Real-Time Resource-Sharing under Clustered Scheduling:
Mutex, Reader-Writer, and k-Exclusion Locks’

Bjoérn B. Brandenburg
Department of Computer Science
University of North Carolina at Chapel Hill
bbb@cs.unc.edu

ABSTRACT

This paper presents the first suspension-based real-time locking pro-
tocols for clustered schedulers. Such schedulers pose challenges
from a locking perspective because they exhibit aspects of both
partitioned and global scheduling, which seem to necessitate funda-
mentally different means for bounding priority inversions. A new
mechanism to bound such inversions, termed priority donation, is
presented and used to derive protocols for mutual exclusion, reader-
writer exclusion, and k-exclusion. Each protocol has asymptotically
optimal blocking bounds under certain analysis assumptions. The
latter two protocols are also the first of their kind for the special
cases of global and partitioned scheduling.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems—Real-Time and Embedded Systems;
D.4.1 [Operating Systems]: Process Management—Multiprocess-
ing; Mutual Exclusion; Scheduling; Synchronization

General Terms

Algorithms, Performance, Verification

1. INTRODUCTION

Recent experimental work has demonstrated the effectiveness of
clustered scheduling on large multicore, multi-chip platforms [4].
Clustered scheduling [2, 11] is a generalization of both partitioned
scheduling (one ready queue per processor) and global scheduling
(all processors serve a single ready queue), where tasks are parti-
tioned onto clusters of cores and a global scheduling policy is used
within each cluster. Because partitioning requires a bin-packing-like
task assignment problem to be solved, global scheduling offers some
theoretical advantages over partitioning, but does so at the expense
of higher runtime costs. Clustered scheduling is an attractive com-
promise between these two extremes because it both simplifies the
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task assignment problem (there are fewer and larger bins) and incurs
less overhead (by aligning clusters with the underlying hardware
topology). Consequently, clustered scheduling is likely to grow in
importance as multicore platforms become larger and less uniform.

To be practical, a scheduler must support locking protocols that al-
low tasks predictable access to shared resources such as I/O devices.
There are two approaches to implementing such protocols: in spin-
based protocols, jobs wait for resources by executing a delay loop,
and in suspension-based protocols, waiting jobs relinquish their
processor. In this paper, we focus on suspension-based protocols.

In principle, suspension-based protocols are preferable because
waiting jobs waste processor cycles under spin-based protocols.
In practice, spin-based protocols benefit from low overheads (com-
pared to the cost of suspending and resuming tasks), so that spinning
can in fact be preferable if all critical sections are short, i.e., if tasks
use resources for at most a few microseconds [6, 10].

Nonetheless, suspension-based protocols are still needed to sup-
port shared resources that inherently cause critical sections to be
long (e.g., stable storage), as spinning would result in substantial
wastage in such cases. Unfortunately, no suspension-based real-
time locking protocols have been proposed for clustered scheduling
to date. Worse, the established mechanisms for bounding priority
inversions do not transfer to clustered scheduling.

Priority inversion. The main goal in the design of real-time locking
protocols is to minimize the duration of priority inversions, which
(intuitively) occur when a high-priority job must wait for a lower-
priority one. Under global scheduling, this is commonly achieved
using priority inheritance, whereas priority boosting is employed
under partitioning (see Sec. 2 for definitions). However, as shown
later, neither mechanism works under clustered scheduling: prior-
ity inheritance is ineffective across cluster boundaries and priority
boosting allows high-priority jobs to be blocked repeatedly.

In this paper, we tackle this troublesome situation by developing
a new mechanism to bound priority inversions—termed “priority
donation”—that causes jobs to be blocked at most once. Based
on “priority donation,” we design novel suspension-based locking
protocols that work under any clustered job-level static-priority
(JLSP) scheduler for three common resource-sharing constraints:
(i) mutual exclusion (mutex), where every resource access must be
exclusive; (ii) reader-writer (RW) exclusion, where only updates
must be exclusive and reads may overlap with each other; and (iii) &-
exclusion, where there are k replicas of a resource and tasks require
exclusive access to any one replica.

Related work. Most prior work has been directed at earliest-
deadline-first (EDF) and static-priority (SP) scheduling, which
are both JLSP policies, as well as at their partitioned and global mul-
tiprocessor extensions (denoted as PSP, PEDF, GSP, and GEDF,
resp.). The classic uniprocessor stack resource policy (SRP) [1] and



the priority ceiling protocol (PCP) [19, 21] both support multi-unit
resources, which is a generalized resource model that can be used
to realize mutex, RW, and k-exclusion constraints.

Work on multiprocessor protocols has mostly focused on mu-
tex constraints to date. The first such protocols were proposed by
Rajkumar er al. [18, 19, 20], who designed two suspension-based
PCP extensions for PSP-scheduled systems, the distributed and
the multiprocessor priority ceiling protocol (DPCP and MPCP,
resp.), which augment priority inheritance with priority boosting.
In later work on PEDF-scheduled systems, suspension- and spin-
based protocols were presented by Chen and Tripathi [13] and Gai
et al. [16]. Block et al. [5] recently presented the flexible multipro-
cessor locking protocol (FMLP), which can be used under GEDF,
PEDF, and PSP [7] and supports both spin- and suspension-based
waiting. More recently, Easwaran and Andersson [14] considered
suspension-based protocols for GSP-scheduled systems. Finally,
Faggioli et al. [15] presented a scheduler-agnostic spin-based proto-
col for mixed real-time/non-real-time environments.

In [9], we presented the first spin-based real-time multiprocessor
RW protocol. We showed that existing non-real-time RW locks are
undesirable for real-time systems and proposed phase-fair RW locks,
under which readers incur only constant blocking, as an alternative.

To the best of our knowledge, suspension-based RW and k-
exclusion protocols have not been considered in prior work on
real-time multiprocessors. While PCP variants could conceivably
be used, we are not aware of relevant analysis.

Pi-blocking. In other recent work [8], we investigated asymptotic
bounds on priority-inversion blocking (pi-blocking) in the context of
mutex constraints. We found that the definition of pi-blocking is ac-
tually analysis-dependent, as there are two approaches to handling
task suspensions (which are notoriously hard to analyze). The first
approach, suspension-oblivious schedulability analysis, does not al-
low for suspension times to be explicitly accounted for. This lack
of expressivity in the task model necessitates such times to be mod-
eled as computation instead. Consequently, suspension-oblivious
analysis over-estimates the processor demand of resource-sharing
tasks and thereby yields pessimistic but sound results. In contrast,
suspension-aware schedulability analysis, considers suspensions ex-
plicitly and thus uses less-pessimistic processor demand estimates.

For suspension-oblivious analysis, we established a lower bound
of 2(m) on pi-blocking (per resource request) for any m-processor
locking protocol (under any JLSP scheduler). We also devised a
new mutex protocol for global and partitioned scheduling, the O(m)
locking protocol (OMLP), that has O(m) suspension-oblivious pi-
blocking and is thus asymptotically optimal. Perhaps surprisingly,
the improvement in analysis accuracy in suspension-aware analysis
comes at the cost of an increased lower bound for mutex proto-
cols: we established a lower bound of ©(n) on pi-blocking, where
n is the number of tasks in the system. The difference in lower
bounds arises because the nature of what constitutes a “priority
inversion” is changed by the assumption underlying suspension-
oblivious analysis. Intuitively, the analytical trick is to “reuse” some
of the pessimism inherent in treating suspensions as execution time
to derive less pessimistic bounds on priority inversion length.

Contributions. In this paper, we consider locking protocols for
clustered JLSP schedulers. We focus on the suspension-oblivious
case because virtually all current global scheduling analysis results
(which are needed to analyze each cluster) are suspension-oblivious
(this restriction is revisited in Sec. 4.5). We demonstrate that neither
priority inheritance nor priority boosting can be used as a foundation
for asymptotically optimal locking protocols (Sec. 3.1) and present a
novel priority boosting variant, “priority donation,” that causes only

Scheduling  Constraint Bound Analysis
Global Mutex N-(2m—1) [8]

Partitioned ~Mutex m+N-(m—1) [8]

Clustered ~ Mutex m+N-(m—1) Sec.4.1
Clustered RW—readers 2m + 2N Sec. 4.2
Clustered ~ RW—writers 2m + N(2m — 1) Sec.4.2
Clustered  k-exclusion m+ N[22 Sec. 4.3

Table 1: OMLP per-job pi-blocking bounds in terms of the

maximum number of blocking requests, where m denotes the
number of processors and /N denotes the number of requests is-
sued by the job. The lower bound per request is m — 1 [8]. The
mutex and k-exclusion protocols are optimal within approxi-
mately a factor of two of the lower bound; the RW protocol is
optimal within approximately a factor of four for writers (the
lower bound does not apply to readers—see Sec. 4.5).

O(m) pi-blocking (Sec. 3.2). Using priority donation, we design the
first mutex protocol for clustered JLSP scheduling (Sec. 4.1). We
then show that priority donation is a general mechanism that can also
be used to design suspension-based phase-fair RW (Sec. 4.2) and
k-exclusion locks (Sec. 4.3). All three protocols are asymptotically
optimal with regard to maximum pi-blocking under suspension-
oblivious schedulability analysis.

Besides being asymptotically optimal, the bounds’ constant fac-
tors, summarized in Table 1, are also small enough for the protocols
to be practical. Experiments presented in Sec. 4.4 that compare our
mutex protocol to the MPCP show that s-oblivious analysis is a
viable alternative to s-aware analysis.

The presented protocols are the first of their kind for clustered
scheduling; since clustered scheduling is a generalization of both
global and partitioned scheduling, our RW and k-exclusion protocols
are the first of their kind in these categories as well.

2. BACKGROUND AND DEFINITIONS

We consider the problem of scheduling a set of n implicit-
deadline' sporadic tasks 7 = {Ti,...,T,} on m processors
Pi,...,Py,. We let T;(ei,p;) denote a task with a worst-case
per-job execution time e; and a minimum job separation p;. T;’s
utilization w; is given by the fraction u; = e;/p;. Ji; denotes
the j*" job (j > 1) of T;. Ji,j is pending from its arrival (or re-
lease) time a;,; > O until it finishes execution. If j > 1, then
ai,j > aij—1 + pi. Tj is schedulable if it can be shown that each
Ji,; completes within p; time units of its release. We omit the job
index j if it is irrelevant and let .J; denote an arbitrary job.

A pending job can be in one of two states: a ready job is available
for execution, whereas a suspended job cannot be scheduled. A job
resumes when its state changes from suspended to ready. Pending
jobs are ready unless suspended by a locking protocol.

Scheduling. Under clustered scheduling [2, 11], processors are
grouped into 7 non-overlapping sets (or clusters) of c processors
each, which we denote as C1, . ..,Cm % Global and partitioned
scheduling are special cases of clustered scheduling, where ¢ = m
and ¢ = 1 (resp.). Each task is statically assigned to a cluster. Jobs
may migrate freely within clusters, but not across cluster boundaries.

'"The presented results do not depend on the choice of deadline
constraint. Implicit deadlines were chosen to avoid irrelevant detail.
2Without loss of generality, we assume uniform cluster sizes and
7 € N. Non-uniform cluster sizes could be trivially integrated into
the presented analysis at the expense of additional notation.



scheduled on processor

1@ . without resource
Sl S with resource
1T 2 3 4

t release T completion

l deadline

== suspended

Figure 1: The notation used in subsequent example schedules.

We assume that, within each cluster, jobs are scheduled from a
single ready queue using a work-conserving JLSP policy [12]. A
JLSP policy assigns each job a fixed base priority. However, a job’s
effective priority may temporarily exceed its base priority when
raised by a locking protocol (see below). Within each cluster, at any
point in time, the c ready jobs (if that many exist) with the highest
effective priorities are scheduled. We assume that ties in priority are
broken in favor of lower-index tasks, i.e., priorities are unique. We
consider global, partitioned, and clustered EDF (GEDF, PEDF,
and CEDF, resp.) as representative algorithms of this class.

Resources. The system contains r shared resources {1, ..., Ly
(such as shared data objects and I/O devices) besides the m proces-
sors. When a job J; requires a resource £, it issues a request R
for ¢,. R is satisfied as soon as J; holds {4, and completes when
J; releases {,. The request length is the time that .J; must execute®
before it releases £,. We let IV; , denote the maximum number of
times that any J; requests ¢4, and let L; 4 denote the maximum
length of such a request, where L; ; = 0if N; 4 = 0.

We assume that jobs request or hold at most one resource at any
time (nesting can be supported with group locks as in the FMLP [5],
albeit at the expense of reduced parallelism) and that tasks do not
hold resources across job boundaries.

Each resource is subject to a sharing constraint. Mutual exclusion
of requests is required for serially-reusable resources, which may
be held by at most one job at any time. Reader-writer exclusion is
sufficient if a resources’s state can be observed without affecting it:
only write requests (i.e., state changes) are exclusive and multiple
read requests may be satisfied simultaneously. Resources of which
there are k identical replicas (e.g., graphics processing units (GPUs))
are subject to a k-exclusion constraint: each replica is only serially
reusable and thus requires mutual exclusion,® but up to k requests
may be satisfied at the same time by delegating them to different
replicas. We let k, denote the number of replicas of resource ¢,.

Locking protocols. In each case, a locking protocol must be em-
ployed to order conflicting requests. If a request R of a job J;
cannot be satisfied immediately, then J; incurs acquisition delay
and cannot proceed with its computation while it waits for R to be
satisfied. In this paper, we focus on protocols in which waiting jobs
relinquish their processor and suspend. The request span of R starts
when R is issued and lasts until it completes, i.e., it includes the
request length and any acquisition delay.

Locking protocols may temporarily raise a job’s effective priority.
Under priority inheritance [19, 21], the effective priority of a job
J; holding a resource ¢, is the maximum of J;’s priority and the
priorities of all jobs waiting for /,. Alternatively, under priority
boosting [7, 8, 17, 18, 19, 20], a resource-holding job’s priority
is unconditionally elevated above the highest-possible base (i.e.,
non-boosted) priority to expedite the request completion.

3We assume that .J; must be scheduled to complete its request. This
is required for shared data objects, but may be pessimistic for I/O
devices. The latter can be accounted for at the expense of more
verbose notation.

*One could also consider replicated resources with RW constraints,
but we are not aware of applications where such constraints arise.
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Figure 2: Example of s-oblivious and s-aware pi-blocking of
three jobs sharing one resource on two GEDF-scheduled pro-
cessors. J; suffers acquisition delay during [1, 3), and since no
higher-priority jobs exist it is pi-blocked under either definition.
Js, suspended during [2,4), suffers pi-blocking under either
definition during [3, 4) since it is among the m highest-priority
pending jobs, but only s-aware pi-blocking during (2, 3) as J;
is pending but not ready then.

Pi-blocking. When locks are used, bounds on priority inversion
blocking (pi-blocking) are required during schedulability analysis.
Pi-blocking occurs when a job is delayed and this delay cannot be
attributed to higher-priority demand (formalized below). We let b;
denote a bound on the total pi-blocking incurred by any J;.

As noted in [8], there are two notions of “priority inversion” on
a multiprocessor. The reason is that multiprocessor schedulabil-
ity analysis has not yet matured to the point that suspensions can
be analyzed under all schedulers. In particular, none of the ma-
jor GEDF hard real-time schedulability tests inherently accounts
for suspensions (see [3] for a recent overview). Such analysis is
suspension-oblivious (s-oblivious): jobs may suspend, but each e;
must be inflated by b; prior to applying the test to account for all ad-
ditional delays. This approach is safe—converting execution time to
idle time does not increase response times—but pessimistic, as even
suspended jobs are (implicitly) considered to prevent lower-priority
jobs from being scheduled. In contrast, suspension-aware (s-aware)
schedulability analysis that explicitly accounts for b; is available for
select schedulers (e.g., PSP [17, 19]). Notably, suspended jobs are
not considered to occupy a processor under s-aware analysis.

Consequently, priority inversion is defined differently under s-
aware and s-oblivious analysis: since suspended jobs are counted as
demand under s-oblivious analysis, the mere presence of m higher-
priority jobs rules out a priority inversion, whereas at least m ready
higher-priority jobs are needed to nullify a priority inversion under
s-aware analysis.

Definition 1. Under s-oblivious (s-aware) schedulability analy-
sis, a job J; incurs s-oblivious (s-aware) pi-blocking at time t if J;
is pending but not scheduled and fewer than c higher-priority jobs
are pending (ready) in 7;’s assigned cluster.

In both cases, “higher-priority” is interpreted with respect to base pri-
orities. The difference between s-oblivious and s-aware pi-blocking
is illustrated in Fig. 2 (see Fig. 1 for a summary of our notation). In
this paper, we focus on s-oblivious pi-blocking since we are most
interested in CEDF [4, 11], for which no s-aware analysis has been
developed to date.

Blocking complexity. In [8], we introduced maximum pi-blocking,
maxr,e-{b: }, as a measure of a protocol’s blocking behavior. Max-
imum pi-blocking reflects the per-task bounds that are required for
schedulability analysis. Concrete bounds on pi-blocking must nec-
essarily depend on each L; ;—long requests will cause long priority
inversions under any protocol. Similarly, bounds for any reason-
able protocol grow linearly with the total number of requests per
job. Thus, when deriving asymptotic bounds, we consider, for each
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Figure 3: Example schedule of three tasks on two processors
under PEDF scheduling (¢ = 1). The example shows that pri-
ority inheritance is ineffective across cluster boundaries.

T, Z1gqgr Nj;,q and each L; 4 to be constants and assume n. > m.
All other parameters are considered variable.

3. RESOURCE-HOLDER PROGRESS

The main purpose of a real-time locking protocol is to prevent
maximum pi-blocking from becoming unbounded or very large
(i.e., bounds should not include job execution costs in addition to
request lengths). This requires that resource-holding jobs progress
in their execution when high-priority jobs are waiting, i.e., low-
priority jobs must be scheduled in spite of their low base priority
when they cause other jobs to incur pi-blocking. A real-time locking
protocol thus requires a mechanism to raise the effective priority of
resource holders, either on demand (when a job is pi-blocked) or
unconditionally. As mentioned in Sec. 1, all prior protocols employ
priority inheritance and priority boosting to this end—unfortunately,
neither generalizes to clustered scheduling.

3.1 Limits of Inheritance and Boosting

Priority inheritance was originally developed for uniprocessor
locking protocols [19, 21], but also generalizes to global schedul-
ing [5, 8, 14]. It is a powerful aid for worst-case analysis under
global scheduling because it yields the following property: if a job
J; incurs pi-blocking, and Jj, holds the resource that .J; requested,
then J, is scheduled [19, 21]. Progress is thus guaranteed.

Unfortunately, priority inheritance is ineffective across cluster
boundaries. For example, suppose that requests are satisfied in
FIFO’ order and priority inheritance is employed (this is essentially
the global FMLP [5]). Fig. 3 depicts a schedule that may arise when
this protocol is applied across clusters (where ¢ = 1). J3 misses its
deadline because it incurs pi-blocking (both s-oblivious and s-aware)
for virtually the entire duration of J;’s execution despite priority
inheritance since J1’s deadline precedes J3’s deadline. Thus, even
with priority inheritance, total pi-blocking cannot be bounded solely
in terms of request lengths.

Consequently, protocols for partitioned scheduling rely on priority
boosting instead of [5, 7, 8] or in addition to [17, 18, 19, 20] priority
inheritance. The root cause for excessive pi-blocking is later-arriving
higher-priority jobs (like J; above) that preempt resource-holding
jobs (like J2). Priority boosting avoids this by unconditionally
raising the effective priority of resource-holding jobs above that of
non-resource-holding jobs: as newly-released jobs do not yet hold
resources, they cannot preempt resource-holding jobs.

While conceptually simple, the unconditional nature of priority
boosting may itself cause pi-blocking. Under partitioning (c = 1),
this effect can be controlled such that jobs incur at most O(m)
s-oblivious pi-blocking [8], but this approach does not extend to
¢ > 1. For example, suppose that requests are satisfied in FIFO

SFIFO ordering is actually not required for the counterexamples in
this section, but is assumed for simplicity.
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Figure 4: Example schedule of seven tasks sharing two re-
sources (£1, {2) across two two-processor clusters under CEDF
scheduling. The example shows that priority boosting may
cause jobs to incur pi-blocking repeatedly if ¢ > 1. If ¢ = 1,
then lower-priority jobs cannot issue requests while higher-
priority jobs execute [8].

order, and that a resource holder’s priority is boosted (as under
the partitioned FMLP [5]). A possible result is shown in Fig. 4:
jobs in cluster Cs repeatedly request ¢; and /2 in a pattern that
causes low-priority jobs (Jz2, ..., Js) in C; to be priority-boosted
simultaneously, which causes J; to be pi-blocked repeatedly. In
general, as c jobs must be priority-boosted to force a preemption,
priority boosting may cause (%) pi-blocking.

3.2 Priority Donation

The partitioned OMLP [8], which uses priority boosting, relies
on the following two progress properties (for ¢ = 1):
P1 A resource-holding job is always scheduled.
P2 The duration of s-oblivious pi-blocking caused by the progress
mechanism (i.e., the rules that maintain P1) is bounded by the
maximum request span (W.r.t. any job).

Priority boosting unconditionally forces resource holders to be
scheduled (Property P1), but it does not specify which job will
be preempted as a result. As Fig. 4 shows, if ¢ > 1, this is problem-
atic since an “unlucky” job (like J1) can repeatedly be a preemption
“victim,” thereby invalidating P2.

Priority donation is a form of priority boosting in which the
“victim” is predetermined such that each job is preempted at most
once. This is achieved by establishing a donor relationship when a
potentially harmful job release occurs (i.e., one that could invalidate
P1). In contrast to priority boosting, priority donation only takes
effect when needed.

Request rule. In the following, let J; denote a job that requires
a resource /, at time ¢1, as illustrated in Fig. 5. In the examples
and the discussion below, we assume mutex locks for the sake of
simplicity; however, the proposed protocol applies equally to RW
and k-exclusion locks. Priority donation achieves P1 and P2 for
1 < ¢ < m in two steps: it first requires that .J; has a high base
priority, and then ensures that J;’s effective priority remains high
until J; releases /.
D1 J; may issue a request only if it is among the ¢ highest-priority
pending jobs in its cluster (w.r.t. base priorities). If necessary,
J; suspends until it may issue a request.

Rule D1 ensures that a job has sufficient priority to be scheduled
without delay at the time of request, i.e., Property P1 holds at time
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Figure 5: Illustration of the request phases under priority do-
nation. A job J; requires a resource ¢, at time ;. .J; suspends
until time ¢2, when it becomes one of the c highest-priority
pending jobs in its assigned cluster (Rule D1). J; remains sus-
pended while it suffers acquisition delay from 2 until its re-
quest is satisfied at ¢3. Priority donation ensures that J; is con-
tinuously scheduled in [¢3, ¢4).

to in Fig. 5. However, some—but not all—later job releases during
[t2, t4] could preempt .J;.

Consider a list of all pending jobs in J;’s cluster sorted by decreas-
ing base priority, and let = denote J;’s position in this list at time t2,
i.e., J; is the =™ highest-priority pending job at time ¢». By Rule D1,
z < c. If there are at most ¢ — « higher-priority jobs released dur-
ing [t2, t4], then J; remains among the ¢ highest-priority pending
jobs and no protocol intervention is required. However, when J; is
the ¢ highest-priority pending job in its cluster, a higher-priority
job release may cause J; to be preempted or to have insufficient pri-
ority to be scheduled when it resumes, thereby violating P1. Priority
donation intercepts such releases.

Donor rules. A priority donor is a job that suspends to allow a
lower-priority job to complete its request. Each job has at most one
priority donor at any time. We define how jobs become donors and
when they suspend next and illustrate the rules with an example
thereafter. Let Jg denote J;’s priority donor (if any), and let ¢,
denote J4’s release time.

D2 J; becomes J;’s priority donor at time %, if (a) J; was the
'™ highest-priority pending job prior to Jy’s release (w.r.t. its
cluster), (b) J4 has one of the c highest base priorities, and
(¢) J; has issued a request that is incomplete at time ¢, i.e.,
ta € [t2,ta] w.rt. J;’s request.

D3 J; inherits the priority of J4 (if any) during [t2, t4).

The purpose of Rule D3 is to ensure that J; will be scheduled if ready.
However, J;’s relative priority could decline due to subsequent
releases. In this case, the donor role is passed on.

D4 If J; is displaced from the set of the c highest-priority jobs by
the release of .J,, then Jp, becomes J;’s priority donor and Jq4
ceases to be a priority donor. (By Rule D3, J; thus inherits
Jn’s priority.)

Rule D4 ensures that J; remains among the ¢ highest-priority pend-
ing jobs (w.r.t. its cluster). The following two rules ensure that J;
and Jg are never ready at the same time, thereby freeing a processor
for J; to be scheduled on.

D5 If J; is ready when Jg becomes J;’s priority donor (by either
Rule D2 or D4), then J; suspends immediately.

D6 If Jg is J;’s priority donor when J; resumes at time ¢3, then
Ja suspends (if ready).

Further, a priority donor may not execute a request itself and may
not prematurely exit.

D7 A priority donor may not issue requests. J4 suspends if it
requires a resource while being a priority donor.

D8 If J, finishes execution while being a priority donor, then
its completion is postponed, i.e., J4 suspends and remains
pending until it is no longer a priority donor.

Coi Js

Ciy Jo

Figure 6: Schedule of six tasks sharing two serially-reusable re-
sources across two two-processor clusters under CEDF schedul-
ing. Under the clustered OMLP, progress is ensured with prior-
ity donation (Sec. 3) and jobs wait in FIFO order (Sec. 4.1).

J4 may continue once its donation is no longer required, or when a
higher-priority job takes over.

D9 J; ceases to be a priority donor as soon as either (a) J; com-
pletes its request (i.e., at time t4), (b) J;’s base priority be-
comes one of the c highest (w.r.t. pending jobs in J;’s cluster),
or (¢) Jg is relieved by Rule D4. If J; suspended due to
Rules D5-D7, then it resumes.

Under a JLSP scheduler, Rule D9b can only be triggered when
higher-priority jobs complete.

Example. Fig. 6 shows a resulting schedule assuming jobs wait
in FIFO order. Priority donation occurs first at time 1.5, when the
release of J; displaces J3 from the set of the ¢ highest-priority jobs
in C. Since J3 holds ¢1, J1 becomes J3’s priority donor (Rule D2)
and suspends immediately since J3 is ready (Rule D5). J; resumes
when its duties cease at time 3 (Rule 9a). If J; would not have
donated its priority to J3, then it would have preempted .J3, thereby
violating P1.

At time 1.5, Js also requests ¢; and suspends as ¢; is unavail-
able. It becomes a priority recipient when Jy is released at time 2
(Rule D2). Since Js is already suspended, Rule D5 does not ap-
ply and J4 remains ready. However, at time 2.5, J4 requires {2, but
since it is still a priority donor, it may not issue a request and must
suspend instead (Rule D7). J4 may resume and issue its request at
time 3.5 since Js finishes, which causes Jg to become one of the
two highest-priority pending jobs in C5 (Rule 9b). If priority donors
were allowed to issue requests, then J4 would have been suspended
while holding ¢ when Jg resumed at time 3, thereby violating P1.

Analysis. Taken together, Rules D1-D9 ensure resource-holder
progress under clustered scheduling (1 < ¢ < m).

LEMMA 1. Priority donation ensures Property P1.

PROOF. Rule D7 prevents Rules D5 and D6 from suspending
a resource-holding job. Rule D1 establishes Property P1 at time
to. If J;’s base priority becomes insufficient to guarantee P1, its
effective priority is raised by Rules D2 and D3. Rules D4 and D8
ensure that the donated priority is always among the c highest (w.r.t.
pending jobs in J;’s cluster), which, together with Rules D5 and D6,
effectively reserves a processor for J; to run on when ready. [

By establishing the donor relationship at release time, priority
donation ensures that a job is a “preemption victim” at most once,
evenifc > 1.

LEMMA 2. Priority donation ensures Property P2.



PROOF. A job incurs s-oblivious pi-blocking if it is among the ¢
highest-priority pending jobs in its cluster and either (i) suspended
or (ii) ready and not scheduled (i.e., preempted). We show that (i) is
bounded and that (ii) is impossible.

Case (i). Only Rules D1 and D5-D8 cause a job to suspend.
Rule D1 does not cause s-oblivious pi-blocking: the interval [t1, t2)
ends as soon as J; becomes one of the c highest-priority pending
jobs. Rules D5-DS8 apply to priority donors. J4 becomes a priority
donor only immediately upon release or not at all (Rules D2 and D4),
i.e., each J; donates its priority to some J; only once. By Rule D2,
the donor relationship starts no earlier than ¢2, and, by Rule D9,
ends at the latest at time ¢4. By Rules D8 and D9, J; either resumes
or completes when it ceases to be a priority donor. J4 suspends thus
for the duration of at most one entire request span.

Case (ii). Let J, denote a job that is ready and among the c
highest-priority pending jobs (w.r.t. base priorities) in cluster C},
but not scheduled. Let A denote the set of ready jobs in C; with
higher base priorities than .J,, and let B denote the set of ready jobs
in C; with higher effective priorities than .J,, that are not in A. Only
jobs in A and B can preempt J,. Let D denote the set of priority
donors of jobs in B.

By Rule D3, every job in B has a priority donor that is, by
construction, unique: |B| = |D|. By assumption, |A| 4+ |B| > ¢
(otherwise .J,, would be scheduled), and thus also |A|+|D| > c. By
the definition of B, every job in D has a base priority that exceeds
J’s base priority. Rules DS and D6 imply that no job in D is ready
(since every job in B is ready): AN D = (. Every jobin D is
pending (Rule D8), and every job in A is ready and hence also
pending. Thus, there exist at least ¢ pending jobs with higher base
priority than J; in C;. Contradiction. [

Priority donation further limits maximum concurrency, which is
key to the analysis in the remainder of this paper.

LEMMA 3. Let R;(t) denote the number of requests issued by
Jjobs in cluster C that are incomplete at time t. Under priority
donation, R;(t) < c at all times.

PROOF. Similar to Case (ii) above. Suppose R;(t) > c at time t.
Let H denote the set of the c highest-priority jobs in C; (at time ¢
w.r.t. base priorities), and let I denote the set of jobs in C); that have
issued a request that is incomplete at time ¢.

Let A denote the set of high-priority jobs with incomplete re-
quests, i.e., A = H N I, and let B denote the set of low-priority
jobs with incomplete requests, i.e., B =1\ A.

Let D denote the set of priority donors of jobs in B. Together,
Rules D2, D4, DS, and D9 ensure that every job in B has a unique
priority donor. Therefore | B| = |D].

By definition, |A| + |B| = |I| = R;(t). By our initial assump-
tion, this implies |A|+|B| > cand thus |A|+|D| > ¢. By Rules D2
and D4, D C H (only high-priority jobs are donors). By Rule D7,
AN D = ( (donors may not issue requests). Since, by definition,
A C H, this implies |H| > |A| + |D| > c. Contradiction. []

In the following, we show that Lemmas 1-3 provide a strong
foundation that enables the design of simple, yet asymptotically
optimal, locking protocols.

4. THE CLUSTERED OMLP

The O(m) locking protocol (OMLP) [8] is a family of asymp-
totically optimal suspension-based multiprocessor locking proto-
cols for JLSP schedulers, i.e., member protocols cause jobs to in-
cur only O(m) pi-blocking under s-oblivious analysis. In [8], we
proposed two OMLP mutex protocols for global and partitioned

scheduling. In this section, we augment the OMLP family with
priority-donation-based mutex, reader-writer, and k-exclusion locks
for clustered scheduling, and discuss how and when to combine
OMLP variants.

4.1 Mutex Locks

Priority donation is a powerful aid for worst-case analysis. This
is witnessed by the simplicity of the following mutex protocol for
clustered scheduling, which uses simple FIFO queues. In contrast,
the global and partitioned OMLP mutex protocols, which rely on
priority inheritance and priority boosting (resp.), each require a com-
bination of priority and FIFO queues to achieve an O(m) bound.

Structure. There is a FIFO queue FQ, for each serially-reusable
resource /4. The job at the head of FQ, holds £,.

Rules. Jobs that issue conflicting requests are serialized with FQ,.
Let J; denote a job that issues a request R for /.

X1 J; is enqueued in FQ, when it issues R. J; suspends until R
is satisfied (if FQ, was non-empty).

X2 R is satisfied when J; becomes the head of FQ,.

X3 J; is dequeued from FQ, when R is complete. The new head
of FQ, (if any) is resumed.

Rules X1-X3 correspond to times t2—t4 in Fig. 5.

Example. Fig. 6 depicts an example of the clustered OMLP for
serially-reusable resources. J3 requests ¢; at time 1 and is enqueued
in FQ; (Rule X1). Since FQ: was empty, J3’s request is satisfied
immediately (Rule X2). When Js requests the same resource at
time 1.5, it is appended to FQ; and suspends. When J3 releases ¢1
at time 3, Js becomes the new head of FQ; and resumes (Rule X3).
Attime 3.5, Jy acquires /2 and enqueues in FQ2, which causes J2
and J; to suspend when they, too, request ¢ at times 4 and 4.5. Im-
portantly, priorities are ignored in each FQq: when Jy releases ¢2 at
time 5, J2 becomes the resource holder and is resumed, even though
J1 has a higher base priority. While using FIFO queues instead of
priority queues in real-time systems may seem counterintuitive, pri-
ority queues are in fact problematic in a multiprocessor context since
they allow starvation, which may yield Q(mn) pi-blocking [8].°

Analysis. Priority donation is crucial in two ways: requests com-
plete without delay and maximum contention is limited.

LEMMA 4. At most m jobs are enqueued in any FQy.

PROOF. By Lemma 3, at most ¢ requests are incomplete at any
point in time in each cluster. Since there are ** clusters, no more
than ”* - ¢ = m jobs are enqueued in some FQ,. []

LEMMA 5. A job J; that requests a resource {q incurs acquisi-
tion delay for the duration of at most m — 1 requests.

PROOF. By Lemma 4, at most m — 1 other jobs precede J; in
FQq. By Lemma 1, the job at the head of FQ, is always scheduled.
Therefore, J; becomes the head of FQ, after the combined length
of m — 1 requests. [

This property suffices to prove asymptotic optimality.
THEOREM 1. The clustered OMLP for serially-reusable re-

sources causes a job J; to incur atmostb; = m-L™* " +37" | Ni q-
(m —1) - L™* = O(m) s-oblivious pi-blocking.

8[8] shows Q(mn) s-aware pi-blocking, but it is trivial to obtain an
s-oblivious bound by isolating a task in a dedicated cluster.



PROOF. By Lemma 2, the duration of s-oblivious pi-blocking
caused by priority donation is bounded by the maximum request
span. By Lemma 5, maximum acquisition delay per request is
bounded by (m — 1) - L™, The maximum request span is thus
bounded by m - L™*". Recall from Sec. 2 that 37, N q and L™
are constant. The bound follows. [

The protocol for serially-reusable resources is thus asymptotically
optimal w.r.t. maximum s-oblivious pi-blocking.

4.2 Reader-Writer Locks

In throughput-oriented computing, RW locks are attractive be-
cause they increase average concurrency (compared to mutex locks)
if read requests are more frequent than write requests. In a real-
time context, RW locks should also lower pi-blocking for readers,
i.e., the higher degree of concurrency must be reflected in a priori
worst-case analysis and not just in observed average-case delays.

Unfortunately, many RW lock types commonly in use in through-
put-oriented systems provide only little analytical benefits because
they either allow starvation or serialize readers [9]. As an example
for the former, consider reader preference RW locks, under which
write requests are only satisfied if there are no unsatisfied read
requests. Such locks have the advantage that a read request incurs
only O(1) acquisition delay, but they also expose write requests to
potentially unbounded acquisition delays. In contrast, task-fair RW
locks, in which requests (either read or write) are satisfied strictly in
FIFO order, are an example for the latter case: in the worst case, read
requests and write requests are interleaved such that read requests
incur Q(m) acquisition delay (assuming priority donation), just as
they would under a mutex lock.

In [9], we introduced phase-fair RW locks as an alternative, under
which reader phases and writer phases alternate (unless there are
only requests of one kind). At the beginning of a reader phase, all
incomplete read requests are satisfied, whereas one write request
is satisfied at the beginning of a writer phase. This results in O(1)
acquisition delay for read requests without starving write requests.
We presented spin-based phase-fair RW locks in [9]. With priority
donation as a base, we can transfer the concept to suspension-based
locks.

Structure. For each RW resource /,, there are three queues: a
FIFO queue for writers, denoted WQ,, and two reader queues RQ}I
and RQZ. Initially, RQ} is the collecting and RQ? is the draining
reader queue. The roles, denoted as CQ, and DQg, switch as reader
and writer phases alternate, i.e., the designations “collecting” and
“draining” are not static.

Reader rules. Let J; denote a job that issues a read request R
for ¢,. The distinction between CQ, and DQ, serves to separate
reader phases. Readers always enqueue in the (at the time of request)
collecting queue. If queue roles change, then a writer phase starts
when the last reader releases /.

R1 J;is enqueued in CQ, when itissues R. If WQ, is non-empty,
then J; suspends.

R2 TR is satisfied either immediately if WQ, is empty when R is
issued, or when J; is subsequently resumed.

R3 Let RQJ denote the reader queue in which .J; was enqueued
due to Rule R1. J; is dequeued from RQY when R is com-
plete. If RQY is DQ, and J; is the last job to be dequeued
from RQY, then the current reader phase ends and the head of
WQq is resumed (WQ, is non-empty).

Writer rules. Let J,, denote a job that issues a write request R for
£4. Conflicting writers wait in FIFO order. The writer at the head of
WQ is further responsible for starting and ending reader phases by
switching the reader queues.
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Figure 7: Schedule of six tasks sharing one RW resource across
two two-processor clusters under CEDF scheduling.

W1 J,, is enqueued in WQ, when it issues R. J,, suspends until
R is satisfied unless WQ, and CQ, are both empty at the
time of request. If WQ, is empty and CQ, is not, then the
roles of CQ, and DQ, are switched.

W2 R is satisfied either immediately if WQ, and CQ, are both
empty when R is issued, or when J,, is resumed.

W3 J,, is dequeued from WQ, when R is complete. If CQ,
is empty, then the new head of WQ, (if any) is resumed.
Otherwise, each job in CQq is resumed and, if WQ, remains
non-empty, the roles of CQ, and DQ, are switched.

Rules R1-R3 and W1-W3 correspond to times to—t4 in Fig. 5
(resp.), and are illustrated in Fig. 7.

Example. The resource ¢; is first read by J5, which is enqueued in
RQ;, the initial collecting queue, at time 0.5 (Rule R1). When J>
issues a read request at time 1, it is also enqueued and its request is
satisfied immediately since WQ); is still empty (Rule R2). .J; issues
a write request at time 2. Since CQ; is non-empty, the roles of
CQ; and DQ); are switched, i.e., RQ; becomes the draining reader
queue, and J; suspends (Rule W1). Jy issues a read request soon
thereafter and is enqueued in RQ?I (Rule R1), which is the collecting
queue after the role switch. J4 suspends since WQ; is not empty
(Rule R2), even though .J; is still executing a read request. This is
required to ensure that write requests are not starved. The reader
phase ends when J> releases ¢; at time 3, and the next writer, Ji,
is resumed (Rules R3 and W2). J; releases ¢; and resumes all
readers that have accumulated in RQ§ (J5 and Jy4). Since WQ); is
non-empty (Jg was enqueued at time 3), RQi becomes the draining
reader queue (Rule W3). Under task-fair RW locks, .JJ3 would have
remained suspended since it requested ¢; after Js. In contrast, Jg
must wait until the next writer phase at time 6.5 and all waiting
readers are resumed at the beginning of the next reader phase at
time 5 (Rule W3).

Analysis. Together with priority donation, the reader and writer
rules above realize a phase-fair RW lock. Due to the intertwined
nature of reader and writer phases, we first consider the head of
WQ, (a writer phase), then CQ, (a reader phase), and finally the
rest of WQg.

LEMMA 6. Let J,, denote the head of WQg. J., incurs acquisi-
tion delay for the duration of at most one read request length before
its request is satisfied.

PROOF. J,, became head of WQ, in one of two ways: by
Rule W1 (if WQ, was empty prior to J,,’s request) or by Rule W3
(if Jo, had a predecessor in WQg). In either case, there was a reader
queue role switch when J,, became head of WQ, (unless there were



no unsatisfied read requests, in which case the claim is trivially true).
By Rule R3, J,, is resumed as soon as the last reader in DQ, re-
leases £4. By Rule R1, no new readers enter DQ,. Due to priority
donation, there are at most m — 1 jobs in DQ, (Lemma 3), and each
job holding ¢, is scheduled (Lemma 1). The claim follows. [

LEMMA 7. Let J; denote a job that issues a read request for {.
Ji incurs acquisition delay for the combined duration of at most one
read and one write request.

PROOF. If WQ, is empty, then J;’s request is satisfied immedi-
ately (Rule R2). Otherwise, it suspends and is enqueued in CQ,
(Rule R1). This prevents consecutive write phases (Rule W3). J;’s
request is thus satisfied as soon as the current head of WQ, releases
{4 (Rule W3). By Lemma 6, the head of WQ, incurs acquisition
delay for no more than the length of one read request (which tran-
sitively impacts J;). Due to priority donation, the head of WQ is
scheduled when its request is satisfied (Lemma 1). Therefore, J;
waits for the duration of at most one read and one write request. []

Lemma 7 shows that readers incur O(1) acquisition delay. Next,
we show that writers incur O(m) acquisition delay.

LEMMA 8. Let J,, denote a job that issues a write request for
Lq. Jy incurs acquisition delay for the duration of at most m — 1
write and m read requests before its request is satisfied.

PROOF. It follows from Lemma 3 that at most m — 1 other jobs
precede J,, in WQ, (analogously to Lemma 4). By Lemma 1, J,,’s
predecessors together hold ¢, for the duration of at most m — 1 write
requests. By Lemma 6, each predecessor incurs acquisition delay
for the duration of at most one read request once it has become the
head of WQq. Thus, J,, incurs transitive acquisition delay for the
duration of at most m — 1 read requests before it becomes head of
WQ, for a total of at most m — 1 4+ 1 = m read requests. []

These properties suffice to prove asymptotic optimality w.r.t. max-
imum s-oblivious pi-blocking.

THEOREM 2. The clustered OMLP for RW resources causes a
job J; to incur at mostb; = 2 -m - L™ + 22:1 Nig-(2-m—
1) - L™* = O(m) s-oblivious pi-blocking.

PROOF. By Lemma 2, the duration of s-oblivious pi-blocking
caused by priority donation is bounded by the maximum request
span. By Lemma 8, maximum acquisition delay per write request is
bounded by (2m — 1) - L™®; by Lemma 7, maximum acquisition
delay per read request is bounded by 2 - L™%. The maximum
request span is thus bounded by 2m - L™%". Recall from Sec. 2 that
> 4=1Ni,g and L™ are constant. The bound follows. [J

Since priority inheritance is sufficient for the global OMLP mu-
tex protocol from [8], one might wonder if it is possible to apply the
same design using priority inheritance instead of priority donation
to obtain an O (m) RW protocol under global scheduling. Unfortu-
nately, this is not the case. The reason is that the analytical benefits
of priority inheritance under s-oblivious analysis do not extend to
RW exclusion. When using priority inheritance with mutual exclu-
sion, there is always a one-to-one relationship: a priority is inherited
by at most one ready job at any time. In contrast, a single high-
priority writer may have to “push” multiple low-priority readers. In
this case, the high priority is “duplicated” and used by multiple jobs
on different processors at the same time. This significantly compli-
cates the analysis. In fact, simply instantiating Rules R1-R3 and
W1-W3 with priority inheritance may cause 2(n/c) s-oblivious
pi-blocking since it is possible to construct schedules that are con-
ceptually similar to the one shown in Fig. 4. This demonstrates
the power of priority donation, and also highlights the value of the
clustered OMLP even for the special cases ¢ = m and ¢ = 1.
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Figure 8: Six tasks sharing two instances of one resource across
two two-processor clusters under CEDF scheduling.

4.3 k-Exclusion Locks

For some resource types, one option to reduce contention is to
replicate them. For example, if potential overload of a co-processor
for digital signal processing (DSP) is found to pose a risk in the de-
sign phase, the system designer could introduce additional instances
to improve response times.

As with multiprocessors, there are two fundamental ways to al-
locate replicated resources: either each task may only request a
specific instance, or every task may request any instance. The for-
mer approach, which corresponds to partitioned scheduling, has
the advantage that a mutex protocol suffices, but it also implies
that some instances may idle while jobs wait to acquire their desig-
nated instance. The latter approach, equivalent to global scheduling,
avoids such bottlenecks, but needs a k-exclusion protocol to do so.
Priority donation yields such a protocol for clustered scheduling.

Recall that k, is the number of replicas of resource ¢,. In the
following, we assume 1 < k; < m. The case of k; > m is
discussed in Sec. 4.5 below.

Structure. Jobs waiting for a replicated resource ¢, are kept in a
FIFO queue denoted as KQ. The replica set RS, contains all idle
instances of 4. If RS, # 0, then KQ, is empty.

Rules. Let J; denote a job that issues a request R for /.

K1 If RS, # @, then J; acquires an idle replica from RS,. Other-
wise, J; is enqueued in KQg and suspends.

K2 R is satisfied either immediately (if RS, # 0 at the time of
request) or when J; is removed from KQ,.

K3 If KQ, is non-empty when R completes, the head of KQ,
is dequeued, resumed, and acquires J;’s replica. Otherwise,
Ji’s replica is released into RS,,.

As it was the case with the definition of the previous protocols,
Rules K1-K3 correspond to times t2—t4 in Fig. 5.

Example. Fig. 8 depicts an example schedule for one resource (¢1)
with k1 = 2. Js5 obtains a replica from RS; at time 1 (Rule K1).
The second instance of ¢; is acquired by J> at time 2. As RS; is
now empty, J; is enqueued in KQ; and suspends when it requests
/1 at time 2.5. However, it is soon resumed when J5 releases its
replica at time 3 (Rule K3). This illustrates one advantage of using
k-exclusion locks: if instead one replica would have been statically
assigned to each cluster (which reduces to a mutex constraint), then
J1 would have continued to wait while C'>’s instance would have
idled. This happens again at time 5.5: since no job in C; requires ¢1
at the time, both instances are used by jobs in Cb.

Analysis. As with the previous protocols, priority donation is essen-
tial to ensure progress and to limit contention.



LEMMA 9. At most m — kg jobs are enqueued in KQ,.

PROOF. Lemma 3 implies that there are at most m incomplete
requests. Since only jobs waiting for ¢, are enqueued in KQg, at
most m — kg jobs are enqueued in KQg. [

LEMMA 10. Let J; denote a job that issues a request R for
L. J; incurs acquisition delay for the duration of at most [(m —
kq)/kq)| maximum request lengths.

PROOF. By Lemma 9, at most m — k, requests must complete
before .J;’s request is satisfied (m — k; — 1 for J; to become the
head of KQ, and one more for J; to be dequeued). Rules K1
and K3 ensure that all replicas are in use whenever jobs wait in
KQg. Since resource holders are always scheduled due to priority
donation (Lemma 1), requests are satisfied at a rate of at least kg
requests per maximum request length until R is satisfied. The stated
bound follows. [

Lemma 10 shows that J; incurs at most O(%) pi-blocking per
request (and none if k; = m), which implies asymptotic optimality
w.r.t. maximum s-oblivious pi-blocking.

THEOREM 3. The clustered OMLP for replicated resources
causes a job J; to incur at most b; = m - L™ + 22:1 Nig -
[(m —kq)/kq)] - L™*® = O(m) s-oblivious pi-blocking.

PROOF. By Lemma 10, maximum acquisition delay per request
for £ is bounded by [(m—kq)/kq)]- L™ . Since mini<q<, kg >
1, the maximum request span is thus bounded by ([(m — 1)/1)] +
1) - L™ =m - L™, Lemma 2 limits the duration of s-oblivious
pi-blocking due to priority donation to the maximum request span.
The bound follows since >/ _, Ni,q and L™*" are constant. []

4.4 Experiments

Asymptotic optimality does not necessarily translate into better
schedulability in practice. To provide some sense of the practical
viability of our locking protocols under s-oblivious analysis, we
present results from preliminary experiments that were conducted
to compare one of these protocols to s-aware alternatives.” For the
case 1 < ¢ < m and for RW or k-exclusion synchronization, there
are no prior suspension-based real-time locking protocols to test
against. However, the case ¢ = 1 < m (a partitioned multiprocessor
system) has been the focus of much prior work on mutex protocols,
and for this case, the combination of the MPCP [17, 18, 19] and
PSP scheduling is considered to be the de facto standard. For
the MPCP, accurate s-aware schedulability analysis exists [17].
We experimentally compared schedulability under our proposed
mutex protocol when used under PEDF scheduling to two variants
of this standard approach, namely the original suspension-based
variant [18, 19] and a newer variant based on “virtual spinning” [17],
where “spinning” jobs do in fact suspend but other local jobs may
not issue requests until the “spinning” job’s request is satisfied. The
goal of these experiments is not to claim that s-oblivious analysis is
superior. Rather, they show that it is a practical alternative.

Setup. Each task set was generated based on three parameters: a
per-processor utilization U, a resource probability Py, and a re-
quest probability Pe,. On each processor, we generated tasks until
reaching U by choosing u; € [0, 1] using an exponential distribu-
tion with mean 0.1 and by uniformly choosing p; € [10ms, 100ms].
The number of resources r was generated randomly using a geomet-
ric distribution such that » = x with probability (1 — Pyes) - Pt

"It is not possible to give exhaustive experimental results due to
space constraints. An implementation-based comparison of locking
protocols that considers overheads is currently under preparation.

where r > 1. Similarly, each N; 4, where N; ; > 0, was randomly
chosen from a geometric distribution based on P..,. Following Lak-
shmanan et al. [17], we chose L; ; € [5us, 1280us]. As requests
are frequently short in practice [6, 10], we chose each L; 4 using an
exponential distribution with mean 20us.

For each m € {4, 8,16, 24,32}, we varied U € [0.25,0.95] in
steps of 0.025, Pr.s € [0.05,0.95] in steps of 0.05, and Py €
[0.05,0.75] in steps of 0.05. We tested 100 task sets for each
combination of m, U, Preq, and Pieq, for a total of over 4.2 million
task sets. When visualized as a function of U, this results in 1,425
graphs, of which two representative examples® are shown in Fig. 9.

Results. Fig. 9(a) shows schedulability, i.e., the fraction of task sets
that can be shown to never miss a deadline, as a function of U on
eight processors. Surprisingly, the OMLP under s-oblivious analysis
yields higher schedulability than either MPCP variant—which is in
fact the case for all graphs for m = 4 and m = 8. Fig. 9(b) shows
an example for m = 16. Here, the suspension-based MPCP and
the OMLP perform similarly. Overall, the OMLP’s competitiveness
decreases with increasing m, which reflects its O(m) bound. The
suspension-based MPCP outperforms the OMLP for m = 24 and
m = 32. However, the OMLP never performs worse than the
virtual-spin-based MPCP variant in any of the tested configurations.

Our results show that (i) s-oblivious analysis is a viable approach
until superior s-aware analysis is developed and (ii) s-oblivious
analysis provides a competitive baseline against which future s-
aware analysis and protocols should be compared. Clearly, it would
be desirable to develop effective s-aware schedulability analysis for
all practical scheduling algorithms. However, it should be noted
that accurate analysis of task suspensions is a notoriously difficult
problem. Barring unforeseeable breakthroughs, efficient s-aware
analysis may not be forthcoming for all global, and hence clustered,
JLSP scheduling algorithms in the near future (or ever).

4.5 Protocol Combinations, Limitations, and
Open Questions

The clustered mutex protocol (Sec. 4.1) generalizes the parti-
tioned OMLP from [8] in terms of blocking behavior; there is thus
little reason to use both in the same system.

The global OMLP from [8] cannot be used with the protocols in
this paper since priority inheritance is incompatible with priority
donation (from an analytical point of view). Both mutex protocols
have an O(m) s-oblivious pi-blocking bound, but differ in constant
factors and w.r.t. which jobs incur pi-blocking. Specifically, only
jobs that request resources risk s-oblivious pi-blocking under the
global OMLP, while even otherwise independent jobs may incur
s-oblivious pi-blocking if they serve as a priority donor. The global
OMLP may hence be preferable for ¢ = m if only few tasks share
resources; we plan to explore this tradeoff in future work.

The protocols presented in this paper can be freely combined
since they all rely on priority donation and because their protocol
rules do not conflict. However, care must be taken to correctly
identify the maximum request span.

Optimality of relaxed-exclusion protocols. Under phase-fair RW
locks (Sec. 4.2), read requests incur at most O(1) acquisition delay.
Similarly, requests incur only O(m/k4) acquisition delay under the
k-exclusion protocol (Sec. 4.2). Yet, we only prove O(m) maxi-
mum s-oblivious pi-blocking bounds—since both relaxed-exclusion
constraints generalize mutual exclusion, this is unavoidable [8].
However, as noted above, any job may become a priority donor
and thus suspend (at most once) for the duration of the maximum

8 An online appendix with all graphs is available at: http://www.
cs.unc.edu/ anderson/papers.html.
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