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Introduction

e [hread-per-core architecture has emerged to eliminate
overheads in traditional multi-threaded architectures in
server applications.

e Partitioning of hardware resources can improve

parallelism, but there are various trade-offs applications
need to consider.

 Takeaway: Request steering and OS interfaces are
holding back the thread-per-core architecture.

2/54



Outline

Overview of thread-per-core
A key-value store

Impact on tail latency
Problems in the approach

Future directions

3/54



Outline

Overview of thread-per-core
A key-value store

Impact on tail latency
Problems in the approach

Future directions

4/54



What is thread-per-core?

e Thread-per-core = no multiplexing of a CPU core at OS
level

e Eliminates thread context switching overhead [Qin 2019;
Seastar]

e Enables elimination of thread synchronization by
partitioning [Seastar]

e Eliminates thread scheduling delays [Ousterhout, 2019]

Ousterhout et al. 2019. Shenango: Achieving High CPU Efficiency for Latency-sensitive Datacenter Workloads. NSDI ’19.
Qin et al. 2018. Arachne: Core-Aware Thread Management. OSDI ’18.

Seastar framework for high-performance server applications on modern hardware. http://seastar.io/ 5/54
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Interrupt isolation for
thread-per-core

The in-kernel network stack runs in kernel threads, which
interfere with application threads.

Network stack processing must be isolated to CPU cores
not running application thread.

Interrupt isolation can be done with IRQ affinity and IRQ
balancing configuration changes.

NIC receive side-steering (RSS) configuration needs to
align with IRQ affinity configuration.

Li et al. 2014. Tales of the Tail: Hardware, OS, and Application-level Sources of Talil Latency.6/S5CjCC ‘14



Partitioning In
thread-per-core

e Partitioning of hardware resources (such as NIC and
DRAM) can improve parallelism, by eliminating thread
synchronization.

e Different ways of partitioning resources:

e Shared-everything, shared-nothing, and shared-
something.
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Hardware resources are shared between all CPU cores.
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Every request can be processed on any CPU core.
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Data access must be synchronized.
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Shared-everything

 Advantages:

e Every request can be processed on any CPU core.

* No request steering needed.
 Disadvantages:

e Shared-memory scales badly on multicore [Holland, 2011]
e Examples:

e Memcached (when thread pool size equals CPU core count)

Holland et al. 2011. Multicore OSes: Looking Forward from 1991, Er, 2011. HotOS ‘11 12/
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Hardware resources are partitioned between CPU cores.
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Shared-nothing
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Request can be processed on one specific CPU core.
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Data access does not require synchronization.
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Requests need to be steered.
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Shared-nothing

* Advantages:
e Data access does not require synchronization.
e Disadvantages:
e Request steering is needed [Lim, 2014; Didona, 2019]
e CPU utilisation imbalance if data is not distributed well (“hot partition”)
* Sensitive to skewed workloads
e Examples:
e Seastar framework and MICA key-value store

Didona et al. 2019. Sharding for Improving Tail Latencies in In-memory Key-value Stores. NSDI '19
Lim et al. 2014. MICA: A Holistic Approach to Fast In-memory Key-value. NSDI *14 18/54
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Shared-something
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Hardware resources are partitioned between
CPU core clusters.
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Shared-something
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No synchronization needed for data access on
different CPU clusters.
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Shared-something
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Data access needs to be synchronised
within the same CPU core cluster.
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Shared-something

e Advantages:
e Request can be processed on many cores
 Shared-memory scales on small core counts [Holland, 2011].
* Improved hardware-level parallelism?

* For example, partitioning around sub-NUMA clustering could
improve memory controller utilization.

* Disadvantages:

* Request steering becomes more complex.

Holland et al. 2011. Multicore OSes: Looking Forward from 1991, Er, 2011. HotOS ‘11 o5



Takeaways

e Partitioning improves parallelism, but there are trade-offs
applications need to consider.

e |[solation of the in-kernel network stack is needed to avoid
interference with application threads.
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A shared-nothing,
kKey-value store

 To measure the impact of thread-per-core on tail latency,
we designed a shared-nothing key-value store.

e Memcached wire-protocol compatible for easier
evaluation.

e Software-based request steering with message passing
between threads.

e Lockless, single-producer, single-consumer (SPSC)
queue per thread.
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Shared-nothing
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Taking the shared-nothing model...
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KV store design
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...and implementing it on Linux.

28/54



[PUI9M aoedsiasn

a/empieH

KV store design
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In-kernel network stack isolated on its own CPU cores.
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KV store design
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Application threads are running on their own CPU cores.
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KV store design
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Message passing between the application threads.
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Impact on tail latency

Comparison of Memcached (shared-everything) and
Sphinx (shared-nothing)

Measured read and update latency with the Mutilate tool
Testbed servers (Intel Xeon):

e 24 CPU cores, Intel 82599ES NIC (modern)

8 CPU cores, Broadcom NetXtreme |l (legacy)

Varied IRQ isolation configurations.
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Impact on tail latency
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Impact on tail latency
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99th percentile latency over
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99th percentile latency over
concurrency for updates
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No locking, better CPU cache utilization.
38/54



Latency percentiles for
updates
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Takeaways

 Shared-nothing model reduces tail latency for update
requests, because partitioning eliminates locking.

e More results in the paper:

* Interrupt isolation reduces latency for both shared-
everything and shared-nothing.

e No difference for read requests between shared-
nothing and shared-something (no locking in either
case).
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Packet movement between
CPU cores
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Packet movement between
CPU cores
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A packet arrives on NIC RX queue and is
processed by in-kernel network stack on CPUO.
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Packet movement between
CPU cores
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Application thread receives the request on CPU1.
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Packet movement between
CPU cores
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Request is steered to an application thread on CPUS.

45/54



Request steering
Inefficiency

e |nter-thread communication efficiency matters for
software steering:

e Message passing by copying is a bottleneck. Avoiding
copies makes the implementation more complex.

e Thread wakeup are expensive, batching is needed, but
it increases latency.

e Busy-polling is a solution, but it wastes CPU resources
IN Some scenarios.
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Partitioning scheme and
skewed workloads

e Partitioning scheme is critical, but the design decision is
application specific. Not always easy to partition.

o Skewed workloads are difficult to address with shared-
nothing model.
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Request steering with a
programmable NIC?

e Program running on the NIC parses request headers, and
steers request to correct application thread [Floem, 2018].

e Eliminates request software steering overheads and
packet movement cost.

e On Linux, the Express Data Path (XDP) and eBPF
interface could be used for this.

Mangpo, et al. Floem: A Programming System for NIC-Accelerated Network Applications. OSDI ’1 8.49/54



OS support for inter-core
communication?

 On Linux, wakeup needed for inter-thread messaging are
performed using eventfd interface or signals, but both
have overheads.

* Adding better support for inter-core communication in the
OS would help.
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Non-blocking OS interfaces

e Thread-per-core requires non-blocking OS interfaces.

e New asynchronous I/O interfaces, such as io_uring on
Linux, will help.

e Paging and memory-mapped |/O are effectively blocking

operations (when you take a page fault), and must be
avoided.
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Network stack
scheduling control

In-kernel network stack runs in kernel threads, which
interfere with application threads.

Configuring IRQ isolation is possible, but hard and error-
prone. Better interfaces are needed.

Moving the network stack to user space helps.
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Summary

e Thread-per-core architecture addresses kernel thread
overheads.

e Partitioning of hardware resources has advantages and

disadvantages, applications need to consider different
trade-offs.

 Request steering is critical: CPU and NIC co-design and
better OS interfaces are needed to unlock full potential of
thread-per-core.

53/54



Thank you!

Email: penberg@iki.fi

Home page: penberg.org
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Read latency (99th)
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