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Introduction

• Thread-per-core architecture has emerged to eliminate 
overheads in traditional multi-threaded architectures in 
server applications.


• Partitioning of hardware resources can improve 
parallelism, but there are various trade-offs applications 
need to consider. 

• Takeaway: Request steering and OS interfaces are 
holding back the thread-per-core architecture.
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Outline

• Overview of thread-per-core


• A key-value store


• Impact on tail latency


• Problems in the approach


• Future directions
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What is thread-per-core?

• Thread-per-core = no multiplexing of a CPU core at OS 
level


• Eliminates thread context switching overhead [Qin 2019; 
Seastar]


• Enables elimination of thread synchronization by 
partitioning [Seastar]


• Eliminates thread scheduling delays [Ousterhout, 2019]
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Ousterhout et al. 2019. Shenango: Achieving High CPU Efficiency for Latency-sensitive Datacenter Workloads. NSDI ’19.

Qin et al. 2018. Arachne: Core-Aware Thread Management. OSDI ’18.

Seastar framework for high-performance server applications on modern hardware. http://seastar.io/
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Interrupt isolation for 
thread-per-core

• The in-kernel network stack runs in kernel threads, which 
interfere with application threads.


• Network stack processing must be isolated to CPU cores 
not running application thread.


• Interrupt isolation can be done with IRQ affinity and IRQ 
balancing configuration changes.


• NIC receive side-steering (RSS) configuration needs to 
align with IRQ affinity configuration.
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Partitioning in 
thread-per-core

• Partitioning of hardware resources (such as NIC and 
DRAM) can improve parallelism, by eliminating thread 
synchronization.


• Different ways of partitioning resources:


• Shared-everything, shared-nothing, and shared-
something.

!7



/54

Shared-everything
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Shared-everything
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CPU0 CPU1 CPU2 CPU3

DRAM Data

Hardware resources are shared between all CPU cores.
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Shared-everything
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CPU0 CPU1 CPU2 CPU3

DRAM Data

Every request can be processed on any CPU core.
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Shared-everything
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CPU0 CPU1 CPU2 CPU3

DRAM Data

Data access must be synchronized.
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Shared-everything
• Advantages:


• Every request can be processed on any CPU core.


• No request steering needed.


• Disadvantages:


• Shared-memory scales badly on multicore [Holland, 2011]


• Examples:


• Memcached (when thread pool size equals CPU core count)
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Shared-nothing
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Shared-nothing
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CPU0 CPU1 CPU2 CPU3

DRAM Data Data Data Data

Hardware resources are partitioned between CPU cores.
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Shared-nothing
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CPU0 CPU1 CPU2 CPU3

DRAM Data Data Data Data

Request can be processed on one specific CPU core.
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Shared-nothing
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CPU0 CPU1 CPU2 CPU3

DRAM Data Data Data Data

Data access does not require synchronization.
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Shared-nothing
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CPU0 CPU1 CPU2 CPU3

DRAM Data Data Data Data

Requests need to be steered.
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Shared-nothing
• Advantages:


• Data access does not require synchronization.


• Disadvantages:


• Request steering is needed [Lim, 2014; Didona, 2019]


• CPU utilisation imbalance if data is not distributed well (“hot partition”)


• Sensitive to skewed workloads


• Examples:


• Seastar framework and MICA key-value store
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Didona et al. 2019. Sharding for Improving  Tail Latencies in In-memory Key-value Stores. NSDI '19 

Lim et al. 2014. MICA: A  Holistic Approach to Fast In-memory Key-value. NSDI ’14
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Shared-something
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Shared-something
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CPU0 CPU1 CPU2 CPU3

DRAM Data Data

Hardware resources are partitioned between 
CPU core clusters.
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Shared-something
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CPU0 CPU1 CPU2 CPU3

DRAM Data Data

No synchronization needed for data access on 
different CPU clusters.
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Shared-something
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CPU0 CPU1 CPU2 CPU3

DRAM Data Data

Data access needs to be synchronised 
within the same CPU core cluster.
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Shared-something
• Advantages:


• Request can be processed on many cores


• Shared-memory scales on small core counts [Holland, 2011].


• Improved hardware-level parallelism?


• For example, partitioning around sub-NUMA clustering could 
improve memory controller utilization.


• Disadvantages:


• Request steering becomes more complex.
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Takeaways

• Partitioning improves parallelism, but there are trade-offs 
applications need to consider.


• Isolation of the in-kernel network stack is needed to avoid 
interference with application threads.
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Outline

• Overview of thread-per-core


• A key-value store 

• Impact on tail latency


• Problems in the approach


• Future directions
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A shared-nothing, 
key-value store

• To measure the impact of thread-per-core on tail latency, 
we designed a shared-nothing key-value store.


• Memcached wire-protocol compatible for easier 
evaluation.


• Software-based request steering with message passing 
between threads.


• Lockless, single-producer, single-consumer (SPSC) 
queue per thread.
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Shared-nothing
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CPU0 CPU1 CPU2 CPU3

DRAM Data Data Data Data

Taking the shared-nothing model…
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KV store design
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KV store design
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KV store design
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KV store design
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Outline

• Overview of thread-per-core


• A key-value store


• Impact on tail latency 

• Problems in the approach


• Future directions
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Impact on tail latency
• Comparison of Memcached (shared-everything) and 

Sphinx (shared-nothing)


• Measured read and update latency with the Mutilate tool


• Testbed servers (Intel Xeon):


• 24 CPU cores, Intel 82599ES NIC (modern)


• 8 CPU cores, Broadcom NetXtreme II (legacy)


• Varied IRQ isolation configurations.
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Impact on tail latency
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Impact on tail latency
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99th percentile latency over 
concurrency for updates
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Latency percentiles for 
updates
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Takeaways
• Shared-nothing model reduces tail latency for update 

requests, because partitioning eliminates locking.


• More results in the paper:


• Interrupt isolation reduces latency for both shared-
everything and shared-nothing.


• No difference for read requests between shared-
nothing and shared-something (no locking in either 
case).
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Outline

• Overview of thread-per-core


• A key-value store


• Impact on tail latency


• Problems in the approach 

• Future directions
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Packet movement between 
CPU cores
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Packet movement between 
CPU cores
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Packet movement between 
CPU cores
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Packet movement between 
CPU cores
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Request steering 
inefficiency

• Inter-thread communication efficiency matters for 
software steering:


• Message passing by copying is a bottleneck. Avoiding 
copies makes the implementation more complex.


• Thread wakeup are expensive, batching is needed, but 
it increases latency.


• Busy-polling is a solution, but it wastes CPU resources 
in some scenarios.
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Partitioning scheme and 
skewed workloads

• Partitioning scheme is critical, but the design decision is 
application specific. Not always easy to partition.


• Skewed workloads are difficult to address with shared-
nothing model.
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Outline

• Overview of thread-per-core
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• Future directions
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Request steering with a 
programmable NIC?

• Program running on the NIC parses request headers, and 
steers request to correct application thread [Floem, 2018].


• Eliminates request software steering overheads and 
packet movement cost.


• On Linux, the Express Data Path (XDP) and eBPF 
interface could be used for this.

!49
Mangpo, et al. Floem: A Programming System for NIC-Accelerated Network Applications. OSDI ’18.
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OS support for inter-core 
communication?

• On Linux, wakeup needed for inter-thread messaging are 
performed using eventfd interface or signals, but both 
have overheads.


• Adding better support for inter-core communication in the 
OS would help.
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Non-blocking OS interfaces

• Thread-per-core requires non-blocking OS interfaces.


• New asynchronous I/O interfaces, such as io_uring on 
Linux, will help.


• Paging and memory-mapped I/O are effectively blocking 
operations (when you take a page fault), and must be 
avoided.
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Network stack 
scheduling control

• In-kernel network stack runs in kernel threads, which 
interfere with application threads.


• Configuring IRQ isolation is possible, but hard and error-
prone. Better interfaces are needed.


• Moving the network stack to user space helps.
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Summary

• Thread-per-core architecture addresses kernel thread 
overheads.


• Partitioning of hardware resources has advantages and 
disadvantages, applications need to consider different 
trade-offs.


• Request steering is critical: CPU and NIC co-design and 
better OS interfaces are needed to unlock full potential of 
thread-per-core.
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Thank you! 

Email: penberg@iki.fi  

Home page: penberg.org
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Backup slides
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Read latency (99th)
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Read latency
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