
/54

The Impact of Thread-
Per-Core Architecture on
Application Tail Latency

Pekka Enberg, Ashwin Rao, and Sasu Tarkoma
University of Helsinki

ANCS 2019

!1

/54

Introduction

• Thread-per-core architecture has emerged to eliminate
overheads in traditional multi-threaded architectures in
server applications.

• Partitioning of hardware resources can improve
parallelism, but there are various trade-offs applications
need to consider.

• Takeaway: Request steering and OS interfaces are
holding back the thread-per-core architecture.

!2

/54

Outline

• Overview of thread-per-core

• A key-value store

• Impact on tail latency

• Problems in the approach

• Future directions

!3

/54

Outline

• Overview of thread-per-core

• A key-value store

• Impact on tail latency

• Problems in the approach

• Future directions

!4

/54

What is thread-per-core?

• Thread-per-core = no multiplexing of a CPU core at OS
level

• Eliminates thread context switching overhead [Qin 2019;
Seastar]

• Enables elimination of thread synchronization by
partitioning [Seastar]

• Eliminates thread scheduling delays [Ousterhout, 2019]

!5

Ousterhout et al. 2019. Shenango: Achieving High CPU Efficiency for Latency-sensitive Datacenter Workloads. NSDI ’19.

Qin et al. 2018. Arachne: Core-Aware Thread Management. OSDI ’18.

Seastar framework for high-performance server applications on modern hardware. http://seastar.io/

http://seastar.io/

/54

Interrupt isolation for
thread-per-core

• The in-kernel network stack runs in kernel threads, which
interfere with application threads.

• Network stack processing must be isolated to CPU cores
not running application thread.

• Interrupt isolation can be done with IRQ affinity and IRQ
balancing configuration changes.

• NIC receive side-steering (RSS) configuration needs to
align with IRQ affinity configuration.

!6
Li et al. 2014. Tales of the Tail: Hardware, OS, and Application-level Sources of Tail Latency. SOCC ‘14

/54

Partitioning in
thread-per-core

• Partitioning of hardware resources (such as NIC and
DRAM) can improve parallelism, by eliminating thread
synchronization.

• Different ways of partitioning resources:

• Shared-everything, shared-nothing, and shared-
something.

!7

/54

Shared-everything

!8

CPU0 CPU1 CPU2 CPU3

DRAM Data

/54

Shared-everything

!9

CPU0 CPU1 CPU2 CPU3

DRAM Data

Hardware resources are shared between all CPU cores.

/54

Shared-everything

!10

CPU0 CPU1 CPU2 CPU3

DRAM Data

Every request can be processed on any CPU core.

/54

Shared-everything

!11

CPU0 CPU1 CPU2 CPU3

DRAM Data

Data access must be synchronized.

/54

Shared-everything
• Advantages:

• Every request can be processed on any CPU core.

• No request steering needed.

• Disadvantages:

• Shared-memory scales badly on multicore [Holland, 2011]

• Examples:

• Memcached (when thread pool size equals CPU core count)

!12
Holland et al. 2011. Multicore OSes: Looking Forward from 1991, Er, 2011. HotOS ‘11

/54

Shared-nothing

!13

CPU0 CPU1 CPU2 CPU3

DRAM Data Data Data Data

/54

Shared-nothing

!14

CPU0 CPU1 CPU2 CPU3

DRAM Data Data Data Data

Hardware resources are partitioned between CPU cores.

/54

Shared-nothing

!15

CPU0 CPU1 CPU2 CPU3

DRAM Data Data Data Data

Request can be processed on one specific CPU core.

/54

Shared-nothing

!16

CPU0 CPU1 CPU2 CPU3

DRAM Data Data Data Data

Data access does not require synchronization.

/54

Shared-nothing

!17

CPU0 CPU1 CPU2 CPU3

DRAM Data Data Data Data

Requests need to be steered.

/54

Shared-nothing
• Advantages:

• Data access does not require synchronization.

• Disadvantages:

• Request steering is needed [Lim, 2014; Didona, 2019]

• CPU utilisation imbalance if data is not distributed well (“hot partition”)

• Sensitive to skewed workloads

• Examples:

• Seastar framework and MICA key-value store

!18
Didona et al. 2019. Sharding for Improving Tail Latencies in In-memory Key-value Stores. NSDI '19

Lim et al. 2014. MICA: A Holistic Approach to Fast In-memory Key-value. NSDI ’14

/54

Shared-something

!19

CPU0 CPU1 CPU2 CPU3

DRAM Data Data

/54

Shared-something

!20

CPU0 CPU1 CPU2 CPU3

DRAM Data Data

Hardware resources are partitioned between
CPU core clusters.

/54

Shared-something

!21

CPU0 CPU1 CPU2 CPU3

DRAM Data Data

No synchronization needed for data access on
different CPU clusters.

/54

Shared-something

!22

CPU0 CPU1 CPU2 CPU3

DRAM Data Data

Data access needs to be synchronised
within the same CPU core cluster.

/54

Shared-something
• Advantages:

• Request can be processed on many cores

• Shared-memory scales on small core counts [Holland, 2011].

• Improved hardware-level parallelism?

• For example, partitioning around sub-NUMA clustering could
improve memory controller utilization.

• Disadvantages:

• Request steering becomes more complex.

!23
Holland et al. 2011. Multicore OSes: Looking Forward from 1991, Er, 2011. HotOS ‘11

/54

Takeaways

• Partitioning improves parallelism, but there are trade-offs
applications need to consider.

• Isolation of the in-kernel network stack is needed to avoid
interference with application threads.

!24

/54

Outline

• Overview of thread-per-core

• A key-value store

• Impact on tail latency

• Problems in the approach

• Future directions

!25

/54

A shared-nothing,
key-value store

• To measure the impact of thread-per-core on tail latency,
we designed a shared-nothing key-value store.

• Memcached wire-protocol compatible for easier
evaluation.

• Software-based request steering with message passing
between threads.

• Lockless, single-producer, single-consumer (SPSC)
queue per thread.

!26

/54

Shared-nothing

!27

CPU0 CPU1 CPU2 CPU3

DRAM Data Data Data Data

Taking the shared-nothing model…

/54

KV store design

!28

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU0

Application
Thread

DRAM

CPU1

Socket

Socket

U
serspace

Kernel
H

ardw
are

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU2

Application
Thread

DRAM

CPU3

Network

Message Passing

Socket

Socket

…and implementing it on Linux.

/54

KV store design

!29

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU0

Application
Thread

DRAM

CPU1

Socket

Socket

U
serspace

Kernel
H

ardw
are

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU2

Application
Thread

DRAM

CPU3

Network

Message Passing

Socket

Socket

In-kernel network stack isolated on its own CPU cores.

/54

KV store design

!30

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU0

Application
Thread

DRAM

CPU1

Socket

Socket

U
serspace

Kernel
H

ardw
are

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU2

Application
Thread

DRAM

CPU3

Network

Message Passing

Socket

Socket

Application threads are running on their own CPU cores.

/54

KV store design

!31

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU0

Application
Thread

DRAM

CPU1

Socket

Socket

U
serspace

Kernel
H

ardw
are

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU2

Application
Thread

DRAM

CPU3

Network

Message Passing

Socket

Socket

Message passing between the application threads.

/54

Outline

• Overview of thread-per-core

• A key-value store

• Impact on tail latency

• Problems in the approach

• Future directions

!32

/54

Impact on tail latency
• Comparison of Memcached (shared-everything) and

Sphinx (shared-nothing)

• Measured read and update latency with the Mutilate tool

• Testbed servers (Intel Xeon):

• 24 CPU cores, Intel 82599ES NIC (modern)

• 8 CPU cores, Broadcom NetXtreme II (legacy)

• Varied IRQ isolation configurations.

!33

/54

Impact on tail latency

!34

/54

Impact on tail latency

!35

/54

99th percentile latency over
concurrency for updates

!36

24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

Number of Concurrent Connections

0.0

0.5

1.0

1.5

2.0

2.5

99
th

P
er

ce
nt

ile
U

pd
at

e
La

te
nc

y
(m

s)

Memcached (legacy)

Sphinxd (legacy)

Memcached (modern)

Sphinxd (modern)

/54

99th percentile latency over
concurrency for updates

!37

24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

Number of Concurrent Connections

0.0

0.5

1.0

1.5

2.0

2.5

99
th

P
er

ce
nt

ile
U

pd
at

e
La

te
nc

y
(m

s)

Memcached (legacy)

Sphinxd (legacy)

Memcached (modern)

Sphinxd (modern)

Memcached

Sphinx

/54

99th percentile latency over
concurrency for updates

!38

24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

Number of Concurrent Connections

0.0

0.5

1.0

1.5

2.0

2.5

99
th

P
er

ce
nt

ile
U

pd
at

e
La

te
nc

y
(m

s)

Memcached (legacy)

Sphinxd (legacy)

Memcached (modern)

Sphinxd (modern)

Memcached

Sphinx

No locking, better CPU cache utilization.

/54

Latency percentiles for
updates

!39

0.0 0.5 1.0 1.5 2.0

Update Latency (ms)

1
5

10

20

50

80

90
95
99
P
er

ce
nt

ile
(%

)

Memcached (legacy)

Sphinxd (legacy)

Memcached (modern)

Sphinxd (modern)

MemcachedSphinx

/54

Takeaways
• Shared-nothing model reduces tail latency for update

requests, because partitioning eliminates locking.

• More results in the paper:

• Interrupt isolation reduces latency for both shared-
everything and shared-nothing.

• No difference for read requests between shared-
nothing and shared-something (no locking in either
case).

!40

/54

Outline

• Overview of thread-per-core

• A key-value store

• Impact on tail latency

• Problems in the approach

• Future directions

!41

/54

Packet movement between
CPU cores

!42

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU0

Application
Thread

DRAM

CPU1

Socket

Socket

U
serspace

Kernel
H

ardw
are

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU2

Application
Thread

DRAM

CPU3

Network

Message Passing

Socket

Socket

/54

Packet movement between
CPU cores

!43

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU0

Application
Thread

DRAM

CPU1

Socket

Socket

U
serspace

Kernel
H

ardw
are

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU2

Application
Thread

DRAM

CPU3

Network

Message Passing

Socket

Socket

A packet arrives on NIC RX queue and is
processed by in-kernel network stack on CPU0.

/54

Packet movement between
CPU cores

!44

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU0

Application
Thread

DRAM

CPU1

Socket

Socket

U
serspace

Kernel
H

ardw
are

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU2

Application
Thread

DRAM

CPU3

Network

Message Passing

Socket

Socket

Application thread receives the request on CPU1.

/54

Packet movement between
CPU cores

!45

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU0

Application
Thread

DRAM

CPU1

Socket

Socket

U
serspace

Kernel
H

ardw
are

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU2

Application
Thread

DRAM

CPU3

Network

Message Passing

Socket

Socket

Request is steered to an application thread on CPU3.

/54

Request steering
inefficiency

• Inter-thread communication efficiency matters for
software steering:

• Message passing by copying is a bottleneck. Avoiding
copies makes the implementation more complex.

• Thread wakeup are expensive, batching is needed, but
it increases latency.

• Busy-polling is a solution, but it wastes CPU resources
in some scenarios.

!46

/54

Partitioning scheme and
skewed workloads

• Partitioning scheme is critical, but the design decision is
application specific. Not always easy to partition.

• Skewed workloads are difficult to address with shared-
nothing model.

!47

/54

Outline

• Overview of thread-per-core

• A key-value store

• Impact on tail latency

• Problems in the approach

• Future directions

!48

/54

Request steering with a
programmable NIC?

• Program running on the NIC parses request headers, and
steers request to correct application thread [Floem, 2018].

• Eliminates request software steering overheads and
packet movement cost.

• On Linux, the Express Data Path (XDP) and eBPF
interface could be used for this.

!49
Mangpo, et al. Floem: A Programming System for NIC-Accelerated Network Applications. OSDI ’18.

/54

OS support for inter-core
communication?

• On Linux, wakeup needed for inter-thread messaging are
performed using eventfd interface or signals, but both
have overheads.

• Adding better support for inter-core communication in the
OS would help.

!50

/54

Non-blocking OS interfaces

• Thread-per-core requires non-blocking OS interfaces.

• New asynchronous I/O interfaces, such as io_uring on
Linux, will help.

• Paging and memory-mapped I/O are effectively blocking
operations (when you take a page fault), and must be
avoided.

!51

/54

Network stack
scheduling control

• In-kernel network stack runs in kernel threads, which
interfere with application threads.

• Configuring IRQ isolation is possible, but hard and error-
prone. Better interfaces are needed.

• Moving the network stack to user space helps.

!52

/54

Summary

• Thread-per-core architecture addresses kernel thread
overheads.

• Partitioning of hardware resources has advantages and
disadvantages, applications need to consider different
trade-offs.

• Request steering is critical: CPU and NIC co-design and
better OS interfaces are needed to unlock full potential of
thread-per-core.

!53

/54

Thank you!

Email: penberg@iki.fi

Home page: penberg.org

!54

mailto:penberg@iki.fi?subject=ANCS%20'19%20presentation
https://penberg.org

/54

Backup slides

!55

/54

Read latency (99th)

!56

24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

Number of Concurrent Connections

0.0

0.5

1.0

1.5

2.0

2.5

99
th

P
er

ce
nt

ile
R
ea

d
La

te
nc

y
(m

s)
Memcached (legacy)

Sphinxd (legacy)

Memcached (modern)

Sphinxd (modern)

/54

Read latency

!57

0.0 0.5 1.0 1.5 2.0

Read Latency (ms)

1
5

10

20

50

80

90
95
99
P
er

ce
nt

ile
(%

)

Memcached (legacy)

Sphinxd (legacy)

Memcached (modern)

Sphinxd (modern)

