The Impact of Thread-
Per-Core Architecture on
Application Tail Latency

Pekka Enberg, Ashwin Rao, and Sasu Tarkoma
University of Helsinki
ANCS 2019

Introduction

e [hread-per-core architecture has emerged to eliminate
overheads in traditional multi-threaded architectures in
server applications.

e Partitioning of hardware resources can improve

parallelism, but there are various trade-offs applications
need to consider.

 Takeaway: Request steering and OS interfaces are
holding back the thread-per-core architecture.

2/54

Outline

Overview of thread-per-core
A key-value store

Impact on tail latency
Problems in the approach

Future directions

3/54

Outline

Overview of thread-per-core
A key-value store

Impact on tail latency
Problems in the approach

Future directions

4/54

What is thread-per-core?

e Thread-per-core = no multiplexing of a CPU core at OS
level

e Eliminates thread context switching overhead [Qin 2019;
Seastar]

e Enables elimination of thread synchronization by
partitioning [Seastar]

e Eliminates thread scheduling delays [Ousterhout, 2019]

Ousterhout et al. 2019. Shenango: Achieving High CPU Efficiency for Latency-sensitive Datacenter Workloads. NSDI ’19.
Qin et al. 2018. Arachne: Core-Aware Thread Management. OSDI ’18.

Seastar framework for high-performance server applications on modern hardware. http://seastar.io/ 5/54

http://seastar.io/

Interrupt isolation for
thread-per-core

The in-kernel network stack runs in kernel threads, which
interfere with application threads.

Network stack processing must be isolated to CPU cores
not running application thread.

Interrupt isolation can be done with IRQ affinity and IRQ
balancing configuration changes.

NIC receive side-steering (RSS) configuration needs to
align with IRQ affinity configuration.

Li et al. 2014. Tales of the Tail: Hardware, OS, and Application-level Sources of Talil Latency.6/S5CjCC ‘14

Partitioning In
thread-per-core

e Partitioning of hardware resources (such as NIC and
DRAM) can improve parallelism, by eliminating thread
synchronization.

e Different ways of partitioning resources:

e Shared-everything, shared-nothing, and shared-
something.

7/54

Shared-everything

NVdd
O
=
N

Shared-everything

NVdd
O
=
N

Hardware resources are shared between all CPU cores.

9/54

Shared-everything

NVdd
O
=
Q0

Every request can be processed on any CPU core.

10/54

Shared-everything

NVdd
O
=
Q0

Data access must be synchronized.

11/54

Shared-everything

 Advantages:

e Every request can be processed on any CPU core.

* No request steering needed.
 Disadvantages:

e Shared-memory scales badly on multicore [Holland, 2011]
e Examples:

e Memcached (when thread pool size equals CPU core count)

Holland et al. 2011. Multicore OSes: Looking Forward from 1991, Er, 2011. HotOS ‘11 12/

Shared-nothing

NVYHd
O
]
X
,
]
0
O
o]
o
O
2
X

13/54

Shared-nothing

NVYHd
O
]
X
,
]
0
O
o]
o
O
2
X

Hardware resources are partitioned between CPU cores.

14/54

Shared-nothing

————————————————————————————————————

o | e e N E |
333 |Data| | | Data | | Data | |i Data
Z | | | |

Request can be processed on one specific CPU core.

15/54

Shared-nothing

i ! i !
O |\r— R B H R i
= ||i| Data | i Data i | :|Data| |: Data
" st SRR B e B A

Data access does not require synchronization.

16/54

Shared-nothing

i i ! !
o | — NI R :
= || Data | i|Data|i | i Data | |: Data
< ||\]

Requests need to be steered.

17/54

Shared-nothing

* Advantages:
e Data access does not require synchronization.
e Disadvantages:
e Request steering is needed [Lim, 2014; Didona, 2019]
e CPU utilisation imbalance if data is not distributed well (“hot partition”)
* Sensitive to skewed workloads
e Examples:
e Seastar framework and MICA key-value store

Didona et al. 2019. Sharding for Improving Tail Latencies in In-memory Key-value Stores. NSDI '19
Lim et al. 2014. MICA: A Holistic Approach to Fast In-memory Key-value. NSDI *14 18/54

Shared-something

NVYHd
O
]
X
O
=
X

Shared-something

D | | |
> ; Data | Data
<

Hardware resources are partitioned between
CPU core clusters.

20/54

Shared-something

NVYHd
O
]
X
O
=
X

No synchronization needed for data access on
different CPU clusters.

21/54

Shared-something

NVYHd
O
]
X
O
=
X

Data access needs to be synchronised
within the same CPU core cluster.

22/54

Shared-something

e Advantages:
e Request can be processed on many cores
 Shared-memory scales on small core counts [Holland, 2011].
* Improved hardware-level parallelism?

* For example, partitioning around sub-NUMA clustering could
improve memory controller utilization.

* Disadvantages:

* Request steering becomes more complex.

Holland et al. 2011. Multicore OSes: Looking Forward from 1991, Er, 2011. HotOS ‘11 o5

Takeaways

e Partitioning improves parallelism, but there are trade-offs
applications need to consider.

e |[solation of the in-kernel network stack is needed to avoid
interference with application threads.

24/54

Outline

Overview of thread-per-core
A key-value store

Impact on tail latency
Problems in the approach

Future directions

25/54

A shared-nothing,
kKey-value store

 To measure the impact of thread-per-core on tail latency,
we designed a shared-nothing key-value store.

e Memcached wire-protocol compatible for easier
evaluation.

e Software-based request steering with message passing
between threads.

e Lockless, single-producer, single-consumer (SPSC)
queue per thread.

26/54

Shared-nothing

o | e e N E |
333 Data | | | Data | | Data | |: Data
Z | | | |

Taking the shared-nothing model...

27/54

[PUI9M aoedsiasn

a/empieH

KV store design

CPUO CPU1 CPU2 CPUS
Application _ Application
Thread < Message Passing > Thread
w w w w
8 S S S
—| 3 > B -l -
| —~ — // —~ —
SoftiRQ | T~ softiRq =
Thread Thread
—IRQ V—Poll— _______ v —IRQ V—Poll— _______ v
A ; | A ; ;
NIC RX ' DRAM | NIC RX ' DRAM |
Queue | | Queue | |

...and implementing it on Linux.

28/54

[PUI9M aoedsiasn

a/empieH

KV store design

CPUO CPUA1 CPU2 CPU3
Application _ Application
Thread < Message Passing > Thread
) wn))
o) o) o o
@) @) (@) (@)
"3 | |8 L33
SoftiRQ T~ SoftRQ T |
Thread Thread
- 1RQ V—Poll-- _______ v - 1RQ V—Poll-- _______ v
P ; | A ; ;
NIC RX ' DRAM | NIC RX ' DRAM |
Queue | | Queue | |

In-kernel network stack isolated on its own CPU cores.

29/54

KV store design

CPUO CPU1
C
& Application
§ Thread a
(@
()
W W
o) o)
(@) (@)
—7 3 D T~
A SoftiRQ |
C:i Thread
—1RQ V—Poll— _______ v
T S ; |
3 NIC RX ' DRAM |
3 Queue | |

CPU2 CPU3
_ Application
— Message Passing - Thread
wn »
9 S
/ x 17" X
= a
T softlRQ
Thread
—IRQ v Poll = I \ S
S i |
NIC RX . DRAM |
Queue : |

Application threads are running on their own CPU cores.

30/54

KV store design

aoedsiasn

EIIE)Y

a/empieH

CPUO CPU1 CPU2 CPU3
| |
Application _ Application
Thread Message Passing > Thread
w w W W
o) o) o) o)
S| | LSS
@ @ ———— 2 @
SoftiRQ T~ SoftlRQ =
Thread Thread
—IRQ V—Poll— _______ v —IRQ V—Poll— _______ v
> — > i i
NIC RX DRAM NIC RX ' DRAM |
Queue Queue | |

Message passing between the application threads.

31/54

Outline

Overview of thread-per-core
A key-value store

Impact on tail latency
Problems in the approach

Future directions

32/54

Impact on tail latency

Comparison of Memcached (shared-everything) and
Sphinx (shared-nothing)

Measured read and update latency with the Mutilate tool
Testbed servers (Intel Xeon):

e 24 CPU cores, Intel 82599ES NIC (modern)

8 CPU cores, Broadcom NetXtreme |l (legacy)

Varied IRQ isolation configurations.

33/54

Impact on tail latency

%9 " " & - . > - 'y
'y
20 - b . g

"
.
»
’
'S
F
»
.

Memcached (legacy)

® Sphinxd (lagacy)

4 Memcached (modem)

¢ Sphinxd (modem) .

=

-
’
v
>

.
*
=
&
-
-
‘
&
-
-
-

.
s
=
.
»

.
A

Percentile (%)

.

’
-

.
Percentile (%)

‘
~

»
"
t
-
b
=
-
-~
-

-
- e
>

4 -~

e
'
i

- -

tow

- nk
T R 118 ll.:;.o ‘n
L0 reerr— - -) It L " 1 . .

- R E ~ e <
e A % B 10 15 20 00 05 0

5Eo W

e < 3 -
- a8 AN wedd = ER2=-0Rz 00
n

er

F— A
- N O O v ™~ o o > >
SES=ESZEZER - 2R ITES »

99th Pescentile Read Latencys (ms)
-
o
99th Percentile Update Latency (ms)
L

-

e e o NI RN ™ — e = em 0N

Number of Concurrent Connections Number of Concurrest Connections Read Latency (ms) Update Litency (MS)

(a) IRQ affinity not configured, and IRQ balance enabled.

_JJ: " z’. (riJ e » o
5 5]
u 3 e 4

"

+
v
e
°

"~
’
¢
£
0
-
"
Z
el
o
-

L
*
on

SO 9) - 8 ¢ # ,

I
Percertile (%)

‘«

! “‘:"‘

--i -

4
.

£ » I R
2 ! 10} 0 L4 A
t b - > & '.5 l' ;0 4
. . Ik . N s’ 4

99th Percentile Read Latency (ms)
°
.
™
99th Percentile Update Latency (ms)
.
4
Percertile (%)

24
“re
Tireenm

T E T EE R EEEEEE R
SYREEIEBEE-FZEC-8S 00 10 2 00 15 1.0

4
T

A
SASEScSSZECRS

PR A - -

Number of Concurrent Connections Number of Concurrest Connections Read Latency (ms) Update Litency (ms)

(b) IRQ affinity not configured, and IRQ balance disabled.

L
.
»~
-
-
-
-

"
’
X

»
.
=

2
L]
>
S
£ ERS
-
-
-
-

"
»

.
<
-

L
>

-
-

.0

-
>

‘..“‘*

L]
.

Percentile (%]

)
L
Percentile (%)

»

=
- a - - 2200 %

P

T

-
-

-
-~

A LR J
B
'
'

e

s#eEs A

A A
A

. .
T E MR ATEDY R ~ e QT
CSRERAISRIIREENRRE

~ = » - - -= 2 s x5 LS 0 15) 15
Number of Concurrent Connections Number of Concurreat Connections Read Latency (ms) Update Lztency (ms)

99th Percentile Read Latency (ms)
k3

99th Percentile Update Latency (ms)
a

09 4
- 10} Ll 10 -
) ?(5‘ . et £
)

1LY as »

¥}
-

RINRASERR2SEE DN

SRR

> 5 e 2 00 0s (

(c) IRQ affinity configured. and IRQ balance disabled.
34/04

Impact on tail latency

"~
o

=)
(=3

% Memcached (legacy)
Sphirxd (lagacy)

d Memcached (modem)

¥ Sphinxd (modem)

-
»
"

"L e

99th Pescentile Read Latency (ms)

e 9 ‘Nx‘.\-‘
oo Es M8

ncurrent Connections

244

192

U

(&)
o

=
o

[
(=]
T

=
T

LA L]

t -
t &
] .
.

o

Ll
L
1%°
'-

~
-

‘At.‘:

#
~

0.0

99th Percentile Read Latency (ms)

24]- 4
wlew

e
w
12
122
s

Number of Conc

g-:iwan

DR R ERE) g
rrent Connections

l'.'l
= 216

[
5

)
=]

o
<

>
-
s ®

a sue®
"3
o*“"

P L

99th Percentile Read Latency (ms)

RS

RESZEERE

R R

Number of Concurrent Connections

~
o

.

—
(=]

o

0.0

99th Percentile Update Latency (ms)

@
>0

sOp

Percentile (%)

" e

Q5 10 15

Read Latency (ms)

(a) IRQ affinity not configured, and IRQ balance enabled.

~

~
(=

G

o
T

99th Percentile Update Latency (ms)

-
-
o. L
- B
.‘ ..
s F -
- w o ¥
> .l_'_‘
. -
- . .
o s
e i+ i
- - -
*e o—"’
‘:.»"”
A A A " T — F—
.1'.5.".‘8?‘:'5’.:%321;&-3;
— S LB B
Number of Concurreat Connections
-
-
-
0. . "
- =
>
- ..' - "
.0 .-'
- -
" *
o. He®
- g
»
’0.. +’.-’
- -
t:> g e 1
S FEEEE RV EEEE
Number of Concurreat Connections

G

c

E
g
5
=3
]
=
3
€
8.
5o
a
g.

(¢) IRQ affinity configured.

DEvar o

3
A S

Number of Concurreat Co

%t
wr

SOF

Percertile (%)
5

13

-
..

oS l(l 15

Read Latency (ms)

, and IRQ balance disabled.

13

w

Percentile (%)
) £

=
=]

&

—
- O

: .‘-.. " .

¢ M

G

o5 10 15

Read Latency (ms)

and IRQ balance disabled.

- Ty
20 ’ LA 4
N) ‘ L .

(lﬂ 05 Lo

Update Litency (ms)

BRE
-
o4
o

[

-
o
-
-

Percertile (%)
o .
£

-9 ¢ '
10 ‘ i
PEdet ot

00 05 10

Update Litency (ms)

Updatc Lctency (ms)

30/04

99th percentile latency over
concurrency for updates

—~~
7))
E
> 25r ¢ Memcached (legacy)
§ Sphinxd (legacy)
® 207 T Memcached (modern) -
- % Sphinxd (modern) -
3 Lor _._+
Q. - -
- -&- 4 A
& -
L 1.0F -0~ —
= - v
O L
al - =’==P==’=
- e
. E=FEFE > >
SN = v oo v o T 0 oo o=
o)) N < OO0 AN O O O 0 H DO 0
— = = = A AN AN AN M M M M
Number of Concurrent Connections

36/54

99th percentile latency over
concurrency for updates

—~~
Vp)
E
> 25r ¢ Memcached (legacy)
§ Sphinxd (legacy)
® 207 T Memcached (modern) -
- % Sphinxd (modern) -
_g 1.5F _._+
o - e
- <o & Memcached
o 10} - B
- P e
O - r
GL)O'5_ o =;.==P'=+='= > > Sphinx
al - =.:=’==P=
. E=FEFE > >
ST oo 5 v s v o ¥ ¥ N o o
o)) AN <f I~ OO AN <H © O H <H O 0 —H N O© 0
N = = — NN AN AN AN M M Mm M
Number of Concurrent Connections

37/54

99th percentile latency over
concurrency for updates

—~~

7))

E

> 25r ¢ Memcached (legacy)

§ Sphinxd (legacy)

® 207 T Memcached (modern) -

- % Sphinxd (modern) -

3 Lor _._+

Q. e e

- <o -+ * || Memcached

o 10} - B

= - v

O - r

GL)O'5_ o =;.==P'=+='= > > Sphinx

al -, =.:=’==P=

. E=FEFE > >

SN = v oo T T 2 o0 oo

> NIFEdITEZ2IISES BRI
Number of Concurrent Connections

No locking, better CPU cache utilization.
38/54

Latency percentiles for
updates

Sphinx Memcached

9F o [o] e L8 TR |
§8 e ¢
sof ¥4
Z .
S50 W o 4
O tat Memcached (legacy)
A PoE Sphinxd (legacy)
201 # '.F 4 P Memcached (modern)
1%; f*'lj *ﬁ I - HEH , Sphinxd (mlodern)
0.0 0.5 1.0 1.5 2.0

Update Latency (ms)

39/54

Takeaways

 Shared-nothing model reduces tail latency for update
requests, because partitioning eliminates locking.

e More results in the paper:

* Interrupt isolation reduces latency for both shared-
everything and shared-nothing.

e No difference for read requests between shared-
nothing and shared-something (no locking in either
case).

40/54

Outline

Overview of thread-per-core
A key-value store

Impact on tail latency
Problems in the approach

Future directions

41/54

Packet movement between
CPU cores

CPUO CPU1 CPU2 CPU3
7
@ Application _ Application
§ Thread h Message Passing g Thread
®
%) %) 7 7
S 1718 2 1,18
—7| D | 3T |3
| —~ — // —~ —
® SoftiRQ | T~ softiRq =
= Thread Thread
—IRQ V—POII— _______ v —IRQ V—POII— _______ v
T —— ; | —— ; ;
o NIC RX ' DRAM | NIC RX ' DRAM |
= Queue i | Queue i i

42/54

Packet movement between
CPU cores

CPUO CPU1 CPU2 CPU3
7
@ Application _ Application
§ Thread h Message Passing g Thread
®
w w w W
8 8 8 8
— | 3 D |~ B -l Y
ql —~ — // —~ —
‘-? SoftiRQ T~ SoftRQ F—
2 Thread Thread
_______) S
DRAM

a/empieH

A packet arrives on NIC RX queue and is
processed by in-kernel network stack on CPUO.

43/54

Packet movement between
CPU cores

CPUO CPU1 CPU2 CPU3
7
@ Application _ Application
§ Thread <[Message Passing g Thread
®
N w w W
o) o) o) o)
v = % — 7 % =
T Q. @ ~ ~—T— 2 @
‘-? SoftiRQ T~ SoftRQ F—
2 Thread Thread
_______) S
T
2
qQ
= DRAM
Q
o |\ J M| i~

Application thread receives the request on CPU1.

44/54

Packet movement between
CPU cores

CPUO CPU1 CPU2 CPU3
7
@ Application _ Application
§ Thread <[Message Passing 7> Thread
(@)
® — 1 | —
410D w o o
o) o) o) o)
v = % — 7 % =
T Q. @ ~ ~—T— 2 @
‘-? SoftiRQ T~ SoftRQ F—
2 Thread Thread
_______) S
T
2
qQ
= DRAM
Q
o |\ J M| i~

Request is steered to an application thread on CPUS.

45/54

Request steering
Inefficiency

e |nter-thread communication efficiency matters for
software steering:

e Message passing by copying is a bottleneck. Avoiding
copies makes the implementation more complex.

e Thread wakeup are expensive, batching is needed, but
it increases latency.

e Busy-polling is a solution, but it wastes CPU resources
IN Some scenarios.

46/54

Partitioning scheme and
skewed workloads

e Partitioning scheme is critical, but the design decision is
application specific. Not always easy to partition.

o Skewed workloads are difficult to address with shared-
nothing model.

47/54

Outline

Overview of thread-per-core
A key-value store

Impact on tail latency
Problems in the approach

Future directions

48/54

Request steering with a
programmable NIC?

e Program running on the NIC parses request headers, and
steers request to correct application thread [Floem, 2018].

e Eliminates request software steering overheads and
packet movement cost.

e On Linux, the Express Data Path (XDP) and eBPF
interface could be used for this.

Mangpo, et al. Floem: A Programming System for NIC-Accelerated Network Applications. OSDI ’1 8.49/54

OS support for inter-core
communication?

 On Linux, wakeup needed for inter-thread messaging are
performed using eventfd interface or signals, but both
have overheads.

* Adding better support for inter-core communication in the
OS would help.

50/54

Non-blocking OS interfaces

e Thread-per-core requires non-blocking OS interfaces.

e New asynchronous I/O interfaces, such as io_uring on
Linux, will help.

e Paging and memory-mapped |/O are effectively blocking

operations (when you take a page fault), and must be
avoided.

51/54

Network stack
scheduling control

In-kernel network stack runs in kernel threads, which
interfere with application threads.

Configuring IRQ isolation is possible, but hard and error-
prone. Better interfaces are needed.

Moving the network stack to user space helps.

52/54

Summary

e Thread-per-core architecture addresses kernel thread
overheads.

e Partitioning of hardware resources has advantages and

disadvantages, applications need to consider different
trade-offs.

 Request steering is critical: CPU and NIC co-design and
better OS interfaces are needed to unlock full potential of
thread-per-core.

53/54

Thank you!

Email: penberg@iki.fi

Home page: penberg.org

54/54

mailto:penberg@iki.fi?subject=ANCS%20'19%20presentation
https://penberg.org

Backup slides

Read latency (99th)

“»n
S
‘;2-5' ¢ Memcached (legacy)
= Sphinxd (legacy)
0 50l
£ 200 T Memcached (modern)
—
= % Sphinxd (modern)
T 1.oF
-0
ad P
v -
3 -
5 03 eestiliazst
= #ixz##***
(@)} OO]]]]]]]]]]]
(@) O N © O F 0O AN © O < 0 N © O <
C\]ﬂ"l\mc\lﬂ@@—iﬂ"@w\—#m(@o@
— = o~ = A AN AN AN M M N M
Number of Concurrent Connections

56/54

Percentile (%)

Read latency

08 F

90 |-

S0 .

00 #
: tat Memcached (legacy)
P Sphinxd (legacy)

201 # } P Memcached (modern)

1%: i':,;r ~H- Sphinxd (modern)

0.0 05 1.0 5 2.0

Read Latency (ms)

57/54

