suspension-

based locks being the other type. A variety of different suspension-based

locks have been presented, for instance the classic SRP [23], the PCP [121]

(both summarized in Section 2.4.3), and the Priority Inheritance Protocol

(PIP) [121] for uniprocessor systems. The MSRP [72] presented by Gai

et al . (summarized in Section 2.4.4) supports shared-memory multiprocessor

systems under P-FP scheduling and uses the suspension-based SRP for local

resources and F|N for global resources. Notably, the blocking analysis for

the MSRP presented by Gai et al . [72] hence includes an analysis for F|N

spin locks, which was the first blocking analysis for spin locks under P-FP

scheduling. Devi et al . presented a blocking analysis for F|N spin locks under

59

global scheduling [58] analogously to the analysis presented by Gai et al . for

P-FP scheduling.

Brandenburg presented the holistic blocking analysis [43, Ch. 5] that reduces

the pessimism of prior analyses for F|N spin locks by considering all requests

a single job can issue together.1 All of these analyses rely on execution

time inflation, which is inherently pessimistic. In Chapter 6, we detail this

issue and present a blocking analysis approach that avoids this inherent

pessimism.

Takada and Sakamura presented SPEPP [126], a protocol using F|P locks

under which jobs “help” each other to make progress by letting a blocked job

execute earlier-issued requests from other jobs that were possibly preempted

while spinning. A related approach is taken by the MrsP [46], a variant of

the MSRP presented by Burns and Wellings. In contrast to SPEPP (and the

MSRP), the MrsP permits preemptions during critical sections, but ensures

that a lock-holding job makes progress when preempted (and other jobs are

blocked for the same resource): the lock-holding job can resume execution

on a processor with a different blocked job (by migrating the job), or the

critical section can be re-executed by a blocked job on a different processor

core (assuming critical sections can be committed atomically).

Rajkumar presented the Multiprocessor Priority Ceiling Protocol (MPCP)

that is suspension-based for both local and global resources [112]. For

distributed systems (i.e., without shared memory), Rajkumar et al . presented

the suspension-based DPCP [113].

The FMLP presented by Block et al . [33] distinguishes between long and

short requests, and relies on different techniques depending on the request

length: the FMLP is suspension-based for long requests, and spin-based for

1Recall that under Gai et al .’s analysis for the MSRP, as summarized in Section 2.5.1,
the worst-case spin time for each request is bounded, and then multiplied with the number
of requests to obtain the total blocking bound.

60

short requests. In contrast to the DPCP, under which requests are served in

priority-order, the FMLP relies on FIFO-ordering. The FMLP was originally

presented for EDF scheduling, but was later adapted to P-FP scheduling as

well [38].

Brandenburg and Anderson explored the amount of blocking that is inher-

ently unavoidable under any mutex-based locking protocol, and devised

the OMLP [40, 42], a suspension-based locking protocol that is asymptoti-

cally optimal under suspension-oblivious analysis2 in the sense that it limits

blocking to an extent that cannot be avoided under any protocol for global,

partitioned and clustered FP and EDF scheduling. The FMLP+ presented

by Brandenburg [37, 43, Ch. 6.3] improves upon the FMLP and also ensures

optimality under suspension-aware analysis.3 Besides partitioned and global,

the FMLP+ also supports clustered scheduling.

For suspension-based mutex locks under P-FP scheduling, Brandenburg

developed an improved blocking analysis approach [36] based on linear

programming that supports the MPCP, DPCP, FMLP+, and the DFLP [44].

Our blocking analysis for spin locks under P-FP scheduling (Chapter 6) uses

a similar technique based on linear programming.

For G-FP scheduling, Easwaran and Andersson presented the PPCP [62],

a suspension-based locking protocol extending the PCP. Yang et al . sub-

sequently presented an analysis framework for suspension-based locking

protocols under G-FP scheduling [141], that incorporates support for the

PIP [62, 121], PPCP [62], FMLP [33], and the FMLP+ [37]. The analysis

is based on techniques presented by Brandenburg [36] in the context of

suspension-based locks under P-FP scheduling.

2Under suspension-oblivious analysis, suspensions are modeled as execution that occupies
the processor.

3Under suspension-aware analysis, suspensions are explicitly accounted for and not
modeled as execution.

61

While nesting of requests is allowed under several uniprocessor locking proto-

cols such as the PCP,4 the increased parallelism on multiprocessors makes the

support for nesting in locking protocols challenging. The MDPCP presented

by Chen and Tripathi [51] for periodic tasks under P-EDF scheduling, similar

to the PCP, relies on resource ceilings and only enables rather coarse-grained

locking (to access a single global resource, all global resources accessed by

any task from the same processor must be available).

A different technique to support nesting is the group lock, where resources that

may be nested within each other are organized in a group. To access a single

resource, the corresponding group lock must be obtained, even when other

resources in the group are not used. This approach is employed, for instance,

by the FMLP and the PWLP [13], a locking protocol using preemptable

FIFO-ordered spin locks presented by Alfranseder et al . for global and

partitioned FP and EDF scheduling. The RNLP presented by Ward and

Anderson [130] is a family of spin- and suspension-based locking protocols

supporting nesting without group locks for partitioned, clustered and global

FP and EDF scheduling. Notably, the RNLP ensures asymptotically optimal

blocking. Biondi et al . presented the nFIFO protocol [32], a relaxation of

the classic MSRP, that allows nesting and avoids blocking of non-conflicting

requests. The analysis of the nFIFO protocol presented by Biondi et al . is

partially based on our analysis approach presented in Chapter 6.

3.4 Other Synchronization Primitives

Besides binary (suspension-based) semaphores and spin locks, other synchro-

nization primitives have been presented.

4Note that the simplified version of the PCP summarized in Section 2.4.3 does not
support nested requests, but the original version as presented in [121] does support nesting.

62

k-Exclusion Locks and Reader-Writer Locks (RW-Locks) extend the notion of

strict mutual exclusion by allowing multiple concurrent requests accessing the

same resource and treating read and write requests differently. k-exclusion

locks are initialized with a value indicating the number of available units, and

at any time, at most k units can be held by jobs (and at most one unit per job).

Notably, when initialized to the value of 1, a k-exclusion lock is semantically

equivalent to a mutex lock if one unit is acquired or released. Brandenburg

and Anderson presented asymptotically optimal suspension-based k-exclusion

locks [41] for clustered scheduling. For partitioned scheduling, Yang et al .

subsequently presented a variant of Brandenburg and Anderson’s k-exclusion

locks [41] that enables enables higher concurrency for requests issued from the

same processor [140]. Elliot and Anderson presented a k-exclusion protocol

tailored to GPUs as resources [67]. Nemitz et al . presented protocols [110]

that allow each job to acquire multiple (up to k) units of the same multi-unit

resource (while maintaining the property that at most k units can be held in

total).

RW-locks are motivated by the observation that there exist types of shared

resources that can be safely read (or accessed in a non-mutating way) by

multiple jobs concurrently, while write requests need to be executed in

isolation from any other requests (either reading or writing). Both spin-

based (e.g., [39, 105]) and suspension-based (e.g., [55]) RW-locks have been

presented. If the expected ratio of read and write accesses is known, the

implementation can be optimized for such access patterns (e.g., [82]). Notably,

RW-locks can be implemented using locking protocols for multi-unit resources

with a suitable choice of resource units to acquire or release as a reader or

writer [16, Ch. 8.1].

When multiple readers or writers are waiting to acquire the same lock,

the implementation can enforce a specific order in which the requests are

served. Most common ordering policies include task-fair ordering, where

63

requests are served in FIFO order [105, 115], and preference ordering, where

either readers or writers are given preference. Brandenburg and Anderson

presented phase-fair reader-writer locks [39]. Phase-fair reader-writer locks

allow for increased concurrency among readers and ensure that a reader is

blocked by at most one writer, yielding an asymptotic reduction in worst-case

blocking. Building upon the RNLP, Ward and Anderson presented the R/W

RNLP [131], a reader-writer variant of the RNLP that supports nesting of

requests.

Besides synchronization primitives to ensure mutual exclusion (e.g., spin

locks), other primitives such as barriers, signals or condition variables have

been studied (e.g., [104]) and are supported in many operating systems,

for instance, POSIX-compliant operating systems [9]. These, however, are

beyond the scope of this work, where we focus on spin locks.

3.5 Complexity of Scheduling Problems

The complexity of scheduling problems has been studied in many aspects over

the past decades (see [122] for a survey of classic results). Intractability results

for a variety of feasibility problems, that is, the problem of deciding whether

a schedule exists such that all deadlines are met, have been established (e.g.,

[28, 66, 94, 106, 116]). Similarly, the complexity of commonly used analysis

techniques has been studied (e.g., [28, 64, 65]). For instance, it has been

shown that the feasibility problem for periodic task sets is strongly NP -

hard [95], and deciding feasibility for task sets using semaphores to ensure

mutual exclusion has been shown to be strongly NP -hard as well [106].

In contrast, the problem of bounding the blocking due to resource contention

without deciding task set schedulability is a much simpler one. In fact, the

blocking analysis problem is simple on uniprocessors under the PCP and

64

SRP [24, 121], where it essentially boils down to the problem of identifying

a longest request issued by a task with lower priority (for a resource with

a sufficiently high resource ceiling, see Section 2.5.1 for details). For the

PIP, a simple dynamic programming approach is described in [101]. Even

on multiprocessors a blocking analysis is tractable if critical sections are not

nested (see our analysis in Chapter 6). Allowing nested critical sections on

multiprocessors, however, gives rise to blocking effects (see Section 7.2) that

prevent local per-processor reasoning about worst-case blocking. In fact,

as we show in Chapter 7, nesting on multiprocessors renders the blocking

analysis problem to be strongly NP -hard.

65

Chapter 4

Partitioning Task Sets

Sharing Resources Protected

by Spin Locks 1

4.1 Introduction

Under P-FP scheduling, each task must be assigned to exactly one processor

core for execution. Finding such such a partitioning, i.e., a mapping of tasks

to processors such that all tasks are schedulable, can be challenging. In

fact, the partitioning problem has been shown to be strongly NP -complete,

but computationally inexpensive bin-packing heuristics can be employed for

partitioning task sets (see Section 3.2.2 for an overview of work related to

the partitioning problem).

While generic bin-packing heuristics are oblivious to shared resources, resource-

aware partitioning heuristics have been developed to account for the blocking

effects as well. For shared resources protected by spin locks, for instance in

1This chapter is based on [135].

66

an AUTOSAR-compliant operating system, prior heuristics often fail to

produce a valid partitioning (i.e., a partitioning under which all deadlines

can be guaranteed to be satisfied) although such partitionings exists. As a

result, developers may be forced to utilize more powerful hardware platforms

(potentially increasing space, weight, energy consumption and cost of the

product) or restructure the application (e.g., by splitting up tasks into smaller

ones) to simplify the problem until a partitioning can be found.

To avoid such waste of resources and better utilize multicore platforms, we

developed two partitioning approaches for systems under P-FP scheduling and

the MSRP for protecting shared resources. The remainder of this chapter

is organized as follows. Section 4.2 overviews both generic bin-packing

heuristics and resource-aware partitioning heuristics, and Section 4.3 makes

the case for an optimal partitioning approach. We present two approaches for

resource-aware partitioning: Section 4.4 presents an optimal approach based

on Mixed Integer Linear Programming (MILP), and Section 4.5 presents a

simple and effective partitioning heuristic. Section 4.6 presents evaluation

results and Section 4.7 concludes this chapter.

4.2 Partitioning Heuristics

As briefly pointed out in Section 3.2.2, task sets can be partitioned for

P-FP scheduling using generic bin-packing heuristics, which are oblivious

to shared resources. In contrast, resource-aware partitioning heuristics take

into account each task’s resource access patterns to find a mapping of tasks

to processor cores. In this section, we overview both classic bin-packing

heuristics and resource-aware partitioning heuristics.

67

Classic Bin-Packing Heuristics

Generic bin-packing heuristics are commonly used to map tasks to processors.

Bin-packing heuristics distribute a set of different objects (tasks) of a given

size (processor utilization) to bins (processors), such that each object is

assigned to exactly one bin and the total size of all objects assigned to a

bin does not exceed the bin’s capacity (all tasks are schedulable). Under

P-EDF scheduling, schedulability can be guaranteed if the total utilization

of tasks assigned to each processor does not exceed 1 (shown in [99] for

uniprocessor systems under EDF scheduling). As a direct consequence, a

partitioning obtained with a bin-packing heuristic ensures schedulability

under P-EDF scheduling. Under P-FP scheduling, however, this is not the

case: a task set can be unschedulable even if the per-processor utilization

does not exceed 1 (in fact, in the general case, a response-time analysis is

required to establish schedulability; see Section 2.2). Before describing a

simple adaptation that enables the use of bin-packing heuristics for P-FP

scheduling, we assume P-EDF scheduling for the sake of simplicity and

summarize basic heuristics.

Commonly used heuristics include the first-fit, next-fit, best-fit and worst-fit

heuristics [85], which we describe in brief. All of them take a sequence of

objects (tasks) of a given size (task utilization) as input. We assume that the

input sequence is sorted in order of decreasing size, which typically results

in a lower number of bins required by these heuristics [85]. Bins initially

have unit-capacity (i.e., a capacity of 1) and can be allocated on demand.

Newly allocated bins are empty (i.e., do not have any objects assigned to

them), and the capacity of a bin is defined as its initial capacity subtracted

by the total size of the objects assigned to it. An object fits into a bin if the

capacity of the bin is at least the object size.

The first-fit heuristic iterates over all bins in the order they were allocated,

68

and assigns the current object to the first bin with sufficient remaining

capacity. If no such bin exists, it allocates a new bin and assigns the current

object to it.

The next-fit is simpler in that it only checks the last allocated bin and

allocates a new bin if the last allocated bin does not have sufficient capacity

to fit the current object. Both the first-fit and next-fit heuristics report a

failure if the maximum number of bins is exceeded.

The best-fit and worst-fit heuristics allocate the maximum number of bins

upfront and then assign each object to a bin such that the remaining capacity

in that bin is minimized or maximized, respectively. If no bin with sufficient

capacity exists, they report a failure.

The any-fit heuristic, which we denote as AF in the following, subsumes all

previously described bin-packing heuristics in that it tries all of them (in the

order worst-fit, best-fit, first-fit, next-fit) and returns the first successfully

computed result.

Each of the bin-packing heuristics above can be used for partitioning task sets

under P-FP scheduling when a schedulability test rather than capacity is used

to determine whether a task fits onto a processor. For instance, the first-fit

heuristic assigns a task to the first processor on which the schedulability

of the newly assigned and all previously assigned tasks can be established.

Analogously, the other heuristics only consider assignments under which

schedulability can be established by means of a schedulability test.

Resource-Aware Partitioning Heuristics

Resource sharing causes blocking effects among tasks (i.e., βloci , βremi and

βNP
i in Section 2.5.1) that are not reflected in the notion of a task fitting

into a bin as used by the bin-packing heuristics described above. Resource-

69

aware partitioning heuristics account for these effects and take the resource

access patterns into account when mapping tasks to processors. We outline

the MPCP partitioning heuristic [92] and the Blocking-Aware Partitioning

Algorithm (BPA) [109].

The MPCP partitioning heuristic was proposed by Lakshmanan et al . for

the MPCP [113]. Under the MPCP partitioning heuristic, tasks are assigned

to the same bundle if they share (possibly transitively) a common set of

resources. Bundles are then assigned to processors using the best-fit heuristic.

This leads to tasks accessing the same resources being assigned to the same

processor, if possible, to avoid the need for inter-processor synchronization.

Bundles that do not fit on any processor are broken into multiple smaller

ones, such that one bundle fits as tightly as possible onto the processor

with the highest remaining capacity. Bundles are assigned and broken (if

necessary) until all tasks are assigned.

The BPA is related to the MPCP partitioning heuristic in that it groups

together tasks that access the same resources, and, if possible, assigns all

tasks in the same group to the same processor. Otherwise, task groups are

split and the respective tasks are assigned to different processors. In this

case, for each pair of tasks, the BPA also takes into account the remote

blocking (estimated based on the resource access patterns of each task) that

can result as an effect of assigning tasks accessing the same resource to

different processor cores.

As we describe next, when shared resources are protected by the MSRP,

both generic bin-packing heuristics and the resource-aware heuristics de-

scribed above often fail to produce a partitioning under which all tasks are

schedulable, although such partitionings do exist.

70

4.3 The Case for Optimal Partitioning

Exact partitioning approaches for task sets with shared resources can be

computationally expensive due to the hardness of the underlying bin-packing

problem. This complexity raises the question whether exact approaches can

offer substantial benefit over resource-aware heuristics. To answer this ques-

tion, we conducted an experiment to evaluate whether there exists a potential

that is left unused by heuristics but could be exploited by an exact approach.

To this end, we generated task sets for which a valid partitioning was known

to exist by construction, and hence an exact partitioning approach would

have found a valid partitioning. Then we let resource-oblivious and resource-

aware heuristics partition the same task sets and checked schedulability of

the computed partitionings. Priorities were assigned in a rate-monotonic

fashion [99], and before assigning a task to a processor (i.e., to determine

whether a task “fits”) a response-time schedulability test was applied to rule

out choices that render the task set unschedulable.

Figure 4.1 shows the fraction of schedulable task sets under each partitioning

heuristic depending on the number of tasks in the system. The straight

line at the top of the graph marks the fraction of task sets that can be

successfully partitioned by an exact approach, that is, all task sets as only

partitionable task sets were considered in this experiment. As it is apparent

from Figure 4.1, AF is able to produce valid partitionings for all task sets

consisting of up to 20 tasks. For larger task sets, AF is unable to produce

valid partitionings for a large fraction of the generated task sets although

valid partitionings exist and hence, an optimal partitioning scheme would

have found them. Both the MPCP heuristic and BPA show surprisingly low

schedulability, an effect we revisit in Section 4.6.2.

While Figure 4.1 shows results for specific parameter choices, similar results

can be obtained for many other configurations: if blocking due to resource

71

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 18 20 22 24 26 28 30

sc
h
e
d
u
la

b
le

number of tasks

schedulable task sets
MPCP

BPA
AF

Figure 4.1: Schedulability of task sets usingm = 8 processors and 16 resources.
Critical section lengths were randomly chosen from [1us, 100us], task periods
were randomly chosen from [3ms, 33ms], and the average utilization per
task was set to 0.1. See Section 4.6 for details on the task set generation
procedure.

sharing constitutes a “bottleneck” with respect to schedulability, then an

ill-chosen task assignment can render a partitioning invalid. Clearly, for

task sets in which blocking durations are not significant, resource-oblivious

heuristics may yield results comparable to resource-aware heuristics. However,

as demonstrated in Figure 4.1, if blocking is not negligible, then there exists a

significant potential to be exploited by an exact approach. Next, we present

such an approach based on a novel MILP encoding of the partitioning

problem.

4.4 Optimal MILP-based Partitioning

In this section, we present our MILP formulation of the task set partitioning

and priority assignment problem for systems with shared resources protected

by the MSRP. Our approach incorporates the original blocking analysis for

the MSRP [72], as summarized in Section 2.5.1. This partitioning approach

is optimal with regard to this blocking analysis. That is, if a partitioning

and priority assignment exists such that all timing requirements can be

72

guaranteed to be satisfied under this blocking analysis, our approach is

guaranteed to find such a partitioning and priority assignment. We refer to

such a partitioning and priority assignment as a valid one.

Initially, the MILP formulation does not specify an objective function. That

is, we accept any solution that satisfies all constraints of the MILP, which

allows the objective function to be used to optimize other criteria (such as

the required number of processors, see Section 4.4.4).

We consider the jitter ji, the deadline di, the cost ei, the period pi, the

maximum request length Li,q, and the maximum number of requests Ni,q of

each task Ti to be given task properties that are constants (from a MILP

point of view). Similarly, the number of processors m and the number of

tasks in the task set n are considered constant.

All other terms used in the MILP constraints are variables unless specified

otherwise. At the core of the MILP formulation are four helper variables,

which we define first.

• Ai,k: A binary decision variable that is set to 1 if and only if Ti is

assigned to processor Pk. Since each task must be assigned to exactly

one processor, we have

∀Ti :

m∑
k=1

Ai,k = 1. (C1)

• πi,p: A binary decision variable that is set to 1 if and only if Ti is

assigned the priority p. Since each task must be assigned exactly one

priority, we have

∀Ti :
n∑
p=1

πi,p = 1. (C2)

To ensure unique priorities, we impose the following constraint to

73

enforce that each priority level is assigned to exactly one task:

∀p, 1 ≤ p ≤ n :
∑
Tx∈τ

πx,p = 1. (C3)

• Vx,i: A binary decision variable that is forced to 1 if Tx and Ti are

assigned to the same processor. If Tx and Ti are assigned to the same

processor k, then Ai,k = Ax,k = 1 holds for some k. The following

constraint exploits this property by forcing Vx,i to 1 in this case:

∀Tx : ∀Ti, Tx 6= Ti : ∀k, 1 ≤ k ≤ m :

Vx,i ≥ 1− (2−Ai,k −Ax,k). (C4)

• Xi,x: A binary decision variable that is set to 1 if and only if Ti has a

higher priority than Tx. We first specify constraints to force Xi,x to 0

if Tx has a higher priority than Ti:

∀Tx : ∀Ti : ∀1 ≤ p ≤ n− 1 :

Xi,x ≤
n∑

j=p+1

πx,j + (1− πi,p). (C5)

Constraint C5 is based on the observation that if there exist p1 and

p2 such that πx,p1 = 1 ∧ πi,p2 = 1 ∧ p1 < p2, then 1 − πi,p2 = 0 and

also
∑n

j=p+1 πx,j = 0, and thus Constraint C5 reduces to Xi,x ≤ 0 for

p = p2. To ensure that Xi,x is set to 1 if Tx has a lower priority than

Ti, we specify a constraint to enforce that for each pair of tasks Ti and

Tx either Xi,x or Xx,i is set to 1:

∀Tx : ∀Ti, Tx 6= Ti : Xi,x +Xx,i = 1. (C6)

The MILP formulation incorporates Gai et al .’s analysis of the MSRP and

74

enforces that under any valid MILP solution all tasks are indeed schedulable.

That is, for each task Ti, the sum of the release jitter ji and the response

time Ri (a MILP variable) must not exceed the task’s deadline di, which

yields:

∀Ti : ji +Ri ≤ di. (C7)

To constrain the response time Ri, we decompose it into the following

terms:

• ei: the execution cost;

• Bi: the arrival blocking that a job can incur if a local lower-priority

job is spinning or holding a resource;

• Si: the direct and transitive spin delay that a job can incur due to

itself and local higher-priority jobs busy-waiting for a global resource;

and

• Ii: the interference that a job can incur due to local higher-priority

jobs executing non-critical sections.

The response time of a task Ti is the sum of the above terms:

∀Ti : Ri = ei +Bi + Si + Ii. (C8)

Note that, although we specify all of these terms in our MILP formulation

through constraints, we often do not use tight constraints on these terms,

but rather upper or lower bounds that are sufficient for our goal of finding a

valid partitioning. For instance, we impose only lower bounds on the spin

time Si of a task. As a consequence, if a solution to the MILP formulation,

and hence a valid partitioning of a task set, can be found, this means that the

task set under the partitioning implied by the set of Ai,k and πi,p variables is

75

schedulable; however, no other conclusions can be derived from other MILP

variables (e.g., about arrival blocking Bi or spin delay Si) as these variables

are not constrained to be accurate. Rather, they are merely constrained to

be “sufficiently large” to rule out unschedulable partitionings. This exploits

the observation that the MILP solver has an “incentive” to minimize each Bi,

Si, and Ii to satisfy Constraints C7 and C8; it is therefore not necessary to

specify upper bounds for variables contributing to Bi, Si, or Ii. As an analogy,

in object-oriented terminology, the set of Ai,k and πi,p variables represent

the “public” interface to our MILP-based partitioning approach, whereas all

other variables should be considered “private” and for MILP-internal use

only.

Next, we specify constraints to model the interference Ii, which reflects delays

due to preemptions by higher-priority jobs (modulo any spinning of such

jobs, which is included in Si).

4.4.1 A Lower Bound on the Maximum Interference Ii

The maximum interference Ii of Ti is the maximum total duration that a

job of Ti cannot execute due to higher-priority jobs executing on the same

processor, not counting any time that higher-priority jobs spend spinning

(which is accounted for in Constraint C14 as spin delay rather than inflated

execution time). To constrain Ii, we first define the integer variable Hi,x to

denote the maximum number of jobs of Tx that can preempt a single job of

Ti. This allows us to express the interference Ii as the sum of interference a

job of Ti may incur from each other task:

∀Ti : Ii =
∑

Tx,Tx6=Ti

Hi,x · ex. (C9)

76

In a schedulable partitioning, the number of interfering jobs Hi,x has to be

non-negative and cannot exceed d(di + jx)/pxe, because Ri ≤ di and at most

d(Ri + jx)/pxe jobs of Tx can preempt a job of Ti [19]. This leads to the

following constraint:

∀Ti : ∀Tx, Tx 6= Ti : 0 ≤ Hi,x ≤
⌈
di + jx
px

⌉
. (C10)

Further, Hi,x has to be set to at least (Ri + jx)/px for local higher-priority

tasks. For lower-priority and remote tasks, Hi,x should be allowed to take the

value 0 as they do not interfere with Ti. This is achieved with the following

constraint:

∀Ti : ∀Tx, Tx 6= Ti : (C11)

Hi,x ≥
Ri + jx
px

−
⌈
di + jx
px

⌉
(1− Vi,x)−

⌈
di + jx
px

⌉
Xi,x.

Next, we formalize the contribution of busy-waiting for global resources to a

task’s response time.

4.4.2 A Lower Bound on the Maximum Spin Delay Si

The use of non-preemptive FIFO spin locks can cause blocking that con-

tributes to a task’s response time. This spin time is determined by the

mapping of tasks to processors and the task parameters that characterize

its resource access patterns, that is, Li,q and Ni,q. The spin time Si models

the total amount of direct and transitive delay that a job of Ji incurs due

to busy-waiting carried out either by itself or any higher-priority job (by

which it was preempted). Note that in the original analysis of the MSRP (in

Equation (2.2)), transitive delay due to spinning of local higher-priority jobs

is accounted for as part of interference with inflated execution times. For

the sake of clarity, we instead use uninflated execution times to account for

77

interference (in Constraint C9) and account for both direct and transitive

spin delay in Si.

The total spin time Si can be broken down by the remote processors on

which the critical section is executed that causes the spinning to occur. We

let Si,k denote the worst-case cumulative delay incurred by any job of Ti due

to critical sections on processor Pk. Then:

∀Ti : Si =
m∑
k=1

Si,k. (C12)

The spin times Si,k can be further split into the delays due to different

resources. That is, we can express Si,k as the sum of spin times Si,k,q that a

job of Ti is delayed (directly or transitively) due to requests for lq originating

from processor Pk:

∀Ti : ∀k, 1 ≤ k ≤ m : Si,k =

nr∑
q=1

Si,k,q. (C13)

The spin time Si,k,q depends on the longest critical section length of any

request from processor Pk for lq and the number of requests Ni,k that Ti’s job

issues for lq. Additionally, Si,k,q must incorporate delay through transitive

spinning, that is, the time local higher-priority jobs spend busy-waiting for

lq while Ti’s job is pending, which happens at most
∑

Th∈τ Hi,h ·Nh,q times

while a job of Ti pending. This is captured as follows:

∀Ti : ∀Tx, Tx 6= Ti : ∀q, 1 ≤ q ≤ nr : ∀k, 1 ≤ k ≤ m :

Si,k,q ≥ Lx,q ·

Ni,q +
∑
Th∈τ

Hi,h ·Nh,q


−M · (1−Ax,k)−M ·Ai,k (C14)

In Constraint C14 above, we use the constant M to denote a numerically

78

large constant “close to infinity.” Formally, the constant M is chosen such

that it dominates all other terms appearing in the MILP:

M = max
Tx,q
{Lx,q} · n ·max

Tx,q
{Nx,q}.

Note that specifying lower bounds on Si (rather than using constraints to

determine the exact values of Si) is sufficient for our goal of finding a valid

partitioning and priority assignment because any partitioning that is deemed

schedulable assuming “too much” blocking is will still be schedulable if

blocking is reduced. Next, we consider arrival blocking, which tasks can incur

if lower-priority, co-located tasks access shared resources.

4.4.3 A Lower Bound on Maximum Arrival Blocking

A job of task Ti can incur arrival blocking when, upon its release, a lower-

priority job running on the same processor is either executing non-preemptively

or holding a local resource with a priority ceiling of at least Ti’s priority.

Similarly, the use of non-preemptive FIFO spin locks for global resources

can cause a job of Ti to incur arrival blocking when a lower-priority job

issues a request to a global resource. In this case, the lower-priority job

non-preemptively spins until gaining access and then executes the request

without giving Ti’s job a chance to execute.

We first split the total arrival blocking Bi into the blocking times Bi,q due

requests from other tasks for each resource lq:

∀Ti : ∀q, 1 ≤ q ≤ nr : Bi ≥ Bi,q. (C15)

We then further split the per-resource arrival blocking times into blocking

times due to requests for lq from each processor Pk:

∀Ti : ∀q, 1 ≤ q ≤ nr : Bi,q =

m∑
k=1

Bi,q,k. (C16)

79

To constrain these per-resource, per-processor arrival blocking times for Ti,

we first define a decision variable Zi,q that is set to 1 if critical sections

of other tasks accessing resource lq can cause a job of Ti to incur arrival

blocking. To consider arrival blocking due to a local resource lq, we enforce

that Zi,q is set to 1 if Ti can incur blocking due to a local lower-priority task

Tx accessing lq and Ti’s priority does not exceed lq’s ceiling. The ceiling of lq

can only be higher than or equal to Ti’s priority if there is a task (which can

also be Ti), TH , that accesses `q, has at least Ti’s priority and is assigned to

the same processor:

∀Ti : ∀q : ∀Tx, Nx,q > 0 ∧ Tx 6= Ti : ∀TH , NH,q > 0 : (C17)

Zi,q ≥ 1− (2− Vx,i − Vi,H)− (1−Xi,x)−Xi,H .

The latter three terms in the constraint disable it (i.e., let it degenerate to

Zi,q ≥ 0) if the tasks Ti, TH and Tx are not assigned to the same processor, if

Tx does not have a lower priority than Ti, or if lq’s ceiling is lower than Ti’s

priority, respectively. To understand this constraint, first observe that the

terms −(2− Vx,i − Vi,H), −(1−Xi,x) and −Xi,H cannot take any positive

values. Hence, if either one of these terms takes a value of −1 or less, then

the right hand side of the inequality evaluates to 0 or less, which effectively

degenerates the constraint to Zi,q ≥ 0 (since Zi,q is a binary variable).

Further, in order for `q’s ceiling to be at least Ti’s priority, there must be

a task TH assigned to the same processor (which can be Ti itself) that also

accesses `q. If Ti, Tx and TH are not assigned to the same processor, then

Vx,i or Vi,H) (or both) are set to 0, and the term −(2−Vx,i−Vi,H) evaluates

to −1 or −2, which disables the constraint. Similarly, the term −(1−Xi,x)

evaluates to 0 if Ti has a higher priority than Tx, and −1 otherwise, which

disables the constraint. Finally, −Xi,H disables the constraint if TH has a

lower priority than Ti (and thus TH ’s requests for `q cannot raise `q’s ceiling

80

to at least Ti’s priority).

If lq is a global resource, Ti can incur arrival blocking due to a local lower-

priority task Tx using lq. Further, if lq is a global resource, there exists a

remote task TH using lq. The the below constraint forces Zi,q to 1 in this

case:

∀Ti : ∀q : ∀Tx, Nx,q > 0 ∧ Tx 6= Ti : ∀TH , NH,q > 0 :

Zi,q ≥ 1− (1− Vx,i)− VH,i − (1−Xi,x). (C18)

The decision variable Zi,q enables us to specify constraints for Bi,q,k. If lq is

a local resource, Bi,q,k has to be set to at least the longest critical section

length of any local lower-priority task for lq, if requests for lq can cause Ti

to incur arrival blocking (i.e., Zi,q = 1). This can be expressed with the

following constraint:

∀Ti : ∀Tx : ∀k, 1 ≤ k ≤ m : (C19)

Bi,q,k ≥Lx,q − Lx,q · (1−Ax,k)− Lx,q · (1− Zi,q)

− Lx,q · (1−Ai,k)− Lx,q ·Xx,i.

In case lq is a remote resource and requests for lq can cause Ti to incur arrival

blocking, Bi,q,k has to be set to at least the longest critical section length of

any request for lq from processor Pk:

∀Ti : ∀Tx : ∀k, 1 ≤ k ≤ m : (C20)

Bi,q,k ≥Lx,q − Lx,q · (1−Ax,k)

− Lx,q · (1− Zi,q)− Lx,q ·Ai,k.

Note that these bounds on Bi,q,k constitute lower bounds on the maximum

duration of arrival blocking rather than specifying the actual blocking in-

81

curred. To find a feasible solution, the MILP solver has an “incentive” to

lower each Bi,q,k as close to zero as possible, and Constraints C19 and C20

force Bi,q,k to be large enough to reflect the worst-case non-preemptive and

local blocking as determined by the MSRP analysis (i.e., Constraints C19

and C20 ensure that Bi ≥ max{βNP
i , βloc

i }). Thus, for our goal of determin-

ing a valid partitioning, constraining Bi from below suffices to ensure the

schedulability of a partitioning.

This concludes the derivation of our MILP formulation of the partitioning

problem with spin locks. The key property of our approach is that it is optimal

with regard to Gai et al .’s analysis of the MSRP [72]: any partitioning implied

by a solution to Constraints C1–C20 also passes the MSRP schedulability

analysis reviewed in Section 2.5.1, and conversely, it can be shown that any

task set and partitioning that pass the MSRP schedulability analysis also

satisfies Constraints C1–C20.

This equivalence stems from Constraint C8 matching the basic response-time

recurrence, and the fact that, by construction, Bi ≥ max{βNP
i , βloc

i } and

Ii + Si ≥ βremi +
∑

Th,πh<πi∧P (Ti)=P (Th)

⌈
Ri+jh
ph

⌉
· (eh + βremh). This ensures

that the MILP solution is never “optimistic” (i.e., unschedulable under the

MSRP analysis), while also ensuring that a schedulable task set implies a

valid MILP solution. We formally state these soundness and completeness

properties of our partitioning approach in the following.

Theorem 1 (Soundness). A task set with a partitioning and priority as-

signment implied by a solution to the MILP is schedulable under the MSRP

analysis.

Proof. Any solution to the MILP satisfies Constraint C8 (definition of re-

sponse time) and Constraint C7 (schedulability), matching the contributions

to response time under the MSRP analysis and task set schedulability, re-

spectively. Further, the lower bound on the maximum interference, spin

82

delay and arrival blocking in the MILP match the respective terms in the

MSRP analysis. The claim follows. �

Theorem 2 (Completeness). If there exists a partitioning and priority

assignment for a task set such that schedulability can be guaranteed under the

MSRP analysis, then the MILP yields a partitioning and priority assignment

under which schedulability can be guaranteed under the MSRP analysis.

Proof. By definition of the MILP, the variables encoding partitioning and

priority assignment (i.e., the A and π variables) are only constrained to

take valid assignments (i.e., such that each task is assigned to exactly one

processor, and each task is assigned exactly one unique priority) and to yield

response-time bounds not exceeding the deadlines (Constraint C7). Since

the contributions to the response-time bound matches the respective terms

in the MSRP analysis, the claim follows. �

Next, we outline straight-forward extensions of our MILP formulation.

4.4.4 ILP Extensions

Our ILP formulation can be extended to incorporate system constraints that

commonly arise in practice, as we show next.

Precedence Constraints

Task precedence constraints specify a partial temporal order among jobs

that can be used to express an output-input dependency among tasks (e.g.,

in a “pipeline” processing flow, where jobs of one task produce an output

consumed by a job of second task, in which case the second job cannot start

executing before the first job completed).

83

In our MILP formulation, precedence constraints can be incorporated in

a straightforward fashion. A common approach is to encode precedence

constraints as release jitter [19, 128], to model that a job waiting for input

cannot be scheduled. Since we allow for release jitter in our model, prece-

dence constraints can be incorporated seamlessly into the presented MILP

formulation. For instance, to express that task Tx precedes task Ty, it suffices

to add the constraint jy ≥ Rx. In this case, the task jitter is considered to

be an MILP variable and not treated as a constant.

Locality Constraints

In practice, it may be necessary to avoid co-locating certain tasks. For

instance, it might be desirable to enforce that replicated mission-critical

tasks are not located on the same processor for higher resilience in the

face of hardware faults. Such locality constraints can be incorporated with

additional constraints in an intuitive way. Recall that our MILP formulation

already uses a binary decision variable Vx,y that is set to 1 if two tasks Tx and

Ty are co-located. Forcing two tasks to be assigned to different processors

can be achieved by simply adding the constraint Vx,y = 0.

Partial Specifications

Generalizing the locality constraints described previously, system designers

might want to enforce a certain priority assignment (e.g., because the most

critical task should run at highest priority) or processor assignment (e.g., be-

cause some tasks rely on a functionality only available on certain processors)

for a subset of tasks. Another use case for enforcing such partial specifications

is the extension of an existing application where new tasks and/or processors

are added, but the priority and/or processor assignment of (some) existing

tasks should remain unchanged. Similar to locality constraints, these partial

84

specifications can be incorporated in our MILP formulation by adding con-

straints to enforce a particular variable assignment. For instance, forcing a

task Tx to be mapped on a specific processor Pk and assigned a priority of y

can be achieved with the constraints Ax,k = 1 and πx,y = 1.

System Minimality

Our MILP approach can also be used to minimize the number of processors

required to host a given task set. To that end, we set m = n, such that a

partitioning will certainly be found if the task set is feasible at all. This allows

us to specify constraints to determine the highest processor ID K that is in use

(i.e., tasks are assigned to that partition): ∀Ti : ∀1 ≤ k ≤ n : K ≥ k ·Ai,k.

The optimization objective is then to minimize K, which yields a partitioning

with the smallest number of processors possible.

Note that these constraints make use of the variables we already defined

in our MILP formulation. More complex partial specifications or require-

ments can be implemented by introducing additional variables to model

application-specific properties. Such application-specific extensions to our

MILP formulation do not require fundamental changes to our approach, but

rather can be realized by specifying additional MILP constraints. We thus

believe this to be a flexible technique well-suited to the realities of embedded

systems development and optimization in practice.

4.5 Greedy Slacker: A Simple Resource-Aware

Heuristic

Although the ILP-based approach yields optimal results (with regard to the

underlying analysis of the MSRP originally presented by Gai et al . [72]), the

85

inherent complexity of MILP solving may render this approach impractical

for large task sets. As an alternative, we present Greedy Slacker, a novel

resource-aware heuristic for priority assignment and partitioning. While not

necessarily finding partitions in all cases, on average, it results in higher

schedulability than the other heuristics considered in this work.

Our heuristic, given in Algorithms 7 and 8, considers all tasks in order

of decreasing utilization. For each task, it determines the processors to

which it can be assigned while maintaining schedulability of all previously

assigned tasks (Algorithm 7, line 5). Among the possible processors to which

a task can be assigned, the processor is chosen such that the minimum slack

min{pi −Ri|Ti ∈ U} of all tasks on that processor is maximal (Algorithm 7,

line 12). To determine whether a task Ti can be assigned to a specific

processor, the function tryAssign, a modified version of Audsley’s optimal

priority assignment scheme (summarized in Section 2.3), is called. The

function tryAssign tries to assign priorities to all tasks assigned to a given

processor, starting with the lowest-possible priority. For each priority level,

tryAssign checks whether the tasks to which no priority was assigned yet

would remain schedulable under the current priority level (Algorithm 8, line

5). If so, it is further checked whether this priority assignment would cause

tasks assigned to other partitions to become unschedulable (Algorithm 8,

line 8). Among all possible assignments, the current priority level is assigned

to the task with the longest period (Algorithm 8, line 14). The algorithm

continues until priorities are assigned to all tasks on the given processor, or

no candidate task can be found for a priority level. In the latter case, Ti

cannot be assigned to the given processor and the function returns a value

indicating failure (Algorithm 8, line 12). The function returns the minimal

slack of all tasks assigned to the current processor if a priority assignment

could be determined that ensures that all tasks are schedulable (Algorithm 8,

line 20). Whenever the schedulability test is invoked (i.e., Algorithm 8, lines 5

86

Algorithm 7 Greedy Slacker Partitioning Heuristic
1: for all tasks Tx in order of decreasing utilization do
2: C ← ∅
3: for all processors p do
4: s ← tryAssign(Tx, p)
5: if s ≥ 0 then
6: C ← C ∪ {(p, s)}
7: end if
8: end for
9: if |C| = ∅ then

10: return Failure
11: else
12: choose (p, s) from C such that s is maximal
13: assign Tx to processor p
14: end if
15: end for

and 7), the blocking analysis is performed under the assumption that all tasks

that were not assigned yet are located on a virtual remote processor. The

intuition behind also considering unassigned tasks in the blocking analysis is

to incorporate remote blocking effects in the partitioning algorithm even for

the first assignment decisions that are made. Otherwise, if unassigned tasks

are not considered in the blocking analysis, the first assignment decisions

would not consider any remote blocking effects (if all already assigned tasks

sharing the same resources may fit onto a single processor).

Note that the presented heuristic does not include terms specific to any locking

protocol, nor does it rely on parameters that need to be tuned for specific

task sets. In fact, our heuristic is oblivious to the choice of locking protocol

and uses an intriguingly simple greedy approach. This is possible because

our heuristic aims to maximize the minimal slack among all tasks, which

implicitly considers the impact of blocking due to resource sharing. Next, we

evaluate runtime characteristics of our ILP-based partitioning scheme and

the performance of our heuristic in comparison with prior approaches.

87

Algorithm 8 Function tryAssign

1: function tryAssign(Tx, p)
2: temporarily assign Tx to processor p
3: U ← all tasks assigned to processor p
4: for priority π = |U | down to 1 do
5: C ← tasks in U schedulable with priority π
6: for c ∈ C do
7: if task on other processor unschedulable with c on p then
8: remove c from C
9: end if

10: end for
11: if C = ∅ then
12: return −1
13: else
14: Tmax ← Ty ∈ C with longest period
15: assign priority π to Tmax

16: U ← U \ Tmax

17: end if
18: end for
19: s← min{pi − ri|Ti ∈ U}
20: return s
21: end function

4.6 Evaluation

In this section we explore the computational tractability of our optimal

MILP-based partitioning scheme. Further, we evaluate the performance of

the Greedy Slacker heuristic presented in this work and present a comparison

with other resource-aware and generic bin-packing heuristics.

4.6.1 Runtime Characteristics of Optimal Partitioning

The performance of an optimal partitioning scheme in terms of schedulability

is given by its definition: for each task set that can be partitioned such

that all tasks are schedulable, an optimal partitioning scheme will find such

a partitioning. Optimal partitioning approaches, however, are inherently

complex which raises the question of computational tractability. We evaluated

the proposed optimal MILP-based partitioning scheme in terms of average

runtime depending on two key task set characteristics: total utilization and

88

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 r

u
n
ti

m
e
 [

s]

utilization

3 tasks per processor (12 total)
4 tasks per processor (16 total)

(a) Average runtimes for MILP solving in seconds while varying total utilization.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 6 8 10 12 14 16 18 20

a
v
e
ra

g
e
 r

u
n
ti

m
e
 [

s]

tasks

utilization 2.0
utilization 2.5
utilization 3.0

(b) Average runtimes for MILP solving in seconds while varying task set size.

Figure 4.2: ILP solving times.

task set size. For solving the generated MILPs, we used the CPLEX 12.4 [2]

optimizer running on a server-class machine equipped with 24 Intel Xeon

X5650 cores with a speed of 2.66 GHz and 48 GB main memory.

In the first experiment, we measured the runtime as the total utilization

of the input task sets increased. Increasing the total utilization limits the

options for a valid partitioning, and hence the partitioning problem gets

harder to solve. For our experiment, we assumed a multicore platform with

m = 4 processors and evaluated task sets with 3 or 4 tasks per processor

while varying the total utilization parameter. For each utilization value, 100

sample task sets were considered. The task periods are chosen at random

89

from [10ms, 100ms] according to a log-uniform distribution. Each task issues

a requests for the single shared resource with a probability of 0.2. In case

the shared resource is accessed, the critical section length is set to 100µs.

The results shown in Figure 4.2a show that the runtime grows as the total

utilization increases and the partitioning problem becomes harder to solve.

Interestingly, the results exhibit a stepwise increase in runtime each time the

total utilization approaches the next-largest integer. Further, the runtime

grows rapidly as the total utilization approaches m since the partitioning

problem becomes (much) harder with decreasing spare capacity.

In our second experiment, we evaluated the impact of task set size on solving

time. An increase in task set size leads to a larger MILP size, and hence

potentially to longer solving times. To study this effect, we fixed the total

task set utilization to 2.0, 2.5 and 3.0, respectively, and varied the number of

tasks in the task set from 4 to 20. Task periods and resource accesses where

chosen as in the first experiment. The results are shown in Figure 4.2b and

exhibit a clear increase in run time as the task set size is growing. Since the

total utilization was kept constant, we ruled out the effect studied in the first

experiment where growing utilization makes the partitioning problem harder

to solve, which is reflected in higher run times. Rather, we attributed the

observed effect to the growth in MILP size (in terms of the number of both

constraints and variables) and resource contention, both of which increase

with each additional task.

The results imply that the increase of total utilization and task set size

each independently cause a significant increase in runtime of the ILP-based

approach presented in Section 4.4. However, the results also demonstrate

that, with today’s hardware, our exact MILP-based partitioning approach

is applicable to small and moderate application instances (note that the

runtimes reported in Figures 4.2a and 4.2b are in the range of a couple of

seconds on average). Even though run times may grow quickly for larger

90

applications, our MILP-based partitioning technique may still be an accept-

able approach as it may well be worth the cost in the context of commercial

development cycles that can stretch many months or even years.

For settings where the computational complexity of the MILP-based approach

is prohibitive, we proposed the resource-aware Greedy Slacker partitioning

heuristics, which we evaluated with schedulability experiments, as we discuss

next.

4.6.2 Partitioning Heuristic Evaluation

For the performance comparison of our Greedy Slacker heuristic with other

partitioning heuristics, we generated task sets with a broad range of con-

figurations. We considered systems with 8 and 16 processors and 1 to 32

resources shared among the tasks. The task sets were generated using the

approach presented by Emberson et al . [68] with periods chosen according to

a log-uniform distribution from either [3ms, 33ms] (short) or [10ms, 100ms]

(moderate). The average per-task utilization was set to either 0.1, 0.2 or

0.3. For each configuration, we choose a resource sharing factor (rsf) of

either 0.1, 0.25, 0.5 or 0.75, which, for each task and each resource, gives the

probability of the task accessing the resource. For each accessed resource,

only a single request is issued (i.e., Ni,q) with a critical section length chosen

either from [1us, 15us] (short CSLs) or [1us, 100us] (medium CSLs). For

each data point in the presented results, we generated and evaluated 100

sample data sets.

We compared schedulability under the Greedy Slacker heuristic, the MPCP

partitioning heuristic [92], BPA [109], and the resource-oblivious any-fit

heuristic (which tries the first-, best-, next-, and worst-fit strategies, and

returns the result of the first to succeed). For any-fit, we considered the

following variants:

91

• AF-util : plain any-fit heuristic (as summarized in Section 4.2) as a

baseline without a schedulability test;

• AF-RTA: similar to AF-util, but an additional response-time analysis

is performed to rule out assignment decisions that would render a task

set unschedulable immediately; and

• AF-RTA-B : similar to AF-RTA, but the MSRP blocking bounds are

applied, so that the blocking effects due to resource sharing are consid-

ered.

Out of the large number of configurations we evaluated, we present the results

for one exemplary configuration in Figure 4.3a to highlight typical trends.

The results of this configuration resembles trends observable in many of the

configurations considered. With a growing number of tasks in each task

set, both the contention for the shared resources and the total utilization

increases. Up to a task set size of n ≈ 50, AF-RTA-B is able to successfully

produce valid partitionings for all task sets, but schedulability quickly drops

for larger task sets. Surprisingly, AF-RTA and AF-util exhibit virtually

the same schedulability as AF-RTA-B. This is due to the fact that the AF

strategy applies the worst-first heuristic first, which distributes tasks roughly

evenly among all cores. This benefits schedulability such that response-time

and blocking checks are superfluous for most low-utilization task sets. In this

particular scenario, the Greedy Slacker heuristic is able to determine valid

partitionings for all task sets with up to 54 tasks, and overall Greedy Slacker

achieves the highest schedulability among the considered heuristics.

Surprisingly, both the MPCP heuristic and BPA led to significantly lower

schedulability than the AF heuristic. This effect was unexpected since both

the MPCP heuristic and BPA were particularly designed for scenarios with

resource sharing, while AF is resource-oblivious. We found that the reason

for this effect lies in the way BPA and the MPCP heuristic partition task

92

sets: both of them compute a connected component consisting of tasks that

share resources (possibly transitively). For the configuration considered, this

connected component is likely to include a large fraction of the task set. In

this case, the MPCP heuristic and BPA attempt to break up the connected

component into smaller chunks that can be fitted on a single processor such

that the extent of resource sharing between these chunks is small. However, in

the task sets we generated, requests to all resources are uniformly distributed

over all tasks, without exhibiting a particular structure or locality among

tasks and resources that could be exploited by these heuristics. The BPA and

MPCP heuristics thus frequently failed to find an appropriate partitioning.

To study the performance of the MPCP heuristic and BPA when the task set

exhibits some structure in terms of requests to shared resources, we generated

task sets in which tasks are combined into task groups. A task group can be

considered as a functional unit in a system composed of multiple tasks that

share resources among them. Notably, no resources are shared across group

boundaries, which results in multiple smaller connected components (one for

each task group) that can be assigned to partitions without breaking them up

into smaller chunks. Within each task group, tasks share the same number

of resources as in the previous experiment. These resources are private to

each task group, that is, different task groups share disjoint sets of resources.

Figure 4.3b depicts the schedulability results for task sets with the same

configuration as in Figure 4.3a, but with tasks assigned to 8 disjoint task

groups. The results indicate that both the MPCP heuristic and BPA can

efficiently exploit this structure and yield significantly higher schedulability

results than before. Further, Greedy Slacker and AF heuristics also exhibit

higher schedulability in Figure 4.3b than in Figure 4.3a, which indicates that

blocking is less of a bottleneck in this scenario.

Real applications are likely to exhibit some structure. However, tasks also

93

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d

u
la

b
le

number of tasks

AF-util
AF-RTA

AF-RTA-B
MPCP

BPA
GS

(a) Schedulability of unstructured task sets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d

u
la

b
le

number of tasks

AF-util
AF-RTA

AF-RTA-B
MPCP

BPA
GS

(b) Schedulability with 8 task groups.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d

u
la

b
le

number of tasks

AF-util
AF-RTA

AF-RTA-B
MPCP

BPA
GS

(c) Schedulability with 8 task groups and one cross-group resource.

Figure 4.3: Schedulability for m = 8, 4 shared resources, medium CSLs,
moderate task periods, average task utilization 0.1, and rsf = 0.25.

often interact via resources shared across group boundaries (e.g., AUTOSAR

has the concept of a virtual functional bus, which is shared by all tasks [1]). To

study the effects of cross-group resource sharing, we considered the same task-

94

group scenario as before with the difference that a single resource is shared

by all task groups. The results are shown in Figure 4.3c. Introducing cross-

group resource sharing again results in a few, large connected components

that the MPCP heuristic and BPA fail to partition effectively. Notably,

the Greedy Slacker heuristic yields high schedulability results independently

of the structure that a task set may (or may not) exhibit, and does not

depend on any protocol-specific heuristics or parameters (besides appropriate

response-time analysis). The reported trends can be observed over the full

range of considered configurations, which shows Greedy Slacker to be an

attractive choice in a variety of scenarios, especially if it cannot be guaranteed

that task sets will always exhibit a convenient structure.

4.7 Summary

In this chapter, we have considered the problem of partitioning a set of

sporadic real-time tasks that share resources protected by the MSRP onto a

set of identical processors. Our work is motivated by the common need to

minimize SWaP requirements and component costs to the extent possible. To

this end, we presented an MILP-based approach for task set partitioning and

priority assignment for shared-memory multiprocessor systems with shared

resources. In contrast to commonly used partitioning heuristics, this approach

yields optimal results (with regard to the underlying schedulability analysis)

and thereby avoids over-provisioning, but is subject to high computational

costs.

For cases where the cost of the MILP-based partitioning approach cannot be

afforded, we presented Greedy Slacker, a novel resource-aware partitioning

heuristic, which we have demonstrated to perform well on average. Greedy

Slacker is generic as it is neither tailored to a specific locking protocol nor

dependent on task-set-specific parameter tuning, and, due to its simplicity,

95

it is resilient in the sense that it is able to exploit locality when existent

without unreasonably degrading in performance if faced with task sets not

exhibiting such patterns, unlike the MPCP heuristic and BPA.

Our MILP-based partitioning scheme encodes Gai et al .’s analysis of the

MSRP [72], and we also employed the same analysis for the MSRP in

combination with the partitioning heuristics we evaluated, including our

Greedy Slacker heuristic. Besides the F|N locks used for global resources as

part of the MSRP, a variety of other types of spin locks have been presented in

prior work. The spin lock types considered in this thesis (see Section 2.4.2 for

an overview) differ in their request ordering policy and whether preemptions

while spinning are allowed, and it is unclear which of these types (if any)

generally ensures minimal blocking. To that end, in the next chapter, we

present the results of a qualitative comparison between the different spin

lock types considered in this thesis.

96

Chapter 5

Qualitative Comparison of

Spin Lock Types

5.1 Introduction

In the previous chapter, we presented methods for efficiently partitioning

task sets sharing resources protected by the MSRP, that is, the SRP for local

and F|N locks for global resources. As overviewed in Table 2.1 (Section 2.4.2),

spin locks with ordering policies other than FIFO and spin locks allowing

preemptions while spinning have been presented. In this chapter, we conduct

a qualitative comparison between preemptable and non-preemptable spin

locks, and the different ordering policies. In particular, we investigate the

following two questions:

Q1: Is there an ordering policy that always results in minimal blocking?

Q2: Does preemptable or non-preemptable spinning result in minimal block-

ing?

We seek to answer these questions by comparing the different spin lock types

97

at an abstract level, focusing on their properties independent of concrete task

sets. For comparing the spin lock types, we establish a dominance relation

between them.

5.2 Dominance of Spin Lock Types

Intuitively, a spin lock type dominates another one if it never performs worse.

More formally, we define the dominance relation between spin lock types as

follows.

Def. 1: Dominance of spin lock types. Spin locks of type A dominate

spin locks of type B if and only if for any task set and for each task therein,

the worst-case blocking duration under A does not exceed the worst-case

blocking duration under B.

Here we choose to define the dominance relation in terms of the actual worst-

case blocking duration instead of blocking bounds or task response times

(and hence timeliness). The reason is that focusing on the worst-case blocking

duration enables us to exclude potentially confounding factors such as the

response-time analysis and the blocking analysis that may yield non-tight

bounds. In fact, the dominance relations established here do not necessarily

hold for blocking bounds that cannot be guaranteed to be tight.

Note that the above dominance relation is transitive, which directly follows

from the transitivity of the “does not exceed” (or ≤) relation. Dominance, as

defined above, does not establish a total order among spin lock types, as some

types are incomparable. We formally define incomparability as follows.

Def. 2: Incomparability of spin lock types. The spin lock types A and

B are incomparable if and only if A does not dominate B, and B does not

dominate A.

98

As we show next, preemptable and non-preemptable spin locks are generally

incomparable, regardless of their request ordering policy.

5.3 Non-Preemptable and Preemptable Spin Locks

are Incomparable

We show that each non-preemptable spin lock is incomparable to all preempt-

able spin locks by showing that dominance between them is impossible.

Lemma 2. No *|N lock dominates any *|P lock.

Proof. Consider the schedule depicted in Figure 5.1 for any *|N lock in which

jobs of Ti can only incur arrival blocking, and no other forms of blocking (since

Ti does not access any shared resources and Ti is the highest-priority task on

its processor). Throughout the interval [0, 5), the first job of Ti, Ji, incurs

arrival blocking: during the interval [0, 4), job Jl spins non-preemptably while

waiting to acquired the lock held by Jx. Hence, Ji is transitively blocked by

the remote request issued by Jx. During the interval [4, 5), job Jl executes

its critical section non-preemptably, and hence causes Ji to incur further

blocking. In total, Ji is blocked for bi = 5 time units.

Under any *|P lock, requests issued by tasks on remote processors cannot

contribute to arrival blocking, and hence, only Jl’s request can cause Ti’s

jobs to incur arrival blocking. Each of Ti’s jobs can incur arrival blocking

due to at most request issued by a local lower-priority task and hence, Ti’s

blocking duration is bounded by the critical section length of Tl’s request.

That is, bi = 1.

Since Ji is blocked for bi = 5 time units in the schedule depicted in Figure 5.1

under any *|N lock while Ji can be blocked for only bi = 1 time units in the

worst-case under any *|P lock, no *|N lock can dominate any *|P lock. �

99

50 10

Ti

Tx

`1

P2

15

P1

Tl

`1

job executing

job spinning while
waiting for resource

job executing
critical section

job holding resource `1`1

job release

Figure 5.1: Example schedule for non-preemptable spin locks.

Note that the above lemma (and its proof) is oblivious to the ordering

guarantees that a spin lock may enforce, and hence applies to any request

ordering policy.

The reverse of the previous lemma holds as well, as we show in the follow-

ing.

Lemma 3. No *|P lock dominates any *|N lock.

Proof. Consider the schedule depicted in Figure 5.2 for any *|P lock. Through-

out the interval [0, 9), job Ji is either busy waiting to acquire the lock, or

preempted by higher-priority jobs. In total, Ji is blocked for bi = 4 time

units. While busy waiting, jobs of the higher-priority tasks Th and Tk repeat-

edly preempt Ji. These preemptions cause Ji’s request to be cancelled and

re-issued as Ji resumes (see Section 2.4.2). Each of Ji’s re-issued requests

conflicts with a request issued by a job of Tx at the same time, and the

requests issued by jobs of Tx are served instead of Ji’s request.

Under any *|N lock, Ji cannot be preempted by higher-priority jobs while

busy-waiting, and hence, Ji’s request cannot be cancelled. Besides Ji, only

Tx’s jobs accesses the lock. Since Tx has a period of px = 2 and a critical

section length of Lx = 1, Ji’s request is blocked for at most one time unit

100

50 10

Th

Tx

`1

P2

15

P1

Ti

Tk

`1 `1 `1 `1 `1 `1 `1 `1

Figure 5.2: Example schedule for preemptable spin locks.

(i.e., bi = 1) in the worst case.

Since the blocking incurred by Ti in the schedule depicted in Figure 5.2 under

any *|P lock exceeds the blocking bound under any *|N lock, no *|P lock

can dominate any *|N lock. �

The incomparability follows by the preceding two lemmas. In the following,

we compare the different request ordering policies. Since any preemptable and

non-preemptable spin locks are generally incomparable, so are preemptable

and non-preemptable spin locks with different ordering policies. Hence, in

the following, we establish dominance relations between pairs of spin lock

types that are both either preemptable or non-preemptable. To simplify the

notation, we extend the definition of dominance to classes of spin lock types

with different ordering policies as follows.

Def. 3: Dominance of classes of spin lock types. A|* locks dominate

B|* locks if and only if A|N locks dominate B|N locks and A|P locks dominate

B|P locks.

To start our comparison of locks with different ordering policies, we next

101

show that both priority-ordering and FIFO-ordering are “strong” guarantees

in the sense that spin locks using them dominate unordered spin locks.

5.4 F|* and P|* Locks Dominate U|* Locks

In the following, we show that FIFO- and priority-ordered spin locks dominate

unordered locks, and then we show that the reverse does not hold.

Lemma 4. F|* and P|* locks dominate U|* locks.

Proof. Consider an arbitrary task Ti from an arbitrary task set sharing

resources protected by F|* or P|* locks. Let S denote a schedule under which

Ji, a job of Ti, incurs the worst-case blocking duration. Since, by definition,

U|* locks are not required to serve requests in any particular order, they may

serve requests in FIFO- or priority-order. Hence, if U|* locks are used instead

of F|* or P|* locks to protect the shared resources, schedule S is possible and

valid under U|* locks as well. Then Ji can incur the same blocking duration

under U|* locks. �

Note that, in case of P|* locks, the above argument holds for any priority

assignment, even when all requests are issued with the same priority (in

which case P|* locks do not give any guarantees on the ordering, similar to

U|* locks). The above lemma shows that the worst-case blocking incurred

under U|* locks is at least the worst-case blocking possible with F|* and P|*

locks, and hence, the worst-case blocking duration under U|* locks can never

be lower. To show the strict dominance, we next show that the blocking

under U|* locks can also lead to longer blocking compared to F|* and P|*

locks.

Lemma 5. U|* locks dominate neither F|* nor P|* locks.

Proof. Consider the schedule depicted in Figure 5.3 for U|* locks in which

102

50 10

Ti

Ty

`1

P3

15

P1

Tx

`1

`1`1

P2

Figure 5.3: Example schedule for unordered spin locks.

Ji’s request is blocked for bi = 4 time units. Note that, in this schedule, both

of Jx’s requests are served before Ji’s request, and Ji’s request was issued

before Jx’s second request. Further, note that at most one task is assigned

to each processor, rendering preemptions impossible.

Under F|* locks, since requests are served in FIFO-order and preemptions

while spinning are impossible, each request can be blocked by at most one

request for the same resource from each other processor. Hence, Ji’s request

can be blocked by at most one of Jx’s request and one of Jy’s request. As a

result, Ji’s blocking duration is bounded by bi = 3 time units.

Under P|* locks, each request can be blocked by at most one remote request

issued with lower priority. Consider a priority assignment in which Ji’s

request is assigned a priority higher than the priority assigned to both of Jx’s

requests and Jy’s request. Then Ji’s request can be blocked by either one of

Jx’s requests or Jy’s request. Hence, Ji’s blocking duration is bounded by

bi = 2 time units (the length of Jy’s request, which is the longest one).

The blocking incurred by Ji under U|* locks in the schedule depicted in

Figure 5.3 exceeds Ti’s blocking bound of bi = 3 for F|* locks and bi = 2 for

P|* locks, respectively. Hence, U|* locks can dominate neither F|* nor P|*

locks. �

103

Together, the above lemmas show that the strong guarantees provided by

F|* and P|* locks allow for analytical benefits compared to U|* locks in the

sense that their use may result in shorter worst-case blocking durations, and

never an increase in worst-case blocking. A dominance relation between F|*

and P|* locks, however, cannot be established. That is, as we show next,

neither one dominates the other.

5.5 F|* and P|* Locks Are Incomparable

To show that F|* and P|* locks are incomparable, we show that neither

dominates the other. We start by showing that F|* locks do not dominate

P|* locks.

Lemma 6. P|* locks do not dominate F|* locks.

Proof. Consider a task set consisting of three tasks, Ti, Tx, and Ty, that

each issue two requests to the shared resource `q with length 1, that is:

Li,q = Lx,q = Ly,q = 1 and Ni,q = Nx,q = Ny,q = 2. All three tasks

have a cost of ei = ex = ey = 3. The tasks Tx and Ty have a period of

px = py = 6, and Ti has a period of pi = 12. Each task is assigned to a

dedicated processor.

We distinguish two cases to account for the different possible assignments

of request priorities: (1) task Ti issues a request with the lowest request

priority, and (2) task Tx or task Ty issues a request with the lowest request

priority. These cases are not necessarily distinct, that is, for instance, if both

Ti and Tx issue one request (or both requests) with lowest priority, then

both cases apply. Further, recall from Section 2.1.4 that the order in which

requests are issued is unknown.

Since Tx and Ty have identical characteristics, we assume without loss of

104

generality, that in case (2) Ty issues a request with lowest priority. Note

that the case distinction is exhaustive since one of the three tasks issues a

request with lowest priority regardless of the particular assignment.

Case (1): Consider the schedule depicted in Figure 5.4 in which the job Ji’s

first request is blocked by the second request issued by Ty’s first job during

the interval [3, 4), which is possible regardless of the priority assigned to

these request. During the interval [6, 10), Ji’s request with lowest priority is

blocked by the requests issued by the jobs of Tx and Ty, resulting in a total

blocking duration of bi = 5 time units.

Case (2): Consider the schedule depicted in Figure 5.5 in which the first

job of Ty is blocked by the second request issued by Tx’s first job during

the interval [2, 3), which is possible regardless of the priority assigned to

this request. During the interval [5, 9), Jy’s request with lowest priority is

blocked by the requests issued by Ti’s first and Tx’s second job, respectively.

In total, Jy is blocked for a duration of by = 5 time units (resulting in a

deadline miss at t = 8).

Under F|* locks, each request can be blocked by at most one remote request

from each other processor (see Section 2.5.1) in the depicted scenario (no

preemptions can occur since each task is assigned to its own processor).

Hence, since each task issues two requests with a critical section length of

one time unit each, the blocking of each task under F|* locks is bounded by

bi = bx = by = 2 · 2 = 4 time units. Since the blocking incurred by Ti and Ty

under P|* locks in the depicted schedules exceeds the blocking bound under

F|* locks, P|* locks cannot dominate F|* locks. �

Note that the argument above does not assume a particular priority assign-

ment or that requests issued by the same job are issued with the same priority.

Instead, the argument only relies on the fact that one (not necessarily unique)

request has to be issued with lowest priority under any assignment. Next,

105

50 10

Ti

Ty

`1

P3

15

P1

Tx

`1`1

P2

`1

`1`1

`1 `1`1`1

Figure 5.4: Example schedule for priority-ordered spin locks where Ti issues
a request with lowest priority.

50 10

Ti

TyP3

15

P1

Tx

`1

`1`1

P2

`1`1

`1

`1`1

`1`1

Figure 5.5: Example schedule for priority-ordered spin locks where Ty issues
a request with lowest priority.

we show that F|* locks do not dominate P|* locks.

Lemma 7. F|* locks do not dominate P|* locks.

Proof. Consider the schedule for F|* locks depicted in Figure 5.6, where Ti’s

first job is blocked by the requests issued at the same time by the jobs of Tx

and Ty. In total, Ti’s job is blocked for bi = 4 time units. Under P|* locks,

when Ti’s request is assigned a priority higher than the request priority of

Tx’s and Ty’s requests, each of Ti’s request can be blocked by at most one

other request. Then Ti’s blocking is bounded by bi = 2 time units.

The blocking incurred by Ti’s job under F|* locks in the schedule depicted

in Figure 5.6 exceeds Ti’s blocking bound for P|* locks. Hence, F|* locks

106

50 10

Ti

TyP3

P1

Tx

`1

`1

P2

`1

Figure 5.6: Example schedule for FIFO-ordered spin locks.

cannot dominate P|* locks. �

Together, the above two lemmas show that F|* and P|* locks are incompara-

ble.

5.6 PF|* Locks Dominate both F|* and P|* Locks

While F|* and P|* locks are incomparable, as shown above, priority-ordered

spin locks with FIFO tie-breaking, PF|* locks, dominate both of them. The

underlying reason is that PF|* locks integrate both mechanisms, and with

an appropriate assignment of priorities, PF|* locks can behave identically to

F|* or P|* locks, and hence PF|* locks dominate both of them. The reverse,

however, is not true: neither F|* nor P|* locks dominate PF|* locks.

Lemma 8. PF|* locks dominate P|* and F|* locks.

Proof. Follows from the preceding discussion. �

Lemma 9. Neither F|* nor P|* locks dominate PF|* locks.

Proof. Follows from Lemmas 6 and 7 and the transitivity of the dominance

relation. �

107

PF|N

F|N P|N

U|N

A B A dominates B A B A and B are
incomparable

PF|P

F|P P|P

U|P

Figure 5.7: Summary of dominance and incomparability results.

5.7 Summary

We summarize the results of our qualitative comparison in Figure 5.7. Both

F|* and P|* locks result in less worst-case blocking than U|* locks. This

finding roughly matches the intuition that some meaningful ordering pol-

icy (FIFO or priority) should yield better results than no ordering policy

(unordered). F|* and P|* locks are incomparable, which indicates that the

impact of these policies cannot be stated in general terms, but rather de-

pends on concrete task sets. F|* and P|* locks are dominated by PF|* locks,

comprising mechanisms for both FIFO- and priority-ordering.

A perhaps surprising finding is that preemptable and non-preemptable spin

locks are generally incomparable, regardless of the ordering policy. This

result holds even for spin lock types with different ordering policies, e.g.,

FP|N and U|P are incomparable, although FP|N dominate U|N locks and

FP|P dominate U|P.

The results of our qualitative comparison show that strong ordering guaran-

tees have clear benefits over unordered spin locks — a not entirely unexpected

outcome. At the same time, we have shown FIFO- and priority-ordered as

well as preemptable and non-preemptable spin locks to be incomparable.

108

Although these results may be considered unsatisfactory as no “lock type

to rule them all” could be identified, they justify the availability of these

various types of spin locks to support a broad range of different applications.

Incomparability also implies that the effect of the spin lock type on the

blocking duration depends on concrete task sets. In the next chapter, we

present a fine-grained blocking analysis approach to derive blocking bounds

for concrete task sets under the various spin lock types considered.

109

Chapter 6

Analysis of Non-Nested Spin

Locks1

6.1 Introduction

In this chapter we present a novel approach for fine-grained blocking analysis

of non-nested spin locks. Our motivation is twofold: first, out of the spin

lock types we consider in this thesis (see Table 2.1 in Section 2.4.2 for an

overview), only for F|N locks a fine-grained blocking analysis is available

(as part of the MSRP analysis). The lack of a blocking analysis renders

the other spin lock types unusable for real-time workloads. Second, even

though analyses of the MSRP are available in prior work, they are inherently

pessimistic. Pessimistic blocking bounds can result in a waste of resources,

which is particularly undesirable for embedded real-time applications often

developed under SWaP (space, weight and power) constraints. With our

blocking analysis approach we aim to eliminate the pessimism inherent in

prior analyses and support a range of spin lock types for which no prior

1This chapter is based on [133].

110

analysis is available. Before detailing our blocking analysis, we describe why

prior analyses are pessimistic.

6.2 Pessimism in Prior Analyses for Spin Locks

In this section, we illustrate the pessimism inherent in prior blocking analyses

for spin locks.

6.2.1 Classic MSRP

The classic analysis of the MSRP (summarized in Section 2.5.1) bounds

the blocking that each individual request incurs, which can lead to double-

counting of conflicting requests when the task under analysis issues multiple

requests for the same resource. We demonstrate this effect with an exam-

ple.

Consider a two tasks, Ti and Tx, assigned to different processors. The periods

of the tasks are pi = 6 and px = 17, and execution costs are ei = 3 and

ex = 7. Both tasks access the shared resource `q; each job of Ti issues

Ni,q = 2 requests of length Li,q = 1 and each job of Tx issues one request of

length Lx,q = 2. Figure 6.1 depicts a schedule for these two tasks in which

Ti’s first job, Ji,1, is blocked by Tx’s job holding `q during the time interval

[0, 2). At time t = 2, Ji,1 acquires the lock and executes the critical section.

Ji,1’s second request issued at time t = 4 is executed immediately as `q is

not held at that time. Ji,1 finishes before deadline at t = 5.

Applying the classic MSRP blocking analysis to Ti in this example is straight-

forward: local and non-preemptive blocking cannot occur since no other task

is assigned to Ti’s processor. Hence, βloci = βNP
i = 0. However, as shown in

the depicted schedule, Ti can incur remote blocking that has to be accounted

111

50 10

Ti

Tx

`1 job executing

job executing
critical section

job holding resource `1`1

job release

`1 job spinning while
waiting for resourceP2

15

`1 `1 `1 `1 `1

P1

Figure 6.1: Example schedule illustrating the pessimism of the classic MSRP
analysis.

for. The maximum spin time per request, Si,q, is the sum of the longest

critical section length of any request for `q issued from each other processor.

As Tx’s request is the only other request for `q, we have Si,q = Lx,q = 2. The

remote blocking βremi is given by βremi =
∑

`q
Ni,q · Si,q = 2 · 2 = 4.

Since Ti is the only task assigned to its processor, Ti’s response time ri is

bounded by ri = ei + βremi = 3 + 4 = 7. This bound exceeds Ti’s period of

pi = 6 and hence its implicit deadline. As a result, Ti cannot be guaranteed

to be schedulable under the classic MSRP analysis. This bound, however,

is overly pessimistic in that Ti cannot be blocked for 4 time units in any

possible schedule: if Ji,1’s first request is blocked by a request issued by one

of Tx’s jobs, then Ji,1’s second request cannot be blocked since no other job

of Tx issues a potentially conflicting request before Ji,1 completes.

6.2.2 Holistic Analysis

The holistic analysis [43, Ch. 5] avoids accounting for Tx’s request more than

once in the derivation of Ti’s blocking bound: rather than only bounding

the blocking for each individual request issued by Ji, the holistic analysis

also considers the total blocking that all of Ji’s requests together can incur.

In the previous example illustrated in Figure 6.1, either of Ji’s requests can

be blocked by Jx’s request, but not both of them, as pointed out before.

112

Based on this observation, the holistic analysis accounts only once for Jx’s

request (as it can block at most one of Ji’s requests), which reduces the

pessimism of the blocking bounds compared with the classic MSRP analysis.

In the example above, the holistic analysis bounds Ti’s blocking to bi = 2

time units instead of four. This less pessimistic blocking bound results in a

response-time bound of ri = 5, and hence, Ti can be guaranteed to meet its

timing requirements.

The holistic analysis, similar to the classic MSRP analysis, relies on execution

time inflation. That is, in the schedulability analysis the inflated execution

time e′i = ei + bi is used to account for a blocking bound bi. This approach,

however, is inherently pessimistic. To illustrate this pessimism, we consider

an example with one additional task. The two tasks from the previous

example are defined as before, with the exception that task Ti from the

previous example is now denoted as Th. The additional task, Ti, has a period

of pi = 11 and an execution cost of ei = 2. Task Ti is assigned to Th’s

processor and has a lower scheduling priority, that is, i > h. Figure 6.2

depicts a schedule for this task set in which Ti’s job is preempted throughout

the time intervals [0, 5) and [6, 9).

Note that Ti does not access any shared resources. Yet, Ti incurs transitive

blocking during the interval [0, 2) since Th’s higher-priority job spins while

being blocked by Tx’s request. To illustrate the pessimism due to execution

time inflation in this example, we apply response-time analysis for Ti. As

Ti does not access any shared resources and execution times are inflated

to account for blocking effects, the regular response-time analysis for P-FP

(Equation (2.1)) can be applied:

ri = ei +
∑
πh<πi

P (Ti)=P (Th)

⌈
ri
ph

⌉
· e′h.

113

50 10

Th

Tx

`1

`1

P2

15

`1 `1 `1 `1 `1

P1

Ti

Figure 6.2: Example schedule illustrating the pessimism of the holistic
analysis for F|NP locks.

Starting with ri = ei, the recurrence can be solved via fixed-point itera-

tion:

ri = ei +

⌈
ri
ph

⌉
· e′h

= 2 +

⌈
2

6

⌉
· 5

= 2 +

⌈
7

6

⌉
· 5

= 2 +

⌈
12

6

⌉
· 5

= 12

The iteration reaches a fixed point at ri = 12. This response-time bound

exceeds Ti’s implicit deadline of pi = 11, and hence, schedulability cannot

be guaranteed. This bound, however, is pessimistic in that it accounts

for transitive blocking by Tx’s request twice although this can occur at

most once in any schedule: the number of jobs of Tx that may be pending

throughout any time interval of length t is bounded by njobs(Tx, t) (defined

in Section 2.1.1). Using Ti’s response-time bound from the above analysis

of ri = 12, at most njobs(Tx, t) =
⌈
t+rx
px

⌉
=
⌈

12+5
17

⌉
= 1 jobs of Tx can be

pending while a single job of Ti is pending. Since each of Tx’s jobs issues at

most one request, each of Ti’s jobs can only be transitively blocked by one

114

request while the analysis accounts for two blocking request.

The pessimism in the analysis is not specific to the holistic blocking analysis

but rather the technique of execution time inflation. In fact, as we show

next, any analysis based on inflating execution times to account for blocking

effects is inherently pessimistic.

6.2.3 Inherent Pessimism in Execution Time Inflation

In the previous example and the schedule depicted in Figure 6.2, Ti’s first

job is preempted twice by jobs of the higher-priority task Th. The pessimism

in the analysis stems from the fact that the inflation of Th’s execution cost

is accounted for each time one of Th’s jobs is released, that is, dri/phe = 2

times in Ti’s response time, although Ti’s job can incur transitive blocking

at most once. In general, the analysis pessimism grows as the number of

local higher-priority tasks (that can preempt Ti’s job and hence cause Ti’s

job to incur transitive blocking) in the system and the ratio dri/phe (i.e., the

maximum number of jobs released while one of Ti’s job is pending) increase.

Recall that we defined φ to be ratio of shortest and longest period of the

tasks in the system. We state the inherent pessimism of execution time

inflation with the following theorem.

Theorem 3. Any blocking analysis relying on the inflation of job execution

costs can be pessimistic by a factor of Ω(φ · n).

Proof. Let α denote a given, arbitrary non-negative integer parameter. We

construct a scenario in which Ω(n · α) delay is accounted for, actual blocking

is O(1), and where φ = α.

Consider a system consisting of two processors, P1 and P2, a single shared

resource `1, and a task set consisting of n ≥ 3 tasks. The tasks T1, . . . , Tn−2

are assigned to P1 and have parameters pi = 2n− 3 and ei = 1, and access

115

`1 once per job with a negligible critical section length of Li,1 = ε > 0. Task

Tn−1 is assigned to P2 and has parameters pn−1 = α · (2n− 3) and en−1 = 1,

and requests `1 once per job with Ln−1,1 = 1. Finally, the lowest-priority

task Tn with pn = α · (2n − 3) and en = α is assigned to P1 and does not

access `1.

Let rinf
n denote Tn’s response-time bound obtained by inflating execution

costs. We have rinf
n = en +

∑n−2
h=1

⌈
rinfn
ph

⌉
e′h, where e′h denotes the inflated

execution time of Th. Since each Th ∈ {T1, . . . , Tn−2} directly conflicts with

Tn−1 via `1, we have e′h ≥ eh +Ln−1,1 = eh + 1 under any (mutual exclusion)

locking protocol. Suppose e′h = eh + 1 = 2. Then setting rinf
n = α · (2n− 3)

yields a fixed point:

rinf
n = α+

n−2∑
h=1

⌈
rinf
n

2n− 3

⌉
· 2

= α+
n−2∑
h=1

⌈
α · (2n− 3)

2n− 3

⌉
· 2

= α+

n−2∑
h=1

α · 2

= α+ (n− 2) · α · 2

= α+ (2n− 4) · α

= α · (2n− 3).

Observe that Tn−1 issues only a single request for `1, and hence T1, . . . , Tn−2

are blocked by at most one request in total while a job Jn is pending. The

actual remote blocking that contributes to Tn’s response time (i.e., the time

that any job on processor P1 spins while Jn is pending) is hence limited to

Ln−1,1 = 1. Hence we have rrealn = en+Ln−1,1 +
∑n−2

h=1

⌈
rrealn
ph

⌉
·eh, and, since

rrealn ≤ rinf
n , also rrealn ≤ en + Ln−1,1 +

∑n−2
h=1

⌈
rinfn
ph

⌉
· eh.

The pessimism due to execution cost inflation is given by the difference of

116

rrealn and rinf
n , where

rinf
n − rreal

n ≥ en +

n−2∑
h=1

⌈
rinf
n

ph

⌉
(eh + 1)−

(
en + Ln−1,1 +

n−2∑
h=1

⌈
rinf
n

ph

⌉
· eh

)

=
n−2∑
h=1

⌈
rinf
n

ph

⌉
− Ln−1,1

=
n−2∑
h=1

⌈
α · (2n− 3)

(2n− 3)

⌉
− 1

= (n− 2) · α− 1

= Ω(n · α).

Since φ = α and because actual blocking is limited to Ln−1,1 = O(1), this

establishes that rinf
n overestimates the impact of blocking by a factor of

Ω(φ · n). �

We illustrate this construction in Figure 6.3 for n = 5 and α = 2. In this

schedule, each job of the tasks T1, T2 and T3 is inflated by 1 time unit to

account for blocking due to T4’s request for `1: e′1 = e′2 = e′3 = 1 + 1 = 2. In

Figure 6.3, T4’s semi-transparent requests are not actually issued by T4, but

still accounted for by the analysis based on execution-time inflation. Applying

response-time analysis for (Equation (2.1)) T5 with inflated execution times

yields a fixed-point with rinf
n = 14:

rinf
5 = α+

n−2∑
h=1

⌈
rinf
n

2n− 3

⌉
· e′h

= 2 +
3∑

h=1

⌈
14

7

⌉
· 2

= 2 +

3∑
h=1

2 · 2

= 14.

117

50 10

P1

T1

T2

T3

T4

T5

15 20

P2

`1 `1 `1 `1 `1 `1

`1

`1

`1

`1

`1

`1

Figure 6.3: Schedule illustration the construction from Theorem 3 for α = 2
and n = 5. Note that T4’s semi-transparent requests in this schedule (e.g.,
at time 4) are not actually issued by T4, but accounted for in the inflated
execution time of T1, T2 and T3.

This response-time bound accounts for 6 time units of blocking, even though

Ti can be blocked for at most one time unit. First, observe that throughout

any time window of length 6, jobs of T4 issue at most one request for `1, and

hence, during that time at most one request can block T5. Without execution

time inflation, T5’s response time is bounded by 6 time units:

rreal
5 = α+ b5 +

n−2∑
h=1

⌈
rreal
n

2n− 3

⌉
· eh

= 2 + 1 +

3∑
h=1

⌈
6

7

⌉
· 1

= 3 +
3∑

h=1

1 · 1

= 6,

where b5 denotes the blocking that T5 can incur (one of T4’s requests with

length 1). Note that in the response-time analysis above, T5’s blocking is

explicitly accounted for by b5 rather inflated execution times. Next, we

118

introduce a novel blocking analysis approach that similarly does not rely

on execution time inflation and eliminates the pessimism inherent in this

technique.

6.3 A MILP-Based Blocking Analysis Framework

for Spin Locks

Our analysis approach substantially differs from prior blocking analysis

techniques for spin locks. Whereas prior techniques aim to identify or (over-)

approximate the blocking in a worst-case scenario (e.g., [43, Ch. 5] and [72]),

we approach the problem from the opposite direction: we derive invariants

that must hold in any possible schedule based on the properties of the task

set and the type of spin lock to rule out impossible scenarios (similar to [36]),

rather than arguing about the worst case. Among the scenarios not explicitly

ruled out, one with maximum blocking duration is identified.

This method bears several advantages over prior techniques. First, deriving

these invariants that must hold in any possible schedule is easier than directly

bounding the worst case. Each invariant can be proven individually, and

often invariants can be directly inferred from properties of the spin lock type.

Second, these invariants are modular in the sense that they can be freely

combined and re-used for the analysis of different spin lock types that share

some of their properties. Third, in our approach all potentially conflicting

requests are initially assumed to contribute to the blocking duration unless

explicitly ruled out by these invariants. As a result, employing the analysis

without any such invariants or omitting some of them yields safe (albeit

pessimistic) blocking bounds. Conversely, additional invariants can be added

to the existing ones to further improve the analysis, express application-

specific properties, or support different types of spin locks.

119

Our analysis approach is based on Mixed Integer Linear Programming: we

frame the blocking analysis problem as a Mixed Integer Linear Program

(MILP), where the invariants are constraints and the objective is to maximize

the blocking duration. That is, the optimization goal is to find the maximal

blocking among the scenarios not ruled out by the invariants that must

hold in any possible schedule. In the following, we present this approach in

detail.

Types of Blocking under Spin Locks

A job may incur blocking for different causes, and for our analysis we

distinguish two basic forms of blocking: spin delay and arrival blocking.

A request Rx,q,v causes a job Ji to incur spin delay at a time t if either

• (S1) Ji is spinning while waiting to acquire the spin lock on `q at time

t and Rx,q,v is executing at time t (in Figure 2.3, J3’s request causes

J2 to incur spin delay during the interval [1, 4)), or

• (S2) there is a local higher-priority job Jh with P (Ti) = P (Th)∧ h < i

that is spinning while waiting to acquire the spin lock on `q at time t

and Rx,q,v is executing at time t (in Figure 2.3, J4’s request causes J2

to incur spin delay during the interval [8, 9)).

A request Rx,q,v causes a job Ji to incur arrival blocking at a time t if there

is a local lower-priority job Jl with P (Ti) = P (Th) ∧ l > i that either

• (A1) executes the request Rx,q,v at time t (in Figure 2.3, the execution

of J2’s request causes J1 to arrival blocking during the interval [4, 7)),

or spins non-preemptably while waiting to acquire the spin lock on

`q at time t and Rx,q,v is executing at time t (in Figure 2.3, J2 spins

non-preemptably while waiting for J3 to release `1 during the interval

[3, 4), hence, J3’s request causes J1 to incur arrival blocking during the

120

interval [3, 4)), or

• (A2) executes Rx,q,v, `q is a local resource, and `q has a priority ceiling

higher or equal to Ti’s priority (in Figure 2.4, J2 incurs arrival blocking

during the interval [5, 6) when J3 executes with the higher priority

inherited from J1).

Modeling the Blocking Analysis Problem as a Mixed Integer

Linear Program

To analyze the worst-case blocking incurred by an arbitrary job Ji of Ti, we

enumerate all requests of other tasks that could overlap with the interval

during which Ji is pending, and we define two blocking variables [36] for each

such request. Recall from Section 2.1.4 that Rx,q,v denotes the vth request

of task Tx for resource `q while Ji is pending. For each request Rx,q,v, we

define two blocking variables XS
x,q,v and XA

x,q,v that give Rx,q,v’s contribution

to Ti’s spin delay and arrival blocking, respectively.

These blocking variables have the following interpretation: with respect to

an arbitrary, but fixed schedule, Rx,q,v contributes to Ji’s arrival blocking

with exactly XA
x,q,v ·Lx,q time units. Thus, if XA

x,q,v = 0, then Rx,q,v does not

cause any arrival blocking (in the fixed schedule). Similarly, if XS
x,q,v = 0.5,

then Rx,q,v contributes Lx,q/2 time units to Ji’s spin delay (again, in the

fixed schedule). Given a concrete schedule (i.e., a trace of the task set), it is

trivial to determine the values of each critical section’s blocking variables. We

use these blocking variables to express constraints on the set of all possible

schedules (similar to [36]): each blocking variable is used as a variable in

a linear program that, when maximized, yields a safe upper bound on the

worst-case blocking incurred by any Ji.

More specifically, our goal is to compute for each task Ti a blocking bound

121

bi(r1, . . . , rn) such that the recurrence

ri = ei + bi(r1, . . . , rn) + Ii(ri)

yields a safe upper bound on Ti’s maximum response time ri, where Ii(ri)

denotes the worst-case interference due to preemptions by local higher-priority

jobs, excluding any blocking these jobs may incur, and where bi(r1, . . . , rn)

denotes a bound on all blocking that affects Ti (either directly or transitively).

Note that, in contrast to execution-time inflation (as in Equation (2.2) in

Section 2.5.1), where blocking effects are accounted for as part of the execution

time, the recurrence above explicitly accounts for interference (Ii(ri)) and

blocking (bi(r1, . . . , rn)).

With P-FP scheduling, the worst-case interference Ii(ri) is simply Ii(ri) =∑
Th∈τ lh

⌈
ri
ph

⌉
· eh (see Equation (2.1) in Section 2.2), where

τ lh , {Th | P (Th) = P (Ti) ∧ h < i} denotes the set of local higher-priority

tasks. Finding bi(r1, . . . , rn) is the purpose of the analysis presented in

the following. It should be noted that, in contrast to Gai et al .’s MSRP

analysis [72] and similar to Brandenburg’s holistic analysis [43, Ch. 5], the

blocking term bi(r1, . . . , rn) depends on the response times of all tasks, which

implies that blocking bounds and response-time bounds must be determined

iteratively in alternating fashion until a fixed point is reached [43, Ch. 5],

[36]. Nonetheless, for brevity, we denote the blocking term simply as bi in

the following.

The response time ri is then given by

ri = ei + bi +
∑

Th∈τ lh

⌈
ri
ph

⌉
· eh. (1)

A value for ri satisfying the recurrence in Equation (1) bounds Ti’s response

time, which we state in the following theorem.

122

Theorem 4. Let ri be a value that satisfies Equation (1). Then each of Ti’s

jobs is pending for at most ri time units.

Proof. In an arbitrary schedule, for any of Ti’s jobs, Ji, consider the level-i

busy interval [t0, t1) during which Ji is pending. That is, a maximal interval

[t0, t1) such that at any time instant t′ ∈ [t0, t1) the job Ji is pending, and

t1 is the first quiet time after t0 where Ji and no other local jobs with the

same or higher priority released before t1 are pending.

If the job scheduled from t0 onwards incurs any arrival blocking due to a

request issued by a local lower-priority job, then let t∗0 denote the time at

which this request was issued, otherwise let t∗0 , t0. Hence, at any time

instant during the interval [t∗0, t1) either (1) Ji is scheduled, (2) a local

lower-priority job is spinning or executing a critical section, or (3) a local

higher-priority job is scheduled.

Since the recurrence in Equation (1) accounts for each of these factors, and

since ri satisfies Equation (1) by assumption, there is a quiet time after at

most ri time units after t∗0. Hence, we have t1−t∗0 ≤ ri. The claim follows. �

For brevity, we let τ i , τ \ {Ti} denote set set of all tasks in τ except for Ti.

Further, we let N i
x,q denote an upper bound on the number of requests for `q

issued by jobs of task Tx while a job of Ti is pending. Since njobs(Tx, t) gives

an upper bound on the number of Tx’s jobs that can be pending throughout

any interval of length t, N i
x,q is given by N i

x,q = njobs(Tx, ri) ·Nx,q.

The optimization objective of the MILP is then to maximize

bi ,
∑
Tx∈τ i

∑
`q∈Q

N i
x,q∑

v=1

(
XS
x,q,v +XA

x,q,v

)
· Lx,q, (2)

where XA
x,q,v ∈ [0, 1] and XS

x,q,v ∈ [0, 1] for each Rx,q,v.

123

Note that only njobs(Tx, t) ties bi to the sporadic task model. By substituting

a proper definition of njobs(Tx, t), our analysis can be applied to more

expressive task models as well (e.g., [119]).

When maximized, Equation (2) yields the maximum blocking possible across

the set of all schedules not shown to be impossible. To derive non-trivial

blocking bounds, we impose constraints on the blocking variables that bi

depends on to rule out scenarios that we prove to be impossible. In the

following, we present the constraints in our analysis. We start with generic

constraints that apply to all considered spin lock types, and then present

type-specific constraints.

In the interest of simplicity, we do not detail the constraints for the analysis

of unordered (both non-preemptable and preemptable) spin locks, but treat

them as a special case of priority-ordered spin locks: priority-ordered spin

locks (see Section 2.4.2 for an overview of ordering policies) do not provide

any ordering guarantees among requests issued with the same priority. As a

result, issuing all requests with the same priority effectively degenerates a

priority-ordered spin lock into an unordered one, as it provides the same (i.e.,

no) ordering guarantees. Our analysis for priority-ordered spin locks applies

to this case as well, and hence, we do not explicitly describe the analysis for

unordered spin locks.

6.3.1 Generic Constraints

Before discussing constraints specific to a particular type of spin lock, we

focus on constraints that apply to all types. The notation for stating the

constraints is summarized in Table 6.1. We begin by observing that direct spin

delay and (indirect) arrival blocking are mutually exclusive. To ensure that

each request Rx,q,v is counted at most once in bi, we establish the following

constraint. Recall that τ i denotes the set of all tasks except Ti.

124

symbol description definition

bi total blocking contributing to Ti’s response
time

Section 6.3

Pk kth processor in the system with 1 ≤ k ≤ m Section 2.1.2
P (Tx) processor that task Tx is assigned to Section 2.1.2

τ i set of all tasks except Ti Section 2.1.1
τ(Pk) set of all tasks assigned to processor Pk Section 6.3.2
τR set of all remote tasks Section 6.3.3
τ ll / τ lh set of lower-priority / higher-priority tasks on

P (Ti)
Section 6.3.1

Q / Qg / Ql set of all / global / local resources Section 2.1.4
pc(Ti) set of resources with priority ceiling at least i Section 6.3.1

N i
x,q number of requests by Tx for `q while Ji is

pending
Section 6.3

ncs(Ti, q) maximum number of requests for `q issued
by any jobs of tasks in τ lh ∪ {Ti} while Ji is
pending

Section 6.3

Rx,q,v vth request issued by jobs of Tx while Ji is
pending

Section 2.1.4

XS
x,q,v contribution of Rx,q,v to Ti’s spin delay Section 6.3

XA
x,q,v contribution of Rx,q,v to Ti’s arrival blocking Section 6.3

njobs(Tx, t) maximum number of jobs of Tx pending in
any interval of length t

Section 2.1.1

Table 6.1: Summary of Notation

Constraint 1. In any schedule of τ :

∀Tx ∈ τ i : ∀`q ∈ Q : ∀v, 1 ≤ v ≤ Nx,q : XA
x,q,v +XS

x,q,v ≤ 1.

Proof. Suppose not. Then there exists a schedule such that a single request

Rx,q,v causes Ti to incur both spin delay and arrival blocking simultaneously

at some point in time t. Both arrival blocking conditions A1 and A2 require

a lower-priority job to be scheduled on processor P (Ti) at time t, whereas

spin delay condition S1 (respectively, S2) requires Ji (respectively, a higher-

125

priority job) to be scheduled on P (Ti) at time t. However, at any point in

time, at most one job can be scheduled on Ti’s processor. �

We consider arrival blocking next. Since a job is released only once (and since

we assume that jobs do not self-suspend), each job can incur arrival blocking

only once (upon release). To express this, we use an indicator variable Aq,

with the following interpretation: given a fixed, concrete schedule, Aq = 1 if

and only if Ji incurred arrival blocking due to a critical section accessing `q,

and Aq = 0 otherwise. In a MILP interpretation, each Aq is a binary decision

variable. This allows us to formalize that at most one resource causes arrival

blocking.

Constraint 2. In any schedule of τ :
∑

`q∈QAq ≤ 1.

Proof. Suppose not. Then there exists a schedule in which requests for two

different resources `1 and `2 both contribute to Ti’s arrival blocking. Arrival

blocking conditions A1 and A2 require a lower-priority job Jl to be scheduled

on processor P (Ti). Since we assume that Ji does not self-suspend, this is

only possible if Jl was already scheduled at the time of Ji’s release. Clearly,

only one such Jl exists. Since jobs become preemptable at the end of a

critical section, Jl would have to be accessing `1 and `2 simultaneously. Since

we assume that jobs hold at most one resource at a time, this is impossible. �

Of course, in order for a resource `q to cause arrival blocking, it must

actually be accessed by local lower-priority tasks. Let τ ll denote the set

of local lower-priority tasks: τ ll , {Tl | P (Tl) = P (Ti) ∧ l > i} denote such

tasks.

126

Constraint 3. In any schedule of τ :

∀`q ∈ Q : Aq ≤
∑
Tx∈τ ll

Nx,q.

Proof. Suppose not. Then, since Aq is a binary variable, 1 = Aq >∑
Tx∈τ ll Nx,q = 0 for some resource `q. By the definition of Aq, this implies

that Ti incurs arrival blocking due to requests for `q by local lower-priority

jobs although `q is not accessed by any local lower-priority tasks, which is

clearly impossible. �

In a similar vein, we can rule out arrival blocking due to local resources with

priority ceilings lower than Ti’s priority (condition A2). To this end, we

let conflict set pc(Ti) of Ti denote the set of local resources with a priority

ceiling of at least Ti’s priority. Let Ql denote the set of local resources on

processor P (Ti). We define pc(Ti) as follows.

127

Def. 4: Conflict Set. Ti’s conflict set pc(Ti) is defined as{
`q
∣∣ `q ∈ Ql ∧Π(`q) ≤ i

}
.

The next constraint rules our any arrival blocking due to requests to local

resources that are not in the conflict set.

Constraint 4. In any schedule of τ :

∀`q ∈ Ql \ pc(Ti) : Aq ≤ 0.

Proof. Follows from the definitions of the conflict set pc(Ti) and each Aq, as

Aq = 1 only if Ji is arrival-blocked due to a request for `q, which is possible

only if `q ∈ pc(Ti). �

Another straightforward constraint on arrival blocking is that requests from

local higher-priority tasks cannot arrival-block Ti.

Constraint 5. In any schedule of τ :
∑

Tx∈τ lh

∑̀
q

N i
x,q∑

v=1
XA
x,q,v ≤ 0.

Proof. Follows immediately from conditions A1 and A2, which require a

lower-priority job to be scheduled on P (Ti), whereas any job of tasks in τ lh

has higher priority than Ji. �

The next constraint links the indicator variables Aq to the blocking variables

of local lower-priority tasks for `q.

Constraint 6. In any schedule of τ :

∀`q ∈ Q :
∑
Tx∈τ ll

N i
x,q∑

v=1

XA
x,q,v ≤ Aq.

Proof. Suppose not. If Aq = 0, this would imply, by definition of XA
x,q,v, that

128

in some schedule Rx,q,v arrival-blocked Ji, even though by definition of Aq

no request for `q arrival-blocked Ji, which is clearly impossible. If Aq = 1,

at least two requests by local lower-priority tasks caused arrival blocking.

Analogously to Constraint 2, this is impossible because at most one request

can be in progress on P (Ti) when Ji is released. �

Finally, we observe that spin delay is necessarily due to remote tasks,

since it is impossible to spin while waiting for local tasks. Analogously

to τ ll, we let τ lh denote the set of local higher-priority tasks: τ lh ,

{Th | P (Th) = P (Ti) ∧ h < i}.

Constraint 7. In any schedule of τ :
∑

Tx∈τ ll∪τ lh

∑̀
q

N i
x,q∑

v=1
XS
x,q,v ≤ 0.

Proof. Suppose not. Then there exists a schedule in which at some point in

time t the execution of a request Rx,q,v issued by a local task Tx causes Ji to

incur spin delay. By conditions S1 and S2, a job on processor P (Ti) is also

spinning at time t. However, the job scheduled on P (Ti) at time t cannot

both be spinning and executing Rx,q,v at the same time. �

This concludes our discussion of generic constraints and we now shift our focus

to spin lock type-specific constraints. We begin with F|N locks, because they

are the easiest to analyze, and because baseline analysis exists in the form of

Gai et al .’s classic MSRP analysis (summarized in Section 2.5.1).

6.3.2 Constraints for F|N Spin Locks

As discussed in Section 6.3, our analysis must explicitly account for transitive

delays to avoid the pessimism inherent in inflating job execution costs

(Theorem 3). In particular, the final blocking bound bi must represent all

delays that Ji may “accumulate” when higher-priority jobs that preempted Ji

129

spin. Thus, not only do we need to consider Ji’s requests for global resources,

but also any requests issued by higher-priority tasks. To this end, we let

ncs(Ti, q) denote an upper bound on the number of requests (or number of

critical sections) for `q issued either by Ji itself or by preempting higher-

priority jobs (while Ji is pending): ncs(Ti, q) , Ni,q +
∑

Th∈τ lh N
i
x,q.

In conjunction with the strong progress guarantee in F|N locks, ncs(Ti, q)

implies an immediate upper bound on the number of requests for `q that

cause Ji to incur spin delay. Let τ(Pk) , {Tx | P (Tx) = Pk } be the set of

tasks assigned to Pk.

Constraint 8. In any schedule of τ with F|N locks:

∀`q ∈ Q : ∀Pk, Pk 6= P (Ti) :
∑

Tx∈τ(Pk)

N i
x,q∑

v=1

XS
x,q,v ≤ ncs(Ti, q).

Proof. Suppose not. Then there exists a schedule in which more than

ncs(Ti, q) requests for some `q of tasks on processor Pk cause Ji to incur spin

delay. Then, by the pigeon-hole principle, at least one request for `q issued

by Ti or a local higher-priority task is delayed by more than one request for

`q from processor Pk. However, since jobs spin non-preemptably, and since

F|N locks serve requests in FIFO order, each request for `q can be preceded

by at most one request for `q from each other processor. Contradiction. �

The above constraint, even though it may appear to be quite simple, is

considerably more effective at limiting blocking than prior analyses, as will

become evident in Section 6.7. Next, we apply the reasoning underlying

Constraint 8 to arrival blocking.

A remote job Jr can contribute to Ji’s arrival blocking if a local lower-priority

job Jl spins non-preemptably while waiting for Jr to release a lock. However,

130

at most one request from each processor can contribute to Ji’s arrival blocking

in this way.

Constraint 9. In any schedule of τ with F|N locks:

∀Pk, Pk 6= P (Ti) : ∀`q ∈ Q :
∑

Tx∈τ(Pk)

N i
x,q∑

v=1

XA
x,q,v ≤ Aq.

Proof. Suppose not. If Aq = 0, then some request from a remote processor Pk

for resource `q causes Ji to incur arrival blocking. However, by the definition

of Aq, no requests for `q cause Ji to incur arrival blocking if Aq = 0. If

Aq = 1, then at least two requests for `q issued from processor Pk contribute

to Ti’s arrival blocking. Analogously to Constraint 2, at most one request of

a local lower-priority job Jl causes Ji to incur arrival blocking. Hence, at

least two requests from Pk must delay Jl. Analogously to Constraint 8, this

is impossible in F|N locks. �

This concludes our analysis of F|N locks. The MILP for the analysis of F|N

locks consists of the generic Constraints 1–7 and the two Constraints 8 and 9

specific to F|N locks. If maximized, the objective value Equation (2) bounds

the maximum blocking incurred by any Ji. We proceed with the constraints

for the analysis of P|N locks.

6.3.3 Constraints for P|N Spin Locks

P|N locks ensure that a request is blocked at most once by another request

with lower priority at the expense that there is no immediate bound on the

number of blocking higher-priority requests. In the following, we denote the

locking priority of requests for resource `q issued by jobs of a task Tx as πx,q,

131

and the set of remote tasks with respect to Ti as τR:

τR , {Tx | P (Tx) 6= P (Ti)} .

We apply response-time analysis [19] on a per-request basis to obtain an upper

bound on the delay encountered when issuing a single request for a resource

`q with priority π. For a resource `q and task Ti, let W
P|N
q (Ti, π) denote the

smallest positive value (if any) that satisfies the following recurrence:

W P|N
q (Ti, π) = S(`q, π) + LP(`q, π) + 1 where (3)

S(`q, π) =
∑

Tx∈τR∧πx,q≤π

njobs(Tx,W
P|N
q (Ti, π)) ·Nx,q · Lx,q and

LP(`q, π) = max
Tx∈τR

{Lx,q|πx,q > π}.

The recurrence can be solved via fixed-point iteration. Since a bound

on the delay exceeding Ti’s deadline cannot be used as part of (effective)

constraints, the fixed-point iteration can be aborted if no fixed-point with

W
P|N
q (Ti, π) ≤ di is found. If a solution for W

P|N
q (Ti, π) satisfying the above

recurrence can be found, then W
P|N
q (Ti, π) bounds the delay of a single

request. We formalize this property with the following lemma.

Lemma 10. Let t0 be the time a job Ji of task Ti attempts to lock resource

`q with locking priority π, and let t1 be the time that Ji subsequently acquires

`q. With P|N locks, t1 − t0 ≤W
P|N
q (Ti, π).

Proof. Analogous to the response-time analysis of non-preemptive fixed-

priority scheduling. The response-time of Ji’s request—that is, the maximum

wait time W
P|N
q (Ti, π)—depends on the sum of the maximum length of one

lower-priority request LP(`q, π) and all higher-priority requests of all remote

tasks issued during an interval of length W
P|N
q (Ti, π), that is, S(`q, π). Hence,

throughout an interval of length W
P|N
q (Ti, π), by definition of W

P|N
q (Ti, π),

132

resource `q is unavailable for at most W
P|N
q (Ti, π)− 1 time units. Thus, Ji’s

request is served after at most W
P|N
q (Ti, π) time units after it was issued. �

In the constraints we establish for the analysis of P|N locks, we exploit

two simple monotonicity properties of W
P|N
q (Ti, π), which we next state

explicitly for the sake of clarity. First, W
P|N
q (Ti, π) is monotonic with respect

to scheduling priority. That is, the wait time of a request for `q issued

by a local higher-priority task Th with the same locking priority π is no

longer than the wait time of Ti’s request. (In fact, the per-request wait-time

bound is independent of scheduling priority since jobs spin non-preemptably.)

Formally,

∀Th ∈ τ lh : W P|N
q (Ti, π) ≥W P|N

q (Th, π). (4)

The second monotonicity property that we exploit pertains to the locking

priority π: in a P|N lock, requests issued with higher locking priority natu-

rally do not incur more spin delay than requests issued with lower locking

priority:

π′ < π →W P|N
q (Ti, π) ≥W P|N

q (Ti, π
′). (5)

The above monotonicity properties enables us to use wait-time bounds in

constraints computed with the minimum locking priority of any requests

issued by local higher and lower priority tasks, respectively. To simplify the

notation, we define

πminLPq , max
Tx∈τ ll

{πx,q|Nx,q > 0} and

πminHPq , max
Tx∈(τ lh∪{Ti})

{πx,q|Nx,q > 0}

133

to be the minimum locking priority of any lower-priority and higher-priority

task, respectively, on Ti’s processor that accesses the global resource `q. These

two definitions are needed because Ji might be delayed transitively due to

requests of local tasks with locking priorities lower than Ti’s own locking

priority. To obtain valid (and simple) constraints, we make the following

two simplifications: first, for a given resource `q, we assume that Ji and

all higher-priority jobs that preempt Ji issue requests with locking priority

πminHP
q (the lowest locking priority that any such job uses), and second,

we assume that all local lower-priority jobs request `q with locking priority

πminLP
q (again, the lowest locking priority used by any local lower-priority

job). Both of these are safe assumption due to the monotonicity property

stated in Equation (5). However, we note that these simplifications are a

potential source of pessimism that could be avoided with a significantly more

complicated analysis setup, which we leave to future work.

Given W
P|N
q (Ti, π) (i.e., if it exists), we can constrain the the number of

requests for `q that can contribute to Ti’s spin delay. First, we consider

requests issued with higher or equal priority.

Constraint 10. In any schedule of τ with P|N locks:

∀Pk, Pk 6= P (Ti) : ∀`q ∈ Qg: ∀Tx ∈ τ(Pk), πx,q ≤ πminHPq :

N i
x,q∑

v=1

XS
x,q,v ≤ njobs(Tx,W

P|N
q (Ti, π

minHP
q))·Nx,q ·ncs(Ti, q).

Proof. Let R denote a request for a resource `q by Ti or a local higher-

priority task. By the definition of πminHPq , R has at least the locking priority

πminHPq and, by Lemma 10 and monotonicity properties of W
P|N
q stated

in Equations (4) and (5), is hence delayed by at most W
P|N
q (Ti, π

minHP
q)

time units (note that W
P|N
q (Ti, π

minHP
q) ≥ W

P|N
q (Th, πh,q) if Th ∈ τ lh and

πminHPq ≥ πh,q). During an interval of length W
P|N
q (Ti, π

minHP
q), jobs of a

134

remote task Tx issue at most njobs(Tx,W
P|N
q (Ti, π

minHP
q)) · Nx,q requests

for `q. The stated bound follows as at most ncs(Ti, q) requests for `q with

a priority of at least πminHPq are issued by Ti or local higher-priority tasks. �

Requests with lower priority cause Ji to incur (transitive) spin delay at most

once for each request by Ti or a task in τ lh.

Constraint 11. In any schedule of τ with P|N locks:

∀`q ∈ Qg :
∑
Tx∈τR

πx,q>πminHP
q

N i
x,q∑

v=1

XS
x,q,v ≤ ncs(Ti, q).

Proof. Suppose not. Then at least one request for global resource `q issued

by Ti or a local higher-priority task is delayed more than once by a request

for `q from a different processor issued with a lower priority. However, by

definition P|N locks ensure that each request is blocked at most once by a

lower-priority request for the same resource. Contradiction. �

Next, we consider arrival blocking. The number of lower-priority requests

that cause arrival blocking is bounded by Aq.

Constraint 12. In any schedule of τ with P|N locks:

∀`q ∈ Qg :
∑
Tx∈τR

πx,q>πminLP
q

N i
x,q∑

v=1

XA
x,q,v ≤ Aq.

Proof. Suppose not. In case Aq = 0, by definition of Aq, Ti incurs transitive

arrival blocking due to a request for `q, although no access for `q from a local

lower-priority task causes Ti to incur arrival blocking, which is impossible.

In case Aq = 1, a request for `q with priority at least πminLPq is delayed

135

more than once by requests for `q issued on other processors with a locking

priority of less than πminLPq . However, with P|N locks, a request for a re-

source `q cannot be delayed by more than one lower-priority request for `q.

Contradiction. �

Next, we constrain the arrival blocking due to requests with higher priority

issued from other processors.

Constraint 13. In any schedule of τ with P|N locks:

∀`q ∈ Qg : ∀Tx ∈ τR, πx,q ≤ πminLPq :

N i
x,q∑

v=1

XA
x,q,v ≤ njobs(Tx,W

P|N
q (Ti, π

minLP
q)) ·Nx,q ·Aq.

Proof. Let R denote the request by a local lower-priority job that causes Ti

to incur arrival blocking. By definition of πminLPq , R has a priority of at least

πminLPq , and, by Lemma 10, is hence delayed by at most W
P|N
q (Ti, π

minLP
q)

time units (note that W
P|N
q (Ti, π

minLP
q) ≥ W

P|N
q (Tl, πl,q) if Tl ∈ τ ll and

πminLPq ≥ πl,q). During an interval of length W
P|N
q (Ti, π

minLP
q), jobs of a

remote task Tx issue at most njobs(Tx,W
P|N
q (Ti, π

minLP
q)) ·Nx,q requests for

`q. The bound follows as Ti is arrival-blocked via `q only if Aq = 1. �

This concludes our analysis of P|N locks. Together with the generic Con-

straints 1–7, the P|N-specific Constraints 10–13 define a MILP that bounds

the maximum blocking incurred by any Ji. In the unlikely case that the re-

currence given in Equation (3) does not converge for some `q, Constraints 10

and 13 that depend on the wait-time bound W
P|N
q (Ti, π) must be omitted

from the MILP for this resource `q.

Next, we present the constraints for the analysis of PF|N locks.

136

6.3.4 Constraints for PF|N Spin Locks

PF|N locks are a hybrid of the P|N locks and F|N locks considered previously:

they ensure that within each priority level requests are satisfied in FIFO

order, and each request can be delayed at most once by a lower-priority

request.

To begin with, similar to our analysis for P|N locks above, we establish a

wait-time bound that provides a bound on the maximum delay encountered

as part of single request for a resource `q issued with priority π. This wait-

time bound is then used in turn to bound the maximum interference due

to higher-priority requests. To this end, for a global resource `q, a task Ti,

and a priority π, let W
PF|N
q (Ti, π) denote the smallest positive value that

satisfies the following recurrence:

W PF|N
q (Ti, π) , HP(`q, π) + SP(`q, π) + LP(`q, π) + 1. (6)

Here, HP(`q, π) denotes the maximum delay remote requests with a priority

higher than π can contribute to the wait time of Ji’s request, which can

be bounded based on the maximum number of jobs that exist during any

interval of length W
PF|N
q (Ti, π):

HP(`q, π) =
∑
Tx∈τR
π>πx,q

(
njobs

(
Tx,W

PF|N
q (Ti, π)

)
·Nx,q · Lx,q

)
.

SP(`q, π) accounts for the delay Ji’s request can incur due to remote requests

with priority π, which are served in FIFO order:

SP(`q, π) =

m∑
Pk,Pk 6=P (Ti)

max
Tx∈τ(Pk)

{Lx,q|πx,q = π}.

Finally, LP(`q, π) accounts for the delay Ji’s request can incur due to remote

137

lower-priority requests, which in a PF|N lock (similar to a P|N lock) is limited

to at most one critical section:

LP(`q, π) = max
Tx∈τR

{Lx,q|πx,q > π}.

The fixed-point iteration can be aborted if no fixed-point with W
PF|N
q (Ti, π) ≤

di is found. If the recurrence for W
PF|N
q (Ti, π) converges, then it bounds the

delay of a single request for `q issued with priority π.

Lemma 11. Let t0 denote the time a job Ji of task Ti attempts to lock a

resource `q with locking priority π, and let t1 denote the time that Ji subse-

quently acquires the lock for `q. With PF|N locks, t1 − t0 ≤W
PF|N
q (Ti, π).

Proof. Let R denote Ji’s request for `q. In a PF|N lock, at any point in time

t ∈ [t0, t1), Ji is spinning non-preemptably because either (i) `q is being used

by a job with locking priority (with respect to `q) lower than π, (ii) `q is

being used by a job with locking priority equal to π, or (iii) `q is being used

by a job with a locking priority greater than π. We bound the maximum

duration for which each of these conditions can hold during an interval of

length W
PF|N
q (Ti, π).

Case (i): Since requests are satisfied in priority order when using PF|N

locks, R can be delayed by at most one lower-priority request for `q, which

is accounted for by LP(`q, π).

Case (ii): Since requests of equal priority are satisfied in FIFO order when

using PF|N locks, with respect to each other processor, R can be delayed

by at most one remote request for `q with priority π, for a total of at most

SP(`q, π) time units.

Case (iii): When using PF|N locks, any number of higher-priority requests

can delay R. However, analogous to the response-time analysis of non-

preemptive fixed-priority scheduling, the maximum number of higher-priority

138

requests for `q that exist during [t0, t1) bounds the length of the interval since

Ji ceases spinning and acquires `q as soon as `q is no longer contended. In any

interval of length W
PF|N
q (Ti, π), at most njobs

(
Tx,W

PF|N
q (Ti, π)

)
jobs of each

remote task Tx with a locking priority πx,q higher than π exist. Each such job

issues at most Nx,q requests for `q, and holds `q for at most Lx,q time units as

part of each request. Each remote task Tx with a higher locking priority (with

respect to `q) hence holds `q for at most njobs
(
Tx,W

PF|N
q (Ti, π)

)
·Nx,q ·Lx,q

during any interval of length W
PF|N
q (Ti, π). The term HP(`q, π) thus bounds

the cumulative length that Ji is spinning while a job with a higher locking

priority uses `q during any interval of length W
PF|N
q (Ti, π).

Since W
PF|N
q (Ti, π) is by definition the smallest value that satisfies Equa-

tion (6) (if one exists), after at most W
PF|N
q (Ti, π) time units after Ji started

spinning, `q is no longer unavailable due to a lower-priority (with respect to

`q) request (case (i)), `q is no longer unavailable due to earlier-issued equal-

priority requests (case (ii)), and `q is no longer contended by jobs of tasks

with higher locking priority (case (iii)). Hence, throughout an interval of

length W
PF|N
q (Ti, π), resource `q is unavailable for at most W

PF|N
q (Ti, π)− 1

time units. Thus, Ji’s request is served after at most W
PF|N
q (Ti, π) time

units after it was issued. �

If W
PF|N
q (Ti, π) does not exist, that is, if the recurrence Equation (6) does

not converge, then starvation cannot be ruled out and Constraints 14 and 15

do not apply.

Similar to the monotonicity properties of W
P|N
q (Ti, π) (Equations (4) and (5)),

W
PF|N
q (Ti, π) is monotonic with respect to scheduling priority and locking

priority:

∀Th ∈ τ lh : W PF|N
q (Ti, π) ≥W PF|N

q (Th, π) and (7)

139

π′ < π →W PF|N
q (Ti, π) ≥W PF|N

q (Ti, π
′). (8)

Based on the wait-time bound W
PF|N
q (Ti, π), we next present constraints on

the maximum spin delay incurred by any Ji when using PF|N locks. Recall

from Section 6.3.3 that πminLP
q and πminHP

q denote the minimum locking

priority of any lower-priority and higher-priority task, respectively, on Ti’s

processor that accesses the global resource `q. For convenience, we repeat

the definitions here:

πminLP
q , max

Tx∈τ ll
{πx,q|`q ∈ Q ∧Nx,q > 0},

πminHP
q , max

Tx∈(τ lh∪{Ti})
{πx,q|`q ∈ Q ∧Nx,q > 0}.

Similar to Constraint 10 for P|N locks, we can impose a simple constraint on

the maximum spin delay due to higher-priority requests.

Constraint 14. In any schedule of τ with PF|N locks:

∀Pk, Pk 6= P (Ti) : ∀`q ∈ Qg : ∀Tx ∈ τ(Pk), πx,q < πminHP
q :

N i
x,q∑

v=1

XS
x,q,v ≤ njobs

(
Tx,W

PF|N
q (Ti, π

minHP
q)

)
·Nx,q · ncs(Ti, q).

Proof. Analogous to Constraint 10. Each request R for `q issued by Ji

remains incomplete for at most W
PF|N
q (Ti, π) time units. Due to the mono-

tonicity property stated in Equation (7), this also holds true for any request

issued for `q by a job of a higher-priority task that preempted Ji. At most

ncs(Ti, q) requests are issued for `q by Ti and local higher-priority tasks

while Ji is pending. Hence at most ncs(Ti, q) ·njobs
(
Tx,W

PF|N
q (Ti, π)

)
·Nx,q

requests of each remote task Tx with higher locking priority delay Ji. �

140

Next, we establish a constraint on arrival blocking due to the non-preemptable

spinning of lower-priority jobs that are delayed by remote requests with higher

locking priority.

Constraint 15. In any schedule of τ with PF|N locks:

∀`q ∈ Qg : ∀Tx ∈ τR, πx,q < πminLP
q :

N i
x,q∑

v=1

XA
x,q,v ≤ njobs

(
Tx,W

PF|N
q (Ti, π

minLP
q)

)
·Nx,q ·Aq.

Proof. Analogous to Constraint 13. A request R issued by a local lower-

priority task (with priority at least πminLP
q) can be delayed by all remote

requests for `q with higher locking priorities. Exploiting Equations (7) and (8),

R remains incomplete for at most W
PF|N
q (Ti, π

minLP
q) time units, which limits

the maximum number of jobs of each remote task Tx with a (potentially)

higher locking priority to njobs
(
Tx,W

PF|N
q (Ti, π

minLP
q)

)
. The stated bound

on the maximum number of transitively blocking remote requests with higher

locking priorities follows. �

Requests issued with the same locking priority are satisfied in FIFO order.

Hence, the spin delay due to remote equal-priority requests can be constrained

similarly to how it is constrained in the analysis of F|N locks.

Constraint 16. In any schedule of τ with PF|N locks:

∀Pk, Pk 6= P (Ti) : ∀`q ∈ Qg :
∑

Tx∈τ(Pk)
πx,q=πminHP

q

N i
x,q∑

v=1

XS
x,q,v ≤ ncs(Ti, q).

Proof. Analogous to Constraint 8. Due to the FIFO-ordering of equal-priority

requests, it follows that, with respect to each remote processor, at most one

141

earlier-issued, equal-priority request can delay each of the ncs(Ti, q) requests

for `q issued by Ji and local higher-priority jobs. �

As mentioned before, assuming that all requests for `q issued by Ji and local

higher-priority jobs are issued with locking priority πminHP
q is safe due to

the monotonicity property stated in Equation (8); the blocking incurred by

any Ji does not exceed the bound implied by Constraint 16 if in the actual

schedule some requests of Ji or local higher-priority jobs are issued with a

locking priority higher than πminHP
q .

Next, we constrain the maximum transitive delay due to the non-preemptable

spinning of lower-priority jobs that are delayed by earlier-issued remote

requests with equal locking priority.

Constraint 17. In any schedule of τ when using PF|N locks:

∀`q ∈ Qg : ∀Pk, Pk 6= P (Ti) :
∑

Tx∈τ(Pk)
πx,q=πminLP

q

N i
x,q∑

v=1

XA
x,q,v ≤ Aq.

Proof. Analogous to Constraint 9. Since requests with the same priority are

served in FIFO-order, at most one request per processor for a resource `q is-

sued with the same locking priority can contribute to Ti’s arrival blocking. �

Finally, we constrain the maximum spin delay due to remote requests with

lower locking priority.

Constraint 18. In any schedule of τ with PF|N locks:

∀`q ∈ Qg :
∑
Tx∈τR

πx,q>πminHP
q

N i
x,q∑

v=1

XS
x,q,v ≤ ncs(Ti, q).

142

Proof. Analogous to Constraint 11. Each request for `q issued by Ti or a

local higher-priority job can be delayed at most once by a remote request for

`q issued with a lower priority. �

Similar reasoning applies to the maximum transitive delay due to the non-

preemptable spinning of a lower-priority job that is delayed by a remote

request with a lower locking priority.

Constraint 19. In any schedule of τ with PF|N locks:

∀`q ∈ Qg :
∑
Tx∈τR

πx,q>πminLP
q

N i
x,q∑

v=1

XA
x,q,v ≤ Aq.

Proof. Analogous to Constraint 12. If Ji is transitively blocked due to a

request for `q (i.e., if Aq = 1), then at most one remote request for `q issued

with a priority less than πminLP
q can contribute to Ti’s arrival blocking. �

This concludes our analysis of PF|N locks. Together with the generic Con-

straints 1–7, the PF|N-specific Constraints 14–19 define a MILP that bounds

the maximum blocking incurred by any Ji. In the unlikely case that the re-

currence given in Equation (6) does not converge for some `q, the constraints

that depend on the wait-time bound W
PF|N
q (Ti, π), namely Constraints 14

and 15, must be omitted from the MILP for this resource `q.

Next, we present constraints for the analysis of preemptable spin locks. We

start with generic constraints applicable to all preemptable types considered

in this work.

143

6.3.5 Generic Constraints for Preemptable Spin Locks

The generic constraints described in Section 6.3.1 all remain applicable for the

analysis of preemptable spin locks. Allowing preemptions while busy-waiting

for global resources enables us to impose an additional generic constraint:

while busy-waiting, jobs are subject to normal fixed-priority scheduling, and

hence, spinning never causes a priority inversion. Requests from remote

tasks thus cannot cause (transitive) arrival blocking. We express this with

the following constraint.

Constraint 20. In any schedule of τ with preemptable spin locks:

∑
Tx∈τR

∑
`q∈Q

N i
x,q∑

v=1

XA
x,q,v ≤ 0.

Proof. Follows from the preceding discussion. �

Preemptable spinning solves the transitive arrival blocking problem, but it

does so at the expense of increasing spin delays. Recall from Section 2.4.2

that a job that is preempted while spinning re-issues its request once it

resumes execution and continues spinning. To accurately account for these

“retries” due to preemptions, we introduce a new indicator variable: for each

resource `q, with respect to an arbitrary, but fixed schedule, let Cq denote

the number of times that a request for resource `q by Ji or a job of a task

in τ lh is canceled due to a preemption. From a MILP point of view, each

Cq is an integer variable. Note that each preemption can cause at most

one request to be canceled (since at most one job may be spinning at any

time). A trivial bound on the sum of all Cq is then given by the number

of higher-priority job releases that can possibly occur while Ji is pending.

The following constraint limits Cq to the number of local higher-priority job

144

releases, so that Cq can be later used in other constraints.

Constraint 21. In any schedule of τ with preemptable spin locks:

∑
`q

Cq ≤
∑

Th∈τ lh

⌈
ri
ph

⌉
.

Proof. Follows from the preceding discussion. �

Another trivial observation is that Cq = 0 if neither Ji nor any higher-priority

jobs access `q.

Constraint 22. In any schedule of τ with preemptable spin locks:

∀`q : if ncs(Ti, q) = 0 then Cq = 0.

Proof. By definition of Cq. If neither Ti nor any local higher-priority tasks

issue requests for `q, then no such request can be canceled. �

We use Cq in the following for spin lock type-specific constraints, and we

begin with constraints for the analysis of F|P locks.

6.3.6 Constraints for F|P Spin Locks

As Cq bounds the number of times that a particular resource is re-requested,

we can almost directly apply the argument of Constraint 8 for F|N spin locks;

the only change is that each time that `q is re-requested, requests issued

from other processors may “skip ahead” once.

145

Constraint 23. In any schedule of τ with F|P locks: ∀`q ∈ Q :

∀Pk, Pk 6= P (Ti) :
∑

Tx∈τ(Pk)

N i
x,q∑

v=1

XS
x,q,v ≤ ncs(Ti, q) + Cq.

Proof. Suppose not. Then more than ncs(Ti, q)+Cq requests by tasks on a re-

mote processor Pk for a resource `q contribute to Ti’s spin delay. As requests

are issued sequentially and served in FIFO order, Ti and local higher-priority

jobs issue at most ncs(Ti, q) +Cq requests for `q (counting requests re-issued

after a preemption as individual requests). By the pigeon-hole principle,

this implies that one firstly issued request or one re-issued request (possibly

both) for `q issued by Ti or local higher-priority jobs was blocked by more

than one request issued by jobs on Pk. With FIFO-ordered spin locks, this

is impossible. �

Note that, in contrast to F|N locks, we do not impose any constraints

pertaining to arrival blocking specific to F|P. With preemptable spinning,

remote requests cannot cause any arrival blocking and this is already ruled

out by Constraint 20. Hence, a constraint analogous to Constraint 9 for F|N

locks is not required.

This concludes our analysis of F|P locks. Preemptable spinning increases the

analysis complexity (additional integer variables are required) and increases

spin delays (Constraint 23 permits more blocking than Constraint 8 since

canceled request due to preemptions have to be retried), but with our MILP-

based analysis approach, both aspects can be easily integrated. To the

best of our knowledge, this is the first analysis of preemptable spin locks

from a worst-case blocking point of view. Next, present the constraints for

priority-ordered spin locks.

146

6.3.7 Constraints for P|P Spin Locks

Priority-ordered preemptable spin locks ensure that each request is delayed

at most once by a different request with a lower priority. For requests with

the same priority no particular ordering is specified.

Similar to the non-preemptable spin locks based on priority-ordering (i.e.,

P|N and PF|N), we first establish a wait-time bound to bound the worst-case

delay that a job of Ti can incur after issuing a request for a resource `q (with

priority πi,q) until the request is satisfied.

For a global resource `q and a task Ti, let W
P|P
q (Ti) denote the smallest

positive value that satisfies the following recurrence:

W P|P
q (Ti) = S(Ti, `q) + LP i(Ti, `q) + LP lh(Ti, `q)

+ I(Ti, `q) + LPP (Ti, `q) + 1. (9)

The individual components of W
P|P
q (Ti) are defined as follows and justified

in the proof of Lemma 12 below.

S(Ti, `q) bounds the maximum delay remote requests of equal or higher

priority can contribute to the wait time of Ti’s request. However, since Ji can

be preempted while spinning, “equal or higher priority” has to be interpreted

with respect to the lowest locking priority used by either Ti (when accessing

`q) or a local higher-priority job (when accessing any resource). S(Ti, `q)

thus accounts for all delays due to both Ti’s request and requests of local

higher-priority tasks being blocked by remote requests of higher or equal

priority:

S(Ti, `q) =
∑

`r∈Qlh∪{`q}

∑
Tx∈τR
πx,r≤π′r

(
njobs

(
Tx,W

P|P
q (Ti)

)
·Nx,r · Lx,r

)
,

147

where

π′r =


max{πh,r | Th ∈ τ lh ∧Nh,r > 0} if `r 6= `q

max{πh,r | Th ∈ τ lh ∪ {Ti} ∧Nh,r > 0} if `r = `q.

LP i(Ti, `q) accounts for the time Ji’s request can be delayed by a remote

lower-priority request that already held `q when Ji issued its request:

LP i(Ti, `q) = max
Tx∈τR

{Lx,q|πx,q > πi,q}.

LP lh(Ti, `q) accounts for requests from local higher-priority jobs that are

delayed by remote lower-priority requests:

LP lh(Ti, `q) =
∑

`r∈Qlh

∑
Th∈τ lh

⌈
W

P|P
q (Ti)

ph

⌉
·Nh,r · max

Tx∈τR
{Lx,q|πx,r > πh,r}.

In a P|P lock, Ji can be preempted while busy-waiting, and hence interference

due to the execution of local higher-priority jobs needs to be accounted for

with I(Ti, `q):

I(Ti, `q) =
∑

Th∈τ lh

⌈
W

P|P
q (Ti)

ph

⌉
· eh.

Finally, LPP (Ti, `q) accounts for the (possibly transitive) delay that results

from Ji or a higher-priority job being preempted while spinning:

LPP (Ti, `q) = prts
(
Ti,W

P|P
q (Ti)

)
· cpp(Ti, `q).

Here, prts(Ti, t) denotes the maximum number of preemptions that occur

on Ti’s processor throughout any interval of length t while a job of Ti is

148

pending:

prts(Ti, t) ,
∑

Th∈τ lh

⌈
t

ph

⌉
.

And cpp(Ti, `q) denotes the worst-case cost per preemption (of either Ji or a

local higher-priority job) with respect to the increase in Ji’s waiting time

due to a remote lower-priority request acquiring a contested resource:

cpp(Ti, `q) = max{cpp lh(Ti), cppi(Ti, `q)},

where cpp lh(Ti) denotes the worst-case cost per preemption of a higher-

priority job, formally,

cpp lh(Ti) = max{Lx,r | Tx ∈ τR ∧ `r ∈ Qlh ∧

Th ∈ τ lh ∧ Nh,r > 0 ∧

πh,r < πx,r},

and where cppi(Ti, `q) denotes the worst-case cost per preemption of Ji,

formally,

cppi(Ti, `q) = max{Lx,q | Tx ∈ τR ∧ πi,q < πx,q}.

The fixed-point iteration can be aborted if no fixed-point with W
P|P
q (Ti, π) ≤

di is found. If the recurrence for W
P|P
q (Ti, π) converges, then it bounds the

delay of a single request for `q issued with priority π.

Lemma 12. Let t0 denote the time a job Ji of task Ti attempts to lock

a resource `q (with its assigned locking priority πi,q), and let t1 denote

the time that Ji subsequently acquires the lock for `q. With P|P locks,

t1 − t0 ≤W
P|P
q (Ti).

149

Proof. Analogous to Lemma 11. Let R denote Ji’s request for `q. In any point

in time t ∈ [t0, t1), Ji is either spinning or has been preempted by a local

higher-priority job. We distinguish among seven different cases, depending

on whether Ji is scheduled or preempted, whether a spinning job was already

preempted, and whether a lower- or higher-priority request causes blocking

at time t.

If Ji is spinning at time t, then R is blocked because `q is being used by

a remote job Jx at time t. We consider three distinct cases: (i) Jx has a

locking priority (with respect to `q) of at least πi,q, (ii) Jx has a locking

priority (with respect to `q) lower than πi,q and Ji has not been preempted

during [t0, t], or (iii) Jx has a locking priority (with respect to `q) lower than

πi,q and Ji has previously been preempted during [t0, t).

Otherwise, if Ji has been preempted and a local higher-priority job Jh is

scheduled at time t, then Jh is either (iv) executing normally, or it is spinning

(which transitively delays Ji). If Jh is spinning, it requested some resource

`r (not necessarily `q) that is currently in use by a remote job Jx. We again

distinguish among three cases: (v) Jx’s locking priority is at least as high

as Jh’s locking priority (both with respect to `r), (vi) Jx’s locking priority

is lower than Jh’s locking priority (both with respect to `r) and Jh has not

been preempted while busy-waiting for `r, and (vii) Jx’s locking priority is

lower than Jh’s locking priority (both with respect to `r) and Jh has been

preempted while busy-waiting for `r.

We bound the maximum duration for which each of these conditions can

hold during an interval of length W
P|P
q (Ti). We begin with requests of equal

or higher priority delaying either Ji or a local higher-priority job.

Cases (i) and (v): In cases (i) and (v), in order for a remote task Tx to

(transitively) delay Ji, it must either be using `q and have a locking priority

πx,q ≤ πi,q, or it must be using some `r ∈ Qlh (where possibly `q = `r)

150

and have a locking priority higher than or equal to the locking priority

of some task Th ∈ τ lh that accesses `r (i.e., Nh,r > 0 and πx,q ≤ πh,r).

The cumulative length of all critical sections of all remote tasks satisfying

either condition, which is given by S(Ti, `q), thus bounds the total duration

during which either case (i) or case (v) occurs during an interval of length

W
P|P
q (Ti).

Case (ii): If Ji is delayed by a job Jx using `q, and Jx has a lower locking

priority than Ji and Ji has not been preempted during [t0, t], then Jx must

have continuously used `q during [t0, t] since P|P locks ensure that jobs with

lower locking priority cannot acquire `q while Ji is spinning. The maximum

critical section length of any remote task Tx with πx,q > πi,q, as given

by LP i(Ti, `q), thus bounds the maximum duration during which case (ii)

occurs.

Cases (iii) and (vii): In P|P locks, if Ji is preempted while busy-waiting,

then remote jobs with a locking priority lower than πi,q may acquire `q while

Ji is preempted, which may lead to case (iii). Similarly, if a local higher-

priority job Jh is preempted while busy-waiting for a resource `r ∈ Qlh,

remote jobs with a locking priority lower than πh,r may acquire `r while

Jh is preempted, which may lead to case (vii). In both cases, additional

(transitive) delay is caused by the preemption as Ji’s wait time is increased

by the length of one lower-priority critical section. That is, each time that

Ji is preempted, Ji may spin for up to an additional cppi(Ti, `q) time units

when resuming execution, and each time that a local higher-priority job Jh

is preempted while spinning, Ji may be transitively delayed for up to an

additional cpp lh(Ti) time units when Jh resumes execution, for a worst-case

cost per preemption of cpp(Ti, `q). During an interval of length W
P|P
q (Ti), at

most prts
(
Ti,W

P|P
q (Ti)

)
higher-priority jobs are released on Ji’s processor,

which bounds the total number of preemptions. Hence the total cumulative

duration during which either case (iii) or case (vii) occurs over the course of

151

an interval of length W
P|P
q (Ti) is bounded by LPP (Ti, `q).

Case (iv): Analogously to the regular response-time analysis of (preemptive)

fixed-priority scheduling [19], during an interval of length W
P|P
q (Ti) starting

at time t0 (at which no higher-priority jobs can be pending because Ji is

scheduled and tasks are assumed to not self-suspend), each local higher-

priority task Th ∈ τ lh releases at most

⌈
W

P|P
q (Ti)
ph

⌉
jobs, each of which

executes for at most eh time units (not counting any spinning). The total

delay due to the regular execution of higher-priority jobs during an interval

of length W
P|P
q (Ti) starting at time t0 is hence bounded by I(Ti, `q).

Case (vi): Analogously to case (ii), if a higher-priority job Jh trying to lock

a resource `r ∈ Qlh is not preempted, it spins waiting for a task Tx ∈ τR

with πx,r > πh,r to release `r for at most the duration of one critical section.

During an interval of length W
P|P
q (Ti), each higher-priority task Th releases

at most

⌈
W

P|P
q (Ti)
ph

⌉
jobs, each of which accesses each `r ∈ Qlh at most Nh,r

times. As part of each such access, case (vi) occurs for the duration of at

most one critical section. The total duration of case (vi) occurring during an

interval of length W
P|P
q (Ti) is hence bounded by LP lh(Ti, `q).

This covers all possible ways in which Ji may be (transitively) delayed when

trying to lock a resource `q. Therefore, during an interval of length W
P|P
q (Ti),

the total delay incurred by Ji—that is, the total duration during which one

of the seven analyzed cases occurs—is limited to S(Ti, `q) + LP i(Ti, `q) +

LPP (Ti, `q) + I(Ti, `q) + LP lh(Ti, `q) = W
P|P
q (Ti)− 1. In other words, during

an interval of length W
P|P
q (Ti) starting at time t0, Ji is unable to lock `q for

at most W
P|P
q (Ti)− 1 time units. Ji thus ceases to spin and acquires `q at

time t1 at most W
P|P
q (Ti) time units after initially trying to lock `q. �

In the following, we assume that the wait-time bound W
P|P
q (Ti), i.e., the

smallest integer to satisfy Equation (9), can be computed via fixed-point

152

iteration. If, however, the fixed-point iteration does not converge, then the

per-request maximum wait-time of Ji (with respect to `q) cannot be bounded

with the presented approach and Constraint 24 below cannot be applied.

(Constraint 25 remains valid in either case.)

As before in the analysis of PF|N locks, we exploit that W
P|P
q (Ti) is monotonic

with respect to scheduling priority. That is, the wait-time bound for a

local higher-priority task Th is no longer than the wait-time bound for Ti.

Formally,

∀Th ∈ τ lh : W P|P
q (Ti, π) ≥W P|P

q (Th, π). (10)

Note that Equation (10) depends specifically on the definitions of S(Ti, `q),

since S(Ti, `q) is defined in terms of the minimum locking priority of Ti and

all local higher-priority tasks, which ensures the required monotonicity.

Given the wait-time bound W
P|P
q (Ti), we can constrain the the number of

requests for `q that can contribute to Ti’s spin delay, similar to Constraint 10.

First, we consider requests issued with higher or equal priority. As in the

analysis of PF|N locks, we make the simplifying assumption that all higher-

priority jobs issue requests for each `q with locking priority πminHP
q .

Constraint 24. In any schedule of τ when using P|P locks:

∀Pk, Pk 6= P (Ti) : ∀`q ∈ Qg : ∀Tx ∈ τ(Pk), πx,q ≤ πminHPq :

N i
x,q∑

v=1

XS
x,q,v ≤ njobs

(
Tx,W

P|P
q (Ti)

)
·Nx,q · ncs(Ti, q).

Proof. Analogous to Constraint 10. Due to the monotonicity property stated

in Equation (10), it is safe to use W
P|P
q (Ti) to bound the maximum duration

of any request issued by Ji or any local higher-priority tasks. Each request

R for `q issued by Ti or a local higher-priority task has a locking priority of

153

at least πminHPq . During any interval of length W
P|P
q (Ti), jobs of a remote

task Tx with locking priority at least πminHPq (with respect to `q) issue at

most njobs
(
Tx,W

P|P
q (Ti)

)
·Nx,q requests for `q. The stated bound follows

since Ji and higher-priority jobs issue at most ncs(Ti, q) requests for `q. �

Next, we consider blocking requests of lower locking priority. Requests with

lower locking priority can (possibly transitively) cause Ti to incur spin delay

at most once for each request issued by Ti or a local higher-priority task.

Further, Ji can be (possibly transitively) blocked by a remote lower-priority

request each time Ji or a local higher-priority job is preempted. (Recall that

Ji and local higher-priority jobs are preempted at most Cq times in total while

busy-waiting for `q, which is enforced with Constraints 21 and 22.)

Constraint 25. In any schedule of τ when using P|P locks:

∀`q ∈ Qg :
∑
Tx∈τR

πx,q>πminHP
q

N i
x,q∑

v=1

XS
x,q,v ≤ ncs(Ti, q) + Cq.

Proof. Analogous to Constraints 23 and 11. Each request R for `q issued by

Ti or a local higher-priority task has a locking priority of at least πminHPq .

Ji can be directly or transitively delayed be remote lower-priority requests

for a resource `q each time Ji or a local higher-priority task is preempted

or issues a request for `q. Hence the total number of times that Ji or local

higher-priority jobs busy-wait for `q, in addition to the number of times

that Ji or local higher-priority jobs need to restart busy-waiting after being

preempted, limits the number of requests issued with locking priority lower

than πminHPq that (transitively) delay Ji. �

This concludes our analysis of P|P locks. Together with the generic Con-

154

straints 1–7 (for any lock type), and the generic Constraints 20–22 (for

preemptable spin locks), the P|P-specific Constraints 24 and 25 define a

MILP that bounds the maximum blocking incurred by any Ji. If the recur-

rence given in Equation (9) does not converge for some `q, Constraint 24

must be omitted from the MILP for that resource `q.

6.3.8 Constraints for PF|P Spin Locks

Like their non-preemptable counterpart PF|N locks, PF|P locks are a hybrid

of FIFO-ordered and priority-ordered spin locks. For requests with different

priorities, PF|P locks behave similar to P|P locks: a request can be blocked

by at most once one other request for the same resource issued with lower

locking priority, while a request can be blocked by all concurrent higher-

priority requests for the same resource. Requests with the same locking

priority, however, are served in FIFO-order. This similarity of PF|P locks

to P|P locks is also reflected in the approach that we employ to analyze

PF|P locks: similar to P|P locks, we first establish a wait-time bound on

the worst-case delay that a job of Ti can incur when attempting to lock a

resource `q. This bound is later used in Constraint 26 to limit the number

of requests that can contribute to Ti’s overall blocking.

For a global resource `q and a task Ti, let W
PF|P
q (Ti) denote the smallest

positive value that satisfies the following recurrence:

W PF|P
q (Ti) = HP(Ti, `q) + LSP i(Ti, `q) + LSP lh(Ti, `q)

+ LSPP (Ti, `q) + I(Ti, `q) + 1. (11)

The individual components of W
PF|P
q (Ti) are defined as follows and justified

in the proof of Lemma 13.

HP(Ti, `q) denotes the maximum delay that remote higher-priority requests

155

for `q or any other resources requested by local higher-priority tasks can

contribute to the wait time of Ti’s request:

HP(Ti, `q) =
∑

`r∈Qlh∪{`q}

∑
Tx∈τR
πx,r<π′r

(
njobs

(
Tx,W

PF|P
q (Ti)

)
·Nx,r · Lx,r

)
,

where

π′r =


max{πh,r | Th ∈ τ lh ∧Nh,r > 0} if `r 6= `q

max{πh,r | Th ∈ τ lh ∪ {Ti} ∧Nh,r > 0} if `r = `q.

(12)

To define the remaining terms, we first define a generic helper bound

spinLS (Pa, `r, π) that bounds the maximum delay due to requests of equal

and lower priority only that any job Ja that starts (or restarts) busy-waiting

on a processor Pa for a resource `r with locking priority π incurs before

either acquiring `r or being preempted (and thus being forced to restart

busy-waiting). There are two cases that must be considered: Ja could be

delayed by up to m− 1 requests issued by remote jobs with equal locking

priority, or by one request issued by a remote job with lower locking priority

and up to m− 2 requests issued by remote jobs with equal locking priority.

We therefore define spinLS (Pa, `r, π) as:

spinLS (Pa, `r, π) = max
{

spinS (Pa, `r, π), spinL(Pa, `r, π)
}
,

where spinS (Pa, `r, π) bounds the maximum delay when (up to) m − 1

jobs with equal locking priority precede Ja in the queue for `r, and where

spinL(Pa, `r, π) bounds the case of Ja being preceded by one lower-priority

and up to m− 2 equal-priority requests.

A safe bound on spinS (Pa, `r, π) is given by the sum of the maximum critical

156

lengths on each remote processor:

spinS (Pa, `r, π) =
∑
Pk 6=Pa

max {Lx,r | Tx ∈ τ(Pk) ∧ πx,r = π} .

If a job with a lower locking priority holds `r when Ja starts busy-waiting,

only (up to) m− 2 jobs with equal locking priority precede Ja in the queue

for `r (recall that jobs are removed from the queue when they are preempted,

and that only one job per processor is spinning at any time). Suppose that

the job with lower locking priority executes on processor Pl. Then a safe

bound is given by:

spinL′(Pa, `r, π, Pl) = max {Lx,q|Tx ∈ τ(Pl) ∧ πx,q > π}

+
∑

Pk 6=P (Ti)
Pk 6=Pl

max {Lx,q|Tx ∈ τ(Pk) ∧ πx,q = π} .

Since the job with lower locking priority could potentially reside on any

processor (other than Pa), spinL(Pa, `r, π) is defined as follows:

spinL(Pa, `r, π) = max
Pl 6=Pa

{
spinL′(Pa, `r, π, Pl)

}
.

With the definition of spinLS (Pa, `r, π) in place, it is easy to express the

remaining terms.

LSP i(Ti, `q) accounts for the time Ji’s request can be delayed by remote

requests with a lower or equal locking priority (before Ji is preempted, if at

all):

LSP i(Ti, `q) = spinLS (P (Ti), `q, πi,q).

LSP lh(Ti, `q) accounts for spinning local higher-priority jobs that are delayed

157

by remote requests issued with the same or lower locking priority:

LSP lh(Ti, `q) =
∑
lr∈Qlh

∑
Th∈τ lh

⌈
W

PF|P
q (Ti)

ph

⌉
·Nh,r · spinLS (P (Ti) , `r, πh,r) .

Since busy-waiting jobs can be preempted in PF|P locks, I(Ti, `q) accounts for

the interference that Ji can incur due to the execution of local higher-priority

jobs:

I(Ti, `q) =
∑

Th∈τ lh

⌈
W

PF|P
q (Ti)

ph

⌉
· eh.

Preemptions can also cause additional spinning because other jobs may “skip

ahead” in the wait queue when a busy-waiting job is preempted. To account

for this, LSPP (Ti, `q) bounds the additional delay Ji can incur (possibly

transitively) due to the preemption of Ji and local higher-priority jobs:

LSPP (Ti, `q) = cpp(Ti, `q) · prts
(
Ti,W

PF|P
q (Ti)

)
,

where prts(Ti, t) is defined as before in the analysis of P|P locks. The

definition of cpp(Ti, `q), which denotes the worst-case cost per preemption

(of either Ji or a local higher-priority job) with respect to the increase in

Ji’s wait time due to a remote request acquiring a contested resource, is also

defined as in the analysis of P|P locks:

cpp(Ti, `q) = max
{

cpp lh(Ti), cppi(Ti, `q)
}
.

The definitions of cpp lh(Ti) and cppi(Ti), however, must be adjusted to

reflect the FIFO-ordering of equal-priority requests in PF|P locks. cppi (Ti, `q)

bounds the maximum additional delay incurred by Ji when it is forced to

158

restart its request for `q after being preempted, where

cppi(Ti, `q) = spinLS (P (Ti), `q, πi,q).

Analogously, cpp lh(Ti) bounds the maximum additional delay transitively

incurred by Ji after a preemption of a higher-priority job Jh that is busy-

waiting for a resource `r ∈ Qlh. Since a higher-priority job might be waiting

for any resource in Qlh when it is preempted, and since the identity of Jh is

not known a priori, a safe bound is given by:

cpp lh(Ti) = max
{

spinLS (P (Ti), `r, πh,r) | Th ∈ τ lh ∧Nh,r > 0
}
.

The fixed-point iteration can be aborted if no fixed-point with W
PF|P
q (Ti, π) ≤

di is found. If the recurrence for W
PF|P
q (Ti, π) converges, then it bounds the

delay of a single request for `q issued with priority π.

Lemma 13. Let t0 denote the time a job Ji of task Ti attempts to lock

a resource `q (with its assigned locking priority πi,q), and let t1 denote

the time that Ji subsequently acquires the lock for `q. With PF|P locks,

t1 − t0 ≤W
PF|P
q (Ti).

Proof. Analogous to the proof of Lemma 12. Let R denote Ji’s request for

`q. In any point in time t ∈ [t0, t1), J1 is spinning or preempted by a local

higher-priority job. We distinguish among eleven different scenarios, which

together cover all possible ways in which Ji can be prevented from acquiring

`q at time t.

If Ji is spinning at time t, then R is blocked because `q is being used by a

remote job Jx at time t. We consider five distinct cases: (i) Jx has a locking

priority (with respect to `q) exceeding πi,q, (ii) Jx has a locking priority

(with respect to `q) equal to πi,q and Ji has not been preempted during [t0, t],

(iii) Jx has a locking priority (with respect to `q) equal to πi,q and Ji has

159

previously been preempted during [t0, t], (iv) Jx has a locking priority (with

respect to `q) lower than πi,q and Ji has not been preempted during [t0, t),

or (v) Jx has a locking priority (with respect to `q) lower than πi,q and Ji

has previously been preempted during [t0, t).

Otherwise, if Ji has been preempted and a local higher-priority job Jh is

scheduled at time t, then Jh is either (vi) executing normally, or it is spinning.

If Jh is spinning, it requested some resource `r ∈ Qlh that is currently in

use by a remote job Jx. We again distinguish among five cases: (vii) Jx’s

locking priority is higher than Jh’s locking priority (both with respect to `r),

(viii) Jx’s locking priority is equal to Jh’s locking priority (both with respect

to `r) and Jh has not been preempted while busy-waiting for `r, (ix) Jx’s

locking priority is equal to Jh’s locking priority (both with respect to `r) and

Jh has been preempted while busy-waiting for `r, (x) Jx’s locking priority

is lower than Jh’s locking priority (both with respect to `r) and Jh has not

been preempted while busy-waiting for `r, and (xi) Jx’s locking priority is

lower than Jh’s locking priority (both with respect to `r) and Jh has been

preempted while busy-waiting for `r.

We bound the maximum duration for which each of these conditions can

hold during an interval of length W
PF|P
q (Ti).

Cases (i) and (vii): In order for a remote job Jx to (transitively) delay Ji

with a higher-priority request, it must either be using `q and have a locking

priority πx,q < πi,q, or it must be using some `r ∈ Qlh and have a locking

priority higher than the locking priority of some task Th ∈ τ lh that accesses

`r (i.e., Nh,r > 0 and πx,q < πh,r). The cumulative length of all critical

sections of all remote tasks satisfying either condition, which is given by

HP(Ti, `q), thus bounds the total duration during which either case (i) or

case (vii) occurs during an interval of length W
FP|P
q (Ti).

Cases (ii) and (iv): If Ji has not been preempted during [t0, t], then, due to

160

the FIFO ordering of equal-priority requests in PF|P locks, any equal-priority

request blocking Ji must have been already issued at time t0. Further, if Ji is

blocked by a request with issued by a job Jl with a lower locking priority at

time t, then Jl must have already held `q at time t0 because jobs with lower

locking priority cannot acquire a PF|P lock while jobs with higher locking

priority are busy-waiting.

Consider the priority of the job that holds `q when Ji starts busy-waiting. If

`q is held by a job with equal locking priority when Ji starts busy-waiting,

then up to m− 1 additional requests of jobs with equal locking priority that

were issued at or before time t0 may precede Ji in the queue for `q as there

is only one spinning job per processor at any time, and since the requests

of preempted jobs are canceled (and thus cannot delay Ji). The sum of the

longest critical section (with respect to `q) on each remote processor, as given

by spinS (P (Ti), `q, πi,q), thus bounds the total duration for which case (ii)

can occur.

If `q is held by a job with lower locking priority when Ji starts busy-waiting,

then case (iv) can occur for at most the duration of one critical section

executed by a task with lower locking priority (on any one processor), and

case (ii) can occur for the sum of durations of the longest critical section

executed by a job with equal locking priority on each of the m − 2 other

processors. spinL(P (Ti), `q, πi,q) thus bounds the cumulative duration during

which cases (ii) and (iv) occur, assuming case (iv) occurs at all.

Combining the two cases, the maximum total duration that Ji is unable

to lock `q due to cases (ii) and (iv) is hence limited to LSP i(Ti, `q) =

spinLS (P (Ti), `q, πi,q) time units.

(Note that any delay due to requests of higher locking priority fall under

case (i); if `q is held by a job with higher locking priority when Ji starts

busy-waiting, then case (ii) persists for the duration of at most m− 2 equal-

161

priority requests, which is a non-worst-case scenario with less total blocking

that is subsumed by the preceding analysis).

Cases (iii), (v), (ix), and (xi): With PF|P locks, if a spinning job is pre-

empted, its lock request is canceled and must be reissued after resuming

execution. This gives jobs on other cores with a lower or equal locking priority

a chance to “skip ahead,” which causes Ji to incur additional delay. Due to

the FIFO ordering of equal-priority requests, and because the requests of

preempted jobs are cancelled, at most m−1 requests of equal or lower priority

can “skip ahead” each time that Ji or a local higher-priority job is preempted.

Further, of the additional m− 1 requests causing delays, at most one request

is of lower locking priority. When Ji restarts its request for `q after being

preempted, it hence faces a worst-case situation (with respect to to lower-

and equal-priority requests) that is equivalent to the scenarios discussed in

cases (ii) and (iv) above. Analogously, the worst-case cost per preemption in

terms of the additional spin delay incurred by Ji when resuming execution is

hence bounded by cppi(Ti, `q) = spinLS (P (Ti), `q, πi,q).

If a local higher-priority job Jh is preempted while busy-waiting (instead

of Ji), it similarly can be faced with renewed contention from lower- and

equal-priority requests just like when Jh initially issued its request. However,

in this case, the locking priority of the preempting job Jh is relevant (and not

the locking priority of Ji), and Jh could be busy-waiting for any resource in

Qlh (and not just `q). Therefore, when a local higher-priority, busy-waiting

job is preempted, Ji is subject to transitive delays due to either up to m− 1

equal-priority requests, or due to up m− 2 equal-priority requests and one

lower-priority request for potentially any resource in Qlh. Applying the same

reasoning as in cases (ii) and (iv) above to each potentially preempted task

and each accessed resource leads to the bound cpp lh(Ti).

The maximum additional delay due to additional spinning of Ji or a local

162

higher-priority job after one preemption is limited to the maximum of

cppi(Ti, `q) and cpp lh(Ti), as given by cpp(Ti, `q). As there are at most

prts
(
Ti,W

PF|P
q (Ti)

)
preemptions during an interval of length W

PF|P
q (Ti),

the maximum cumulative duration during which cases (iii), (v), (ix), and (xi)

occur is hence limited to LSPP (Ti, `q).

Case (vi): Analogously to regular response-time analysis of (preemptive)

fixed-priority scheduling, during an interval of length W
PF|P
q (Ti) starting

at time t0 (at which no higher-priority jobs can be pending because Ji is

scheduled and tasks are assumed to not self-suspend), each local higher-

priority task Th ∈ τ lh releases at most

⌈
W

PF|P
q (Ti)
ph

⌉
jobs, each of which

executes for at most eh time units (not counting any spinning). The total

delay due to the regular execution of higher-priority jobs during an interval

of length W
PF|P
q (Ti) starting at time t0 is hence bounded by I(Ti, `q).

Cases (viii) and (x): When a local higher-priority job Jh issues a request

for a resource `r ∈ Qhl, reasoning similar to cases (ii) and (iv) applies.

Hence each time that any job Jh requests a resource `r, the transitive delay

incurred by Ji until Jh is either preempted or acquires `r is limited to

spinLS (P (Ti), `r, πh,r). During an interval of length W
PF|P
q (Ti), each higher-

priority task Th ∈ τ lh releases at most

⌈
W

PF|P
q (Ti)
ph

⌉
jobs, each of which

requests each resource `r ∈ Qlh at most Nh,r times. The total duration

during which Ji is transitively delayed due to cases (viii) and (x) during an

interval of length W
PF|P
q (Ti) hence does not exceed LSP lh(Ti, `q).

This covers all possible ways in which Ji may be (transitively) delayed when

trying to lock a resource `q. Therefore, during an interval of length W
PF|P
q (Ti),

the total delay incurred by Ji—the total duration during which one of

the eleven analyzed cases occurs—is limited to HP(Ti, `q) + LSP i(Ti, `q) +

LSPP (Ti, `q) + I(Ti, `q) + LSP lh(Ti, `q) = W
PF|P
q (Ti) − 1. In other words,

during an interval of length W
PF|P
q (Ti) starting at time t0, Ji is unable to lock

163

`q for at most W
PF|P
q (Ti)− 1 time units. Ji thus ceases to spin and acquires

`q at time t1 at most W
PF|P
q (Ti) time units after initially trying to lock `q. �

Similar to PF|N locks and P|P locks, we exploit that W
PF|P
q (Ti) is monotonic

with respect to scheduling priority. The wait-time of a request for `q issued

by a local higher-priority task Th is no longer than the wait time of Ti’s

request. Formally,

∀Th ∈ τ lh : W PF|P
q (Ti) ≥W PF|P

q (Th). (13)

Again, as is the case with W
P|P
q (Ti), this monotonicity property stems from a

suitably monotonic bound on the delays due to requests issued with “higher”

locking priority, i.e., HP(Ti, `q), in the definition W
PF|P
q (Ti).

Next, based on the wait-time bound W
PF|P
q (Ti), we present constraints on

spin delay due to higher-priority requests. As in the preceding analyses, we

assume that W
PF|P
q (Ti) has been determined using fixed-point iteration; in

cases where this is not possible, the following constraint cannot be applied.

Further, as in the analyses of PF|N and P|P locks, we make the simplifying

assumption that all higher-priority jobs issue requests for each `q with locking

priority πminHP
q .

Constraint 26. In any schedule of τ with PF|P locks:

∀Pk, Pk 6= P (Ti) : ∀`q ∈ Qg : ∀Tx ∈ τ(Pk), πx,q < πminHP
q :

N i
x,q∑

v=1

XS
x,q,v ≤ njobs

(
Tx,W

PF|P
q (Ti)

)
·Nx,q · ncs(Ti , q).

Proof. Analogous to Constraint 24. Due to the monotonicity property stated

in Equation (13), it is safe to use W
PF|P
q (Ti) to bound the maximum duration

of any request issued by Ji or any local higher-priority tasks. Each request

164

R for `q issued by Ti or a local higher-priority task has a locking priority of

at least πminHPq . During any interval of length W
PF|P
q (Ti), jobs of a remote

task Tx with locking priority higher than πminHPq (with respect to `q) issue at

most njobs
(
Tx,W

PF|P
q (Ti)

)
·Nx,q requests for `q. The stated bound follows

since Ji and higher-priority jobs issue at most ncs(Ti, q) requests for `q. �

Requests issued with the same locking priority are satisfied in FIFO order.

Hence, in this case, the constraints on spin delay are similar to those for F|P

locks. We constrain the number of requests issued with equal locking priority

that can contribute to Ti’s spin delay with the next constraint.

Constraint 27. In any schedule of τ with PF|P locks:

∀Pk, Pk 6= P (Ti) : ∀`q ∈ Qg :
∑

Tx∈τ(Pk)
πx,q=πminHP

q

N i
x,q∑

v=1

XS
x,q,v ≤ ncs(Ti, q) + Cq.

Proof. Analogous to Constraints 23 and 25. Each request R for `q issued by

Ti or a local higher-priority task has a locking priority of at least πminHPq .

Ji can be directly or transitively delayed by remote equal-priority requests

for a resource `q each time Ji or a local higher-priority task is preempted

or issues a request for `q. Hence the total number of times that Ji or local

higher-priority jobs busy-wait for `q, in addition to the number of times

that Ji or local higher-priority jobs need to restart busy-waiting after being

preempted, limits the number of requests issued with locking priority equal

to πminHPq that delay Ji. �

Requests with lower priority can (possibly transitively) cause Ti to incur

spin delay at most once per request issued by Ti or a local higher-priority

job.

165

Constraint 28. In any schedule of τ with PF|P locks:

∀`q ∈ Qg :
∑
Tx∈τR

πx,q>πminHP
q

N i
x,q∑

v=1

XS
x,q,v ≤ ncs(Ti, q) + Cq.

Proof. Analogous to Constraints 11 and 26. Ji can be directly or transitively

delayed by remote lower-priority requests for a resource `q each time Ji or a

local higher-priority task is preempted or issues a request for `q. �

This concludes our analysis of PF|P locks. Constraints 20–22 (for preemptable

spin locks), the PF|P-specific Constraints 26 and 28 define a MILP that

bounds the maximum blocking incurred by any Ji. If the recurrence given in

Equation (11) does not converge for some `q, Constraint 26 must be omitted

from the MILP for that resource `q.

This concludes our presentation of the MILP constraints we use for the

analysis of the considered spin lock types. Next, we summarize the constraints

used for each spin lock type.

6.3.9 Constraint Summary

We provide a summary of the constraints used for analyzing each spin lock

type in Table 6.2. Note that unordered spin locks generally use the same

constraints as priority-ordered spin locks, which behave similar when all

requests are issued with the same locking priority.

We next describe how the MILPs for blocking analysis presented in the

preceding sections can be modified to reduce the computational cost of the

solving process. In particular, we describe how the number of required

variables can be reduced and how integer variables can be eliminated.

166

spin lock type
type of constraint

generic preemptions ordering

F|N 1, 2, 3, 4, 5, 6, 7 - 8,9
P|N 1, 2, 3, 4, 5, 6, 7 - 10, 11, 12, 13

PF|N 1, 2, 3, 4, 5, 6, 7 - 14, 15, 16, 17, 18, 19
U|N 1, 2, 3, 4, 5, 6, 7 - 10, 11, 12, 13
F|P 1, 2, 3, 4, 5, 6, 7 20, 21, 22 23
P|P 1, 2, 3, 4, 5, 6, 7 20, 21, 22 24, 25,

PF|P 1, 2, 3, 4, 5, 6, 7 20, 21, 22 26, 27, 28,
U|P 1, 2, 3, 4, 5, 6, 7 20, 21, 22 24, 25,

Table 6.2: Summary of constraints used for the analysis of each spin lock
type.

6.4 Aggregating Blocking Variables

In the preceding description of the MILP, each request Rx,q,v that could

possibly contribute to the blocking of the task under analysis is represented by

two blocking variables, XS
x,q,v and XA

x,q,v, for spin delay and arrival blocking,

respectively. With large task sets, task sets with a large ratio between longest

and shortest period, or task sets with many requests for shared resources, the

number of blocking variables can potentially grow large, which increases the

computational cost of solving the MILP. In the following, we show how the

blocking variables can be aggregated to reduce the total number of variables

in the MILP.

Instead of representing each request by corresponding blocking variables, we

introduce aggregate blocking variables for sets of requests. In particular,

for each task Tx and for each resource `q accessed by Tx, we introduce the

aggregate blocking variables XS
x,q and XA

x,q for spin delay and arrival blocking,

respectively. Similar to per-request blocking variables, aggregate blocking

variables can take non-negative values and are not restricted to integer values.

Unlike their per-request counterparts, aggregate blocking variables are not

167

generally upper-bounded by 1. The interpretation of the aggregate blocking

variables is similar to the interpretation of the per-request blocking variables:

in an arbitrary but fixed schedule, the requests for `q issued by jobs of Tx

contribute to Ji’s spin delay with exactly XS
x,q ·Lx,q time units. The aggregate

blocking variables for arrival blocking are interpreted analogously.

The MILPs as described in the preceding sections can be rephrased such that

per-request blocking variables are avoided completely and aggregate blocking

variables are used instead. We illustrate this approach by constructing

the MILP for the analysis of F|N locks. Analogously to Equation (2), the

objective function for the MILP is to maximize

bi ,
∑
Tx∈τ i

∑
`q∈Q

(
XS
x,q +XA

x,q

)
· Lx,q. (14)

Note that this objective function stated with regard to aggregate blocking

variables is identical to the objective function we used previously when

applying the following substitution:

∀Tx ∈ τ i : ∀`q ∈ Q : XS
x,q =

N i
x,q∑

v=1

XS
x,q,v and (15)

XA
x,q =

N i
x,q∑

v=1

XA
x,q,v. (16)

In fact, as we will show, many constraints previously stated with regard

to per-request blocking variables can be rephrased for aggregate blocking

variables by applying the substitutions above. We next walk through all

constraints previously established for the analysis of F|N locks and detail

how they are adapted for aggregate blocking variables.

168

Constraint 1 is adapted as follows:

Constraint 29. In any schedule of τ :

∀Tx ∈ τ i : ∀`q ∈ Q : XA
x,q +XS

x,q ≤ N i
x,q.

Proof. Observe that jobs of Tx issue at most Nx,q requests for `q while a single

job of Ti is pending, and hence no more than N i
x,q of Tx’s requests for `q can

cause Ji to incur arrival blocking or spin delay: XA
x,q ≤ N i

x,q and XS
x,q ≤ N i

x,q.

The remainder of the proof is identical to the proof of Constraint 1. �

Constraints 2–4 do not contain any blocking variables and can be used un-

modified with aggregate blocking variables. Constraint 5 is simply adapted by

substituting per-request blocking variables according to Equation (16):

Constraint 30. In any schedule of τ :

∑
Tx∈τ lh

∑
`q

XA
x,q ≤ 0. (17)

The proof is identical to the proof of Constraint 5. The remaining con-

straints applicable to F|N locks, Constraints 6–9, can similarly be adapted

by substituting the per-request blocking variables accordingly.

Constraint 31. In any schedule of τ :

∀`q ∈ Q :
∑
Tx∈τ ll

XA
x,q ≤ Aq.

Proof. Suppose not. If Aq = 0, this would imply, by definition of XA
x,q,

that in some schedule a request Rx,q,v caused Ji to incur arrival blocking,

even though by definition of Aq no request for `q arrival-blocked Ji, which is

clearly impossible. If Aq = 1, at least two requests by local lower-priority

169

tasks caused arrival blocking. Analogously to Constraint 2, this is impossible

because at most one request can be in progress on P (Ti) when Ji is released.

�

Constraint 32. In any schedule of τ :

∑
Tx∈τ ll∪τ lh

∑
`q

XS
x,q ≤ 0. (18)

Proof. The proof is identical to the proof of Constraint 7. �

Constraint 33. In any schedule of τ with F|N locks:

∀`q ∈ Q : ∀Pk, Pk 6= P (Ti) :
∑

Tx∈τ(Pk)

XS
x,q ≤ ncs(Ti, q).

Proof. The proof is identical to the proof of Constraint 8. �

Constraint 34. In any schedule of τ with F|N locks:

∀Pk, Pk 6= P (Ti) : ∀`q ∈ Q :
∑

Tx∈τ(Pk)

XA
x,q ≤ Aq.

Proof. The proof is identical to the proof of Constraint 9. �

Except for Constraint 29, all of the above constraints and the objective

function for F|N locks using aggregate blocking variables were obtained

by applying the respective substitutions (Equations (15) and (16)) for per-

request blocking variables, and hence, are equivalent with regard to the total

blocking they permit. Constraint 29, however, differs from the corresponding

170

constraint established using per-request blocking variables (Constraint 1). As

we will show, this does not introduce any pessimism when compared to the

analysis with per-request blocking variables presented in Section 6.3.2.

Theorem 5. The blocking bounds obtained from the analysis of F|N locks

using aggregate blocking variables does not exceed the blocking bounds

obtained from the analysis of F|N locks using per-request blocking variables.

Proof. We show that a solution to the MILP using aggregate blocking

variables can be transformed into a solution for the MILP with per-request

blocking variables that satisfies all constraints and has the same objective

value (i.e., blocking bound). Hence, the blocking bound obtained with the

MILP using aggregate blocking variables cannot exceed the blocking bound

obtained with the MILP with per-request blocking variables, as otherwise

the objective value would not be maximal.

Let τ be a task set and Ti with Ti ∈ τ the task under analysis. In the

following, we prefix all variables used in the formulation of the respective

MILPs with either ag or pr to denote that the variable is part of the MILP

using aggregate or per-request blocking variables, respectively. For instance,

we use prX
S
x,q,v to denote the blocking variable XS

x,q,v of the MILP using

per-request blocking variables, and we use agbi to denote Ti’s blocking bound

(i.e., objective value) obtained with the MILP using aggregate blocking

variables.

Let an assignment to the aggregate blocking variables agX
S
x,q and agX

A
x,q with

Tx ∈ τ i ∧ `q ∈ Q and the variables agAq with `q ∈ Q be given. We construct

an assignment to the variables prAq with `q ∈ Q as follows:

∀`q ∈ Q : prAq , agAq. (19)

171

We construct an assignment to the per-request blocking variables as fol-

lows:

∀Tx ∈ τ i : ∀`q ∈ Q : ∀v, 1 ≤ v ≤ N i
x,q :

prX
S
x,q,v ,


1 if agX

S
x,q ≥ v

agX
S
x,q − bagXS

x,qc if v − 1 ≤ agX
S
x,q < v

0 if agX
S
x,q < v − 1

(20)

prX
A
x,q,v ,

agX
A
x,q if v = N i

x,q

0 if v 6= N i
x,q.

(21)

The idea behind this construction is that the value assigned to one aggregate

blocking variable for spin delay is “distributed” among multiple per-request

blocking variables for spin delay, assigning a value of at most 1 to each

of them. The value of an aggregate blocking variable for arrival blocking

(which is at most 1) is directly assigned to one per-request blocking variable

for arrival blocking. As we show in the following, this construction ensures

that prbi = agbi holds and all constraints specified for the the MILP with

per-request blocking variables are satisfied.

Observe that this assignment by construction fulfills Equations (15) and (16)

that we previously used to substitute per-request blocking variables to obtain

constraints using aggregate blocking variables:

∀Tx ∈ τ i : ∀`q ∈ Q : agX
S
x,q =

N i
x,q∑

v=1

prX
S
x,q,v (22)

agX
A
x,q =

N i
x,q∑

v=1

prX
A
x,q,v. (23)

From the definition of the objective functions Equation (2) and Equation (14)

for the MILPs with per-request and aggregate blocking variables, respectively,

172

it directly follows that prbi = agbi holds. We next show that this assignment

also satisfies all constraints.

We start with Constraint 1 that we restate here for convenience:

∀Tx ∈ τ i : ∀`q ∈ Q : ∀v, 1 ≤ v ≤ N i
x,q : prX

A
x,q,v + prX

S
x,q,v ≤ 1.

Let Tx with Tx ∈ τ i be a task and `q with `q ∈ Q be a resource. For blocking

variables prX
S
x,q,v and prX

A
x,q,v with v 6= N i

x,q, this follows immediately since

prX
S
x,q,v ≤ 1 by Equation (20) and prX

A
x,q,v = 0 by Equation (21). For

blocking variables with v = N i
x,q, we distinguish between the three cases

considered in Equation (20). If agX
S
x,q = N i

x,q = v, then, by Constraint 33,

we have agX
A
x,q = 0, and hence prX

S
x,q,v = 1 and prX

A
x,q,v = 0, which satisfies

Constraint 1. If N i
x,q − 1 ≤ agX

S
x,q < N i

x,q, then bagXS
x,qc = N i

x,q − 1, and

hence, by Constraint 33, we have

XA
x,q +XS

x,q ≤ N i
x,q

XA
x,q +XS

x,q − bagXS
x,qc ≤ N i

x,q − bagXS
x,qc

XA
x,q +XS

x,q − bagXS
x,qc ≤ 1.

It follows that Constraint 1 is satisfied. If agX
S
x,q < v − 1, Constraint 1

is trivially satisfied since agX
A
x,q ≤ agAq holds due to Constraints 30, 31,

and 34.

Constraints 2–4 trivially hold since these constraints are used unmodified for

the MILP with aggregate blocking variables. The assignment also trivially

satisfies Constraints 5–9: the corresponding Constraints 30–34 were obtained

by applying the substitution defined in Equations (15) and (16), and Equa-

tions (15) and (16) hold under the assignment defined in Equations (20)

and (21).

Hence, a solution to the MILP using aggregate blocking variables can be

173

transformed into a solution for the MILP using per-request blocking vari-

ables, and thus, the blocking bound obtained from the MILP using aggregate

blocking variables does not exceed the blocking bound obtained from the

MILP using per-request blocking variables. �

As we show next, in the case of non-preemptable spin locks, the integer

variables used in the construction above can be eliminated, and hence, the

blocking analysis can be carried out by solving (non-integer) LPs.

6.5 Integer Relaxation

The MILP presented in this section for the analysis of non-preemptable spin

locks uses integer variables only for the binary decision variables Aq with

`q ∈ Q indicating whether a local request for `q can cause arrival blocking.

Since at most one of these variables can be set to 1 (by Constraint 2),

there exist only nr (recall that nr is defined as nr = |Q|) different feasible

assignments (one for each resource). These integer variables can be completely

eliminated by invoking the analysis for each possible assignment, where the

Aq variables are replaced with constants. The nr resulting (non-integer)

LPs are solved individually, and the highest objective value from any of

these constitutes the blocking bound. Importantly, this method of applying

our analysis using multiple (non-integer) LPs instead of one MILP does

not introduce any pessimism, but eliminates the need for integer or binary

variables.

For preemptable spin locks, our MILP formulation makes use of the additional

integer variables Cq with `q ∈ Q to denote the number of preemptions while

processing a request for `q. In contrast to the binary decision variables Aq,

the number of possible assignments to Cq variables (only constrained by

174

Constraints 21 and 22) can grow rapidly with the number of tasks. Hence,

invoking the analysis for each such assignment cannot be considered generally

practical. Instead, the integer requirement for Cq variables can be lifted to

obtain a (non-integer) LP. This relaxation can result in an increase of the

blocking bound in the order of at most O(nr) critical section lengths, which

follows from Constraint 21 limiting the sum of all Cq variables (regardless

whether integral or not), and the fact that any non-integral assignment to

any Cq variable differs by less than 1 from an integral one.

6.6 Analysis Accuracy and Computational Com-

plexity

6.6.1 Accuracy

In Section 6.2, we show that prior analysis approaches are inherently pes-

simistic due to execution time inflation. Our analysis, that we presented in

this chapter, eliminates this source of pessimism. Yet, our analysis cannot

be generally guaranteed to yield tight (i.e., exact) blocking bounds (except

for special cases, such as the case we describe in Section 7.3.3). This was

a deliberate choice: our goal was not to ensure tight blocking bounds, but

to devise a simple analysis approach that supports lock types for which no

prior analysis was available and improves upon prior techniques. Tightness

can potentially be achieved at the expense of an increased complexity of the

analysis approach. However, the development of a tight blocking analysis is

beyond the scope of this work.

Next, we consider the computational cost required by our analysis.

175

6.6.2 Computational Complexity

In contrast to prior analyses (e.g., the classic analysis of the MSRP summa-

rized in Section 2.5.1), our analysis approach makes use of “heavy machinery”,

namely MILP. As we argue in Section 6.5, in the case of non-preemptable

spin locks, integer variables can be eliminated by transforming the MILP

into a set of (non-integer) LPs. As we will show next, when using this

transformation, our blocking analysis of F|N locks can be carried out within

polynomial time.

Recall from Section 6.3 that our blocking analysis is used in conjunction

with a response-time analysis (Equation (1) in Section 6.3), similar to, for

instance, the classic MSRP analysis (where the response time analysis in

Equation (2.2) uses inflated execution times). Response-time analysis alone,

however, is already a (weakly) NP -hard problem [65], even without blocking

analysis. Therefore, we only consider the computational complexity of the

blocking analysis itself (i.e., generating and solving one MILP as described in

this chapter) in the following. We first consider F|N locks before discussing

the analysis complexity of the other lock types supported by our analysis

approach.

We begin by observing that our analysis uses only a polynomial number of

LPs for a single task.

Lemma 14. The elimination of integer variables in the generated MILP as

described in Section 6.5 results in a polynomial number of non-integer LPs

with respect to the size of the problem description (i.e., the list of tasks and

their critical sections).

Proof. Recall from Section 2.1.4 that each resource in Q is accessed at least

once, and hence, at least one critical section for each resource must be listed

in the problem description, which lower-bounds its size at Ω(n + nr) bits.

176

The claim follows since one LP is generated for each resource. �

Each of the generated LPs is of polynomial size.

Lemma 15. Each generated LP used for the analysis of F|N locks is of

polynomial size with respect to the size of the problem description.

Proof. By construction, per task and resource, two (aggregate) blocking

variables (for spin delay and arrival blocking) are used, resulting in O(n ·

nr) blocking variables in total. Further, by construction, for each type of

constraint, O(n · nr) individual constraints (one for each resource and task)

are generated.

Since the size of the problem description is lower-bounded by Ω(n+ nr) and

the number of constraints and variables are each polynomial with respect to

the size of the problem description, it follows that each LP is of polynomial

size with respect to the size of the problem description. �

Generating each constraint in the LP only takes polynomial time.

Lemma 16. Any single constraint for the analysis of F|N locks can be

generated within polynomial time with respect to the size of the problem

description.

Proof. Recall from Section 2.1 that the task set and the set of resources

are represented as sets (rather than, for instance, just the number thereof).

Iterating over the set of tasks and resources, as we do for the construction

of the constraints, takes linearly many steps with respect to the size of the

respective sets. Further, the set operations (e.g., τ(Pk)) and functions (e.g.,

ncs(Ti, q)) summarized in Table 6.1 used for constructing the constraints for

F|N locks can all be carried out within strictly polynomial time with respect

to the size of the problem description. The claim follows. �

177

Since each LP is of polynomial size, and generating each constraint takes

only polynomial time, each LP can be generated within polynomial time as

well.

Finally, we can conclude that the analysis of F|N locks can be carried out

within polynomial time.

Lemma 17. The blocking analysis of F|N for a single task can be carried out

within polynomial time with respect to the size of the problem description.

Proof. Follows from the preceding lemmas. For the analysis of a single task, a

polynomial number of LPs are generated within polynomial time, where each

LP is of polynomial size. Further, each LP can be solved within polynomial

time [78, 88]. The claim follows. �

The analysis of F|P locks makes use of additional nr integer variables (Cq).

When these variables are relaxed (at the cost of potentially increased pes-

simism), the previous argument applies and the analysis of F|P can be carried

out within polynomial time as well.

Although the size of the LPs for the analysis of the remaining lock types (i.e.,

U|*, P|*, and PF|* locks) is polynomial as well, the cost of generating the

LPs differs from the cost of generating the LPs for F|* locks in one crucial

aspect: for each lock type with priority-ordering (or no guaranteed ordering)

we use per-request wait-time bounds to obtain the constraints for the LP

(e.g., Constraint 10 for P|N locks). We compute these wait-time bounds

by solving a recurrence (e.g., Equation (3) for P|N locks) via fixed-point

iteration, similar to response-time analysis for fixed-priority scheduling. In

the case of response-time analysis, it has been shown that the response-time

cannot be computed within polynomial time (unless P = NP) [65], and hence,

it is unlikely that wait-time bounds can be computed within polynomial

178

time. However, since we have a stop criterion in the fixed-point iteration, the

time for computing the wait-time bounds is pseudo-polynomially bounded

in the period of each task: the fixed-point iteration is aborted if no fixed

point smaller than or equal to the period of the task is found. Hence, in each

iteration, the preliminary value of the wait-time bound is either increased by

at least 1 (recall from Section 2.1.1 that we assume discrete time), or a fixed

point is found. Hence, the number of steps taken in the fixed-point iteration

process is pseudo-polynomially bounded by the task’s period. Except for the

computation of the wait-time bounds, the generation and solving of the LPs

for the analysis of U|*, P|*, and PF|* locks is polynomial with respect to

the input size, similar to the LPs for F|* locks. To summarize, overall the

analysis for U|*, P|*, and PF|* locks takes pseudo-polynomial time. If the

constraints using wait-time bounds are omitted (at the cost of potentially

increased pessimism), the analysis can be carried out within polynomial time

as well.

Next, we present the results of a large-scale experimental evaluation, where

we investigated the impact of the different spin locks types and analyses in a

broad range of different scenarios.

6.7 Evaluation

We conducted a large-scale experimental evaluation comparing all considered

spin lock types and analyses (where available) to answer the following key

questions:

Q1: Does our blocking analysis approach yield less pessimistic blocking

bounds than prior analysis techniques, and hence, higher task set

schedulability?

Q2: Can we identify a spin lock type that is a reasonable default choice?

179

Q3: Are the dominance relations between spin lock types reflected in schedu-

lability results?

To answer these questions, we implemented our analysis approach as described

above, and we performed a large-scale experimental evaluation in a variety

of different settings.

6.7.1 Implementation

We implemented our analysis as part of the SchedCAT open-source project [10].

Similar to other analyses and functionality in SchedCAT, we primarily used

Python as programming language, but computationally intensive parts of

our analysis were implemented using C++ to avoid performance bottle-

necks. For solving the generated MILPs, we made use of the GNU Linear

Programming Kit (GLPK) [75]. We did not eliminate or relax the (few)

integer variables in our MILP formulation (see Section 6.5) to obtain pure

(non-integer) LPs.

6.7.2 Experimental Setup

For our experimental evaluation, we considered a broad range of different

settings: we varied the number of processor cores in the system, the task

set characteristics, the number of shared resources, and the way they are

accessed by the tasks. A summary of the parameter ranges we explored in

our evaluation is given in Table 6.3. To start with, we considered systems

with 4, 8 and 16 cores. Embedded systems with 4 and 8 cores are readily

available today, whereas embedded platforms with 16 cores are a slightly more

forward-looking scenario. We generated task sets with up to 10 tasks per

core (i.e., n ∈ {m, 2m, . . . , 10m}) using the task set generator presented by

Emberson et al . [68]. Task periods were chosen at random from the interval

180

experiment parameter range description

1 and 2

m {4, 8, 16} number of processor cores
in the system

nr {m/2,m, 2m} number of shared resources

rsf {0.1, 0.25, 0.4, 0.75} resource sharing factor:
fraction of tasks accessing
a given resource

Li,q [1µs, 15µs] (short) or
[1µs, 100µs] (medium)

critical section length

1

n varied task set size

U {0.1n, 0.2n, 0.3n} total task set utilization

Nmax {1, 2, 5, 10, 15} maximum number of re-
quests per accessed re-
source

2

U 0.5m total task set utilization

n
{⌈

U
0.1

⌉
,
⌈

U
0.2

⌉
,
⌈

U
0.3

⌉}
task set size

Nmax varied maximum number of re-
quests per accessed re-
source

Table 6.3: Overview of parameters varied in the experimental evaluation.
Varied parameters are not part of the configuration, but independent variables
in the schedulability experiment.

[1ms, 1000ms] according to a log-uniform distribution, which covers a broad

range of periods encountered in practice (e.g., in automotive systems [47]).

Task sets were generated with an average per-task utilization of either 0.1, 0.2,

or 0.3. We considered either m/2, m, or 2m shared resources in the system.

Each resource was accessed by rsf · n tasks (rounded down if necessary)

chosen independently at random, where rsf denotes the resource sharing

factor, with rsf ∈ {0.1, 0.25, 0.4, 0.75}. If a task Ti accesses a resource `q,

181

then the number of Ti’s requests for `q (i.e., Ni,q) was chosen at randomly

from the interval [1, . . . , Nmax]. The maximum number of requests Nmax

was set to one of {1, 2, 5, 10, 15}. The critical section length Li,q was chosen

at random either from the short interval [1µs, 15µs] or the medium interval

[1µs, 100µs]. In the following, we denote a concrete combination of the above

parameters as a configuration. We enforced that the cumulative length of all

requests issued by a single task does not exceed its execution time. Formally:

∀Ti ∈ τ : ei ≥
∑

`q∈Q Li,q ·Ni,q.

For the lock types that support request priorities (i.e., P|N, P|P, PF|N, and

PF|P), we employed a straightforward scheme for assigning these priorities:

Initially, all tasks are assigned the same (lowest) request priority. If a task set

cannot be determined to be schedulable, the request priority of the tasks that

cannot be shown to meet their deadlines is iteratively increased. This step is

repeated until either the task set becomes schedulable or one of the following

conditions apply: the task that cannot be shown to meet its deadline already

has the highest locking priority, the locking priority of the same task has been

already increased in the previous step, locking priorities are increased only

for a small subset of the tasks in an alternating fashion over the last couple of

steps. In either of these cases, further locking priority increases are deemed

ineffective and schedulability cannot be established. Note that we assign the

same priority to all requests issued by the same task (which is independent

from its scheduling priority). Yet, our analysis supports assigning more

fine-grained priorities at the level of resources (i.e., per task and per accessed

resource). However, the development of a more sophisticated scheme for

assigning request priorities (possibly at finer granularity than per task) is

beyond the scope of this work.

We studied the schedulability in two sets of experiments to measure the

impact of either varying system load or varying lock contention. In particular,

in the first set of experiments, all parameters of a configuration were fixed,

182

and the schedulability was measured as a function of the task set size. In

the second set of experiments, the total utilization was fixed to U = m/2,

and the task set size was determined by the average task utilization of

the configuration (rounding up if necessary). The schedulability was then

measured as a function of the maximum number of requests Nmax, which

we varied across the interval [1, 40].

For each configuration, we generated and tested at least 1000 sample task

sets for each n (in the first set of experiments) or Nmax (in the second set

of experiments). In both sets of experiments, we applied eleven blocking

analyses in total: the MILP-based analysis for each of the considered spin

lock type (presented above), Gai et al .’s classic [72] (labeled “MSRP-classic”)

and Brandenburg’s holistic [43, Ch. 5] analysis (labeled “MSRP-holistic”)

for F|N spin locks. Finally, we added results for the (hypothetical) case

in which no blocking occurs (labelled “no blocking”), that is, resources are

treated as private rather than shared, and tasks are considered to execute

independently. These results serve as an upper bound on schedulability (as

schedulability can only decrease when accounting for blocking effects).

In the interest of performance, we did not unconditionally apply all analyses

to each task set. In the case of F|N, we first applied —the comparably cheap—

holistic analysis, and used our —less pessimistic but computationally more

demanding— analysis for F|N locks only when the holistic analysis did not

already establish schedulability. Similarly, since F|N locks can be treated

as a special case of PF|N locks with all request priorities set to the same

value (see Section 5.6, we apply our analysis for PF|N only if the task set

was not already established to be schedulable with F|N locks (either using

our analysis for F|N locks or the holistic analysis). We performed similar

optimizations for preemptable spin locks. Note that these optimizations do

not affect the experimental results, but only their computational cost.

183

Next, we highlight trends and key findings from the experimental results.

Due to the large number of considered configurations, we illustrate our

observations with selected representative configurations. The full results can

be found online [132].

6.7.3 Experimental Results

First, we made the —not entirely unexpected— observation that, if blocking

effects are not the “bottleneck” of a task set determining its schedulability,

for instance in cases of low resource contention, then the choice of spin lock

type has little impact. An example for such a configuration is shown in

Figure 6.4, where schedulability is close to the no-blocking case regardless of

the spin lock type or analysis. However, as shown in Figures 6.5 and 6.6 (and

most other results presented here), even with moderate resource contention,

significant differences in terms of schedulability can be observed as the system

load or the number of critical sections increases.

Second, we found that the schedulability results from both sets of experiments,

where we varied either load or contention, exhibit largely similar patterns

and trends. Hence, unless specified otherwise, the following observations

apply to both sets of experiments.

Comparison with Prior Analyses

Figure 6.5 depicts the schedulability for varying load in a case representative

for a broad range of configurations. Here, the holistic analysis of F|N

locks (labeled “MSRP-holistic”) results in slightly higher schedulability than

Gai et al .’s classic MSRP analysis (labeled “MSRP-classic”), which can

be attributed to a decrease of pessimism in the holistic analysis. Similar

observations can be made when varying contention, for instance, in the

184

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 10 12 14 16 18 20 22 24 26

sc
h
e
d
u
la

b
le

number of tasks

MSRP-classic
MSRP-holistic

F|N
U|N
P|N

PF|N
no blocking

(a) Non-preemptable spin locks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 10 12 14 16 18 20 22 24 26

sc
h
e
d
u
la

b
le

number of tasks

F|P
U|P
P|P

PF|P
no blocking

(b) Preemptable spin locks.

Figure 6.4: Schedulability for m = 8, U = 0.3n, 4 shared resources, rsf =
0.40, Nmax = 2, and short critical sections.

schedulability results depicted in Figure 6.6.

Under our analysis of F|N locks, the schedulability is further increased: in

the scenario depicted in Figure 6.5, more than ten additional tasks can

be supported on the same platform (or approximately 4 additional critical

sections in Figure 6.6). This increase in schedulability under our analysis

can be observed for a wide range of different configurations, which highlights

the typically less pessimistic nature inherent in our approach.

This decrease in pessimism under our analysis is further substantiated when

comparing the schedulability results under the the prior MSRP analyses

185

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 60 80 100 120 140

sc
h
e
d

u
la

b
le

number of tasks

MSRP-classic
MSRP-holistic

F|N
U|N
P|N

PF|N
no blocking

Figure 6.5: Schedulability under non-preemptable spin locks for m = 16,
U = 0.1n, 16 shared resources, rsf = 0.4, Nmax = 2, and short critical
sections.

with our analysis for U|N locks. In the results depicted in Figure 6.5, our

analysis of U|N locks yields schedulability results equal to or slightly higher

than both prior MSRP analyses. This observation is particularly remarkable

since our analysis for U|N locks naturally cannot make any assumptions

about the ordering of requests for global resources, while the prior MSRP

analyses can analytically exploit the strong FIFO-ordering under the MSRP.

In this particular configuration, however, the inherent pessimism in both

prior MSRP analyses outweighed the analytical benefits of guaranteed FIFO-

ordering. Note that this is not a general observation, and in particular, our

analysis of U|N locks does not generally yield higher schedulability results

than prior MSRP analyses. For instance, in Figures 6.7a, 6.8a and 6.9a the

MSRP under any prior analysis yields higher schedulability than U|N locks

under our analysis. all prior MSRP analyses yield higher schedulability than

our analysis of U|N locks.

186

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

sc
h
e
d
u
la

b
le

number of critical sections

MSRP-classic
MSRP-holistic

F|N
U|N
P|N

PF|N
no blocking

Figure 6.6: Schedulability under non-preemptable spin locks for m = 16,
U = 0.1n, 8 shared resources, rsf = 0.25, and short critical sections.

Impact of Ordering Policy

When comparing our analyses for U|N and F|N locks, avoiding the inherent

pessimism of prior analyses, we can observe in Figure 6.5 that F|N locks

yield significantly higher schedulability results than U|N locks. In general,

it can be observed that in all configurations and for both preemptable and

non-preemptable spin locks, FIFO-ordered spin locks yield at least the same

schedulability as unordered spin locks. The same holds for priority-ordered

spin locks that generally yield at least the same schedulability as unordered

spin locks. This observation mirrors the dominance of FIFO- and priority-

ordered spin locks over unordered ones shown in Section 5.4. Moreover, both

FIFO- and priority-ordered spin locks typically yield substantially higher

schedulability results than unordered spin locks (except for scenarios in

which blocking is not a limiting factor, or scenarios that can be deemed

unschedulable regardless of the spin lock type). For instance, the results

depicted in Figures 6.7, 6.8 and 6.10 show a clear increase of schedulability

under FIFO- and priority-ordered spin locks over unordered ones.

In our experiments, FIFO-ordered spin locks yield higher schedulability than

187

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

number of tasks

MSRP-classic
MSRP-holistic

F|N
U|N
P|N

PF|N
no blocking

(a) Non-preemptable spin locks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

number of tasks

F|P
U|P
P|P

PF|P
no blocking

(b) Preemptable spin locks.

Figure 6.7: Schedulability for m = 16, U = 0.2n, 16 shared resources,
rsf = 0.75, Nmax = 5, and short critical sections.

priority-ordered spin locks in most configurations, regardless of whether

preemptions are allowed or not. This trend can be observed, for instance, in

the schedulability results depicted in Figures 6.5, 6.10 and 6.14. In some

configurations, however, priority-ordered spin locks outperform the FIFO-

ordered ones, for instance in Figures 6.7a, 6.8a and 6.13. Both observations

are in line with the incomparability between FIFO- and priority-ordered spin

locks shown in Section 5.5. It is worth noting that the schedulability results

for priority-ordered spin locks naturally depend on the priority-assignment

scheme employed, and we cannot preclude that a different scheme would have

resulted in higher schedulability. However, our simplistic scheme performed

188

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

number of tasks

MSRP-classic
MSRP-holistic

F|N
U|N
P|N

PF|N
no blocking

(a) Non-preemptable spin locks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

number of tasks

F|P
U|P
P|P

PF|P
no blocking

(b) Preemptable spin locks.

Figure 6.8: Schedulability for m = 16, U = 0.2n, 32 shared resources,
rsf = 0.75, Nmax = 2, and short critical sections.

reasonably well, as shown by the improvements of priority-ordered spin locks

over unordered ones and also FIFO-ordered spin locks in a number of cases.

The development of a more elaborate scheme is beyond the scope of this

thesis and left to future work.

PF|N and PF|P locks generally resulted in schedulability at least as high

as under spin locks using either FIFO- or priority-ordering alone. In most

cases, the schedulability under PF|N and PF|P locks was typically on a par

with or marginally higher than under FIFO-ordered spin locks, as shown,

for instance in Figures 6.9, 6.10 and 6.11. In some cases, for instance

189

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

number of tasks

MSRP-classic
MSRP-holistic

F|N
U|N
P|N

PF|N
no blocking

(a) Non-preemptable spin locks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

sc
h
e
d
u
la

b
le

number of tasks

F|P
U|P
P|P

PF|P
no blocking

(b) Preemptable spin locks.

Figure 6.9: Schedulability for m = 16, U = 0.2n, 32 shared resources,
rsf = 0.25, Nmax = 5, and short critical sections.

in Figures 6.7, 6.8 and 6.12, PF|N and PF|P led to noticeably higher

schedulability than FIFO- or priority-ordered spin locks, which suggests that

a number of task sets clearly benefits from the combination of both ordering

policies. This observation shows that there are configurations in which task

sets are unschedulable under pure FIFO-ordered spin locks, but selectively

assigning higher request priorities to one or more tasks reduced the blocking

bound to an extent such that schedulability could be guaranteed.

190

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 6 8 10 12 14 16 18 20

sc
h
e
d
u
la

b
le

number of tasks

MSRP-classic
MSRP-holistic

F|N
U|N
P|N

PF|N
no blocking

(a) Non-preemptable spin locks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 6 8 10 12 14 16 18 20

sc
h
e
d
u
la

b
le

number of tasks

F|P
U|P
P|P

PF|P
no blocking

(b) Preemptable spin locks.

Figure 6.10: Schedulability for m = 4, U = 0.2n, 2 shared resources, rsf =
0.75, Nmax = 10, and medium critical sections.

Impact of Preemptable Spinning

The trends described above for the impact of the ordering policy largely hold

regardless of whether preemptions while spinning are allowed. In fact, spin

locks with non-preemptable and preemptable spinning exhibit largely similar

patterns in terms of schedulability: FIFO-ordered spin locks in most cases

yield higher schedulability results than priority-ordered ones, unordered spin

locks consistently lead to lowest, and FN|∗ locks to highest schedulability

results.

A direct comparison of preemptable and non-preemptable spin lock types

191

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 10 12 14 16 18 20 22 24 26

sc
h
e
d
u
la

b
le

number of tasks

MSRP-classic
MSRP-holistic

F|N
U|N
P|N

PF|N
no blocking

(a) Non-preemptable spin locks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 10 12 14 16 18 20 22 24 26

sc
h
e
d
u
la

b
le

number of tasks

F|P
U|P
P|P

PF|P
no blocking

(b) Preemptable spin locks.

Figure 6.11: Schedulability for m = 8, U = 0.3n, 16 shared resources,
rsf = 0.10, Nmax = 10, and medium critical sections.

does not lead to clear conclusions: depending on the concrete configuration,

but also depending on the ordering policy, enabling preemptions can result

in an increase or a decrease of schedulability. The schedulability results for

a scenario in which the impact of preemptable spinning appears to depend

on the ordering policy is depicted in Figure 6.15. In the same configuration,

enabling preemptable spinning under priority-ordered spin locks increases

schedulability (P|P vs. P|N in the plot), and for FIFO-ordered spin locks,

enabling preemptable spinning decreases schedulability (F|P vs. F|N). In

general, the impact of enabling preemptions while spinning highly depends

on the concrete configuration (and task set).

192

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 20 25 30 35 40 45 50 55

sc
h
e
d
u
la

b
le

number of tasks

MSRP-classic
MSRP-holistic

F|N
U|N
P|N

PF|N
no blocking

(a) Non-preemptable spin locks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 20 25 30 35 40 45 50 55

sc
h
e
d
u
la

b
le

number of tasks

F|P
U|P
P|P

PF|P
no blocking

(b) Preemptable spin locks.

Figure 6.12: Schedulability for m = 16, U = 0.3n, 32 shared resources,
rsf = 0.40, Nmax = 1, and short critical sections.

6.7.4 Summary of Experimental Results

Our first objective of the experimental evaluation was to study whether

the reduction of pessimism in our blocking analysis approach compared to

prior spin locks analysis techniques results in higher schedulability. For F|N

locks, for which prior analyses are available, our evaluation results show

increased schedulability (often by a significant margin) under our analysis

over a wide range of different configurations. The schedulability results

depicted in Figures 6.5 and 6.6 illustrate this result for two representative

configurations.

193

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 20 25 30 35 40 45 50 55

sc
h
e
d
u
la

b
le

number of tasks

MSRP-classic
MSRP-holistic

F|N
U|N
P|N

PF|N
no blocking

(a) Non-preemptable spin locks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 20 25 30 35 40 45 50 55

sc
h
e
d
u
la

b
le

number of tasks

F|P
U|P
P|P

PF|P
no blocking

(b) Preemptable spin locks.

Figure 6.13: Schedulability for m = 16, U = 0.3n, 32 shared resources,
rsf = 0.75, Nmax = 1, and short critical sections.

In our experiments, FIFO-ordered spin locks typically led to higher schedu-

lability results than priority-ordered spin locks, although priority-ordering

appears to be preferable in a number of configurations. Highest schedulability

results are achieved with either PF|N and PF|P locks, but the improvements

over FIFO-ordered spin locks (if any) are typically marginal. Our results

on the impact of allowing preemptions while spinning do not exhibit a clear

trend favoring either of these options. Unordered spin locks consistently led

to the lowest schedulability results, which highlights the importance of strong

ordering guarantees to bound worst-case behavior. However, our results also

show that unordered spin locks are “good enough” in a range of scenarios

194

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 60 80 100 120 140

sc
h
e
d
u
la

b
le

number of tasks

F|P
U|P
P|P

PF|P
no blocking

Figure 6.14: Schedulability under preemptable spin locks for m = 16, U =
0.1n, 8 shared resources, rsf = 0.25, Nmax = 10, and short critical sections.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 15 20 25 30 35

sc
h
e
d
u
la

b
le

number of critical sections

F|N
F|P
P|N
P|P

Figure 6.15: Schedulability under FIFO- and priority-ordered spin locks
for m = 16, U = 0.1n, 32 shared resources, rsf = 0.10, and short critical
sections.

(e.g., with low contention).

The results from the qualitative comparison of spin locks in Chapter 5

(actual worst-case blocking durations) are in line with our experimental

results. In particular, the dominance of FIFO- and priority-ordered spin locks

over unordered ones conforms to the observation that unordered spin locks

generally yield the lowest schedulability (under our novel analysis approach).

Further, in our experiments, PF|* spin locks always yield schedulability

195

results at least as high as FIFO- or priority-ordered spin lock, which is in line

with the dominance of PF|* spin locks over both FIFO- and priority-ordered

spin locks.

6.8 Summary

We presented a novel blocking analysis approach for P-FP systems supporting

eight different types of spin locks, most of which were not supported by prior

analyses. Notably, we provided an analysis for unordered spin locks that

can be safely used even if the ordering policy of a spin lock is not known

(e.g., AUTOSAR mandates spin locks, but does not specify a particular

type).

One important aspect of our approach is that the objective function of

the MILP maximizes the blocking, and the constraints can only reduce the

objective value (i.e., blocking bound). Constraints can be proven individually

and the soundness of the analysis follows from the soundness of the individual

constraints. Crucially, the soundness of the analysis does not depend on

whether any particular set of constraints is imposed, but rather only on

whether the constraints used are correct. In fact, omitting some of the

presented constraints (or even all of them) will still yield sound (albeit likely

more pessimistic) results.

The primary aim of our approach was to support a range of spin lock types

not supported in prior work and to eliminate the pessimism inherent in prior

analyses. Although our approach is asymptotically less pessimistic than prior

analyses (where available), it cannot be guaranteed to yield tight blocking

bounds (except for special cases, see Section 7.3.3). Moreover, we do not

claim the set of constraints presented to be complete, in the sense that it

may be possible to find additional constraints to further reduce analysis

196

pessimism.

Despite not necessarily being tight, the results of a large-scale experimental

evaluation covering a broad range of different scenarios show that our analysis

commonly yields improved—often by a significant margin—schedulability

compared to prior analyses.

The evaluation results also allow for a comparison of the different spin lock

types on a common basis. Based on our results, we suggest four improvements

to the support of spin locks in AUTOSAR:

1. AUTOSAR should specify the concrete type of spin lock. Not specify-

ing the spin lock type requires making safe, but pessimistic assumptions

for analyzing the system (e.g., assuming unordered spin locks), nega-

tively impacting schedulability.

2. AUTOSAR should specify support for FIFO-ordered spin locks. Our

evaluation results show that FIFO-ordered spin locks (together with

PF|* locks) typically yield the highest schedulability results over a wide

range of different scenarios. In addition,

3. AUTOSAR should specify support for priority-ordered spin locks,

since there exist workloads supported by priority-ordered spin locks,

but not FIFO-ordering alone. Importantly, request-priorities should be

configurable independently of scheduling priorities.

4. Strong ordering guarantees can reduce worst-case blocking and allow-

ing preemptions while spinning may be required by latency-sensitive

applications. The AUTOSAR API for spin locks should hence be

extended to explicitly support preemptable spinning without sacrificing

ordering guarantees as we point out in Section 2.4.2.

Note that we suggested that AUTOSAR should specify support for FIFO-

and priority-ordered spin locks, but not PF|N or PF|P locks although they

197

achieved consistently highest schedulability in our experimental evaluation.

The reason is that PF|N or PF|P typically offer only marginal (if any) benefits

over pure FIFO- or priority-ordered spin locks, and potentially introduce ad-

ditional implementation and runtime overhead — both undesirable properties

in resource-constrained embedded systems.

The blocking analysis presented in this chapter does not support nested

requests. Lifting this restriction while maintaining the same accuracy in-

herently increases the computational complexity of the blocking analysis

problem, as we show in the next chapter.

198

Chapter 7

Analysis Complexity of

Nested Locks1

7.1 Introduction

In the previous chapters, we assumed that lock requests are not nested, that

is, at any time, a job can hold at most one lock. Nesting of requests, however,

can be desirable for performance reasons (e.g., to enable fine-grained locking

in shared data structures), or may even be an implicit effect of modularization

in sufficiently large software stacks (e.g., calls to library functions or system

calls can involve lock acquisitions, and hence nesting of requests).

Extending our blocking analysis presented in the previous chapter to nested

spin locks seemed a natural next step, but posed significant challenges,

especially maintaining reasonably low computational cost2 while accounting

for new blocking effects enabled by nesting. In fact, as we show in this

chapter by reductions from a matching problem, the decision variant of

1This chapter is based on [134].
2Polynomial runtime for F|N locks, see Section 6.6.2.

199

the blocking analysis problem for nested spin locks with FIFO- or priority-

ordering is strongly NP -hard.3 Our results are rather general and not limited

to spin locks: the reductions do not rely on the scheduler (as long as it is

work-conserving), whether preemptions are allowed, and whether blocked

jobs spin or suspend. Our hardness results hence generally hold for mutex

locks and are not specific to spin locks.

Perhaps surprisingly, in a special case in which the blocking analysis problem

for FIFO- and priority-ordered locks is strongly NP -hard, we found that the

analysis for unordered locks with nesting can be carried out within polynomial

time. In that sense, strong ordering guarantees appear to be a double-edged

sword when it comes to blocking and its analysis: without nesting, both

FIFO- and priority-ordering can be efficiently exploited analytically (see

Section 6.3), and result in higher schedulability (see Section 6.7). Nested

locks with strong ordering guarantees, however, do not lend themselves to

an efficient analysis. At the same time, the analysis of unordered locks,

under the same assumptions we make for our reductions, can be framed as a

computationally inexpensive graph reachability problem.

The difficulty of the blocking analysis problem for nested locks arises from

blocking effects not present under non-nested locks. We describe such effects

next.

7.2 Blocking Effects with Nested Locks

Without nesting, two requests Rx,q,v and Ry,p,w can potentially block each

other if they were issued from different processors (P (Tx) 6= P (Ty)) and both

access the same resource (q = p). Importantly, whether Rx,q,v and Ry,p,w

3In the following, we refer to the decision variant of the blocking analysis problem (see
Section 7.3.3) when stating NP-hardness of the blocking analysis problem.

200

can block each other can be determined regardless of requests issued from

other processors (other than P (Tx) and P (Ty)). With nesting, in contrast,

a request can also be transitively blocked by another request for a different

resource. At the same time, certain requests from different processors for the

same resource cannot block each other when guarded by other requests.

7.2.1 Transitive Nested Blocking

While under non-nested locks a request can only be blocked by other requests

for the same resource, nesting blurs this picture and enables scenarios in

which even requests for different resources contribute to blocking, and hence

have to be accounted for. Figure 7.1a depicts a schedule illustrating this

effect. In this scenario, three jobs, Ji, Jx, and Jy, are each assigned to their

own processor. Job Ji issues a single request for `1, Jx issues a request for

`1 that contains a nested request for `2, and Jy issues one request for `2.

Figure 7.1b depicts the requests issued and the blocking effects incurred by

these jobs. Ji’s request for `1 is blocked by Jx’s request for `1. In turn, Jx’s

request for `2 nested within the request for `1 is blocked by Jy’s request for

`2. As a result, Ji’s request is transitively blocked by Jy’s request, although

Ji and Jy access different resources — an effect impossible under non-nested

locks.

Without nesting, transitive nested blocking of requests for different resources

is not possible. Nesting, however, also prevents some requests for the

same resource to block each other although they are in conflict without

nesting.

201

50 10

Ji

JyP3

P1

Jx

`1

P2

`1

`2

`2
job executing

job spinning while
waiting for resource

job executing
critical section

job holding resource `1`1

job release

(a) Example schedule in which Ji’s request for `1 is transitively blocked by
Jy’s request for `2.

P1 P2 P3

Ji Jx Jy

`2

`1`1

processor

issued
requests

assigned
job

`2
`1`1

`2

`1
request for nested

within request for `1
`2

request with outgoing
arrow blocked by

request with
incoming arrow

(b) Representation of issued requests, omitting regular execution.

Figure 7.1: Example for transitive nested blocking: Ji’s request for `1 is
transitively blocked by Jy’s request for `2.

7.2.2 Guarded Requests

Consider the nested requests for `3 issued by Jx and Jy in Figure 7.2. Both

of them are nested within requests for `2, and hence, at the time a request

for `3 is issued, the lock on `2 is already held by Jx and Jy, respectively. By

mutual exclusion, Jx and Jy cannot both hold the lock on `2 at the same

time, and hence, the nested requests for `3 cannot directly block each other.

In that sense, the nested requests for `3 are guarded by the outer requests

for `2. Without nesting, in contrast, requests for the same resource from

different processor can potentially block each other.

On a high level, both of the above effects, transitive nested blocking and

guarded requests, eliminate the locality property of the blocking analysis

202

P1 P2 P3

Ji Jx Jy

`2

`1`1

processor

issued
requests

assigned
job

`2

`3 `3 `3

Figure 7.2: Example for guarded requests: Jx’s and Jy’s requests for `3 cannot
block each other although issued from different processors and accessing the
same resource.

problem for non-nested locks: without nesting, it can determined which of

Jy’s requests contribute to Ji’s blocking duration in the worst case (in both

Figures 7.1a and 7.2) regardless of which of Jx’s requests also contribute

to Ji’s blocking duration. With nesting, in contrast, as illustrated by the

examples above, blocking effects can “spread” across processor boundaries.

In combination with strong ordering guarantees, these effects increase the

computational complexity of the blocking analysis problem, as we show in

Sections 7.4 and 7.5.

7.3 Background

In the following, we state the assumptions we make and describe the problems

considered in the reductions that we present in this chapter.

7.3.1 Definitions and Assumptions

Our hardness results rely on weaker assumptions and a simpler system model

than stated in Section 2.1. We next state the assumptions we make for

workload, scheduler, and the nesting of critical sections.

203

Job Model

For our reductions the concept of tasks (as in the sporadic task model

assumed in the previous chapters of this thesis) is not required. Instead,

we consider a simplified variant of this model: we assume only a finite set

of jobs with unspecified execution costs. This simplistic model is likely of

little practical relevance for embedded real-time systems due to its limited

expressiveness, but it is sufficient to obtain the hardness results for the

blocking analysis of nested locks, and general enough to trivially extend our

results to more expressive task models. In fact, analytically, the finite set of

jobs can be considered as a special case of the sporadic task model, and our

reductions do not rely on execution costs being unspecified.

We denote the jobs in the system as J1, . . . , Jn and consider their release

times to be unknown (i.e., as in the sporadic task model, the exact release

times are discovered only at runtime).

Scheduling

To obtain the hardness results we present in this chapter, we make weaker

assumptions about the scheduler than we stated in Section 2.1.3: we only

assume a partitioned work-conserving scheduler, that is, at any time and on

each processor, a job is scheduled unless no job assigned to that processor

is pending. Our reductions only use a single job per processor, but the

hardness results presented in this chapter do not rely on any restriction on

the number of jobs assigned to each processor. Note that, with a single job

per processor, work-conserving scheduling implies that each job is scheduled

upon release until completion. Although our reductions generalize to other

policies besides partitioned scheduling, we assume partitioned scheduling for

the sake of simplicity.

204

Nested Requests

We maintain the assumptions about shared resources we stated in Sec-

tion 2.1.4. In particular, for each job the maximum number of requests for

each resource and the respective maximum critical section length is known.

The concrete time instances at which requests are issued is not given.

In contrast to the preceding chapters of this work, where we assumed non-

nested requests, we allow critical sections to be nested. That is, a job holding

a resource `q can issue a request for a different resource `p (where p 6= q)

within the critical section accessing `q. All requests are properly nested, that

is, at any time, only the resource that was acquired last and is still held

can be released. To denote the nesting relation of requests we introduce

the following notation: Rx,q,s . Rx,q′,s′ denotes that the request Rx,q′,s′ for

`q′ is directly nested within the request Rx,q,s for `q. That is, at the time

Rx,q′,s′ is issued, Jx executes the critical section for Rx,q,s, and `q is the last

resource acquired and not yet released. For requests containing multiple

nested requests, we use the following set notation:

Rx,q,s . {Rx,q′1,s′1 , . . . , Rx,q′w,s′w} ⇐⇒ ∀1 ≤ j ≤ w : Rx,q,s . Rx,q′j ,s′j .

For example, we express that two requests Rx,p,t and Rx,p′,t′ are nested within

the request Rx,q,s as Rx,q,s . {Rx,p,t, Rx,p′,t′}.

We do not make any assumptions about the order of nested requests as long

as the nesting relation as described above is preserved. To rule out deadlocks,

we assume the existence of a irreflexive partial order < on resources (i.e., a

irreflexive, transitive and asymmetric binary relation) such that, for any two

nested requests Rx,q,s and Rx,q′,s′ , if Rx,q,s .Rx,q′,s′ then `q < `′q. We assume

that the critical section length of each request accounts for nested requests,

but not for any blocking that might be incurred on resource contention.

205

That is, the critical section length includes the lengths of all nested requests:

∀Rx : Lx ≥
∑

Ry ,Rx.Ry
Ly.

Nesting implies an order among the request nested within each other. That

is, an outer request must be issued before a nested inner request is issued.

Except for this implicit ordering among requests nested within each other,

the order in which requests are issued is unknown.

Mutex Lock Types

In the preceding chapters of this thesis, we assumed the use of spin locks to

ensure mutually exclusive accesses to shared resources. For the reductions

presented in the following, jobs may either busy-wait (spin) or suspend

when blocked while waiting for a contended resource. Since the reductions

use only a single job per processor, spin- and suspension-based locks are

analytically equivalent with regard to blocking. Similarly, in the case of spin

locks, allowing or disallowing preemptions while spinning results in the same

behavior as no preemptions can occur.

We consider FIFO-ordered, priority-ordered, and unordered locks. The

reductions for FIFO-ordered and priority-ordered locks trivially extend to

PF|* spin locks (and suspension-based locks with the same ordering policy)

with an appropriate assignment of priorities (see Section 5.6).

We establish our hardness results by providing reductions from a combi-

natorial problem of known computational complexity, the multiple-choice

matching problem, to instances of the blocking analysis problem. Next, we

concisely define both problems.

206

1

3

2

4

1

3

2

4

G1 : G2 :

graph vertex

graph edge
from edge
partition

E1

E2

Figure 7.3: Two example graphs of MCM problem instances. With k = t = 2,
a matching solving the MCM problem for G1 exists: {{1, 2}{3, 4}}. For G2

no such matching exists.

7.3.2 The Multiple-Choice Matching Problem

The multiple-choice matching (MCM) [74] problem is a graph matching

problem known to be strongly NP -complete [74]. We summarize the problem

in the following.

For simplicity, we represent an undirected edge e between two vertices v1

and v2 as the set of its endpoints: e = {v1, v2}. The MCM problem is

then defined as follows: given a positive integer k and an undirected graph

G = (V,E), where the set of edges E is partitioned into t pairwise disjoint

subsets (i.e., E = E1 ∪ · · · ∪ Et), does there exists a subset F ⊆ E with

|F | ≥ k such that

• no two edges in F share the same endpoint:

∀e1, e2 ∈ F, e1 6= e2 : e1 ∩ e2 = ∅; and

• F contains at most one edge from each edge partition:

∀i, 1 ≤ i ≤ t : |F ∩ Ei| ≤ 1?

Figure 7.3 depicts two examples for MCM problem instances, one where a

solution exists and one where no solution exists. Note that a solution exists

only if k ≤ t. As we show next, MCM instances with k < t can be reduced

to instances with k = t without loss of generality, which enables us to assume

k = t for our reductions.

207

Generality of the k = t MCM Problem

We establish that instances of the MCM problem with k < t can be reduced

to instances with k = t. Let G = (V,E) be an undirected graph with t

disjoint edge partitions E = E1 ∪ · · · ∪Et, and let k be a positive integer. In

the general MCM problem, we have k ≤ t (the problem is trivial if k > t).

If k = t, the two problems are identical. If k < t, we construct a complete

bipartite graph GD = (VD, ED) as follows.

Let g = t− k. We introduce g + t new vertices VD = {vp1 , . . . , v
p
g , vh1 , . . . , v

h
t }

and g · t new edges ED = {{vpi , vhj }|1 ≤ i ≤ g ∧ 1 ≤ j ≤ t}. Note that, since

V and VD are disjoint, the constructed graph GD is not connected to G.

Further, by definition of ED, GD is bipartite as no edge between any two

vertices {vpi , v
p
i′} ⊆ {v

p
1 , . . . , v

p
g} exists and no edge between any two vertices

{vhi , vhi′} ⊆ {vh1 , . . . , vht } exists. We let G′ = (V ′, E′) denote the graph that

results from merging the sets of vertices and edges of G and GD, respectively:

V ′ = V ∪VD and E′ = E∪ED. Further, we define edge partitions E′1, . . . , E
′
t

as follows:

∀j, 1 ≤ j ≤ t : E′j = Ej ∪ {{vpi , v
h
j }|1 ≤ i ≤ g}.

The construction of the graph GD = (VD, ED) is illustrated with an example

in Figure 7.4. Note that GD by construction always permits a matching of

size g. Due to this property, a solution to the original MCM instance in G

with k < t is implied by a solution to the MCM problem in G′ assuming

k = t, as we show in the following lemma.

Lemma 18. A solution to the MCM problem for G′ with k′ = t exists if

and only if a solution to the original MCM problem for G with k exists.

Proof. Let F ′ be a matching solving the MCM problem for G′ with k′ = t.

By construction of the edge partitions, a matching FD with |FD| = g solving

208

vp
1 vp

2

vh
2vh

1 vh
3

G : GD :

Figure 7.4: Construction of the graph GD for an instance of the MCM
problem for graph G with k = 1 and t = 3 edge partitions (indicated by edge
pattern).

the MCM problem in GD always exists. Further, g is the maximum size of

any valid matching in GD. Hence, if F ′ solves the MCM problem for G′ with

k′ = k + g, F ′ contains at most g edges from ED, and removing them from

F ′ leads to a matching F in G with size |F ′| − g = k + g − g = k, solving

the original MCM problem.

Similarly, let F be a matching solving the MCM problem for G with k. Since

a matching of size g on GD always exists and a matching of size k on G

exists by assumption, it follows from the construction of G′ that a matching

of size k′ solving the MCM problem for G′ with k′ = t exists. �

7.3.3 The Worst-Case Blocking Analysis Problem

We already introduced the blocking analysis problem in Section 2.5; here

we briefly recapitulate the problem and the accuracy we require, and then

describe the problem variant used in our reductions.

Tightness Requirements

For a task set sharing resources protected by mutex locks, the blocking

analysis problem is to derive bounds on the blocking duration each task can

incur. A trivial bound can easily be obtained by assuming that all requests

issued while a job is pending can contribute to its blocking. Albeit valid, we

209

require the blocking analysis to yield tighter and less pessimistic bounds. In

particular, we require that:

• There exists no job arrival sequence and resulting schedule in which

more blocking than determined by the analysis is incurred. (The bound

is safe.)

• There exists a job arrival sequence and resulting schedule in which the

blocking duration determined by the analysis is incurred. (The bound

is tight.)

Note that we did not claim tightness of the blocking analysis for non-nested

spin locks presented in Section 6.3. However, under the job model considered

here (Section 7.3.1) and one job per processor, the analysis for non-nested

spin locks4 presented in Section 6.3 (assuming non-nested requests) yields

tight worst-case blocking bounds (i.e., true worst-case blocking durations):

for each blocking bound resulting from the analysis, a schedule can be

constructed under which this blocking is actually incurred.

We sketch the construction of such a schedule for F|* locks (F|N and F|P

locks behave similar in this setting since no preemptions can occur). Consider

the jobs Ji, J1, . . . , Jn−1, each assigned to its own processor, and let the result

of the blocking analysis presented in Section 6.3 be given in the form of

the assignment to blocking variables. First, observe that there is no arrival

blocking since each task is assigned to its own processor, and hence, the

blocking variables for arrival blocking are set to zero. Let Ji denote the task

under analysis. On a high level, we construct the schedule by letting Ji issue

each request simultaneously with one request for the same resource from

each other job that issues a blocking request according to the analysis result.

To that end, we first derive the number of blocking request for each job and

4The analysis for non-nested spin locks was presented for sporadic task sets and not
finite job sets, but can be trivially adapted.

210

resource: for a job Jx, let N ′x,q denote the number requests for `q issued by

Jx that block Ji in the schedule to be constructed:

∀`q ∈ Q : ∀x, 1 ≤ x ≤ n− 1 : N ′x,q ,
Nx,q∑
v=1

XS
x,q,v.

We then construct the schedule as follows. All jobs are released at time

t = 0. For each request Ri,q,v for `q issued by Ji, select one request for `q

from each other job Jx with N ′x,q > 0 and denote this set of requests as R.

At time t, Ji’s request Ri,q,v and the requests in R are issued simultaneously,

and Ji’s request is blocked by all of the other requests. Decrement N ′x,q by

one for each other job, increment the time t by the cumulative maximum

critical section lengths of the requests Ri,q,v and R, and proceed with Ji’s

next request (if any). Once all of Ji’s requests have been considered, all jobs

complete, which concludes the construction of the schedule. By Constraints 8

and 23 in the analysis for F|N and F|P locks (Sections 6.3.2 and 6.3.6), the

number of blocking requests N ′x,q issued by job Jx for `q does not exceed

the number of Ji’s requests for `q. Hence, in the constructed schedule, Ji

incurs blocking for the same duration as determined by the analysis, and the

blocking analysis presented in Chapter 6 is tight in the setting we consider

for our reductions.

Note that the computationally inexpensive blocking analysis presented in

Chapter 6 does not generally yield tight blocking bounds. However, with the

simplified system model we assume here and without nesting, tightness can

be ensured. With nesting (and strong ordering guarantees), in contrast, the

blocking analysis problem is inherently hard with the same simplified system

model.

211

Optimization and Decision Variants

Given a set of jobs, a job under analysis, Ji, their resource accesses and a

mapping of jobs to processors, we denote the problem of deriving worst-case

blocking durations (i.e., tight bounds) as the blocking analysis optimization

problem BO, and the outcome of the blocking analysis for a job Ji is denoted

as Bi = BO(Ji).

BO: Blocking Analysis Optimization Problem

Input job set J1, . . . , Jn, job under analysis Ji, resource accesses,

partitioning.

Output Ji’s worst-case blocking duration BO(Ji).

In the problem definition above and in the following we assume that the re-

source accesses are encoded as a list of tuples (Ni,q, Li,q) giving the maximum

number of accesses of each job Ji with 1 ≤ i ≤ n to each resource q with

q ∈ Q and its maximum critical section length (analogous to the definition

of Ni,q and Li,q for tasks provided in Section 2.1.4). In addition, we assume

that the nesting relation between requests is encoded as a list containing

a tuple (Rx,q,s, Rx,q′,s′) if and only if Jx’s request Rx,q′,s′ is directly nested

within a different request Rx,q,s (i.e., Rx,q,s . Rx,q′,s′).

For our reductions, we also consider a decision variant of the blocking analysis

problem defined as follows: given a set of jobs, a job under analysis, Ji, and an

integral value Bi, the blocking analysis decision problem BD is the problem

of deciding if there exists a job arrival sequence and resulting schedule in

which Ji is blocked for at least Bi time units. We denote the outcome of the

decision problem (i.e., True or False) as BD(Ji, Bi).

212

BD: Blocking Analysis Decision Problem

Input job set J1, . . . , Jn, job under analysis Ji, resource accesses,

partitioning, Bi.

Output True if and only if BO(Ji) ≥ Bi.

The blocking analysis decision problem can be trivially reduced to the

optimization variant: given the solution to the optimization problem BO(Ji),

solutions to the decision problem BD(Ji, Bi) can be obtained by returning

True if and only if BO(Ji) ≥ Bi. The optimization variant can be reduced

(under Turing reductions, see Section 2.6.1) to the decision variant within

polynomial time, as we show next.

Given an oracle for the blocking analysis decision problem BD(Ji, Bi), the

solution to the optimization problem can be obtained by finding the maximal

integral value of B′i for which BD(Ji, Bi) evaluates to True. This can be

achieved by repeatedly evaluating BD(Ji, Bi) within a binary search over

the interval [0, Bmax
i], where Bmax

i is a trivial upper bound on the blocking

that Ji can incur (e.g., the sum of all critical section lengths). Note that

Bmax
i grows exponentially with respect to the size of the problem instance

c: Bmax
i = O(2c). Here, c denotes the size of the binary representation of

the problem instance. Since the binary search terminates after O(log2B
max
i)

steps, computing the solution to the optimization problem takes overall

O(log2B
max
i) = O(log2 2c) = O(c) steps with respect to the size of the

problem instance c.

For brevity, we denote the blocking analysis decision problems for FIFO-

ordered and priority-ordered locks as BDF and BDP , respectively. Further,

we denote the blocking that a job Jx incurs in a particular schedule S

(resulting from a particular job arrival sequence) as Bx(S).

In the following two sections, we show that the blocking analysis problem for

FIFO- and priority-ordered mutex locks is strongly NP -hard when nesting

213

of requests is allowed, even under the weak assumptions we stated in Sec-

tion 7.3.1. To that end, we present many-one reductions (see Section 2.6.1

for a brief summary) from the MCM problem to BDF and BDP problems,

respectively. That is, given an MCM problem, we construct a set of jobs

issuing nested requests such that the worst-case blocking duration Bi encodes

the answer to the MCM problem. We begin by reducing instances of the

MCM problem to the BDF problem.

7.4 Reduction of MCM to BDF

Before detailing the construction of the BDF instance from an MCM instance,

we first illustrate the high-level approach with an example.

7.4.1 An Example BDF Instance

Consider the graph G1 in Figure 7.3. The corresponding BDF instance is

shown in Figure 7.5a.

We model vertices as shared resources and edges as nested requests. More

specifically, edges are encoded as a request to a “dummy resource” `D that

contains two nested requests to the resources representing the endpoints of

the edge.

The two edge partitions in G1 (shown as dashed or solid edges in Figure 7.3)

correspond to processors P1 and P2 on which two jobs J1 and J2 issue the

requests that model the edges in G1.

The job J3 on processor P3 serves as a “probe”: by solving the BDF problem

for J3, which accesses only the dummy resource `D, we can infer whether G1

admits an MCM of size two. Finally, the job J4 on processor P4 serves to

transitively block J3 by creating contention for all resources corresponding

214

P1 P2 P3 P4

J1 J2 J3 J4

`2`1

`3

`4

`D

`D

`D

`D

`1

`2

`2 `3

`3 `4

`3

`D

`D

`2

`1

`4

`3

`2

`1

`4

sh
ortlon
g

requests

processor

issued
requests

assigned
job

(a) BDF problem constructed from G1 and k = t = 2.

`D

P1 P2 P3 P4

J1 J2 J3 J4

`2`1`3

`4

`1

`2 `2 `3

`3

`2

`1

`4

`3

`2

`1

`4

sh
ortlon
g

requests

`D`D`D

`D

processor

issued
requests

assigned
job

(b) BDF problem constructed from G2 and k = t = 2.

Figure 7.5: BDF problems constructed from G1 and G2.

to vertices in G1, as explained in more detail below.

7.4.2 Construction of the BDF Instance

Formally, given an MCM instance that consists of a graph G = (V,E), t

disjoint edge partitions E1, . . . , Et such that E1 ∪ · · · ∪ Et = E, and k = t

(without loss of generality, see Section 7.3.2), we construct a BDF instance

215

as follows.

For each vertex v ∈ V , there is one shared resource `v. In addition, there is

a single dummy resource `D. We consider t+ 2 processors, P1, . . . , Pt+2, and

t+ 2 jobs, J1, . . . , Jt+2, where each job Jj with 1 ≤ j ≤ t+ 2, is assigned to

processor Pj .

We construct requests with two basic critical section lengths: there are short

and long critical sections, with the corresponding lengths of ∆S , 1 and

∆L , 2 · |V |, respectively.

The jobs J1, . . . , Jt issue requests for the dummy resource `D with nested

requests to model edges, Jt+1 issues a single request for `D, and Jt+2 issues

a short request (of length ∆S) and a long request (of length ∆L) for each

resource `v corresponding to a vertex v ∈ V . More formally, the jobs issue

requests as follows.

• Jobs J1, . . . , Jt: For each edge ei = {v, v′} in the edge partition Ej , job

Jj issues three requests: one request Rj,D,i for `D, one request Rj,v,i

for `v, and one request Rj,v′,i for `v′ . The critical section lengths are

Lj,D = 2 ·∆L, Lj,v = ∆L, and Lj,v′ = ∆L, respectively. The requests

are nested such that Rj,D,i . {Rj,v,i, Rj,v′,i}.

• Job Jt+1 issues one non-nested request Rt+1,D,1 for `D with critical

section length Lt+1,D = 1.

• Job Jt+2 issues for each resource `v with v ∈ V two non-nested requests:

Rt+2,v,1 and Rt+2,v,2. The critical section lengths are Lt+2,v,1 = ∆L

and Lt+2,v,2 = ∆S , respectively.

As the number of constructed jobs is linear in t ≤ |E| and the number of

constructed requests is linear in |V |, the reduction of the MCM instance to

an BDF instance requires only polynomial time with respect to the size of

the input graph.

216

7.4.3 Basic Idea: Jt+1’s Maximum Blocking Implies MCM

Answer

Recall that for a solution to the MCM problem to exist, there must be k

matched edges, and each vertex in the graph must be adjacent to at most one

matched edge. As we illustrate next with an example, this is equivalent to

requiring that, in a schedule S in which Jt+1 incurs the maximum blocking

possible (i.e., Bt+1(S) = Bt+1), Jt+1 is transitively blocked in S by Jt+2 with

exactly 2k of its long critical sections and none of its short critical sections.

Whether this is in fact the case can be inferred from Bt+1 due to the specific

values chosen for ∆S and ∆L.

Returning to the example BDF instance shown in Figure 7.5a, note how

the vertices v1, . . . , v4 in G1 correspond to the shared resources `1, . . . , `4 in

Figure 7.5a, and how edges in G1 map to nested requests issued by J1 and

J2. For instance, the dashed edge {1, 2} in G1 is represented as a request

for `D issued by J1 (which corresponds to E1) that contains nested requests

for `1 and `2. Similarly, the remaining dashed edges {1, 3} and {2, 4} are

also represented by nested requests issued by J1. The solid edges {2, 3} and

{3, 4} are represented by similar requests issued by J2 (which corresponds to

E2).

Crucially, all requests for the resources `1, . . . , `4 issued by J1 and J2 are

nested within a request for `D. This ensures that (i) J3 can be transitively

delayed by J4’s requests and that (ii) J1 and J2’s requests for `1, . . . , `4 cannot

block each other since `D must be held in order to issue these requests.

Consider the worst case for J3, which is also illustrated in Figure 7.6a: J3’s

request for `D is delayed by one (outer) request for `D from both J1 and J2

each, and the nested requests issued by J1 and J2 are in turn blocked by

requests issued by J4, which transitively delays J3. Importantly, the total

217

50 10

`1`D
`2

`D
`3 `4

`D

`1 `2 `3 `4

�L

J1

J2

J3

J4

P4

P1

P2

P4

(a) Schedule for the BDF problem for
G1 in which J3 is blocked for 4·k·∆L =
8 ·∆L time units.

50 10

`1`D
`2

`D

`D

`1 `2

`1 `3

`1 `3

�L

J1

J2

J3

J4

P4

P1

P2

P4

(b) Schedule for the BDF problem for
G2 in which J3 is blocked for 7 ·∆L +
∆S time units.

Figure 7.6: Example schedules for the constructed BDF problems.

delay incurred by J3 in the worst case is determined by which requests of J4

cause transitive blocking—since J4 accesses each `1, . . . , `4 with a long critical

section only once, J4 can transitively delay J3 for 4 ·∆L time units only if

J4 (indirectly) conflicts with J3 via four (i.e., 2 · k) distinct resources.

In other words, if B3 indicates that J4 can transitively delay J3 for 4 ·∆L

time units, then there exists a way to choose one outer request of J1 (i.e.,

an edge from E1) and one outer request of J2 (i.e., an edge from E2) such

that the nested requests of J1 and J2 access four distinct resources (i.e.,

no vertex is adjacent to both edges), which implies the existence of a valid

MCM.

We illustrate this correspondence with two examples. For G1 and k = t = 2,

a valid MCM F indeed exists: F = {{1, 2}, {3, 4}}. Therefore, as shown

in Figure 7.6a, there exists a schedule such that J3 is blocked for a total

of B3 = 8 · ∆L time units, which includes 2 · k · ∆L = 4 · ∆L time units

of transitive blocking due to J4. (The remaining 4 ·∆L time units are an

irrelevant artifact of the construction and due to J1 and J2’s nested requests.)

Hence, BDF (J3, 8 ·∆L) = True.

For G2 with k = t = 2, no MCM exists: any combination of one dashed and

one solid edge necessarily has one vertex in common. This is reflected in the

218

derived BDF instance, which is shown in Figure 7.5b. Job J3 can be blocked

for at most 7 ·∆L + ∆S time units in total, as Figure 7.6b illustrates, but

not for 8 ·∆L time units. In particular, J3 is transitively delayed by J4 for

only 3 ·∆L + ∆S time units in the depicted schedule since J4 blocks J3 twice

with a request for `1. Hence, BDF (J3, 8 ·∆L) = False.

In general, we observe that BDF (Jt+1, 4 · k ·∆L) = True if and only if a

valid MCM exists. We formalize this argument in Theorem 6 below and

begin by establishing essential properties of the constructed set of jobs and

requests.

7.4.4 Properties of the Constructed Job Set

First, we observe that the lengths of Jt+2’s critical sections enable us to

infer from Jt+1’s blocking bound whether any short requests block Jt+1 in a

worst-case schedule.

Lemma 19. Consider a schedule S in which Jt+1 is blocked for Bt+1(S) =

Bt+1 time units. If Bt+1 is an integer multiple of ∆L, then Jt+1 is not blocked

by any short request in S.

Proof. By construction, only Jt+2 issues short requests. In total, Jt+2 issues

|V | short requests, each with a critical section length ∆S = 1. Therefore,

Jt+1 can be blocked for at most |V | ·∆S = |V | time units by these requests.

Hence, if one or more short requests block Jt+1 in S, then Bt+1(S) is not an

integer multiple of ∆L as ∆L = 2 · |V | > |V | ·∆S . �

Next, we establish a straightforward bound on the duration that any request

for `D issued by a job J1, . . . , Jt blocks Jt+1.

Lemma 20. Each request for `D issued by a job Jj , where 1 ≤ j ≤ t, blocks

Jt+1 for at most 4 ·∆L time units.

219

Proof. By construction, each request for `D from such a job Jj has a length

of 2 ·∆L time units and contains two nested requests for two resources `v1

and `v2 , where {v1, v2} ∈ E. Also by construction, while Jj holds `D, it

can encounter contention only from Jt+2 (since all requests issued by jobs

J1, . . . , Jt are serialized by `D). In the worst case, each of Jj ’s nested requests

is hence blocked only by Jt+2’s matching long request of length ∆L. Jj thus

releases `D after at most 4 ·∆L time units. �

From Lemma 20, we obtain an immediate upper bound on the total blocking

incurred by Jt+1 in any schedule.

Lemma 21. Bt+1 ≤ 4 · k ·∆L.

Proof. By construction, Jt+1 issues only a single request for `D. By Lemma 1,

Jt+1 is blocked by at most one request for `D from each job Jj with 1 ≤ j ≤ t.

(Jt+2 does not access `D.) By Lemma 20, each of these t = k requests blocks

Jt+1 for at most 4 ·∆L time units. Hence, Bt+1 ≤ 4 · k ·∆L. �

Figure 7.6a illustrates Lemma 21 for the BDF instance constructed for G1.

In the depicted schedule, J3 is blocked in total for 4 · k ·∆L = 8 ·∆L time

units, and no other request can further block J3. Note that none of the

resources `1, . . . , `4 is requested more than once within a request for `D from

J1 or J2 that blocks J3. In fact, as we show with the next lemma, this is

generally the case if the job J3 is blocked for 4 · k ·∆L time units.

Lemma 22. Let S denote a schedule of the constructed job set. If Bt+1(S) =

4 · k ·∆L, then each resource `v with v ∈ V is requested within at most one

request for `D that blocks Jt+1.

Proof. From Lemma 21, it follows that S is a worst-case schedule for Jt+1.

Hence, if a job Jj with 1 ≤ j ≤ t blocks Jt+1 with a request for `D, then

220

each nested request therein encounters contention from Jt+2. (Otherwise,

S would not be a worst-case schedule.) By Lemma 19, since Bt+1(S) is an

integer multiple of ∆L, Jt+1 is (transitively) blocked only by long requests

in S. Since Jt+2 issues only a single long request for each `v (with v ∈ V),

this implies that each resource `v with v ∈ V is requested within at most

one request for `D that blocks Jt+1. �

With Lemma 22 it can be shown that, if BDF (Jt+1, 4 · k · ∆L) = True,

then there is a matching such that no vertex is adjacent to more than one

matched edge. To solve the MCM problem, we additionally have to show

that such a matching contains exactly one edge from each edge partition.

To this end, we next show that, if Bt+1(S) = 4 · k ·∆L, then exactly one

request for `D (corresponding to an edge) from each of the jobs J1, . . . , Jt

(each corresponding to an edge partition) blocks Jt+1.

Lemma 23. Let S denote a schedule of the constructed job set. If Bt+1(S) =

4 · k ·∆L, then each Jj with 1 ≤ j ≤ t blocks Jt+1 with exactly one request

for `D.

Proof. By Lemma 1, each of the t jobs J1, . . . , Jt can block Jt+1 in S with at

most one request for `D. (Jt+2 does not access `D.) Further, by Lemma 20,

a request for `D by a job Jj with 1 ≤ j ≤ t blocks Jt+1 for at most 4 ·∆L

time units. Hence, the number of such requests that block Jt+1 in S is at

least Bt+1(S)/(4 ·∆L) = k = t. Hence, each Jj with 1 ≤ j ≤ t blocks Jt+1

exactly once in S. �

With these lemmas in place, we next show that solving the BDF problem

for the constructed instance is equivalent to solving the MCM problem for

the input instance.

221

Theorem 6. A matching F solving the MCM problem exists if and only if

BDF (Jt+1, 4 · k ·∆L) = True.

Proof. We show the following two implications to prove equivalence:

• =⇒: If BDF (Jt+1, 4 · k ·∆L) = True, then there exists a matching F

solving the MCM problem.

• ⇐=: If there exists a matching F solving the MCM problem, then

BDF (Jt+1, 4 · k ·∆L) = True.

=⇒: By the definition of BDF , it follows from BDF (Jt+1, 4 · k ·∆L) = True

that there exists a schedule S such that Bt+1(S) = 4 · k ·∆L. We construct

a matching F that solves the MCM problem from the requests for `D that

block Jt+1 in S.

For each job Jj with 1 ≤ j ≤ t, let Rj,D,s denote the request for `D issued

by Jj that blocks Jt+1 in S. For brevity, let edge(Rj,D,s) denote the edge

{v1, v2} corresponding to Rj,D,s, and let F contain all edges represented by

requests for `D that block Jt+1: F ,
⋃

1≤j≤t{edge(Rj,D,s)}.

By Lemma 23, exactly one request for `D from each job J1, . . . , Jt blocks

Jt+1; F hence contains |F | = t edges in total and exactly one edge per

edge partition. Further, by Lemma 22, for each resource `v with v ∈ V at

most one request for `v is nested within a blocking request for `D from any

processor. Hence, each vertex v ∈ V is adjacent to at most one edge in F .

Therefore F is a matching solving the MCM problem.

⇐=: Let F be a matching solving the MCM problem for a graph G = (V,E),

edge partitions E1, . . . , Et, and k = t. Consider a schedule S in which Jt+1 is

maximally (i.e., for the full critical section length) blocked by each request for

`D that corresponds to an edge in F . Since F is an MCM in G, F contains

exactly one edge from each edge partition. Then, by construction, Jt+1 is

blocked by exactly one request for `D from each processor Pj , 1 ≤ j ≤ t.

222

As F is a matching, each vertex v ∈ V is adjacent to at most one edge in

F . Since vertices in the MCM instance correspond to resources in the BDF

instance, each resource `v with v ∈ V is requested within at most one request

for `D that blocks Jt+1 in S. Then each request for `v with v ∈ V nested

within a blocking request for `D can be blocked by the long request for `v

issued by Jt+2, and thus each blocking request for `D can block Jt+1 for

4 ·∆L time units. Since k = t requests for `D in total block Jt+1, there exists

a schedule S such that job Jt+1 is blocked for 4 · k ·∆L time units. Then

BDF (Jt+1, 4 · k ·∆L) = True. �

As described in Section 7.4.2, the construction of the BDF instance requires

only polynomial time with respect to the MCM instance size. Since instances

of the MCM decision problem can be solved via reduction to BDF , and

since the MCM problem is strongly NP -complete, it follows that BDF is

strongly NP -hard.

Next, we show that the blocking analysis decision problem for priority-ordered

locks in the presence of nested critical sections on multiprocessors is strongly

NP -hard as well.

7.5 Reduction of MCM to BDP

The reduction to BDP follows in large parts the same structure as the one for

BDF , but must deal with the slightly weaker progress guarantees offered by

priority-ordered locks. With FIFO-ordered locks, each request can be blocked

at most once by a request from each other processor (Lemma 1). This fact

was exploited to ensure that exactly one edge in each edge partition of a given

MCM instance is contained in a matching. Priority-ordered locks, however,

do not have this ordering property, and hence the previous approach cannot

223

be used directly. To ensure that one edge per partition is matched, we instead

use multiple different dummy resources and an appropriate assignment of

request priorities. Next, we explain the approach in detail.

7.5.1 Main Differences to BDF Reduction

At a high level, the constructed BDP instance is similar to the BDF reduction,

with the following exceptions.

• We use one dummy resource `jD for each processor Pj with 1 ≤ j ≤ t

(instead of the single global `D in BDF).

• The job Jt+1 issues a request for each dummy resource `jD (instead of

a single request for `D in BDF).

• Each job Jj with 1 ≤ j ≤ t issues requests for the “local” dummy

resource `jD (instead of for the global `D in BDF).

• An additional resource `U serializes requests of the jobs J1, . . . , Jt: each

job Jj ’s requests for the dummy resource `jD (with 1 ≤ j ≤ t) are nested

in a request for `U .

The basic idea of the reduction of MCM to BDP is the same as for the

reduction to BDF : the solution to the MCM problem can be inferred from

Jt+1’s blocking bound. We illustrate the reduction of MCM to BDP with

two examples. Figures 7.7a and 7.7b show the BDP instances constructed

for the graphs G1 and G2, respectively, as given in Figure 7.3. The priorities

of the requests are assigned as follows. We use three distinct priority levels:

high, medium, and low. J3’s requests are issued with high priority, J1’s and

J2’s requests are issued with medium priority, and J4’s requests are issued

with low priority.

Recall that for graph G1 and k = t = 2, a matching F solving the MCM

224

P1 P2 P3 P4

J1 J2 J3 J4

`2`1 `3 `4`1 `2 `2 `3
`3

`2

`1

`4

`3

`2

`1

`4

sh
ortlon
g

requests

`1D `2D

`U

`1D

`U `U `U

`1D `2D

`U

`3 `4

`1D

processor

assigned
job

issued
requests

`2D

(a) BDP problem constructed from G1 and k = t = 2.

P1 P2 P3 p4

J1 J2 J3 J4

`2`1 `3`4 `1`2 `2 `3
`3

`2

`1

`4

`3

`2

`1

`4

sh
ortlon
g
requests

`1D `2D

`U

`1D

`U`U `U `1D

`2D

processor

issued
requests

assigned
job

`2D

(b) BDP problem constructed from G2 and k = t = 2.

Figure 7.7: BDP problems constructed from G1 and G2.

problem exists: F = {{1, 2}, {3, 4}}. In the BDP instance constructed for

G1 shown in Figure 7.7a, J3 is blocked for 8 ·∆L in the worst case, just as it

is the case in the reduction to the BDF problem presented in the previous

section. Figure 7.8a depicts a schedule in which J3 incurs the worst-case

blocking of 8 ·∆L. Notably, J3 is not blocked by any short requests issued

by J4. As in the reduction to the BDF problem, J3 can only be blocked

for 8 ·∆L time units if no short requests block J3, and no solution to the

given MCM problem exists if any short requests block J3 in a worst-case

schedule.

We illustrate this property with the MCM problem for G2 and k = t = 2,

225

50 10

`1 `2

`3 `4

`1D

`1D

`2D

`U

`2D

`U

`1 `2 `3 `4

�L

J1

J2

J3

J4

P4

P1

P2

P4

(a) Schedule for the BDP problem in-
stance for G1 in which J3 is blocked for
4 · k ·∆L = 8 ·∆L time units.

50 10

J1

J2

J3

J4

`1 `2

`1 `2 `3

`1D

`2D

`U

`1

`1 `3
`U

`1D
`2D

�L

P4

P1

P2

P4

(b) Schedule for the BDP problem in-
stance for G2 in which J3 is blocked for
7 ·∆L + ∆S time units.

Figure 7.8: Example schedules for the constructed BDP problems.

for which no solution exists. In the constructed BDP instance for G2 (shown

in Figure 7.7b), J3 can thus be blocked for at most 7 ·∆L + ∆S time units,

as illustrated in Figure 7.8b.

In general, as we argue in the following, a matching solving an MCM problem

exists if and only if, in the constructed BDP instance, job Jt+1 can be blocked

for 4 · k ·∆L time units, and hence, BDP (Jt+1, 4 · k ·∆L) = True.

7.5.2 Construction of the BDP Instance

Formally, given an MCM instance consisting of a graph G = (V,E) and k = t

pairwise disjoint edge partitions E1, . . . , Et, we construct a BDP instance as

follows.

There is one shared resource `v for each vertex v ∈ V . Instead of the single

dummy resource in the construction for BDF , there is one dummy resource

`jD for each processor Pj with 1 ≤ j ≤ t, and an additional dummy resource

`U . As in the BDF reduction, there are t + 2 processors P1, . . . , Pt+2 and

t+2 jobs J1, . . . , Jt+2, where each such job Jj (with 1 ≤ j ≤ t+2) is assigned

to the corresponding processor Pj .

226

As in the BDF reduction, the critical sections of these jobs are either short

(i.e., of length ∆S , 1) or long (i.e., of length ∆L , 2 · |V |), and graph

edges are modeled as nested requests. In contrast to the reduction to BDF ,

where all of these requests were nested within a request for the single dummy

resource `D, the requests modeling an edge from edge partition Ej are nested

within a request for the dummy resource `jD. Further, each request for `jD

issued by a job Jj with 1 ≤ j ≤ t is nested within a request for `U . The jobs

issue requests as follows.

• Jobs J1, . . . , Jt: For each edge ei = {v, v′} in the edge partition Ej ,

the job Jj issues four requests: one request Rj,U,i for `U , one request

Rj,Dj ,i for `jD, one request Rj,v,i for `v, and one request Rj,v′,i for `v′ ,

where Rj,U,i .Rj,Dj ,i .{Rj,v,i, Rj,v′,i}, and Lj,U = 2 ·∆L, Lj,Dj = 2 ·∆L,

Lj,v = ∆L, and Lj,v′ = ∆L.

• Job Jt+1 issues one non-nested request Rt+1,Dj ,1 for each dummy

resource `jD (where 1 ≤ j ≤ t) with Lt+1,Dj = 1.

• Job Jt+2 issues for each resource `v (where v ∈ V) two non-nested

requests Rt+2,v,1 and Rt+2,v,2, where Lt+2,v,1 = ∆L and Lt+2,v,2 = ∆S .

Since we use priority-ordered locks in the construction of the BDP instance,

a priority has to be assigned to each request. We use three priority levels:

high, medium, and low. The requests issued by job Jt+1 all have high priority,

while the requests issued by J1, . . . , Jt all have medium priority (which is

strictly lower than high priority). The requests issued by Jt+2 all have low

priority (which is strictly lower than medium priority).

As with the BDF reduction, reducing an MCM instance to the BDP problem

requires only polynomial time with respect the input size as the number of

constructed jobs is linear in t ≤ |E| and the number of constructed requests

is linear in |V |.

227

7.5.3 Properties of the Constructed Job Set

The choice of critical section length of the requests issued by Jt+2 allows us

to infer from Jt+1’s blocking bound whether Jt+1 is blocked by any short

requests in a worst-case schedule.

Lemma 24. Consider a schedule S in which Jt+1 is blocked for Bt+1(S) =

Bt+1 time units. If Bt+1 is an integer multiple of ∆L, then Jt+1 is not blocked

by any short request in S.

Proof. Analogous to the proof of Lemma 19. By construction, there exist

only |V | short requests (issued by Jt+2), each of length ∆S = 1. Since

∆L = 2 · |V | > |V | ·∆S , if any of the short requests block Jt+1 in S, then

Bt+1(S)/∆L is not integer. �

In the next lemma, we state a bound on the blocking duration that Jt+1 can in-

cur due to any single request for `D issued by one of the jobs J1, . . . , Jt.

Lemma 25. Each request for `jD issued by a job Jj , where 1 ≤ j ≤ t, blocks

Jt+1 for at most 4 ·∆L time units.

Proof. Analogous to the proof of Lemma 20. By construction, each request

for `jD from such a job Jj has a length of 2 ·∆L time units and contains two

nested requests for two resources `v1 and `v2 , where {v1, v2} ∈ E. Also by

construction, while Jj holds `jD, it can encounter contention only from Jt+2

(since all requests issued by jobs J1, . . . , Jt are serialized by `U). In the worst

case, each of Jj ’s nested requests is hence blocked only by Jt+2’s matching

long request of length ∆L. Jj thus releases `jD after at most 4 ·∆L time units.

�

Lemma 25 leads to a straightforward upper bound on the total blocking

228

incurred by Jt+1 in any schedule.

Lemma 26. Bt+1 ≤ 4 · k ·∆L.

Proof. Analogous to the proof of Lemma 21. By construction, Jt+1 issues

only a single request for each resource `jD with 1 ≤ j ≤ t. Since Jt+1’s

requests have higher priority than the requests issued by the jobs J1, . . . , Jt,

each of the requests for `jD with 1 ≤ j ≤ t issued by Jt+1 can be blocked

by at most one request for `jD from Jj . By Lemma 25, each of these t = k

requests blocks Jt+1 for at most 4 ·∆L time units. Hence, Bt+1 ≤ 4 ·k ·∆L. �

Lemma 26 is illustrated in Figure 7.8a for the BDP instance constructed

from G1. In this schedule, J3 is blocked for 4 · k ·∆L = 8 ·∆L time units in

total, and J3 cannot be further blocked by any other request. Just as it is

the case with the BDF reduction (recall Figure 7.6a), none of the resources

`1, . . . , `4 is requested more than once within the requests for `1D and `2D

issued by J1 and J2 that block J3. As stated next, this is generally the case

if J3 is blocked for 4 · k ·∆L time units.

Lemma 27. Let S denote a schedule of the constructed job set. If Bt+1(S) =

4 · k ·∆L, then each resource `v with v ∈ V is requested within at most one

request for any resource `jD with 1 ≤ j ≤ t that blocks Jt+1.

Proof. Analogous to the proof of Lemma 22. From Lemma 26, it follows that

S is a worst-case schedule for Jt+1, and thus if a job Jj with 1 ≤ j ≤ t blocks

Jt+1 with a request for `jD, then each nested request therein encounters

contention from Jt+2.

By Lemma 24, since Bt+1(S) is an integer multiple of ∆L, Jt+1 is blocked

only by long requests in S. Since Jt+2 issues only a single long request

for each `v (with v ∈ V), this implies that each resource `v with v ∈ V is

requested within at most one request for any `jD with 1 ≤ j ≤ t that blocks

229

Jt+1. �

If BDP (Jt+1, 4 ·k ·∆L) = True, then Lemma 27 allows inferring the existence

of a matching such that no two matched edges share a vertex, and that exactly

one edge from each edge partition is contained in the implied matching.

Lemma 28. Let S denote a schedule of the constructed job set. If Bt+1(S) =

4 · k ·∆L, then each Jj with 1 ≤ j ≤ t blocks Jt+1 with exactly one request

for `jD.

Proof. Analogous to the proof of Lemma 23. Since Jt+1’s requests have

higher priority than the requests of jobs J1, . . . , Jt, each of Jt+1’s requests for

a resource `jD with 1 ≤ j ≤ t can be blocked at most once by a request for `jD

issued by Jj . By Lemma 25, each request for `jD from Jj with 1 ≤ j ≤ t can

block Jt+1 for at most 4 ·∆L time units. Hence, Jt+1 is blocked by exactly

one request from each processor P1, . . . , Pt. �

With the stated lemmas, it can be shown that solving the provided MCM

problem instance is equivalent to solving the constructed BDP instance.

Theorem 7. A matching F solving the MCM problem exists if and only if

BDP (Jt+1, 4 · k ·∆L) = True.

Proof. Analogous to the proof of Theorem 6. We show the following two

implications to prove equivalence:

• =⇒: If BDP (Jt+1, 4 · k ·∆L) = True, then there exists a matching F

solving the MCM problem.

• ⇐=: If there exists a matching F solving the MCM problem, then

BDP (Jt+1, 4 · k ·∆L) = True.

=⇒: It follows from BDP (Jt+1, 4 ·k ·∆L) = True that there exists a schedule

230

S such that Bt+1(S) = 4 ·k ·∆L. We construct an MCM F from the requests

that block Jt+1 in S.

For each job Jj with 1 ≤ j ≤ t, let Rj,Dj ,s denote the request for `jD

issued by Jj that blocks Jt+1 in S. Let edge(Rj,Dj ,s) denote the edge

{v1, v2} corresponding to Rj,Dj ,s, and let F contain all edges represented

by requests for the resources `jD with 1 ≤ j ≤ t that block Jt+1: F ,⋃
1≤j≤t{edge(Rj,Dj ,s)}.

By Lemma 28, each job Jj with 1 ≤ j ≤ t blocks Jt+1 with exactly one

request for `jD; F hence contains |F | = t edges in total and exactly one edge

per edge partition. By Lemma 27, for each resource `v with v ∈ V at most

one request for `v is nested within a blocking request for any resource `jD

with 1 ≤ j ≤ t. Hence, each vertex v ∈ V is adjacent to at most one edge in

F . F is thus a matching solving the MCM problem.

⇐=: Let F be a matching solving the MCM problem for a graph G = (V,E),

edge partitions E1, . . . , Et and k = t. Consider a schedule S in which Jt+1 is

blocked by each request for `jD with 1 ≤ j ≤ t that corresponds to an edge

in F . Since F is an MCM in G, F contains exactly one edge from each

edge partition. Then, by construction, Jt+1 is blocked from each processor

Pj , 1 ≤ j ≤ t by exactly one request for `jD.

As F is a matching, each vertex v ∈ V is adjacent to at most one edge

in F . Since vertices in the MCM instance correspond to resources in the

BDP instance, each resource `v with v ∈ V is requested within at most one

request for any of the resources `1D, . . . , `
t
D that blocks Jt+1 in S. Then each

request for `v with v ∈ V nested within a blocking request for a resource

`jD with 1 ≤ j ≤ t can be blocked by the long request for `v issued by

Jt+2, and thus each blocking request for a resource `jD with 1 ≤ j ≤ t can

block Jt+1 for 4 · ∆L time units. Since k = t requests for the resources

`1D, . . . , `
t
D in total block Jt+1, there exists a schedule S such that job Jt+1

231

is blocked for 4 ·k ·∆L time units, and hence BDP (Jt+1, 4 ·k ·∆L) = True. �

Since instances of the MCM problem with k = t can be solved by solving

the constructed BDP instance, and since the MCM problem is strongly

NP -complete, BDP is strongly NP -hard.

7.6 A Special Case: Blocking Analysis for Unordered

Nested Locks within Polynomial Time

In contrast to priority-ordered and FIFO-ordered locks, unordered locks

do not ensure any specific ordering of requests. As a consequence, each

request can be blocked by any remote request for the same resource, unless

both requests are issued within outer critical sections accessing the same

resource. Interestingly, this rules out reductions similar to those given in

Sections 7.4 and 7.5. To demonstrate this, we establish in this section that,

in a special case that matches the setup used to establish the hardness results

in the preceding two sections, the blocking analysis optimization problem for

unordered spin locks can be solved in polynomial time.

Our reductions in Sections 7.4 and 7.5 are oblivious to the scheduling policy

employed since at most one job is assigned to each processor. In this section,

we consider a similar setting for the analysis of unordered nested locks to

rule out any effects related to the scheduling policy. Specifically, we assume

that

• job release times are unknown (just as before),

• each job is assigned to its own dedicated processor,

• jobs can issue their requests at any point in their execution and in any

order, and

232

• no minimum nor maximum separation between the releases of any two

jobs or any two critical sections can be assumed.

Although the lack of knowledge about the order in which requests are

issued, a minimum or maximum separation between them, or their concrete

timing may appear to be a rather weak assumption, these assumptions were

commonly made in prior work on blocking analysis: neither the classic MSRP

analysis [72], the improved holistic one [43, Ch. 5], nor our spin lock analysis

framework presented in Chapter 6 assume or exploit such information, and

analyses for other lock types make similar assumptions (e.g., [36, 141]. Note

that the reductions given in Sections 7.4 and 7.5 match these assumptions,

that is, this restricted special case suffices to show strong NP -hardness of

the blocking analysis problem for FIFO- and priority-ordered locks in the

presence of nested critical sections.

In the following, we show that, with unordered locks, this special case can

be solved in polynomial time, which establishes that reductions similar to

those given in Sections 7.4 and 7.5 are inapplicable to this class of locks.5

Without loss of generality, we focus on computing the blocking bound for

job J1.

Our approach relies on constructing a “blocking graph” in which requests

are encoded as vertices, and the nesting relationship as well as the potential

blocking between two requests are encoded as edges. In the following, we

show how to construct the blocking graph such that the blocking optimization

problem reduces to a simple reachability check.

5To be clear, it does not establish a tractability result for the unrestricted general case,
as the general case requires addressing further issues unrelated to locking per se (e.g.,
precisely characterizing the possible interleavings of multiple jobs on each processor) that
we chose to exclude here.

233

7.6.1 An Example Blocking Graph

We first consider the illustrative example provided in Figure 7.9a. Job J1

issues two requests for the resource `2, one of which is nested within a request

for `1. The jobs J2 and J3 issue nested and non-nested requests for `1, `2, `3,

and `4 as shown in Figure 7.9a. The solid edges in Figure 7.9a are nesting

edges that encode the nesting relationship of requests.

To connect all requests in the blocking graph that can block each other, we

iteratively consider each resource one by one. First, we consider all requests

for resource `1.

Requests for `1: In the example shown in Figure 7.9a, J1’s request for `1

can be blocked by all of J2’s and J3’s requests for `1. This is indicated by

the dashed edges in Figure 7.9a that point from J1’s request for `1 to J2

and J3’s requests for `1. The resulting blocking graph now incorporates all

blocking effects caused by requests for resource `1.

Requests for `2: In the next step, we extend the blocking graph by including

edges to encode blocking due to requests for `2. J1’s non-nested request for

`2 can be blocked by all other requests for `2 issued by J2 and J3, that is,

J2’s nested request for `2 and J3’s nested and non-nested request for `2. J1’s

nested request for `2 can be blocked by J3’s non-nested requests for `2, but

cannot be blocked by the nested requests for `2 issued by J2 or J3. The

reason is that J1’s nested request for `2 is nested within a request for `1, and

hence it cannot be blocked by any other request for `2 also nested within

a request for `1. Note that J3’s non-nested request for `2 can block J2’s

nested request for `2, and hence transitively block J1. Figure 7.9b shows the

blocking graph that encodes all blocking due to requests for `1 and `2.

Requests for `3: Although J1 does not access `3, jobs J2 and J3 do, and

their requests can cause transitive blocking for J1. In particular, the nested

234

p1 p2 p3

J1 J2 J3

`2 `2

`3

`2

`1 `1

`1

`3

`1

`4

`4

`2

`3

`4

`2

(a) Considered resources:
`1.

`2 `2

`3

`2

`1 `1

`1

`3

`1

`2

`2

p1 p2 p3

J1 J2 J3

`4

`4

`3

`4

(b) Considered resources:
`1 and `2.

`2 `2

`3

`2

`1 `1

`1

`3

`1

`2

`2

p1 p2 p3

J1 J2 J3

`4

`4

`3

`4

(c) Considered resources:
`1, . . . , `4.

Figure 7.9: Construction of the blocking graph for jobs J1, . . . , J3. Dashed
arrows indicate how J1 can be directly or transitively blocked by remote
requests.

request for `3 issued by J2 is nested within a request for `1 that can block

J1. This nested request for `3 can be blocked by J3’s request for `3, which

can then transitively block J1. In Figure 7.9c, this is illustrated with an

additional dashed arrow from J2’s nested request for `3 to J3’s request for

`3.

Note that J2’s non-nested request for `3 cannot block J1: it is not issued

within a request that already blocks J1, nor can it transitively delay a request

that blocks J1. In particular, if J3’s request for `3 blocks J1, then it does so

transitively by blocking J2’s request for `3 that is nested within a request for

`1 (which in turn blocks J1). In this case, however, J2’s non-nested request

for `3 is either already completed or not issued yet, as otherwise two of

J2’s outermost requests would be pending at the same time, which is not

possible.

Requests for `4: The requests for `4 cannot block J1 as they are not nested

within any request that can block J1, nor does J1 issue any requests for `4.

Hence, although the requests for `4 issued by J2 and J3 can block each other,

235

they cannot block J1.

We denote the resulting graph as blocking graph, since by construction it has

the property that a vertex is reachable from J1 if and only if the corresponding

request can block J1. We formalize this property in Lemmas 29 and 30.

7.6.2 Blocking Graph Construction

In the following, we let e = (v1, v2) denote a directed edge from vertex v1

to vertex v2. Recall that we require the existence of a partial order < such

that if a request Rx,q′,s′ issued by Jx is nested within a request Rx,q,s, then

q < q′. Let `1, . . . , `nr denote a sequence of shared resources that satisfies

the partial order on requests. That is, a request for `i cannot be nested in

any requests for `j with j > i.

The blocking graph is a directed, acyclic graph G = (V,E) that is constructed

as follows. The set of vertices V consists of one vertex for each request Rx,q,r

issued by any job Jx in the system: V = {vx,q,r| ∃Rx,q,r}.

As shown in Figure 7.9c, we construct G with two kinds of edges: nesting

edges En (shown as solid arrows) and interference edges Ei (shown as dashed

arrows). With nesting edges we model the nesting relation among requests

in G, and with interference edges we model direct or transitive blocking of

J1’s requests. The set of nesting edges is defined as follows:

En = {(vx,p,w, vx,q,r)|Rx,p,w . Rx,q,r}. (1)

We define the set of interference edges inductively by considering requests

for only one resource in each step, as we did in the example in Section 7.6.1.

That is, we define Eit with 1 ≤ t ≤ nr to be the set of all interference edges

among requests for the resources `1 up to `t. We start with the subset Ei1

236

of Ei that contains only edges to requests for `1. (Ei1 corresponds to the

dashed edges in Figure 7.9a.) Formally, an edge (Rx,1,v, Ry,1,w) is in Ei1 if

and only if Rx,1,v is a request for `1 issued by J1 and Ry,1,w is a remote

request (because J1 cannot block itself) for `1:

(v1,1,v, vy,1,w) ∈ Ei1 ⇐⇒ ∃R1,1,v ∧ ∃Ry,1,w ∧ y 6= 1.

Based on Ei1, we define G1 = (V,E1) to be the blocking graph with the edges

E1 = Ei1 ∪ En, similar to Figure 7.9a. Recall that nr denotes the number

of shared resources. Similar to the inductive definition of Eit , we define the

respective blocking graph Gt with 1 ≤ t ≤ nr accordingly: Gt = (V,En∪Eit).

Intuitively, the (partial) blocking graph Gt considers all requests for the

resources `1, . . . , `t and the resulting potential blocking.

Before we show how the set Eit+1 can be constructed from Eit , we introduce

the following notation and definitions.

• The predicate reachable(G, Jx, vx,q,r) holds if and only if a path in G

from a request issued by Jx to the request Rx,q,r exists. All requests of

Jx are defined to be reachable.

• The set of resources that job Jx must hold when it issues the request

Rx,q,v is given by held(Rx,q,v). For instance, in the example illustrated

in Figure 7.9, job J2 must already hold a lock on the resource `1 when

it requests `2,

• Given a partial blocking graph G′ and a set of requests W , G′ \W

denotes the graph that results from removing (from G′) all vertices

corresponding to requests in W or (transitively) nested within requests

in W .

237

• The conflict set of a request Ry,t,s is given by

conf (Ry,t,s) = {Rz,u,v | `u ∈ held(Ry,t,s) ∨ z = y},

that is, the conflict set contains requests that either are also issued by

the same job or that pertain that to a resource that Jy must already

hold to issue Ry,t,s.

Based on the notion of the conflict set, we define the set of non-conflicting

edges Ei,NCt for a resource `t with 2 ≤ t ≤ nr:

Ei,NCt = {(vx,t,r, vy,t,s) | x 6= y ∧ reachable(Gt−1 \ conf (Ry,t,s), J1, vx,t,r)}.

In other words, Ei,NCt is the set of all edges (vx,t,r, vy,t,s) such that Rx,t,r and

Ry,t,s are issued by different jobs and vx,t,r is reachable without visiting any

vertices corresponding to requests conflicting with Ry,t,s.

With the definition of Ei,NCt in place, the inductive construction of the set of

interference edges Eit for 2 ≤ t ≤ nr is straightforward: Eit = Eit−1 ∪ E
i,NC
t .

First, Eit contains all edges also in Eit−1, as considering the resource `t can

only add interference edges. Second, Eit contains all non-conflicting edges

Ei,NCt that make non-conflicting requests for `t reachable.

In particular, all of J1’s requests are reachable by definition, and hence Ei,NCt

also contains all edges connecting J1’s requests for `t with requests for `t

issued by other jobs.

Since Gt reflects possible blocking due to all requests for `1, . . . , `t, Gnr = G

is actually the full blocking graph. By construction, G yields a blocking

bound for J1, as argued next.

238

7.6.3 Blocking Analysis

To start with, we argue that all requests reachable in G can contribute to

the delay experienced by J1.

Lemma 29. Under the assumed job model, there exists a schedule in which

J1 waits (i.e., is blocked) while any request Rx,q,r (with x 6= 1) that is

reachable in G is executed.

Proof. We construct a schedule that is possible under the assumed job model

in which J1 waits while each such request is executed.

Consider the graph G′ that extends G with an additional vertex vS that

connects to all of J1’s outermost requests (and to no other requests). Using

vS as the root, we construct a spanning tree T in G′ (or, rather, the connected

component that includes vS), with the following property: each path in T

from a request issued by J1 to a reachable request Rx,q,r contains at most

one request, or a consecutive subsequence of nested requests, from each other

job. (Such a path exists for each reachable Rx,q,r since multiple non-nested

requests from the same job are in conflict, i.e., not included in Ei,NCt .)

Let p = vS , v1, . . . , vk denote the sequence of vertices in T visited by a pre-

order traversal of T . Consider a schedule in which the requests are issued

in the order v1, . . . , vk. The request corresponding to v1 is issued at time 0,

and the other requests are issued as follows: if an interference edge between

a request vi and a request vi+1 exists, then vi+1 is issued at the same time as

vi; if a nesting edge between a request vi and a request vi+1 exists, then vi+1

is issued as soon as all previously issued requests nested within vi completed

(or immediately after issuing vi if no other requests nested in vi were issued

previously). In the resulting schedule, assuming that requests that are issued

at the same time are serialized such that J1’s waiting time is maximized,

J1’s requests wait while all other requests are being executed. Finally, such a

239

schedule is legal under the assumed job model (and hence must be accounted

for by an answer to the blocking analysis optimization problem) since neither

a minimum nor a maximum separation between any two requests is assumed.

�

Conversely, each request Rx,q,r that can block J1 is reachable in G, as we

show next.

Lemma 30. If there exists a schedule S in which J1 cannot proceed until a

request Rx,q,r (with x 6= 1) is complete (i.e., if Rx,q,r blocks J1), then vx,q,r

is reachable in G.

Proof. By contradiction. Suppose Rx,q,r is the first request to block J1 that

is not reachable in G. There are three cases.

Case 1 : Rx,q,r directly blocks J1 (i.e., J1 requested `q concurrently with

Rx,q,r). Then there exists a request R1,q,s issued by J1, and hence the edge

(v1,q,s, vx,q,r) is included in G by the definition of Ei,NCq .

Case 2 : Rx,q,r transitively blocks J1 (i.e., there exists a job Jy with y 6= x

that requested `q concurrently with Rx,q,r and Jy blocks J1 either directly,

transitively, or due to nesting). Then there exist two requests Ry,q,s and

Ry,u,v issued by Jy, where Ry,u,v blocks J1 and Ry,u,v . Ry,q,s. Since, by

initial assumption, Rx,q,r is the first request that both blocks J1 and is not

reachable in G, vy,u,v is reachable in G. Further, since nesting is well-ordered

according to >, vy,u,v is also reachable in Gq−1. The edge (vy,q,s, vx,q,r) is

hence included in G by the definition of Ei,NCq . (The fact that Ry,q,s and

Rx,q,r are issued concurrently implies that `u /∈ held(Rx,q,r).)

Case 3 : Rx,q,r blocks J1 due to being nested in a blocking request (i.e., there

exists a request Rx,u,v that blocks J1 either directly, transitively, or due to

nesting, and Rx,u,v . Rx,q,r). Then, by the definition of En, there exists an

240

edge (vx,u,v, vx,q,r) in G. Further, since, Rx,q,r is the first request that both

blocks J1 and is not reachable in G, vx,u,v is reachable in G.

In each case, there exists an edge from a reachable vertex to vx,q,r, which is

thus reachable, too. Contradiction. �

From Lemmas 29 and 30, we immediately obtain that, under the assumed

job model, the solution to the blocking analysis optimization problem for

J1, namely B1, is given by the sum of the lengths of all outermost reachable

requests in G (i.e., reachable requests not nested within other reachable

request). Further, B1 can be computed in polynomial time.

Theorem 8. The construction of the blocking graph and the computation

of the blocking bound B1 can be carried out in polynomial time with respect

to the size of the input.

Proof. Clearly, V and En can be constructed in polynomial time with respect

to the number of requests. The computation of the interference edges Ei

is performed iteratively for each resource, hence |Q| = nr partial blocking

graphs are computed. In each iteration, each possible edge in the graph

(i.e., at most O(|V |2) edges) has to be considered, and for each of them,

the reachability of a set of vertices has to be checked, which takes at most

O(|V |3) steps. Hence, the blocking graph can be constructed in polynomial

time with respect to the input size.

Given the blocking graph, computing the set of reachable requests takes at

most O(|V |3) steps, and determining whether a request is outermost with

respect to the set of reachable requests requires only polynomial time as well.

Hence, under the assumed job model, the blocking analysis optimization

problem for unordered spin locks can be solved in polynomial time, even in

the presence of nested critical sections. �

241

Note that the job model restrictions stated at the beginning of Section 7.6 (in

particular, the absence of minimum and maximum separation constraints and

the assumption of dedicated processors) are required for Lemma 29 (which

establishes tightness), but not for Lemma 30 (which establishes soundness).

The analysis remains thus sufficient (but not necessary) if said job model

restrictions are lifted (e.g., by considering the sporadic task model with

minimum job inter-arrival times).

Further, note that in both reductions we presented the nesting depth (i.e.,

the maximum number of locks that can be held by a single job at the same

time) in the constructed BDF and BDP instances does not depend on the

MCM instance, but is at most 2 and 3 for BDF and BDP , respectively.

It is worth noting that a nesting depth of 2 is the minimum nesting depth

for truly nested requests,6 and hence, the hardness of the blocking analysis

problem in this case does not result from potential difficulties of analyzing

deeply nested requests or dealing with unbounded nesting depth.

7.7 Summary

In the previous sections we have shown that the blocking analysis problem

for nested locks with strong ordering guarantees is strongly NP -hard, even

in simple settings with only a single job per processor. Interestingly, in a

special case in which the analysis is strongly NP -hard for nested locks with

strong ordering guarantees, the blocking analysis can be carried out within

polynomial time for unordered locks. This result was not entirely expected

since strong ordering guarantees (especially FIFO-ordering) can be effectively

6According to this definition of nesting depth, non-nested requests have a nesting depth
of 1.

242

exploited for the analysis of non-nested spin locks that can be carried out

within polynomial time (see Chapter 6). In fact, our initial goal of this work

was not to establish hardness results for the blocking analysis problem of

nested locks, but rather extend our analysis approach for non-nested spin

locks to support the nesting of critical sections.

The fact that unordered nested locks (in the special case for which the

blocking analysis is strongly NP -hard for priority- and FIFO-ordered locks)

can be analyzed within polynomial time implies that the inherent hardness of

the blocking analysis problem for nested locks with strong ordering guarantees

can be attributed to neither strong ordering guarantees nor the ability to

issue nested requests, but rather the combination of both.

243

Chapter 8

Conclusion

8.1 Summary

In this work, we have considered various aspects of spin locks in multicore

embedded real-time systems under P-FP scheduling. We presented two

approaches for the blocking-aware partitioning of task sets sharing resources

protected by the MSRP: an optimal MILP-based approach, and a compu-

tationally inexpensive heuristic. The MILP-based partitioning approach is

optimal in that it always produces partitionings under which schedulability

can be established with the classic MSRP analysis, if such partitionings exist.

Blocking effects are taken into account by encoding the classic MSRP block-

ing analysis directly into the MILP, and other application-specific constraints

(e.g., regarding task placement or priority assignment) can be seamlessly

incorporated.

The drawback of the optimal partitioning approach is the computational cost

it incurs: solving MILPs is a strongly NP -complete problem, and hence, the

computational cost may be prohibitive. As an alternative, we developed a sur-

prisingly simple and efficient heuristic, Greedy Slacker. Greedy Slacker does

244

not require task-set-specific parameter tuning and experimental evaluation

results demonstrated that this heuristic performs well on average.

The MSRP uses F|N locks for global resources, but other spin locks types,

differing in request ordering policy and whether preemptions while spinning

are allowed, have been studied. We conducted a qualitative comparison

between a variety of different spin lock types presented in prior work, and

our results show that no single spin lock type ensures minimal worst-case

blocking in all scenarios, and the best choice of spin lock type depends on

the workload.

For most of the considered spin lock types, however, no fine-grained blocking

analysis was available, and prior blocking analyses for the MSRP are inher-

ently pessimistic. This lack of analyses for most types not only prevents a

comparison of blocking bounds for concrete workloads, but also renders them

unusable for applications with real-time constraints where blocking effects

need to be quantified. To allow for a fair comparison and to eliminate the

pessimism of prior analyses for spin locks, we developed a blocking analysis

framework for non-nested spin locks avoiding such inherent pessimism and

supporting a variety of different types. The results of a large-scale experimen-

tal evaluation show that our analysis for the MSRP yields less pessimistic

blocking bounds and (often substantially) higher schedulability compared to

prior MSRP analyses. Further, the comparison of the different spin lock types

in our evaluation led to concrete suggestions to the AUTOSAR operating

system standard.

Efforts to extend our blocking analysis approach to support nested spin locks

while maintaining both computational cost and accuracy did not succeed.

This initial goal, however, was impossible to achieve: we have shown that the

blocking analysis problem for nested locks with strong ordering guarantees is

inherently strongly NP -hard. Interestingly, the blocking of unordered nested

245

locks can be analyzed within polynomial time (in a special case for which

the blocking analysis is strongly NP -hard for priority- and FIFO-ordered

locks), which implies the hardness of the blocking analysis problem in this

case is not solely a result of nested requests, but the combination of strong

ordering guarantees and nesting.

8.2 Future Work

The work presented in this thesis enables multiple directions for future

research.

8.2.1 Partitioning

To support larger instances with our optimal MILP-based partitioning ap-

proach we see potential for performance optimization. Although the parti-

tioning problem remains inherently hard, the computational cost could be

lowered by several means. Apart from generic optimization methods such as

reformulation of the MILP and tuning solver parameters, performance could

be improved by incorporating partitioning heuristics and iterative processing.

Akin to informed search algorithms (e.g., the A* graph search algorithm [79]),

the MILP-based partitioning approach could be augmented with a heuristic

to “guide” the search for a valid partitioning. Without extensions, the MILP

we formulated does not require an optimization function, and hence, a suit-

able partitioning heuristic could be used as an optimization goal to bias the

solver towards a partitioning the heuristic would have found. Importantly,

using a heuristic as optimization goal does not affect the optimality of this

approach since the optimization goal does not rule out any valid partitionings.

This technique, however, may interfere with some extensions we proposed,

such as minimizing the number of processors used, as they make use of the

246

optimization function for different purposes.

A different potential approach to improve performance is to use our MILP-

based partitioning approach incrementally starting with a subset of the

tasks. The resulting partitioning could then be used as a (incomplete)

partitioning in a subsequent iteration where additional tasks are included.

The intuition behind this approach is that the partitioning of one iteration

could remain a (mostly) valid partial partitioning in the next iteration, and

hence, partitioning the full task set can be carried out as a sequence of

smaller partitioning problems rather than a single large one. The potential

performance gains of this iterative partitioning, however, are unclear since

partial solutions may not be re-usable in a subsequent iteration, in which

case the computational cost may even increase.

Both our MILP-based partitioning approach and our heuristic assume homo-

geneous multiprocessor systems. In future work, both could be adapted for

uniform and heterogeneous systems as well.

8.2.2 Blocking Analysis

Our blocking analysis framework for spin locks can be extended in multiple

ways. Besides supporting other types of spin locks, our framework could be

extended to support the simultaneous use of different spin lock types for

disjoint sets of resources. Further, additional information on the resource

access patterns, which are not included in the task model we considered, could

be exploited to analyze the blocking at even finer granularity. For instance,

as future work, our analysis framework could be extended to incorporate the

order of issued requests or a minimum separation between them.

The worst-case blocking duration (and hence schedulability) under priority-

ordered spin locks naturally depends on the priority assignment scheme.

247

As part of future work, priority assignment schemes improving upon the

simplistic scheme we used could be studied.

8.2.3 Blocking Analysis Complexity

The hardness results we obtained shed some light on the impact of nested

critical sections on the computational complexity of the blocking analysis

problem, but also raise further questions. We have shown strong NP -hardness

for locks with strong ordering guarantees, that is, FIFO- and priority-ordering.

However, it remains unclear how “strong” ordering guarantees can be before

rendering the blocking analysis problem strongly NP -hard. In other words,

is there a request ordering policy offering more favorable worst-case behavior

than unordered locks while permitting a blocking analysis to be carried out

within polynomial time?

While we established the hardness of blocking analysis problem for nested

locks, it remains unclear whether efficiently computable approximation

schemes exists. In particular, is there a PTAS for the blocking analysis

for nested locks?

248

Bibliography

[1] “AUTOSAR Release 4.2, Specification of Operating System,” http://www.autosar.

org/fileadmin/files/releases/4-2/software-architecture/system-services/standard/

AUTOSAR SWS OS.pdf, 2014.

[2] “IBM ILOG CPLEX 12.4,” http://www-01.ibm.com/software/integration/optimization/

cplex-optimization-studio/, 2011.

[3] “Arctic Core Standard Package,” http://www.arccore.com/products/arctic-core/

standard-package, 2015.

[4] “Arctic Core for AUTOSAR V3.1,” http://www.arccore.com/products/arctic-core/

arctic-core-for-autosar-v31, 2014.

[5] “ETAS RTA-OSEK,” http://www.etas.com/en/products/rta osek.php, 2015.

[6] “ERIKA Enterprise, Version 2.5.0,” http://erika.tuxfamily.org/drupal/, 2015.

[7] “FreeOSEK,” https://github.com/ciaa/firmware.modules.rtos, 2015.

[8] “OSEK/VDX Version 2.2.3, Specification of OSEK OS,” http://portal.osek-vdx.org/files/

pdf/specs/os223.pdf, 2005.

[9] IEEE Standard for Information Technology - Portable Operating System Interface (POSIX)

- Base Specifications. IEEE Computer Society, 2008, no. Std 1003.1-2008.

[10] “SchedCAT: Schedulability Test Collection and Toolkit,” web site, http://www.mpi-sws.

org/∼bbb/projects/schedcat.

[11] J. Abella, C. Hernandez, E. Quinones, F. Cazorla, P. Conmy, M. Azkarate-Askasua, J. Perez,

E. Mezzetti, and T. Vardanega, “WCET Analysis Methods: Pitfalls and Challenges on their

Trustworthiness,” in Proceedings of the 10th IEEE International Symposium on Industrial

Embedded Systems (SIES 2015), 2015, pp. 1–10.

[12] K. Albers and F. Slomka, “An Event Stream Driven Approximation for the Analysis of Real-

Time Systems,” in Proceedings of the 16th Euromicro Conference on Real-Time Systems

(ECRTS 2004), 2004, pp. 187–195.

249

http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
 http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studi o/
 http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studi o/
http://www.arccore.com/products/arctic-core/standard-package
http://www.arccore.com/products/arctic-core/standard-package
http://www.arccore.com/products/arctic-core/arctic-core-for-autosar-v31
http://www.arccore.com/products/arctic-core/arctic-core-for-autosar-v31
http://www.etas.com/en/products/rta_osek.php
http://erika.tuxfamily.org/drupal/
https://github.com/ciaa/firmware.modules.rtos
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://www.mpi-sws.org/~bbb/projects/schedcat
http://www.mpi-sws.org/~bbb/projects/schedcat

[13] M. Alfranseder, M. Deubzer, B. Justus, J. Mottok, and C. Siemers, “An Efficient Spin-Lock

Based Multi-Core Resource Sharing Protocol,” in Proceedings of the 33rd IEEE Interna-

tional Performance Computing and Communications Conference (IPCCC 2014), 2014, pp.

1–7.

[14] S. Andalam, P. S. Roop, and A. Girault, “Deterministic, Predictable and Light-Weight

Multithreading Using PRET-C,” in Proceedings of the Conference on Design, Automation

and Test in Europe (DATE 2010). European Design and Automation Association, 2010,

pp. 1653–1656.

[15] T. Anderson, “The Performance of Spin Lock Alternatives for Shared-Memory Multipro-

cessors,” IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 1, pp. 6–16,

1990.

[16] G. R. Andrews, “Paradigms for Process Interaction in Distributed Programs,” ACM Com-

puting Surveys (CSUR), vol. 23, no. 1, pp. 49–90, 1991.

[17] S. Arora and B. Barak, Computational Complexity: A Modern Approach. Cambridge

University Press, 2009.

[18] N. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “Hard Real-Time Schedul-

ing: The Deadline-Monotonic Approach,” in Proceedings of the Workshop on Real-Time

Operating Systems and Software, 1991, pp. 133–137.

[19] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings, “Applying New Schedul-

ing Theory to Static Priority Pre-emptive Scheduling,” Software Engineering Journal, vol. 8,

no. 5, pp. 284–292, 1993.

[20] N. Audsley, Optimal Priority Assignment And Feasibility Of Static Priority Tasks With

Arbitrary Start Times. University of York, Department of Computer Science, 1991.

[21] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson, P. Marwedel,

J. Reineke, C. Rochange, M. Sebastian, R. V. Hanxleden, R. Wilhelm, and W. Yi, “Build-

ing Timing Predictable Embedded Systems,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 13, no. 4, pp. 82:1–82:37, 2014.

[22] H. Aydin and Q. Yang, “Energy-Aware Partitioning for Multiprocessor Real-Time Systems,”

in Proceedings of the International Parallel and Distributed Processing Symposium, 2003.

[23] T. P. Baker, “A Stack-Based Resource Allocation Policy for Realtime Processes,” Proceed-

ings of the 11th IEEE Real-Time Systems Symposium (RTSS 1990), pp. 191–200, 1990.

[24] ——, “Stack-Based Scheduling for Realtime Processes,” Real-Time Systems, vol. 3, no. 1,

pp. 67–99, 1991.

[25] ——, “Comparison of Empirical Success Rates of Global vs. Partitioned Fixed-Priority and

EDF Scheduling for Hard Real Time,” Tech. Rep., 2005.

[26] S. Baruah, “The Partitioned EDF Scheduling of Sporadic Task Systems,” in Proceedings of

the 32nd IEEE Real-Time Systems Symposium (RTSS 2011), 2011.

250

[27] S. Baruah and E. Bini, “Partitioned Scheduling of Sporadic Task Systems: An ILP Based

Approach,” in Proceedings of the Conference on Design and Architectures for Signal and

Image Processing (DASIP 2008), 2008.

[28] S. Baruah, A. Mok, and L. Rosier, “Preemptively Scheduling Hard-Real-Time Sporadic

Tasks on one Processor,” in Proceedings of the 11th IEEE Real-Time Systems Symposium

(RTSS 1990), 1990, pp. 182–190.

[29] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and A. Wiese, “A generalized

parallel task model for recurrent real-time processes,” in Proceedings of the 33rd Real-Time

Systems Symposium (RTSS 2012), Dec 2012, pp. 63–72.

[30] S. Baruah and N. Fisher, “The Partitioned Multiprocessor Scheduling of Sporadic Task

Systems,” in Proceedings of the 26th IEEE Real-Time Systems Symposium (RTSS 2005),

2005, pp. 321–329.

[31] S. Baruah and J. Goossens, “Scheduling Real-Time Tasks: Algorithms and Complexity,”

Handbook of Scheduling: Algorithms, Models, and Performance Analysis, vol. 3, 2004.

[32] A. Biondi, B. B. Brandenburg, and A. Wieder, “A Blocking Bound for Nested FIFO Spin

Locks,” in Proceedings of the 37th IEEE Real-Time Systems Symposium (RTSS 2016), 2016,

pp. 291–302.

[33] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, “A Flexible Real-Time Locking

Protocol for Multiprocessors,” in Proceedings of the 13th IEEE International Conference

on Embedded and Real-Time Computing Systems and Applications (RTCSA 2007), 2007.

[34] B. Bollobás, “Modern Graph Theory,” 1998.

[35] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasibility Analysis in the

Sporadic DAG Task Model,” in Proceedings of the 25th Euromicro Conference on Real-Time

Systems (ECRTS 2013), July 2013, pp. 225–233.

[36] B. Brandenburg, “Improved Analysis and Evaluation of Real-Time Semaphore Protocols for

P-FP Scheduling,” in Proceedings of the 19th IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS 2013), 2013, pp. 141–152.

[37] ——, “The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for

Suspension-Aware Analysis,” in Proceedings of the 26th Euromicro Conference on Real-

Time Systems (ECRTS 2014), 2014, pp. 61–71.

[38] B. Brandenburg and J. Anderson, “An Implementation of the PCP, SRP, D-PCP, M-PCP,

and FMLP Real-Time Synchronization Protocols in LITMUSRT,” in Proceedings of the

14th IEEE International Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA 2008), 2008, pp. 185–194.

[39] ——, “Spin-Based Reader-Writer Synchronization for Multiprocessor Real-Time Systems,”

Real-Time Systems, vol. 46, no. 1, pp. 25–87, 2010.

[40] ——, “Optimality Results for Multiprocessor Real-Time Locking,” in Proceedings of the

31st IEEE Real-Time Systems Symposium (RTSS 2010), 2010, pp. 49–60.

251

[41] ——, “Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer,

and k-Exclusion Locks,” in Proceedings of the 9th ACM International Conference on Em-

bedded software (EMSOFT 2011), 2011.

[42] ——, “The OMLP Family of Optimal Multiprocessor Real-Time Locking Protocols,” Design

Automation for Embedded Systems, 2012.

[43] B. Brandenburg, “Scheduling and Locking in Multiprocessor Real-Time Operating Systems,”

Ph.D. dissertation, UNC Chapel Hill, 2011.

[44] ——, “Blocking Optimality in Distributed Real-Time Locking Protocols,” Leibniz Transac-

tions on Embedded Systems, vol. 1, no. 2, 2014.

[45] A. Burchard, J. Liebeherr, Y. Oh, and S. Son, “New Strategies for Assigning Real-Time

Tasks to Multiprocessor Systems,” IEEE Transactions on Computers, vol. 44, no. 12, pp.

1429–1442, 1995.

[46] A. Burns and A. J. Wellings, “A Schedulability Compatible Multiprocessor Resource Sharing

Protocol – MrsP,” in Proceedings of the 25th Euromicro Conference on Real-Time Systems

(ECRTS 2013), 2013, pp. 282–291.

[47] D. Buttle, “Real-Time in the Prime-Time,” Keynote at 24th Euromicro Conference on

Real-Time Systems (ECRTS 2012).

[48] B. Chattopadhyay and S. Baruah, “A Lookup-Table Driven Approach to Partitioned

Scheduling,” in Proceedings of the 17th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS 2011), 2011.

[49] S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter, P. Marwedel, and H. Falk,

“A Unified WCET Analysis Framework for Multicore Platforms,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 13, no. 4s, pp. 124:1–124:29, Apr. 2014.

[50] S. Chattopadhyay, A. Roychoudhury, J. Rosén, P. Eles, and Z. Peng, “Time-Predictable

Embedded Software on Multi-Core Platforms: Analysis and Optimization,” Foundations

and Trends in Electronic Design Automation, vol. 8, no. 3-4, pp. 199–356, Jul. 2014.

[51] C.-M. Chen and S. K. Tripathi, “Multiprocessor Priority Ceiling Based Protocols,” Univer-

sity of Maryland, Tech. Rep., 1994.

[52] E. G. Coffman, M. R. Garey, and D. S. Johnson, Algorithm Design for Computer System

Design. Springer Vienna, 1984, ch. Approximation Algorithms for Bin-Packing — An

Updated Survey, pp. 49–106.

[53] E. G. Coffman, Jr, M. R. Garey, and D. S. Johnson, “An Application of Bin-Packing to

Multiprocessor Scheduling,” SIAM Journal on Computing, vol. 7, no. 1, pp. 1–17, 1978.

[54] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in Proceedings of the 3rd

Annual ACM Symposium on Theory of Computing (STOC 1971), 1971, pp. 151–158.

[55] P. J. Courtois, F. Heymans, and D. L. Parnas, “Concurrent Control with ”Readers” and

”Writers”,” Communications of the ACM, vol. 14, no. 10, pp. 667–668, 1971.

252

[56] T. Craig, “Queuing Spin Lock Algorithms to Support Timing Predictability,” in Proceedings

of the Real-Time Systems Symposium (RTSS 1993), 1993, pp. 148–157.

[57] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns, “A Review of Priority Assign-

ment in Real-Time Systems,” Journal of Systems Architecture, vol. 65, no. C, pp. 64–82,

2016.

[58] U. Devi, H. Leontyev, and J. Anderson, “Efficient Synchronization under Global EDF

Scheduling on Multiprocessors,” in Proceedings of the 18th Euromicro Conference on Real-

Time Systems (ECRTS 2006), 2006, pp. 75–84.

[59] S. K. Dhall and C. L. Liu, “On a Real-Time Scheduling Problem,” Operations Research,

1978.

[60] E. W. Dijkstra, “The Structure of the ”THE” Multiprogramming System,” Communications

of the ACM, vol. 11, no. 5, pp. 341–346, 1968.

[61] ——, “Cooperating Sequential Processes, Technical Report EWD-123,” Tech. Rep., 1965.

[62] A. Easwaran and B. Andersson, “Resource Sharing in Global Fixed-Priority Preemptive

Multiprocessor Scheduling,” in Proceedings of the 30th IEEE Real-Time Systems Sympo-

sium (RTSS 2009), 2009, pp. 377–386.

[63] S. A. Edwards and E. A. Lee, “The Case for the Precision Timed (PRET) Machine,” in

Proceedings of the 44th Annual Design Automation Conference (DAC 2007), 2007, pp.

264–265.

[64] F. Eisenbrand and T. Rothvoß, “EDF-Schedulability of Synchronous Periodic Task Systems

is coNP-Hard,” in Proceedings of the 21th ACM-SIAM symposium on Discrete Algorithms

(SODA 2010), 2010.

[65] ——, “Static-Priority Real-Time Scheduling: Response Time Computation is NP-Hard,” in

Proceedings of the 29th IEEE Real-Time Systems Symposium (RTSS 2008), 2008.

[66] F. Eisenbrand, N. Hähnle, M. Niemeier, M. Skutella, J. Verschae, and A. Wiese, “Schedul-

ing Periodic Tasks in a Hard Real-Time Environment,” in International colloquium on

automata, languages, and programming (ICALP), 2010.

[67] G. A. Elliott and J. H. Anderson, “An Optimal k-Exclusion Real-Time Locking Protocol

Motivated by Multi-GPU Systems,” Real-Time Systems, vol. 49, no. 2, pp. 140–170, 2013.

[68] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the Synthesis of Multiproces-

sor Tasksets,” in Proceedings of the 1st International Workshop on Analysis Tools and

Methodologies for Embedded and Real-time Systems (WATERS 2010), 2010.

[69] F. Fauberteau and S. Midonnet, “Robust Partitioning for Real-Time Multiprocessor Sys-

tems with Shared Resources,” in Proceedings of the 2011 ACM Symposium on Research in

Applied Computation (RACS 2011). New York, NY, USA: ACM, 2011, pp. 71–76.

[70] N. Fisher, “The Multiprocessor Real-Time Scheduling of General Task Systems,” Ph.D.

dissertation, UNC Chapel Hill, 2007.

253

[71] N. Fisher, S. Baruah, and T. Baker, “The Partitioned Scheduling of Sporadic Tasks Accord-

ing to Static-Priorities,” in Proceedings of the 18th Euromicro Conference on Real-Time

Systems (ECRTS 2006), 2006.

[72] P. Gai, G. Lipari, and M. Di Natale, “Minimizing Memory Utilization of Real-Time Task

Sets in Single and Multi-Processor Systems-on-a-chip,” in Proceedings of the 22nd IEEE

Real-Time Systems Symposium (RTSS 2001), 2001, pp. 73–83.

[73] M. R. Garey and D. S. Johnson, “”Strong” NP-Completeness Results: Motivation, Exam-

ples, and Implications,” Journal of the ACM, vol. 25, no. 3, pp. 499–508, 1978.

[74] ——, Computers and Intractability; A Guide to the Theory of NP-Completeness. New

York, NY, USA: W. H. Freeman & Co., 1990.

[75] “GNU Linear Programming Kit,” https://www.gnu.org/software/glpk/.

[76] G. Graunke and S. Thakkar, “Synchronization Algorithms for Shared-Memory Multiproces-

sors,” Computer, vol. 23, no. 6, pp. 60–69, 1990.

[77] K. Gresser, “Echtzeitnachweis Ereignisgesteuerter Realzeitsysteme,” Ph.D. dissertation,

Universität München, 1993.

[78] M. Grötschel, L. Lovász, and A. Schrijver, “The Ellipsoid Method and its Consequences in

Combinatorial Optimization,” Combinatorica, vol. 1, no. 2, pp. 169–197, 1981.

[79] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination

of Minimum Cost Paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4,

no. 2, pp. 100–107, 1968.

[80] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Embedded Control Systems Development

with Giotto,” in Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers

and Tools for Embedded Systems (LCTES 2001). New York, NY, USA: ACM, 2001, pp.

64–72.

[81] ——, “Giotto: A time-triggered language for embedded programming,” in Proceedings of

the First International Workshop on Embedded Software (EMSOFT 2001), 2001, pp. 166–

184.

[82] W. Hsieh and W. Weihl, “Scalable Reader-Writer Locks for Parallel Systems,” in Proceedings

of the 6th International Parallel Processing Symposium, 1992, pp. 656–659.

[83] A. Itai and M. Rodeh, “Some matching problems,” in Proceedings of the 4th International

Colloquium on Automata, Languages and Programming (ICALP 1977), 1977, pp. 258–268.

[84] M. Jacobs, S. Hahn, and S. Hack, “WCET Analysis for Multi-Core Processors with Shared

Buses and Event-Driven Bus Arbitration,” in Proceedings of the 23rd International Con-

ference on Real Time and Networks Systems (RTNS 2015). New York, NY, USA: ACM,

2015, pp. 193–202.

[85] D. Johnson, “Near-Optimal Bin Packing Algorithms,” Ph.D. dissertation, Massachusetts

Institute of Technology, 1973.

254

https://www.gnu.org/software/glpk/

[86] T. Johnson and K. Harathi, “A Prioritized Multiprocessor Spin Lock,” IEEE Transactions

on Parallel and Distributed Systems, vol. 8, no. 9, pp. 926–933, 1997.

[87] M. Joseph and P. Pandya, “Finding Response Times in a Real-Time System,” The Computer

Journal, vol. 29, no. 5, pp. 390–395, 1986.

[88] N. Karmarkar, “A New Polynomial-Time Algorithm for Linear Programming,” in Proceed-

ings of the 16th Annual ACM Symposium on Theory of Computing (STOC 1984), 1984,

pp. 302–311.

[89] R. M. Karp, “Reducibility among Combinatorial Problems,” in Proceedings of a symposium

on the Complexity of Computer Computations, 1972, pp. 85–103.

[90] L. I. Kontothanassis, R. W. Wisniewski, and M. L. Scott, “Scheduler-Conscious Synchro-

nization,” ACM Transactions on Computer Systems, vol. 15, no. 1, pp. 3–40, 1997.

[91] R. E. Ladner, “On the Structure of Polynomial Time Reducibility,” Journal of the ACM,

vol. 22, no. 1, pp. 155–171, 1975.

[92] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Coordinated Task Scheduling, Allocation

and Synchronization on Multiprocessors,” in Proceedings of the 30th IEEE Real-Time Sys-

tems Symposium (RTSS 2009), 2009.

[93] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling Parallel Real-Time Tasks on Multi-

Core Processors,” in Proceedings of the 31th IEEE Real-Time Systems Symposium (RTSS

2010), 2010, pp. 259–268.

[94] J. Y.-T. Leung and M. Merrill, “A Note on Preemptive Scheduling of Periodic, Real-Time

Tasks,” Information Processing Letters, vol. 11, no. 3, 1980.

[95] J. Y.-T. Leung and J. Whitehead, “On the Complexity of Fixed-Priority Scheduling of

Periodic, Real-Time Tasks,” Performance Evaluation, vol. 2, no. 4, pp. 237 – 250, 1982.

[96] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A Timing Analyzer for Em-

bedded Software,” Science of Computer Programming, vol. 69, no. 13, pp. 56 – 67, 2007,

special issue on Experimental Software and Toolkits.

[97] Y. Liang, H. Ding, T. Mitra, A. Roychoudhury, Y. Li, and V. Suhendra, “Timing Analysis of

Concurrent Programs Running on Shared Cache Multi-Cores,” Real-Time Systems, vol. 48,

no. 6, pp. 638–680, Nov. 2012.

[98] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A. Lee, “Predictable Program-

ming on a Precision Timed Architecture,” in Proceedings of the 2008 International Con-

ference on Compilers, Architectures and Synthesis for Embedded Systems (CASES 2008),

2008, pp. 137–146.

[99] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time

Environment,” Journal of the ACM, vol. 30, pp. 46–61, 1973.

255

[100] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. Lee, “A PRET Microarchitecture Imple-

mentation with Repeatable Timing and Competitive Performance,” in Proceedings of the

30th IEEE International Conference on Computer Design (ICCD 2012), 2012, pp. 87–93.

[101] J. Liu, Real-Time Systems. Prentice Hall, 2000.

[102] J. M. López, J. L. Dı́az, and D. F. Garćıa, “Minimum and Maximum Utilization Bounds for

Multiprocessor Rate Monotonic Scheduling,” in Proceedings of the 13th Euromicro Confer-

ence on Real-Time Systems (ECRTS 2001), 2001, pp. 67–75.

[103] E. Markatos and T. LeBlanc, “Multiprocessor Synchronization Primitives with Priorities,”

in Proceedings of the 8th IEEE Workshop on Real-Time Operating Systems and Software,

1991, pp. 1–7.

[104] J. Mellor-Crummey and M. Scott, “Algorithms for Scalable Synchronization on Shared-

Memory Multiprocessors,” ACM Transactions on Computer Systems, vol. 9, no. 1, pp.

21–65, 1991.

[105] ——, “Scalable Reader-Writer Synchronization for Shared-Memory Multiprocessors,” in

Proceedings of the 3rd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP 1991), 1991, pp. 106–113.

[106] A. Mok, “Fundamental Design Problems of Distributed Systems for the Hard-Real-Time

Environment,” Ph.D. dissertation, Massachusetts Institute of Technology, 1983.

[107] A. Mok and D. Chen, “A Multiframe Model for Real-Time Tasks,” IEEE Transactions on

Software Engineering, vol. 23, no. 10, pp. 635–645, Oct 1997.

[108] L. Molesky, C. Shen, and G. Zlokapa, “Predictable Synchronization Mechanisms for Multi-

processor Real-Time Systems,” Real-Time Systems, vol. 2, no. 3, pp. 163–180, 1990.

[109] F. Nemati, T. Nolte, and M. Behnam, “Partitioning Real-Time Systems on Multiprocessors

with Shared Resources,” in Proceedings of the 14th International Conference On Principles

Of Distributed Systems (OPODIS 2010), 2010.

[110] C. Nemitz, K. Yang, M. Yang, P. Ekberg, and J. H. Anderson, “Multiprocessor Real-Time

Locking Protocols for Replicated Resources,” in Proceedings of the 28th Euromicro Confer-

ence on Real-Time Systems (ECRTS 2016), July 2016, pp. 50–60.

[111] J. Ouyang, R. Raghavendra, S. Mohan, T. Zhang, Y. Xie, and F. Mueller, “CheckerCore:

Enhancing an FPGA Soft Core to Capture Worst-Case Execution Times,” in Proceedings

of the International Conference on Compilers, Architecture, and Synthesis for Embedded

Systems (CASES 2009), 2009, pp. 175–184.

[112] R. Rajkumar, “Real-Time Synchronization Protocols for Shared Memory Multiprocessors,”

Proceedings of the 10th International Conference on Distributed Computing Systems, pp.

116–123, 1990.

[113] R. Rajkumar, L. Sha, and J. Lehoczky, “Real-Time Synchronization Protocols for Mul-

tiprocessors,” Proceedings of the 9th IEEE Real-Time Systems Symposium, pp. 259–269,

1988.

256

[114] D. Reed and R. Kanodia, “Synchronization with Eventcounts and Sequencers,” Communi-

cations of the ACM, vol. 22, no. 2, pp. 115–123, 1979.

[115] M. Reiman and P. E. Wright, “Performance Analysis of Concurrent-Read Exclusive-Write,”

in Proceedings of the 1991 ACM SIGMETRICS Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS 1991), 1991, pp. 168–177.

[116] F. Ridouard, P. Richard, F. Cottet, and K. Traoré, “Some Results on Scheduling Tasks

with Self-Suspensions,” Journal of Embedded Computing, vol. 2, no. 3, 4, 2006.

[117] L. Rudolph and Z. Segall, “Dynamic Decentralized Cache Schemes for MIMD Parallel Pro-

cessors,” SIGARCH Computer Architecture News, vol. 12, no. 3, pp. 340–347, 1984.

[118] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-Core Real-Time Scheduling for

Generalized Parallel Task Models,” Real-Time Systems, vol. 49, no. 4, pp. 404–435, 2013.

[119] S. Schliecker, M. Negrean, and R. Ernst, “Response Time Analysis on Multicore ECUs

With Shared Resources,” IEEE Transactions on Industrial Informatics, vol. 5, no. 4, pp.

402–413, 2009.

[120] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J. Garside, K. Goossens,

S. Goossens, S. Hansen, R. Heckmann, S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop,

Y. Li, D. Prokesch, W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsø, and A. Tocchi,

“T-CREST: Time-Predictable Multi-Core Architecture for Embedded Systems,” Journal of

Systems Architecture, vol. 61, no. 9, pp. 449–471, 2015.

[121] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority Inheritance Protocols: an Approach to

Real-Time Synchronization,” IEEE Transactions on Computers, vol. 39, no. 9, pp. 1175–

1185, 1990.

[122] J. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo, “Implications of Classical Scheduling

Results for Real-Time Systems,” Computer, vol. 28, no. 6, pp. 16–25, 1995.

[123] M. Stigge and W. Yi, “Graph-based Models for Real-Time Workload: A Survey,” Real-Time

Systems, vol. 51, no. 5, pp. 602–636, 2015.

[124] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The Digraph Real-Time Task Model,” in

Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications Sym-

posium (RTAS 2011), 2011, pp. 71–80.

[125] H. Takada and K. Sakamura, “Predictable Spin Lock Algorithms with Preemption,” in

Proceedings of the 11th IEEE Workshop on Real-Time Operating Systems and Software

(RTOSS 1994), 1994, pp. 2–6.

[126] ——, “A Novel Approach to Multiprogrammed Multiprocessor Synchronization for Real-

Time Kernels,” in Proceedings of the 18th IEEE Real-Time Systems Symposium (RTSS

1997), 1997, pp. 134–143.

[127] L. Thiele and R. Wilhelm, “Design for Timing Predictability,” Real-Time Systems, vol. 28,

no. 2-3, pp. 157–177, 2004.

257

[128] K. Tindell and J. Clark, “Holistic Schedulability Analysis for Distributed Hard Real-Time

Systems,” Microprocessing and Microprogramming, 1994.

[129] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange, E. Quinones,

M. Gerdes, M. Paolieri, J. Wolf, H. Casse, S. Uhrig, I. Guliashvili, M. Houston, F. Kluge,

S. Metzlaff, and J. Mische, “Merasa: Multicore Execution of Hard Real-Time Applications

Supporting Analyzability,” IEEE Micro, vol. 30, no. 5, pp. 66–75, Sep. 2010.

[130] B. Ward and J. Anderson, “Supporting Nested Locking in Multiprocessor Real-Time Sys-

tems,” in Proceedings of the 24th Euromicro Conference on Real-Time Systems (ECRTS

2012), 2012.

[131] ——, “Multi-Resource Real-Time Reader/Writer Locks for Multiprocessors,” in Proceedings

of the 28th IEEE International Parallel and Distributed Processing Symposium (IPDPS

2014), 2014, pp. 177–186.

[132] A. Wieder and B. Brandenburg, “On Spin Locks in AUTOSAR: Blocking Analysis of FIFO,

Unordered, and Priority-Ordered Spin Locks (extended version),” http://www.mpi-sws.org/

∼bbb/papers, MPI-SWS, Tech. Rep. 2013-005, 2013.

[133] ——, “On Spin Locks in AUTOSAR: Blocking Analysis of FIFO, Unordered, and Priority-

Ordered Spin Locks,” in Proceedings of the 34th IEEE Real-Time Systems Symposium

(RTSS 2013), 2013.

[134] ——, “On the Complexity of Worst-Case Blocking Analysis of Nested Critical Sections,”

in Proceedings of the 35th IEEE Real-Time Systems Symposium (RTSS 2014), 2014, pp.

106–117.

[135] ——, “Efficient Partitioning of Sporadic Real-Time Tasks with Shared Resources and Spin

Locks,” in Proceedings of the 8th IEEE International Symposium on Industrial Embedded

Systems (SIES 2013), June 2013, pp. 49–58.

[136] R. Wilhelm and D. Grund, “Computation Takes Time, but How Much?” Communications

of the ACM, vol. 57, no. 2, pp. 94–103, 2014.

[137] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,

C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat,

and P. Stenström, “The Worst-Case Execution-Time Problem — Overview of Methods and

Survey of Tools,” ACM Transactions on Embedded Computing Systems (TECS), vol. 7,

no. 3, pp. 36:1–36:53, May 2008.

[138] R. Wilhelm, S. Altmeyer, C. Burguière, D. Grund, J. Herter, J. Reineke, B. Wachter, and

S. Wilhelm, “Static Timing Analysis for Hard Real-Time Systems,” in Proceedings of the

11th International Conference on Verification, Model Checking, and Abstract Interpretation

(VMCAI 2010), 2010, pp. 3–22.

[139] S. Wilhelm and B. Wachter, “Symbolic State Traversal for WCET Analysis,” in Proceedings

of the 7th ACM International Conference on Embedded Software (EMSOFT 2009), 2009,

pp. 137–146.

258

http://www.mpi-sws.org/~bbb/papers
http://www.mpi-sws.org/~bbb/papers

[140] M. Yang, H. Lei, Y. Liao, and F. Rabbe, “PK-OMLP: An OMLP Based k-Exclusion Real-

Time Locking Protocol for Multi-GPU Sharing under Partitioned Scheduling,” in Proceed-

ings of the 11th International Conference on Dependable, Autonomic and Secure Computing

(DASC 2013), 2013, pp. 207–214.

[141] M. Yang, A. Wieder, and B. Brandenburg, “Global Real-Time Semaphore Protocols: A

Survey, Unified Analysis, and Comparison,” in Proceedings of the 36th IEEE Real-Time

Systems Symposium (RTSS 2015), 2015, pp. 1–12.

[142] H. Zeng and M. Di Natale, “An Efficient Formulation of the Real-Time Feasibility Region

for Design Optimization,” IEEE Transactions on Computers, vol. 62, no. 4, 2013.

[143] W. Zheng, Q. Zhu, M. Di Natale, and A. S. Vincentelli, “Definition of Task Allocation and

Priority Assignment in Hard Real-Time Distributed Systems,” in Proceedings of the 28th

IEEE International Real-Time Systems Symposium (RTSS 2007), 2007.

259

	Introduction
	The Blocking Analysis Problem
	The Partitioning Problem
	Scope of this Thesis
	Contributions
	Partitioning for Task Sets using Non-Nested Spin Locks
	Blocking Analysis for Non-Nested Spin Locks
	Computational Complexity of Blocking Analysis for Nested Spin Locks

	Organization

	Background
	System Model and Assumptions
	Task Model
	Hardware Architecture
	Scheduling
	Shared Resources

	Task Schedulability and Response Time Analysis
	Priority Assignment
	Mutex Locks and Locking Protocols
	Mutex Lock Programming Interface and Semantics
	Spin Locks
	Suspension-Based Locks
	The Multiprocessor Stack Resource Protocol

	Blocking and Blocking Analysis
	Blocking Analysis for the MSRP

	Computational Complexity
	Reductions
	Complexity Classes
	NP-Hardness and NP-Completeness
	Classic Combinatorial Problems
	Approximation Schemes

	Overheads

	Related Work
	Task Models
	Priority Assignment and Partitioning
	Priority Assignment for FP
	Partitioning for P-FP

	Real-Time Locking Protocols
	Other Synchronization Primitives
	Complexity of Scheduling Problems

	Partitioning Task Sets Sharing Resources Protected by Spin Locks
	Introduction
	Partitioning Heuristics
	The Case for Optimal Partitioning
	Optimal MILP-based Partitioning
	A Lower Bound on the Maximum Interference
	A Lower Bound on the Maximum Spin Delay
	A Lower Bound on Maximum Arrival Blocking
	ILP Extensions

	Greedy Slacker: A Simple Resource-Aware Heuristic
	Evaluation
	Runtime Characteristics of Optimal Partitioning
	Partitioning Heuristic Evaluation

	Summary

	Qualitative Comparison of Spin Lock Types
	Introduction
	Dominance of Spin Lock Types
	Non-Preemptable and Preemptable Spin Locks are Incomparable
	F|* and P|* Locks Dominate U|* Locks
	F|* and P|* Locks Are Incomparable
	PF|* Locks Dominate both F|* and P|* Locks
	Summary

	Analysis of Non-Nested Spin Locks
	Introduction
	Pessimism in Prior Analyses for Spin Locks
	Classic MSRP
	Holistic Analysis
	Inherent Pessimism in Execution Time Inflation

	A MILP-Based Blocking Analysis Framework for Spin Locks
	Generic Constraints
	Constraints for F|N Spin Locks
	Constraints for P|N Spin Locks
	Constraints for PF|N Spin Locks
	Generic Constraints for Preemptable Spin Locks
	Constraints for F|P Spin Locks
	Constraints for P|P Spin Locks
	Constraints for PF|P Spin Locks
	Constraint Summary

	Aggregating Blocking Variables
	Integer Relaxation
	Analysis Accuracy and Computational Complexity
	Accuracy
	Computational Complexity

	Evaluation
	Implementation
	Experimental Setup
	Experimental Results
	Summary of Experimental Results

	Summary

	Analysis Complexity of Nested Locks
	Introduction
	Blocking Effects with Nested Locks
	Transitive Nested Blocking
	Guarded Requests

	Background
	Definitions and Assumptions
	The Multiple-Choice Matching Problem
	The Worst-Case Blocking Analysis Problem

	Reduction of MCM to BDF
	An Example BDF Instance
	Construction of the BDF Instance
	Basic Idea: Maximum Blocking Implies MCM Answer
	Properties of the Constructed Job Set

	Reduction of MCM to BDP
	Main Differences to BDF Reduction
	Construction of the BDP Instance
	Properties of the Constructed Job Set

	A Special Case: Blocking Analysis for Unordered Nested Locks within Polynomial Time
	An Example Blocking Graph
	Blocking Graph Construction
	Blocking Analysis

	Summary

	Conclusion
	Summary
	Future Work
	Partitioning
	Blocking Analysis
	Blocking Analysis Complexity

