
Lean requirements traceability automation
enabled by model-driven engineering
María-José Escalona1, Nora Koch1 and Laura Garcia-Borgoñon2

1 University of Seville, Seville, Spain
2 ITA Innova, Zaragoza, Spain

ABSTRACT
Background: The benefits of requirements traceability, such as improvements in
software product and process quality, early testing, and software maintenance, are
widely described in the literature. Requirements traceability is a critical, widely
accepted practice. However, very often it is not applied for fear of the additional costs
associated with manual efforts or the use of additional tools.
Methods: This article presents a “low-cost”mechanism for automating requirements
traceability based on the model-driven paradigm and formalized by a metamodel for
the creation and monitoring of traces and an integration process for traceability
management. This approach can also be useful for information fusion in industry
insofar that it facilitates data traceability.
Results: This article extends an existing model-driven development methodology to
incorporate traceability as part of its development tool. The tool has been used
successfully by several companies in real software development projects, helping
developers to manage ongoing changes in functional requirements. One of those
projects is cited as an example in the paper. The authors’ current work leads them to
conclude that a model-driven engineering approach, traditionally used only for
the automatic generation of code in a software development process, can also be used
to successfully automate and integrate traceability management without additional
costs. The systematic evaluation of traceability management in industrial projects
constitutes a promising area for future work.

Subjects Software Engineering
Keywords Traceability, Model-driven engineering, Information fusion

INTRODUCTION
Traceability is defined by Drivalos-Matragkas et al. (2010) as the ability to chronologically
interrelate uniquely identifiable entities in a way that matters. This very general definition
pointing out the usefulness such interrelationships should have was later adapted by
Lago, Muccini & van Vliet (2009) with reference to the life of software artifacts. CMMI
(Team, 2010) defines bidirectional traceability as “an association among two or more
logical entities that is discernable in either direction”. A more implementation-oriented
definition is provided by the IEEE Standard Glossary of Software Engineering Terminology
(1990), in which traceability is referred to as “the degree to which a relationship can be
established between two or more products of the development process, especially products
having a predecessor-successor or master-subordinate relationship to one another; for
example, the degree to which the requirements and design of a given software component

How to cite this article Escalona M-J, Koch N, Garcia-Borgoñon L. 2022. Lean requirements traceability automation enabled by
model-driven engineering. PeerJ Comput. Sci. 8:e817 DOI 10.7717/peerj-cs.817

Submitted 26 July 2021
Accepted 23 November 2021
Published 25 January 2022

Corresponding author
María-José Escalona,
mjescalona@US.ES

Academic editor
Juan Lara

Additional Information and
Declarations can be found on
page 28

DOI 10.7717/peerj-cs.817

Copyright
2022 Escalona et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.817
mailto:mjescalona@�US.�ES
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.817
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

match”. This definition emphasizes the potential of traces in the requirements engineering
domain, where traceability had its origin.

Both academia and industry recognize the importance of traceability and it is widely
accepted that traceability can ease the maintenance of evolving software independently
of the software development process employed (agile, waterfall, model-driven, etc.),
particularly for large systems. Common software development company activities like
managing changes in requirements, re-planning projects or validating whether
requirements have been appropriately incorporated into software products all benefit
from the efficient maintenance of requirement traces.

Traceability is strongly recommended in industrial standards like CMMI, which
establishes a specific procedure (SP 1.4 Maintain Bidirectional Traceability of
Requirements) in the Requirements Management Process Area at Maturity Level 2.

However, traceability implementation in industrial projects is limited for fear of the
overheads it may involve. In practice, traceability often implies a qualitative improvement,
but one which is usually difficult to measure. The difficulty of comparing software
development with and without traceability management under almost identical conditions
is also the main reason for the lack of systematic evaluations regarding traceability return
on investment (ROI).

To address the high costs associated with trace maintenance and reconstruction
throughout the entire life cycle of the software product from inception to deployment and
subsequent maintenance, the present research focused on reducing the efforts required to
achieve traceability, the ultimate aim being to obtain traceability almost “for free”.

The approach was to generate and maintain traces automatically during modeling
phases, without the need for additional work by software engineers/developers. These
automatically created traces are used to generate trace artefacts and provide information
that can be passed from one phase to another one. This way, it is possible to trace
how requirements are handled in the analysis stage and how they evolve in subsequent
design stages. This approach is based on the Model-Driven Engineering (MDE) paradigm.
In this regard, traceability is reduced to the management of traces between models used
in the software development process; models that belong either to different levels of
abstraction or, in some cases, to the same level (so-called vertical and horizontal traces).
This paper describes how any methodology can be enriched using such an MDE-based
approach to traceability—a procedure that has to be carried out just once by the
methodology expert, or, exceptionally, more than once if the methodology is improved.
This approach also requires a traceability support tool: i.e., a tool that can store trace
links according to trace rules, monitor traces if source or target models are changed, and
display warning and error messages in case of conflicts.

The application of such an approach to traceability management is, then, clearly a
task that has to be defined and implemented by the methodology expert. Once integrated
in the tool, it will be transparent to software developers, who will only see a monitoring
mechanism for dealing with trace conflicts. A requirements traceability matrix can be
used to manage traces between functional requirements and test cases, design
specifications, and other artifacts.

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 2/31

http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

The paper provides a theoretical foundation and describes how the approach was
integrated into an existing methodology. The integration of trace creation, monitoring and
maintenance into any existing model-driven software development methodology and
its tool suite is illustrated using the Navigational Development Techniques (NDT)
(Escalona & Aragón, 2008) for the development of web applications. Traces were
created and monitored completely automatically. One pre-requisite for automation is tool
support based on trace rules. These trace rules need to be defined only once for each
methodology. From time to time, monitoring-based model maintenance may require
decisions to be taken by the developer, but only if inconsistencies arise in the models.

The approach described was used in several industrial projects, including iMedea
(G7 Innovation, 2021) in the healthcare sector, DILECO (2021) a European H2020 project
in the aerospace sector, and SAGE (2021, https://investigacion.us.es/sisius/sis_proyecto.
php?idproy=29761), focusing on electromobility in a Smart-City ecosystem. Part of the
iMedea project is described in this paper to illustrate how the approach automates the
generation of traces and supports their management.

The paper makes the following contributions:

1. A generic approach to MDE traceability that explicitly includes a tracing mechanism.

2. Extension of a methodology by trace and change management.

3. An example of its application in a real context.

The article is structured as follows: “Materials and Methods” provides an overview of
the materials and methods involved in traceability concepts and the challenges they pose.
It also looks at related works in the field of traceability, focusing on model-driven
approaches with (semi-) automated tool support and their use in real industrial projects.
“Results” presents the results obtained, which are a theoretical framework for requirements
traceability based on the MDE paradigm and its integration into an already existing
methodology, implemented and validated in its tool suite. The framework includes a
metamodel and an extension of the development process. “Discussion” discusses the
approach and “Conclusion” concludes with plans for improving it further.

MATERIALS AND METHODS
Traceability challenges
Since the 1990s, the advantages and problems of traceability have been discussed in
several academic works, including the surveys of Gotel & Finkelstein (1994) andWinkler &
Pilgrim (2010) and the articles of Haouam & Meslati (2016) and Charrada et al. (2011).
The first, a cornerstone paper in requirements traceability research, identified the main
problems of requirements specification. The second highlighted the gap between industrial
needs for traceability integrated within the development process and existing academic
proposals. Haouam & Meslati (2016) focused on the automated generation of traces but
also on the updating and maintenance of (semi-)automated traces, while Charrada et al.
(2011) proposed a benchmark for traceability covering artifacts typically produced in

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 3/31

https://investigacion.us.es/sisius/sis_proyecto.php?idproy=29761
https://investigacion.us.es/sisius/sis_proyecto.php?idproy=29761
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

software system development processes and also end-to-end trace links. For further
discussion of related works, the reader is referred to the next section.

At this point, it would be useful to illustrate the importance of traceability with an
example application from the iMedea project, a software solution for clinical history
management in human reproduction environments. An excerpt of this application is
shown in Figs. 1 and 2. A team of analysts is defining the requirements for a new medical
system to be developed in a European country (for example, Spain). In this requirements
phase, the requirements engineer and the health experts establish that for each patient
the system has to store their name, surname, national health identification number (NSId)
and birth date (as well as other information). This requirement could be modelled as a
storage requirement or object, like the one shown in Fig. 1.

During analysis, such a requirement will be modelled as a class in which to store the
patient’s information (identified in Fig. 1 as CL-01). In the design phase, the database
designer also creates a table to store the corresponding information (TL-01). A
programmer can later create, for instance, a Java class to support this class at code level
(PatientJavaClass). There is evidently a connection between these four artifacts. In fact,
each of them is derived from the one preceding it. Traceability means the capability of
the software development tool to remember this kind of connection and use it to guarantee
the coherence of the software artifact.

Going one step further, once the medical system has been initially deployed and
implemented, changes in regulations make it necessary to store not only the national
health identification number (NSId) but also the European health identification number
(EUSId) for foreigners. The personal information requirement therefore changes, but so
does the class at the analysis level, the table in the design level database and the code in the

Figure 1 Excerpt of sample application. This image presents an example to illustrate the traceability of a storage requirement in the analysis and
design phase. Full-size DOI: 10.7717/peerj-cs.817/fig-1

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 4/31

http://dx.doi.org/10.7717/peerj-cs.817/fig-1
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

Java class, as can be seen in Fig. 2. If requirements are not traced, a simple change like this
may imply the difficult task of analyzing which artifacts of the system are involved. A real
software system has a high number of requirements, attributes, relationships, etc., so
traceability is critical in order to guarantee consistency in software products.

Traceability is today also seen as a method for managing relationships between artifacts
other than requirements (Winkler & Pilgrim, 2010): for example, for software
maintenance, for evaluating the effect of a change or for calculating software costs. It
makes it possible to assess the global impact of a change or a decision, i.e., to trace its effect.
In an enterprise, traceability is a resource that helps to ensure software quality (Team,
2010).

Despite its advantages, however, traceability is not widely used in enterprises, or at least
it is not considered a key factor (Cleland-Huang, 2006). Antoniol et al. (2017) analyzed why
this is the case and came to the conclusion that traceability research should focus on the
following challenges in order to make traceability useful in industrial projects:

� Ch.#1. Automatic generation of traces. In industrial projects, cost is a relevant factor.
If traceability produces additional cost, it is difficult to incorporate into software
methodologies. In enterprises, the generation and maintenance of a trace model should
therefore be automatic, or at least automatic enough to guarantee no impact on project
costs.

� Ch.#2. Tool support for trace model maintenance. This should (a) guarantee trace
integrity in order to ensure that models are always updated, (b) offer mechanisms to

Figure 2 Changing requirements of the sample application (Excerpt). Example of traceability of Fig. 1 with a little change. It helps to illustrate the
importance of the traceability management. Full-size DOI: 10.7717/peerj-cs.817/fig-2

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 5/31

http://dx.doi.org/10.7717/peerj-cs.817/fig-2
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

easily identify and classify types of changes and their impact on the trace model, and
(c) provide effective trace model management mechanisms that aid strategic decision-
making regarding the pros and cons of introducing changes.

� Ch.#3. Return of investment (ROI) measurement. Indicators or metrics are required to
measure ROI—a key factor in industry, and especially in the use of trace models.

� Ch.#4. Demonstration of the benefits of traceability in real examples, managed by real
users. This requires close collaboration between academia and industry. In this regard,
academia should avoid the use of non-real examples.

These challenges provided the inspiration for the present study. They concur with those
identified by Tufail et al. (2017) in a survey which included ten challenges that could
also be interpreted as traceability problems. This paper focuses on those challenges that are
the most relevant to industrial applications, such as poor tool support, lack of guidance and
commitment, and the different viewpoints of stakeholders. Challenges are further
discussed in the section on related studies.

Related work
The following research lines are relevant to the objectives of this study: (1) analysis of
traceability challenges, (2) metamodeling traceability, (3) integration of automated trace
management in model-driven engineering (MDE) tools, and (4) use of traceability in
real software development projects. These lines cover similar aspects to those included in
the characteristic schemata of the systematic mapping study conducted by Vale et al.
(2017) for traceability in the area of software product lines. The present review opted
not follow systematic guidelines and is not limited to one specific area of software. To the
best of our knowledge, none of the currently existing approaches covers all these aspects or
has a proven track record of providing a “low-cost” approach for automating MDE-
enabled requirements traceability in several real software development projects.

A. Traceability challenges
The work presented by Gotel & Finkelstein (1994) is a cornerstone paper in requirements
traceability research. Its authors describe the main problems of requirements traceability,
including the lack of a common understanding, the need to allocate time and
resources, and the gathering and maintenance of trace information.

Rempel & Mäder (2016) also focus on traceability difficulties, providing an assessment
model and a comprehensive classification of possible traceability problems and assessment
criteria for systematically detecting those problems.

A more recent literature review was carried out by Tufail et al. (2017). This review
focused on requirements traceability techniques, models, and tools, offering detailed
analysis and comparison and providing a set of comparative tables. It distinguished,
among other things, between traceability metamodels, traceability process models and
traceability information models. The work included a general list of 10 traceability
challenges, and a more detailed analysis of traceability tools.

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 6/31

http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

The present article focuses on the way its proposed approach could address traceability
problems and challenges and overcome what are ostensibly the most relevant challenges
identified in the above-mentioned papers, namely: the automatic generation of traces
(Ch.#1), tool support for trace model maintenance (Ch.#2), return of investment (ROI)
measurement (Ch.#3) and demonstration of the benefits of traceability in real examples
managed by real users (Ch.#4).

The efficient management of traceability is another key factor to consider when
combining data from different sources to generate more complete, improved and more
accurate information. As such, it is also critical for information fusion. For information
fusion to be successful, it is necessary to know the origin of the information in order
to trace it in case of any change in the future. Trace management tools are therefore critical
to guarantee the correct maintenance of fused information.

B. Metamodeling traceability
Several metamodels have been published during the last two decades covering different
aspects of traceability, and in particular related to requirements traceability. As in the
metamodel comparison of Carniel & Pegoraro (2018), in the present study a set of criteria
were defined for comparing the metamodels relevant to the objectives in question.
These criteria include support for: (1) textual, graphical and/or model representation of
requirements, (2) associations between traceable elements, (3) horizontal and vertical
traces, (4) definition of an algorithm or rules, (5) trace maintenance (6) change impact
analysis.

Most research and most metamodels in the field of traceability (e.g., Haouam &
Meslati, 2016; Walderhaug, Hartvigsen & Stav, 2010; Sousa et al., 2008; Goknil, Kurtev &
Van Den Berg, 2014) have to date focused on the creation of traces, i.e., on aspects (1), (2)
and (3) above, but have neglected monitoring and maintenance, i.e., aspects (4), (5) and
(6), which are the focus of the present work (see Fig. 3). The main approaches to
traceability maintenance (Briand, Labiche & Yuea, 2009; Boronat, Carsí & Ramos, 2005;
Cleland-Huang, 2006; Kassab, Ormandjieva & Daneva, 2009; Drivalos-Matragkas et al.,
2010) are briefly discussed below.

Drivalos-Matragkas et al. (2010) graphically represent a tracing metamodeling language
that covers tracing and maintenance concepts in a manner similar to that of the
metamodel envisioned in the present study. Their approach, however, is state-based,
unlike that of the present study, which is event-based and focuses on the detection of
dangling links.

Briand, Labiche & Yuea (2009) focus on changes between two versions of a UML model
(vertical traces only) and analyze the impact of those changes using formally defined
impact analysis rules (written in Object Constraint Language). Traces between model
elements are not included as first citizens in their metamodel.

Boronat, Carsí & Ramos (2005) had as their objective to provide generic traceability
support to solve specific problems such as change propagation. Their metamodel provides
a metaclass manipulation rule for each trace link, but change management is not included
at metamodel level.

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 7/31

http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

Cleland-Huang (2006) propose an event-based approach to traceability maintenance
using observation to detect changes in the requirements models. These observes check
then potential changes in the trace links. Potential changes in the trace links are then
checked Unfortunately, this work provides no graphical representation of the approach.

Kassab, Ormandjieva & Daneva (2009) consider the tracing not only of functional
requirements (FR) but also of non-functional requirements (NFR). Their metamodel
includes metaclasses for both types of requirements and their associations, but metaclasses
for change management are missing. Instead, they opt for XML-based representation and
XQuery implementation for traceability management.

C. Integration of automated trace management in MDE tools
Traceability integration in a model-driven approach requires the definition or extension of
metamodels and transformation rules for the automated generation and analysis of
traces. The work involved in establishing these definitions is limited and required
only once for each tool supporting a development methodology. The advantages of
using a model-driven engineering approach are widely documented in the literature
(Winkler & Pilgrim, 2010; Escalona et al., 2007; García-García et al., 2015). In particular,
Winkler & Pilgrim (2010) provide an overview of research and practice in traceability
and requirements engineering focusing on use of MDD for trace generation.

Figure 3 Traceability metamodel. This metamodel presents our approach for the traceability. It is
divided in three sections: context model, trace model and monitoring model.

Full-size DOI: 10.7717/peerj-cs.817/fig-3

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 8/31

http://dx.doi.org/10.7717/peerj-cs.817/fig-3
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

The information presented is classified into four categories: basics, working with traces,
practice, and solutions. The work addresses the generic use of traceability information, its
visualization, and its usability, but does not address the exchange and analysis of such
information.

Cleland-Huang (2006) focused on links between, on the one hand, textual documents
and models and, on the other, documents and code.Walderhaug, Hartvigsen & Stav (2010)
instead propose a generic MDD traceability solution based on guidelines and templates.
The links proposed by Cleland-Huang (2006) are generated automatically but require
acceptance or rejection by the users of the proposed tools. The main issues are the amount,
granularity and quality of the links generated, so the authors discuss a set of metrics for
evaluating the effectiveness of automated traceability. Although the amount of trace
links generated in their approach is limited, the problem remains of how to maintain a list
of links that may have become outdated due to the modification of artifacts.

In contrast to these approaches, Briand, Labiche & Yuea (2009) present a horizontal and
vertical traceability impact analysis based on metamodeling and OCL constraints.
Their metamodel includes tracing and monitoring concepts similar to those in the
present study, but is dependent on the type of representation selected for the concepts
(UMLDiagram and ClassDiagram, for example). However, this proposal focuses
exclusively on change impact analysis, ignoring other traceability-related practices.

As part of the AMPLE project, Anquetil et al. (2010) presented a traceability metamodel
focusing on trace links, trace context and model artifact types, while Goknil, Kurtev &
Van Den Berg (2014) presented a metamodel that relates requirements and architecture
models through traces (the approach proposed in the present study is even more
generalizable than this, as it has no restrictions regarding model types). Traces are
generated automatically but in an iterative process. The associated tool, which supports
generation and validation, is based on model transformations in ATL and term rewriting
logic in Maude. Another formal approach based on Maude is that adopted in a MOMENT
project that uses QVT for model transformations and OCL constraints (Boronat,
Carsí & Ramos, 2005) for the definition of generic operators. Haouam & Meslati (2016)
describe a traceability maintenance approach based on model comparison, change
detection, classification, and link evolution. Here, traces are generated automatically and
the updating process is (semi)-automatic.

D. Use of traceability in real software development projects
Reports on the use of traceability in real software development projects are difficult to
find. Many approaches are illustrated using textbook examples, as is the case of
Walderhaug, Hartvigsen & Stav (2010) and Briand, Labiche & Yuea (2009). In contrast,
the approach proposed in the present study has been used in several real software
development projects. A systematic evaluation is not included in this paper as it is still
work in progress.

The present approach also differs from that of Walderhaug, Hartvigsen & Stav (2010),
who focused on a conceptual solution for tool integration and implemented a set of
plug-ins for the Eclipse platform using Rational Software Architecture (RSA), insofar that

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 9/31

http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

its goal was to facilitate the extension of development tools without using complementary
tools.

The survey by Winkler & Pilgrim (2010) focuses on traceability in the areas of both
MDE and requirements engineering. The authors mention the gap between industry and
the solutions proposed by academic researchers, and highlight the need to support
traceability as part of development processes.

One interesting work on best practices for the establishment of automated traceability in
enterprises is that presented by Cleland-Huang (2006), in which the following criteria were
established to make automated traceability possible in industry: the establishment of an
appropriate environment, the creation of traceable documents, and automated trace
processes. The second criteria is not relevant for an MDE approach.

Haouam & Meslati (2016) validate their work with a study focusing on two research
issues: the reduction of the manual effort required to generate and maintain traces, and
maintenance quality in comparison with manually maintained traces.

RESULTS
Supporting traceability
Model-Driven Engineering techniques are mainly used for the automatic generation of
code in the software development process (Hutchinson et al., 2011). MDE also plays an
important role in other software engineering areas such as software testing, supporting
the generation of test cases. The aim in the present study was to demonstrate the potential
of MDE in terms of traceability, since it allows traces to be recorded as a by-product of
model transformations.

A. Building upon an MDE approach
The Model-Driven Engineering paradigm consists of raising the abstraction level of
software development. It is based on models, transformations, and appropriate modeling
and transformation languages. Models are the key artifacts during definition, design,
implementation, and deployment. There are two kinds of modeling: metamodeling and
design level modeling, corresponding to two different levels of abstraction and providing,
respectively, abstract and concrete syntaxes.

At first glance, this would appear to introduce a high degree of complexity, but that is
not the case. Source and target metamodels define the relationship between concepts
and need to be modelled only once. In the same way, model transformations are only
defined once, unless the metamodel changes.

At design level, target models are generated automatically from source models, which
are constructed on the underlying source metamodel. This means that additional modeling
efforts are not needed, no matter how many models the transformations are applied to.
Following the same principles, traces can be recorded during the transformation-based
process which generates the target models. A set of traces constitutes a trace model, which
can be generated automatically once the tracing rules are established: i.e., once the
relationships between software artifacts of the same or different levels of abstraction are
known.

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 10/31

http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

The present study focused on bidirectional traces, traces going both backwards and
forwards: i.e., from the origins through development and specification to subsequent
deployment and use, and back to the initial requirements. It also distinguished between
vertical, horizontal and evolution traces. Vertical and horizontal traceability refers to
relationships between software artifacts at different or the same levels of abstraction and is
also known as intra and inter traceability. Evolution traces are links that indicate different
versions of the same software artifact. Examples of traces are shown in Fig. 4.

To implement an MDE approach (Brambilla, Cabot & Wimmer, 2012; OMG, 2021,
https://www.omg.org), metamodels are represented using different languages, such as the
Unified Modeling Language (UML) and Domain Specific Language (DSL). The languages
most frequently used to specify transformations are Query-View-Transformation (QVT)
and the Atlas Transformation Language (ATL). Modeling and metamodeling activities are
supported by frameworks like Eclipse or UML CASE tools like Enterprise Architect or
MagicDraw, while environments like SmartQVT and EMF (Eclipse Modeling Framework)
for ATL can be chosen to support the transformations and the tracing process.

There are different ways to represent traces. One of the most commonly used
techniques is the traceability matrix (TM). More challenging issues are how to maintain
consistency in the TMs required for the target models in case of changes in the source
models and the implications that changes in the target models may have for the source
models. It is always possible to completely regenerate target models and TMs, but this
solution is neither economic nor possible if the target models have been adjusted.

The following sections describe the proposed MDE approach. It is an approach that
goes beyond the automatic generation of target software to actually document all traces
resulting from the generation process, and manage those traces in order to discover and
repair inconsistencies and identify conflicts when source or target software models are
modified.

The approach is described at three different levels of abstraction: (1) a general
theoretical level, independent of specific software development techniques and
technologies, (2) a practical, methodological, level that is tool-dependent but project-
independent, and (3) a project-related example.

For the theoretical level, a metamodel was developed which describes relationships in an
MDE-based approach to traceability management (see Section B below). The practical
and project-related levels are presented later, in the Tool Support for Model-Driven
Traceability section.

B. Metamodel for traceability
Traceability management comprises the creation and maintenance of tracing models.
Maintenance refers to changes in the models of the different software development phases.
A (semi)formal specification of this traceability management approach was obtained using
metamodeling as the description technique.

The proposed metamodel is similar to several existing metamodels mentioned in the
Related Work section. However, it differs in its explicit metamodeling of the traceability

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 11/31

https://www.omg.org
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

mechanism and the change management elements. These are represented by the
metaclasses TraceRules, Change, Warning and Error (see Fig. 3).

The key aspects in traceability management are identification of products from the
specific contexts to be traced and the creation and monitoring of the traces detected. These
aspects are represented in the metamodel shown in Fig. 3 as context, tracing, and
monitoring models, represented in turn by the UML classes ContextModel, TraceModel
and MonitoringModel.

Figure 4 Excerpt of relationships between model elements. This model presents an example of our metamodel instanciation. It includes
requirements models, concretelly: functional requirements, IFM, Functional tests and mockups. Full-size DOI: 10.7717/peerj-cs.817/fig-4

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 12/31

http://dx.doi.org/10.7717/peerj-cs.817/fig-4
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

Although colors have no semantic value in UML models, they are used in Fig. 3 to
visualize the different aspects addressed by the metamodel: the context— that is to say, the
models of the software development process (requirements, design, testing…)—is depicted
in yellow, the traces in orange, and the monitoring of the models’ evolution in green.

The trace model is modelled as a composite of trace links relating elements of a
source context model (for example, a requirement use case model) with the elements of a
target context model (for example, a class model in the design phase). The related elements
in the context model are the so-called “traceable” elements in the metamodel. These
concepts are represented in the metamodel by the classes TraceableElement and
TraceLink.

The relationship between source and target elements is based on predefined trace rules,
which are explicitly metamodeled by the class TraceRule. Although denominated rules,
they may comprise any type of algorithms for the creation or checking of traces.

TraceableElement describes any artifact in a context model and is identified by its
attribute name. In the example of the patient (Fig. 1), for instance, a TraceableElement
might be the storage requirement (SR-01), the class (CL-01) or the database table (TL-01),
but also their attributes.

TraceLink and TraceRule are characterized by an ID and the definition of an algorithm.
Every TraceLink has at least one source and one target TraceElement. TraceLink(s) for a
software system are generated based on the TraceRule(s) definition for a specific
methodology. A trace rule provides a formal description of the relationship between
different elements of metamodels. In the example of the patient, a TraceLink would
therefore be the relationship between the Patient Storage Requirement (SR-01) and the
Patient Class in the analysis model (CL-01).

The proposed metamodel supports bidirectional TraceLink(s). Source and Target
represent the directions in which transformations are executed to create the links. Vertical
and horizontal links are both supported, depending on whether Source and Target belong
to different versions of the same model or to different models.

Each context model consists of a set of traceable elements, while a tracing model
is the set of trace links. ContextModel is therefore specified as a composite of
TraceableElement(s), and TracingModel as a composite of TraceLink(s) and TraceRule(s).

The proposed metamodel includes explicit change management, indicating the
impact changes have on the models. Context models are therefore monitored to detect
changes in their traceable elements. Changes imply the need for traceability maintenance
0. Each modification of an element in a source context model is analyzed and may
result in the automatic modification of the target context models and, if possible, of
the corresponding trace links. Similarly, changes in a target context model may have
implications for the source models. In both cases, a warning message alerts the user about
the changes. If a conflict cannot be resolved, i.e., adjustments cannot be uniquely identified,
an error message will be generated since a user decision is required.

In the example cited previously, the inclusion of the new European Health Identification
Number attribute in SR-01 causes a change in both the class and the table because it
requires a new attribute to be added to each of them.

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 13/31

http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

The concepts described above regarding the monitoring and evolution of models are
included in the traceability metamodel as a set of metaclasses and relationships.
Unlike existing traceability metamodels, the proposed metamodel explicitly models the
impact of changes, including those in the MonitoringModel, Change, Warning and
Error classes. An error indicates that the associated trace link is no longer valid and
constitutes a special instance of warning, so the relationship is specified as an inheritance.

Just as the ContextModel is specified as a composite of TraceableElement(s) and the
TracingModel is specified as a composite of TraceLink(s) and TraceRule(s), the
MonitoringModel is defined as a composite of Change(s).

C. Applying the MDE-based traceability approach
The traceability metamodel presented in the previous section is what is known in MDE
terminology as a platform-independent model (PIM); that is to say, it is independent of
the technology selected to develop the software. Even more importantly, it is also
independent of the methodology used for the software development. This means
that any model-driven software modeling methodology can implement traceability,
instantiating our traceability metamodel and implementing the automated generation and
monitoring of traces in the tool that supports the corresponding methodology.

This section describes a process for integrating traceability management in an existing
methodology M with tool support T. In this process, it is important to distinguish the
following roles:

� Methodology Expert is the person who manages or defines a concrete methodology M
and who will implement the extension of M in the corresponding tool in order to
support traceability.

� Developer is the person or team who uses methodology M and tool T to define their
software projects.

The process of enriching methodology M with the proposed MDE-based traceability
approach is mainly an activity that has to be performed just once by the methodology
expert, or, exceptionally, more than once in the case of improvements to M. It consists of
the following steps. For a graphical overview, see Fig. 5.

1. Selection of the subset of artifacts in methodology M that tool T has to trace, and storage
of the corresponding information in, for example, a traceability matrix. These selected
artifacts are instances of Traceable Elements (see Fig. 3).

2. Identification of the traces, based on the transformations observed between the artifacts
selected in Step 1. Using these TraceLinks, the methodology expert has to define the
TraceRules. These rules establish which artifact A is traced with which other artifact B,
and its conditions, so that changing A necessarily implies modifying B to maintain
information consistency. These rules are in general transparent for the developer, who
uses the methodology M support tool to implement projects but has no knowledge of
the rules that are used to generate the traces.

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 14/31

http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

3. For monitoring, the process needs to identify the changes in TraceableElement(s) in the
models, and the consequences of those changes. It must then decide if an automated
solution of conflicts is possible: i.e., if a warning or error message should be
communicated to the developer. This is an event-based approach to traceability
maintenance.

4. The methodology M support tool then has to enable the management of Warning and
Error messages.

5. The methodology expert has to define the way the MonitoringModel will be displayed to
developers, by selecting, for example, a traceability matrix.

To summarize, a traceability support tool has to be able to (1) store trace links according
to the trace rules in an appropriate format, e.g., a traceability matrix, (2) monitor the
traces if source or target models are changed, and (3) display warning and error messages
when conflicts are detected.

It can thus be concluded that the application of the proposed traceability management
approach is a task that has to be defined and implemented by the methodology expert.
Once integrated in the tool, it will be transparent to software developers, who will only see
a monitoring mechanism for dealing with trace conflicts.

Tool support for model-driven traceability
In this section, the proposed traceability management method is validated using
Navigation Development Techniques (NDT). As mentioned in “Applying the MDE-Based
Traceability Approach”, however, it can also be applied in other model-driven approaches
like UML-based Web Engineering (UWE) (Koch & Kozuruba, 2012), MockupDD
(Rivero & Rossi, 2013) and Web Modeling Language (WebML) (Brambilla & Fraternali,
2014).

The process presented in the previous section will be applied to integrate our
approach in the NDT tool suite. The approach could be integrated in the same way in other
software development tools, particularly in web application development tools. This
section also illustrates its application in one of the real projects that were developed using
the approach.

A. Brief overview
NDT is an MDE methodology that mainly focuses on web system requirements and
analysis. Well-accepted in the industry (Escalona et al., 2007), its tool is implemented as an
Enterprise Arquitect plug-in (García-García et al., 2015) and covers all phases of the
software development life cycle. The latest version of NDT was improved with Design
Thinking principles such as user empathy, early user incorporation, and the generation
of prototypes. It supports three main phases in the software development lifecycle:
conception, definition/design, and operation. Each of these phases is divided into a set of
activities, such as functional requirements, capture, or architecture definition.

In this paper, NDT is used to show how the proposed approach allows for an extension
of MDE-based software development methodologies integrating traceability support.

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 15/31

http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

The paper also shows how this traceability approach can then be used in enterprise
projects. It does not aim to present a complete description of the NDT lifecycle. In this
case, priority was given to the definition/design phase, focusing on three activities: design,
construction, and verification and validation. The example shown corresponds to design
activity.

The team’s main tasks during this activity were to define, analyze and design the
following set of models for the future system:

� Functional Requirements, represented as a set of use cases that can be enriched with
activity diagrams or scenarios.

� Conceptual Models, for the static view of the system.

� Mockups, to represent the screens of the system to be built. These were derived by
transformations from prototypes and provide trace links between design and software
conception.

� Non-Functional Requirements, used to document aspects of the system like usability,
reliability, and security.

� Functional Testing, which was automatically derived from the functional requirements
by transformations and offered a first validation of the requirements.

� Interaction Flow Model (IFM), which provided the relationships with all the other
models and was the basis from which the architecture model was derived.

Figure 5 Process for applying our MDE-based traceability approach. This figure presents the pro-
ceedure that a developer has to follow to apply our approach.

Full-size DOI: 10.7717/peerj-cs.817/fig-5

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 16/31

http://dx.doi.org/10.7717/peerj-cs.817/fig-5
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

� Architecture Model, which made it possible to represent the software architecture—
that is to say, the relationships between software components coded in different
programming languages—and, more specifically, to model the model-view-controller
pattern. Micro services and event-driven patterns will be considered in future versions.

B. Extending the methodology

The NDT models were built using the elements provided by the corresponding
metamodels of the methodology, a so-called Domain Specific Language (DSL). Just as
elements of the metamodels are related, so are those of the NDT model. These
relationships are the basis for defining transformations and trace rules. The development
team is able to see that an artifact is connected to others of the same system, but cannot see
the metamodels.

In the first phase, prototypes are defined and, from these prototypes use cases can be
generated. From the use cases, the methodology allows functional test cases to be
generated. If the team detects an error or a problem in a functional test case, they can
trace it back and find which user(s) validated the prototype in the Software Conception
phase. In this regard, trace generation is automatic and trace management is
semiautomatic, since the team needs to intervene to find a solution for any traceability
problems that are detected.

Models of each phase are connected to other models of the same phase and to models of
other phases—these are the horizontal and vertical traces mentioned earlier. These rules
have now been specifically established and hardcoded within the tool. The traces are
depicted in Fig. 4 which, to aid readability, shows only a representative excerpt of models
corresponding to the Software Definition phase and a limited number of relationships.
Figure 4 includes Functional Requirements, Mockups, Functional Testing and IFM
models. A relationship between two elements in the figure means that there is dependency
between those two elements. One of them is the source and the other is the target of
the trace. For instance, the relationship marked with a number 5 means that the use cases
are directly related to functional tests, and that a TraceLink (see Fig. 4) should exist
between them.

In Fig. 4, only vertical traces are included, as the example used only relationship types 2,
3 and 5, but the NDT suite also supports other kinds of traces, like horizontal and
evolution traces. These relationships were used to implement the design basis for the
ContextModel and the TraceModel (see Fig. 3).

Figure 6 shows a specific trace coded in the NDT suite. Specifically, it depicts the trace
that was established between Step and UIStep from ScenarioDiagram, and TestStep and
TestUIStep from FunctionalTest.

C. Example
To visualize the use of the proposed traceability metamodel, this section presents one of
the real industrial software projects in which this traceability approach was applied.
The objective of the iMedea project (G7 Innovation, 2021) is to create a software solution
for clinical history management in human reproduction environments. It is a highly

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 17/31

http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

complex system that supports all functional requirements for the study and treatment of
reproductive problems and diseases, and also non-functional requirements such as a
complex data security system, support for medical standards and 24�7�365 maintenance
mechanisms.

The system includes more than 75 different use cases, including in vitro fertilizations,
human sperm donation and human artificial insemination processes.

Here, the proposed traceability management approach is illustrated in the functional
requirement “Anamnesis creation”, although the same approach was used for all the
system’s requirements. The first time a patient attends a clinic, a set of standardized data
corresponding to that patient’s clinical history is collected. That data set is called the
anamnesis, or medical history. Figure 7 shows an activity diagram illustrating a simplified
version of this use case. It represents the main flow (depicted with a thick line) and an
alternative flow (the thin line). Whenever a new patient is registered, a gynecologist
(iMedea user) will perform the anamnesis as a first step in collecting a large amount of data
from the patient.

Figure 6 A specific trace coded in NDT-Suite. This image presents a part of code to illustrate how NDT-Suite implements a concrete trace.
Full-size DOI: 10.7717/peerj-cs.817/fig-6

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 18/31

http://dx.doi.org/10.7717/peerj-cs.817/fig-6
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

When the user selects the option “Anamnesis” the system displays the corresponding
form. The user inputs the required information and the system checks that the data is
correct and complete. If it is, the system creates the anamnesis and returns to the starting
point. If not, an error message is generated and the system returns to the anamnesis form.

D. How traceability is implemented
The methodology outlined in Section A is fully integrated into the NDT suite, a set of
tools that supports development teams in the application of MDE technology and
traceability. The tool and the example described above in Section C were used to validate
the proposed approach.

The tools required for implementing traceability were:

� NDT-Profile. As explained in the previous section, concepts used for each type of
model in the methodology are modelled as metaclasses. A set of metamodels was defined
for these related concepts. The metamodels, too, were interrelated. For each metamodel,

Figure 7 iMedea functional requirement: anamnesis creation. This figure presents an example of a
function requirement in the iMedea project. Concretelly, it illustrates the anamnesis creation.

Full-size DOI: 10.7717/peerj-cs.817/fig-7

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 19/31

http://dx.doi.org/10.7717/peerj-cs.817/fig-7
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

a specific UML Profile was created which defined a DSL (Gutiérrez, Escalona & Mejías,
2011) that could be used in practice to model without requiring familiarity with
metamodels. Actually, NDT offers a set of tools that can be used to draw different
models, including prototypes, functional requirements, and test cases, while ensuring
that the metamodels are correctly instantiated. This tool made it possible to implement
the DSLs as an Enterprise Architect plugin. Relating this tool with the metamodel of the
proposed traceability approach (see Fig. 3), it was also possible to build the
ContextModel and its TraceableElements (the yellow area in Fig. 3).

� NDT-Driver. This tool supports the MDE generation of models: i.e., the obtaining of
target elements from source elements. It implements the transformations defined in the
methodology in C# language. The creation of the TracingModel (the orange area in
Fig. 3) with the corresponding TraceLink(s) is a completely automatic activity.
Whenever a transformation is executed, this tool stores the source, the target, and their
relationship in an internal data base so that the relationship can be updated to reflect
future changes or product evolution.

� NDT-Quality. This tool permits the automatic checking of models. It is the tool in
charge of the MonitoringModel identifying the changes (the green area in Fig. 3). It deals
with each error by sending a warning if a change is detected, or an error message to the
team if a problem is detected and cannot be solved automatically. Conflicts are thus
resolved semi–automatically, while conflict detection is automatic.

Traceability is implemented in this tool environment by automatically generated
bidirectional relationships. For this purpose, a set of trace rules was used which followed
the schema provided by the traceability metamodel presented in Fig. 3. Figure 8 shows
an UML object diagram with nine different trace rules, which in turn represent the
relationships in the UML diagram between the elements of the different design models
shown in Fig. 4. Each number in Fig. 8 refers to a relationship in Fig. 4. The example shown
in Fig. 9 explains how relationships were automatically generated. One of the
transformations generated functional tests from the activity diagrams associated with use
cases (see the relationships numbered 2, 3 and 5 in Fig. 8). For each path in the activity
diagram, a scenario was generated corresponding to a test case. The diagram in Fig. 7
shows a main path and an alternative path, conditioned by a loop. The tool could be
configured to guarantee the desired degree of coverage. In this case, it was configured to
consider only one loop and to generate only two test cases. The tests generated
automatically were those corresponding to the diagrams depicted in Fig. 9.

E. Automated generation of traces
The objective of this work was not to describe in detail the method of generating tests but
to analyze how relationships are created. For more details on the process of systematic
evidence generation, the reader is referred to Gutiérrez, Escalona & Mejías (2011). At least
one TestUIStep is generated from each UIStep and at least one TestStep is generated
from each Step. In this case, as the loop was not considered, only one element was
generated for each UIStep and for each Step. In the generation process, a scenario,

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 20/31

http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

represented as a simple activity diagram, shows the steps that a user should execute in
order to partially validate a part of the activity diagram represented in Fig. 7. In the
previous scenarios, decisions and values were predefined by the transformation that
generates each test. Thus, although the decision element is retained for the sake of
readability, only one path is given for each test.

With this in mind, the following sequence diagram shows how the tools interact to
generate these relationships (see Fig. 10).

When the developer creates the UIStep “Creation Anamnesis” and executes the
transformation to generate test cases, the plug-in NDT-Driver asks NDT-Quality if the
corresponding activity diagram is consistent and conforms to the relevant methodological
principles. If it is OK, the TestUIStep “Creation Anamnesis” is created, together with a
TraceLink object that stores this relationship (denominated StepTL in Fig. 7). The developer
is notified of the correctness. The same process is performed several times, depending on
the loops and decisions (in this example, only twice) for each activity in the activity diagram.

TraceLinks can be visualized in two different ways. Firstly, clicking on an element traces
all elements related to that element. In this example, Fig. 11 shows the trace elements when
the “Creation Anamnesis” activity is selected.

Secondly, the tool displays TraceLinks in a way not specifically oriented to each artifact,
thus offering a global trace matrix that shows how all the sources are related to all the
targets. The tool can be configured to select a set of sources and a set of targets. In this
example, relationships between UIStep(s) and TestUIStep(s) were selected. The resulting
matrix is shown in Fig. 12.

Figure 8 Instantiation of the traceability metamodel. The images illustrate an object class to represent
how to instanciate the metamodel. An asterisk (�) represents multiplicity according to UML.

Full-size DOI: 10.7717/peerj-cs.817/fig-8

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 21/31

http://dx.doi.org/10.7717/peerj-cs.817/fig-8
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

Figure 9 Excerpt of TestCases generated automatically. This figure present how the test case can be
generated from requirements using transformations in our example.

Full-size DOI: 10.7717/peerj-cs.817/fig-9

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 22/31

http://dx.doi.org/10.7717/peerj-cs.817/fig-9
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

F. Automated monitoring of traces
Once TraceLink(s) have been created, the Quality plug-in checks consistency whenever a
change is made—for instance, if a new activity like “Fill in personal patient data” is added
to the activity diagram in Fig. 7. The updated activity diagram is shown in Fig. 13.

If the project is checked again or the project is closed, an error message will be
displayed indicating that some information was lost for TestUIStep(s). The trace rule
establishes that for each UIStep there has to be at least one TestUIStep. If this relationship
is broken, an error is therefore caused. When this happens, the user could automatically
navigate to a support panel that helps them to find and understand the error and to
solve it. The quality control plug-in verifies that each Change is performed according to the
TraceRule(s); it also generates Error(s) and Warning(s). If an inconsistency is detected, a

Figure 10 Building the TracingModel. This figure presents a sequence model that describes the process
to generate the tracing model. Full-size DOI: 10.7717/peerj-cs.817/fig-10

Figure 11 Elements related to the “Creation Anamnesis” activity. This screen shows how the tracing
model was generated in the tool. Full-size DOI: 10.7717/peerj-cs.817/fig-11

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 23/31

http://dx.doi.org/10.7717/peerj-cs.817/fig-10
http://dx.doi.org/10.7717/peerj-cs.817/fig-11
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

Figure 12 Traceability matrix for our example. This screen presents who the tool presents the
traceability matrix that is automatically generated with our approach.

Full-size DOI: 10.7717/peerj-cs.817/fig-12

Figure 13 iMedea functional requirement: adding a new activity. This image presents an example to
illustrate how the monitoring model helps in changing management.

Full-size DOI: 10.7717/peerj-cs.817/fig-13

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 24/31

http://dx.doi.org/10.7717/peerj-cs.817/fig-12
http://dx.doi.org/10.7717/peerj-cs.817/fig-13
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

message is sent to the developer with a recommendation to re-execute or update the
transformations. The sequence diagram in Fig. 14 illustrates the process described above.

In the traceability matrix shown in Fig. 15, the problem can clearly be seen: one of the
UISteps is not connected to any TestUIStep(s).

In the matrix, the developer could click on “Fill in personal patient data” to navigate
to this artifact and perform the appropriate act to keep the traceability consistent.

Alternatively, the developer could save the project with errors, which can be solved in
future editions, to continue with the project. This would guarantee that all artifacts and
models in the project are consistent.

The three tools presented above help to manage all aspects of the proposed traceability
metamodel: creation of the ContextModel by the developer, generation of the

Figure 14 Monitoring process. The image presents a sequence model to illustrate the process of use of
the monitoring model. Full-size DOI: 10.7717/peerj-cs.817/fig-14

Figure 15 Traceability matrix for our example after change. This screen presents the traceability
matrix generated after a changed. Full-size DOI: 10.7717/peerj-cs.817/fig-15

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 25/31

http://dx.doi.org/10.7717/peerj-cs.817/fig-14
http://dx.doi.org/10.7717/peerj-cs.817/fig-15
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

TracingModel, analysis of changes following the MonitoringModel, and submission of
error messages. They make (semi-)automatic traceability definition and management
possible, and demonstrate that the proposed model-driven approach is capable of
supporting those processes.

DISCUSSION
This article presents an MDE approach supporting automated, almost “for free”, trace
management in the software construction process. The approach comprises a high-level,
methodology-independent metamodel and its instantiation for a web methodology.

Traceability is very frequently referred to as a prerequisite to guarantee the quality of
software products, but its actual implementation is usually complex and expensive, due to
its requiring additional tools or a great amount of manual work.

The proposed approach makes it possible to create, maintain and manage traces as a
by-product of model-driven development processes. Its integration in a particular MDE
process requires the appropriate tool support, and has already been validated for the
NDT methodology and tool suite. In this regard, it can be confirmed that MDE provides
solutions for challenges Ch.1. Automatic generation of traces and Ch.2. Tool support
for trace model maintenance, cited in “Materials and Methods”. This paper also
demonstrates how the approach implements the automatic tracing of information; a task
critical for information fusion.

The authors have used the proposed MDE-based traceability in several industrial
projects, facilitating collaboration between stakeholders when addressing changes in
requirements. Three projects worthy of mention are iMedea (G7 Innovation, 2021),
DILECO (2021) and SAGE (2021, https://investigacion.us.es/sisius/sis_proyecto.php?
idproy=29761).

iMedea (G7 Innovation, 2021) was briefly described in the Materials and Methods
section of this paper. For numerical information about the impact of the proposed
approach, it would be useful to look at traceability in this project, in which 78 use cases
were defined. From the 390 UIStep(s) found in those use cases, 169 test cases were
generated using the NDT tool suite’s Driver plug-in. These test cases comprised 1,178
TestUISteps. The proposed approach generated 1,178 TraceLink(s) from TestUISteps to
UISteps. It is impossible to manage this number of TraceLink(s) manually. In addition to
traces between use cases and test cases, traceability is also important for other artefacts
like storage requirements, classes, and so on. The number of TraceLink(s) automatically
generated in the iMedea project is currently close to one million. The importance of having
a tool capable of managing traceability should therefore be clear.

The aim of the European project DILECO, carried out in collaboration with Airbus, was
to develop and deploy Product Lifecycle Management (PLM) tools for A/C Ground
Functional testing with Eco-design criteria to improve the sustainability of aircraft Final
Assembly Lines (FAL) and the efficiency of the Ground System Test (GST) process end to
end. This project offered an opportunity to assess the potential of the traceability matrix

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 26/31

https://investigacion.us.es/sisius/sis_proyecto.php?idproy=29761
https://investigacion.us.es/sisius/sis_proyecto.php?idproy=29761
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

for managing heterogeneous, dispersed development teams in complex functional
environments. The NDT tool was used in the project to develop a functional module for
defining a control panel involving parameters for echo definition. The requirements
specification of this module comprised 30 use cases and more than 200 activities.
The development team was made up of about 15 people (this number varied during the
project) and each result had to be validated with the general project team. Any change
during product definition or validation was therefore critical and a great effort was needed
to manage the specific aspects affected by each change in the overall system. The
traceability matrix provided great support for easily finding connections between artifacts
and for evaluating their impact on the rest of the project. The matrix is still used whenever
system maintenance is performed.

Traceability was also a key factor in the SAGE project. The objective of this project was
to design and develop a technological platform for the management of charging
infrastructures for electric vehicles, buses, and trucks, under the electro mobility paradigm
of a Smart-City ecosystem. This ecosystem is based on an open platform compatible
with FIWARE (2021, https://www.fiware.org) and offers a comprehensive service to
suppliers, maintainers, users, and those responsible for the city’s management. In this
case, the whole team used the NDT tool to define the full structure of the system. A project
team of about 15 people worked on the definition, design, implementation, and
validation of the system. In this project, the set of requirements comprised 31 use cases
describing more than 90 specific associated functional activities. Traceability was useful
not only to coordinate changes during development but also for maintenance. After the
first version of the product, the company needed to change part of the system.
The traceability matrix made it possible to evaluate the cost of the change.

These experiences, and in particular the iMedea example described in the Materials
and Methods section, demonstrate how effectively the proposed approach addresses
challenge Ch.4. Demonstration of the benefits of traceability in real examples managed
by real users, cited in “Materials and Methods”. For the authors of this paper, however,
this is not enough. They plan to carry out a software experiment (López et al., 2020) based
on the principles presented in Vegas (2017) to guarantee the benefits of the proposed
approach in a more scientific manner. The industrial application of the approach would
allow experiments to be organized within industry, offering an opportunity for further
validation. The idea is to conduct controlled experiments in software companies to
measure the value-added of this traceability approach for software development teams.
As NDT is being used in several companies, we are confident of their experience and
collaboration.

The proposed approach is also applicable and implementable for any other MDE
methodology, in particular Web development approaches like UML-based Web
Engineering (UWE) (Koch & Kozuruba, 2012), MockupDD (Rivero & Rossi, 2013), and
Web Modeling Language (WebML) (Brambilla & Fraternali, 2014) One limitation for its
extension is the existence of metamodels, transformations and tool support for the creation
and management of traces.

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 27/31

https://www.fiware.org
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

CONCLUSIONS
This article presents MDE as a mechanism for automating traceability in software
engineering. Its main contributions are the following:

1. A generic approach to MDE traceability that explicitly includes a tracing mechanism.

2. An extension of a methodology by trace and change management.

3. An example of its application in a real context.

However, there are some problems and obstacles that will continue to limit the use of
traceability approaches and delay the adoption of research prototypes in industry. One
such problem is a lack of appropriate tool support. Another is that companies need to be
persuaded of the benefits of traceability in their day-to-day software development business
and the advantages it offers for improving the quality of their products. They need to
understand the ROI of traceability and how to obtain the best results with minimum effort.
Success stories like those provided in this work will help to disseminate and integrate
traceability in the software development process. However, the authors believe it necessary
to implement automatic ROI measurement in the tool as the best means of convincing
companies. It is therefore necessary to continue working to improve the results in
order to meet challenge 3 (Ch.3. Return of investment (ROI) measurement) cited in
“Materials and Methods”.

One future task would be the implementation of a plug-in for an open source tool to
allow further validation of the metamodel’s instantiation. The authors also plan to evaluate
the approach using the benchmark proposed by Charrada et al. (2011) and to measure
software quality improvements in current projects. A systematic, rigorous evaluation of the
automated approach presented and implemented in this work might be based on the
metrics proposed by Cleland-Huang (2006).

Another future work is to decouple the rules from the tool code in such a way that the
TraceRules can be defined and interpreted by NDT “on the fly”, without the need to
modify the code.

ACKNOWLEDGEMENTS
We thank Dr. José Navarro of Inebir for allowing the publication of details of the iMedea
project (G7 Innovation, 2021) and Eva Schön of HAW Hamburg for her comments on an
early version of this article.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was supported by the project (AT17_5904_USE), “SocietySoft: Transfer of
tools, policies, and principles for creating quality software for the digital society” and NDT
(US-1251532) of the Andalusian Regional Government's Department of Economy,
Knowledge, Business, and Universities (Spain) and NICO project (PID2019-105455GB-
C31) of the Spanish Government's Ministry of Science, Innovation and University. The

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 28/31

http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Andalusian Regional Government’s Department of Economy, Knowledge, Business, and
Universities (Spain): AT17_5904_USE. and US-1251532.
NICO Project: PID2019-105455GB-C31.
Spanish Government’s Ministry of Science, Innovation and University.

Competing Interests
Laura Garcia-Borgoñon is a researcher at ITA Innova.

Author Contributions
� María-José Escalona conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Nora Koch conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Laura Garcia-Borgoñon conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.817#supplemental-information.

REFERENCES
Anquetil N, Kulesza U, Mitschke R, Moreira A, Royer J-C, Rummler A, Sousa A. 2010.

A model-driven traceability framework for software product lines. Software & Systems Modeling
9(4):427–451 DOI 10.1007/s10270-009-0120-9.

Antoniol G, Cleland-Huang J, Huffman Hayes J, Vierhauser M. 2017. Grand challenges of
traceability: the next ten years. ArXiv. Available at https://arxiv.org/abs/1710.03129.

Boronat A, Carsí JA, Ramos I. 2005. Automatic support for traceability in a generic model
management framework. In: Hartman A, Kreische D, eds. Model Driven Architecture –
Foundations and Applications. ECMDA-FA. LNCS. Vol. 3748. Berlin: Springer, 316–330.

Brambilla M, Cabot J, Wimmer M. 2012. Model driven software engineering in practice.
Second Edition. San Rafael: Morgan & Claypool.

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 29/31

http://dx.doi.org/10.7717/peerj-cs.817#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.817#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.817#supplemental-information
http://dx.doi.org/10.1007/s10270-009-0120-9
https://arxiv.org/abs/1710.03129
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

Brambilla M, Fraternali P. 2014. Large-scale model-driven engineering of web user interaction:
the WebML and WebRatio experience. Science of Computer Programming 89(2):71–87
DOI 10.1016/j.scico.2013.03.010.

Briand L, Labiche Y, Yuea T. 2009. Automated traceability analysis for UML model refinements.
Information and Software Technology 51(2):512–527 DOI 10.1016/j.infsof.2008.06.002.

Carniel CA, Pegoraro RA. 2018. Metamodel for requirements traceability and impact analysis on
agile methods. In: Santos V, Pinto G, Serra Seca Neto A, eds. Agile Methods. WBMA 2017.
Communications in Computer and Information Science. Vol. 802. Cham: Springer.

Charrada EB, Caspar D, Jeanneret C, Glinz M. 2011. Towards a benchmark for traceability. In:
12th International Workshop on Principles of Software Evolution and the 7th Annual ERCIM
Workshop on Software Evolution, EVOL/IWPSE 2011.

Cleland-Huang J. 2006. Just enough requirements traceability. In: 30th Annual International
Computer Software and Applications Conference (COMPSAC'06). Piscataway: IEEE, 41–42.

DILECO. 2021. DIgitalization of ground-testing life cycle with ECO design criteria. Available at
https://cordis.europa.eu/project/rcn/213930/factsheet/es.

Drivalos-Matragkas N, Kolovos D, Paige R, Fernandes K. 2010. A state-based approach to
traceability maintenance. In: Proceedings of the ECFMA-TW’10. Paris, France.

Escalona MJ, Aragón G. 2008. NDT: a model-driven approach for web requirements. IEEE
Transactions on Software Engineering 34(3):377–390 DOI 10.1109/TSE.2008.27.

Escalona MJ, Gutierrez JJ, Villadiego D, León A, Torres J. 2007. Practical experiences in web
engineering. In: Wojtkowski W, Wojtkowski WG, Zupancic J, Magyar G, Knapp G, eds.
Advances in Information Systems Development. Boston: Springer, 421–433.

G7 Innovation. 2021. iMedea suite. Available at http://www.g7innovation.com/#products.

García-García JA, Escalona MJ, Domínguez-Mayo FJ, Salido A. 2015. NDT-Suite: a
methodological tool solution in the model-driven engineering paradigm. Journal of Software
Engineering and Applications 7(4):206–217 DOI 10.4236/jsea.2014.74022.

Gotel O, Finkelstein A. 1994. An analysis of the requirements traceability problem. In: First IEEE
International Conference on Requirements Engineering. 94–102.

Goknil A, Kurtev I, Van Den Berg K. 2014. Generation and validation of traces between
requirements and architecture based on formal trace semantics. Journal of Systems and Software
88(3):112–137 DOI 10.1016/j.jss.2013.10.006.

Gutiérrez JJ, Escalona MJ, Mejías M. 2011. A model-driven approach for functional test case
generation. Journal of Systems and Software 109(12):214–228 DOI 10.1016/j.jss.2015.08.001.

Haouam MY, Meslati D. 2016. Towards automated traceability maintenance in model driven
engineering. IAENG International Journal of Computer Science 43(2):147–155.

Hutchinson J, Whittle J, Rouncefield M, Kristoffersen S. 2011. Empirical assessment of MDE in
industry. In: Proceedings of ICSE'11. 471–480.

IEEE Standard Glossary of Software Engineering Terminology. 1990. IEEE, reaffirmed
12-9-2002, revision of ANSI/IEEE Std 729-1983. Available at https://ieeexplore.ieee.org/
document/159342.

Kassab M, Ormandjieva O, Daneva M. 2009. A Metamodel for Tracing Non-functional
Requirements. In: Sixth International Conference on Software Engineering Research,
Management and Applications. 687–694.

Koch N, Kozuruba S. 2012. Requirements models as first class entities in model-driven web
engineering. In: ICWE Workshops. 158–169.

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 30/31

http://dx.doi.org/10.1016/j.scico.2013.03.010
http://dx.doi.org/10.1016/j.infsof.2008.06.002
https://cordis.europa.eu/project/rcn/213930/factsheet/es
http://dx.doi.org/10.1109/TSE.2008.27
http://www.g7innovation.com/#products
http://dx.doi.org/10.4236/jsea.2014.74022
http://dx.doi.org/10.1016/j.jss.2013.10.006
http://dx.doi.org/10.1016/j.jss.2015.08.001
https://ieeexplore.ieee.org/document/159342
https://ieeexplore.ieee.org/document/159342
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

Lago P, Muccini H, van Vliet H. 2009. A scoped approach to traceability management. Journal of
Systems and Software 82(1):168–182 DOI 10.1016/j.jss.2008.08.026.

López G, García-Bogoñon L, Vega S, Escalona MJ, Juristo N. 2020. Cultivating practitioners for
software engineering experiments in industry: best practices learned from the experience. In:
Rhazali Y, ed. Advancements in Model-Driven Architecture in Software Engineering. Hershey:
IGI Global. 1799836614.

Rempel P, Mäder P. 2016. Continuous assessment of software traceability. In: International
Conference on Software Engineering Companion -ICSE '16. Austin, Texas, 747–748.

Rivero JM, Rossi G. 2013. MockupDD: facilitating agile support for model-driven web
engineering. In: ICWE Workshops. 325–329.

Sousa A, Kulesza U, Rummler A, Anquetil N, Mischke R, Moreira A, Amaral V, Araújo J. 2008.
A model driven traceability framework to software product line development. In: ECMDA
Traceability Workshop. 97–109.

Team CP. 2010. CMMi for development. Version 1.3. Available at https://resources.sei.cmu.edu/
asset_files/TechnicalReport/2010_005_001_15287.pdf.

Tufail H, Masood MF, Zeb B, Azam F, Anwar M. 2017. A systematic review of requirement
traceability techniques and tools. In: 2nd International Conference on System Reliability and
Safety (ICSRS).

Vale T, de Almeida ES, Alves V, Kulesza Uá, Niu N, de Lima R. 2017. Software product lines
traceability: a systematic mapping study. Information and Software Technology 84(1):1–18
DOI 10.1016/j.infsof.2016.12.004.

Vegas S. 2017. Analyzing software engineering experiments: Everything you always wanted to
know but were afraid to ask. In: Proceedings of the 39th International Conference on Software
Engineering Companion. Piscataway: IEEE, 513–514.

Walderhaug S, Hartvigsen G, Stav E. 2010.Model-Driven Traceability in Healthcare Information
Systems Development. Studies in Health Technology and Informatics MedInfo
160(Pt. 1):242–246.

Winkler S, Pilgrim J. 2010. A survey of traceability in requirements engineering and model-driven
development. Software and Systems Modeling 9(4):529–565 DOI 10.1007/s10270-009-0145-0.

Escalona et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.817 31/31

http://dx.doi.org/10.1016/j.jss.2008.08.026
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.pdf
http://dx.doi.org/10.1016/j.infsof.2016.12.004
http://dx.doi.org/10.1007/s10270-009-0145-0
http://dx.doi.org/10.7717/peerj-cs.817
https://peerj.com/computer-science/

	Lean requirements traceability automation enabled by model-driven engineering
	Introduction
	Materials and methods
	Results
	Discussion
	Conclusions
	flink6
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

