
Submitted 2 December 2020
Accepted 22 January 2021
Published 9 March 2021

Corresponding authors
Pedro Henrique Dias Valle,
pedrohenriquevalle@usp.br
Elisa Yumi Nakagawa,
elisa@icmc.usp.br

Academic editor
Antonia Lopes

Additional Information and
Declarations can be found on
page 33

DOI 10.7717/peerj-cs.392

Copyright
2021 Dias Valle et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Towards suitable description of reference
architectures
Pedro Henrique Dias Valle1, Lina Garcés2, Tiago Volpato1, Silverio Martínez-
Fernández3 and Elisa Yumi Nakagawa1

1University of São Paulo (USP), São Carlos, Brazil
2 Federal University of Itajubá (UNIFEI), Itajubá, Brazil
3Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Barcelona, Spain

ABSTRACT
Due to the increasing size and complexity of many current software systems, the archi-
tectural design of these systems has become a considerately complicated task. In this
scenario, reference architectures have already proven to be very relevant to support the
architectural design of systems in diverse critical application domains, such as health,
avionics, transportation, and the automotive sector. However, these architectures are
described in many different approaches, such as using textual description, informal
models, and even modeling languages as UML. Hence, practitioners are faced with a
difficult decision of the better approaches to describing reference architectures. The
main contribution of this work is to depict a detailed panorama containing the state
of the art (from the literature) and state of the practice (based on existing reference
architectures) of approaches for describing reference architectures. For this, we firstly
examined the existing approaches (e.g., processes, methods, models, and modeling
languages) and compared them concerning completeness and applicability. We also
examined four well-known, successful reference architectures (AUTOSAR, ARC-IT,
IIRA, and AXMEDIS) in view of the approaches used to describe them. As a result,
there exists a misalignment between the state of the art and state of the practice,
requiring an engagement of the software architecture community, through research
collaboration of academia and industry, to propose more suitable means to describe
reference architectures and, as a consequence, promoting the sustainability of these
architectures.

Subjects Software Engineering
Keywords Software architecture, Reference architecture, Architecture description

INTRODUCTION
Software systems have continually increased in size and complexity and, as a consequence,
the design of their architecture has become a critical issue (Garlan, 2000). Besides that,
software architectures play a fundamental role in determining the system’s quality,
as they are responsible for addressing quality characteristics, such as interoperability,
performance, portability, adaptability, and maintainability (Bass, 2013). According to Bass
(2013), software architecture is the structure or structures of the system composed of
software components, the externally visible properties of those components, and the
relationships among them. In this scenario, many reference architectures have emerged

How to cite this article Dias Valle PH, Garcés L, Volpato T, Martínez-Fernández S, Nakagawa EY. 2021. Towards suitable description of
reference architectures. PeerJ Comput. Sci. 7:e392 http://doi.org/10.7717/peerj-cs.392

https://peerj.com/computer-science
mailto:pedrohenriquevalle@usp.br
mailto:pedrohenriquevalle@usp.br
mailto:elisa@icmc.usp.br
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.392
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.392

as a solution to support the development of critical software-intensive systems in the
industry (Galster et al., 2017; Nakagawa et al., 2015). A reference architecture refers to
architecture at a higher level of abstraction compared with the architecture of given
software systems. It aggregates knowledge about how to design software architectures of
systems of a given application domain (Bass, 2013; Nakagawa, Oliveira & Becker, 2011).
It includes domain business rules, standards and legislation, software and hardware
elements, architectural styles and patterns, and best practices of software development
in that domain, among other elements (Angelov, Grefen & Greefhorst, 2012; Martínez-
Fernández et al., 2014; Nakagawa, Oliveira & Becker, 2011). Hence, the main purpose
of reference architectures is to serve as a guide for the development, standardization,
and evolution of systems (Nakagawa et al., 2014; Yimam & Fernandez, 2016; Martínez-
Fernández et al., 2017). Diverse application domains have already been benefited from
reference architectures, such as the automotive sector (AUTOSAR, 2020), ambient
assisted living (Bayer et al., 2004), big data systems (Sang, Xu & Vrieze, 2016), smart
cities (Schieferdecker et al., 2017), and Industry 4.0 (Industrial Internet Consortium, 2020).

From the industry perspective, Martnez-Fernandez et al. (2015) identified benefits of
reference architectures: (i) systematic reuse of common functionalities and configurations
throughout the development of systems; (ii) risk reduction through the use of proven and
partly qualified architectural elements included in the reference architecture; (iii) enhanced
quality by facilitating the achievement of software quality aspects already addressed by the
reference architecture; and (iv) interoperability among different systems and their software
components establishing common means for information exchange. However, to obtain
such benefits, these architectures should be suitably described (i.e., represented/modeled)
aiming at reliably communicating the knowledge that they contained.

The description of software architectures is mainly used to improve the communication
and cooperation among stakeholders, enabling them to work in an integrated,
coherent way during the development and evolution of software systems (International
Organization for Standardization, 2011). Such descriptions are tangible artifacts that
contain relevant information about the systems and are also commonly used to evaluate
alternative architectures and as input for simulation tools (International Organization
for Standardization, 2011). In particular, for reference architectures, we can observe that
their descriptions are found in diverse formats and containing different elements, making
sometimes difficult the comprehension and, as a consequence, the dissemination of
these architectures. Besides that, practitioners are also faced with a difficult decision to
choose suitable approaches for describing reference architectures. To the best of our
knowledge, there is not still a wider investigation on the existing approaches to describe
reference architectures and even which ones could contribute to making these architectures
sustainable, i.e., architectures with the capacity to endure different types of changes through
efficient maintenance and orderly evolution over their entire life cycle (Avgeriou, Stal &
Hilliard, 2013).

Motivated by this scenario, the main contribution of this work is to present a
detailed panorama of the approaches (e.g., processes, methods, models, and architecture
description languages—ADL) or describing reference architectures. Such panorama

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 2/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

1In the context of this work, architectural
description, representation, andmodeling
are used as synonymous.

depicts both the state of the art (collected from the literature) and the state of the
practice (observed from the existing reference architectures). For this, we identified
19 approaches that were deeply examined regarding their completeness and applicability.
Following, we analyzed four well-known, large, and successful reference architectures
(namely, AUTOSAR (AUTOSAR, 2020), ARC-IT (USA, 2019), IIRA (Industrial Internet
Consortium, 2020), and AXMEDIS (Bellini & Nesi, 2005) to get the state of the practice
and understand how they were described. These architectures are widely disseminated and
used in industry and academia and are supported by large communities and/or consortia
that involve various companies and/or research institutions or universities; besides, they
have a long-term existence focusing on very important domains for the society and, more
importantly, they present a good documentation that has been continuously updated. We
also analyzed elements contained in these four architectures that could be contributing
to some extent to making them sustainable over time. As a result, we observe a large
distance between the state of the art and the state of the practice. While the state of the
art encompasses approaches presented in a higher level of abstraction, without real-world
evaluations and, more importantly, without fully considering the international standard
for architecture description (i.e., ISO/IEC/IEEE 42010 (International Organization for
Standardization, 2011)), the state of the practice encompasses particular approaches that
have worked well in the reference architectures and, to some extent, have made these
architectures sustainable. Besides that, there is a lack of generic approaches that explicitly
concern the sustainability of reference architectures.

This work is organized as follows. ‘Background and Related Work’ presents background
and related work. ‘ResearchMethod’ presents the researchmethod, while ‘Results’ discusses
results, including the analysis of the four reference architectures. Following, ‘Discussion’
discusses the main findings and threats to the validity of this work. Finally, ‘Final Remarks’
presents the final remarks.

BACKGROUND AND RELATED WORK
This section brings an overview of reference architectures, software architecture
description,1 and sustainability of reference architectures. Following, it presents the
related work.

Reference architectures
During the last around 30 years, both academia and industry have invested effort to
consolidate the area of reference architecture by proposing definitions to reference
architectures (Kruchten, 2000; Nakagawa, Oliveira & Becker, 2011), their benefits and
drawbacks (Martínez-Fernández et al., 2017), and means to engineer (Angelov, Grefen
& Greefhorst, 2012; Nakagawa et al., 2014; Muller, 2008; Galster & Avgeriou, 2011) and
describe them (Eklund et al., 2012; Guessi, Oquendo & Nakagawa, 2014b; Gherardi &
Brugali, 2014).

Reference architectures can be used to provide (Muller, 2008): (i) a common lexicon
and taxonomy that facilitate the communication among stakeholders; (ii) a common
architectural vision, which manages the efforts of the several people and teams involved;

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 3/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

and (iii) modularization and complementary context that assist in the division and
integration of efforts posteriorly. It is worth highlighting that, more importantly, reference
architectures avoid the reinvention and revalidation of solutions to problems that were
already solved (Nakagawa, Oliveira & Becker, 2011).

To systematize the building of reference architectures, the scientific community has
already contributed with different initiatives. Muller (2008) proposed recommendations
to build and evolve reference architectures, where these architectures should be easy to
understand and evolve. Bayer et al. (2004) and Pohl, Böckle & Linden (2005) proposed
a systematic approach to define reference architectures from the knowledge of existing
systems in the context of software product line (SPL).Cloutier et al. (2010) presented a high-
level model for reference architecture development in systems engineering.Nakagawa et al.
(2014) proposed a process, called ProSA-RA, that systematizes the design, representation,
and evaluation of reference architectures. Angelov, Grefen & Greefhorst (2012) developed
a classification that can support the design of reference architectures. Finally, Galster
& Avgeriou (2011) proposed a six-step procedure for reference architecture design. It
is important to observe these different approaches include an activity for architectural
description of reference architectures, but without detailing or specifying guidelines for
that. Hence, other complementary studies, like those found in this work and discussed in
‘Results’ have emerged to cover this lack.

Software architecture description
Serving as an important support to the communication and cooperation in software project
teams, the architecture description of a software system should be adequately available
to a variety of stakeholders. An architecture description should serve as (International
Organization for Standardization, 2011): (i) a baseline for system design and development
activities; (ii) a baseline to analyze and evaluate alternative implementations of an
architecture; (iii) a support to the system development and maintenance; (iv) a support
to document characteristics, features, and design of a system for potential clients,
acquirers, owners, operators, and integrators; (v) a basis to analyze and evaluate alternative
architectures; and (vi) a means to share lessons learned and reuse architectural knowledge
through viewpoints, patterns, and styles.

The ISO/IEC/IEEE 42010 established definitions and relationships among the main
elements that compose architecture descriptions, e.g., stakeholder, concern, architecture
decision, architecture view, architecture viewpoint, and architecture model, but it does not
suggest or impose any specific process,method,model, notation, or technique to produce an
architecture description. Hence, this standard can serve as a basis for different approaches,
such as document-centric, model-based, and repository-based techniques (International
Organization for Standardization, 2011). Due to this flexibility, this standard becomes
popular and is to some extent widely adopted by both academia and industry.

With regard to views to describe software architectures, Kruchten (1995) proposed 4+1
view model containing five views: (i) logic view that shows the components (objects) of
the system and their interactions; (ii) process view that shows processes/workflow rules of
a system and how these processes communicate with each other; (iii) development view

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 4/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

that presents a building block view of the system; (iv) physical view that shows the system
execution environment; and (v) scenario view (also use case view) that shows a set of use
cases serving to illustrate and validate the architecture design. Another well-established
work is ‘‘Views and Beyond’’ byClements et al. (2011) and, to describe an architecture, most
relevant architectural views are firstly documented, and then additional documentation
to the views are developed. Views are classified into three main categories: (i) modular
view that describes the structure of the system as a set of implementation units; (ii)
component-and-connector view that describes the structure of the system at the time it
is running; and (iii) implementation view that describes how the system relates to other
structures in its environment.

Sustainability of reference architectures
Sustainability was brought to the software architecture area as an important concept
related to the capacity of software architectures to tolerate modifications throughout the
software systems life cycle (Avgeriou, Stal & Hilliard, 2013). In parallel, due to reference
architectures encompass a valuable knowledge of a given domain, their sustainability is
also considered of utmost importance.

While several reference architectures have been proposed for various application
domains, many of them have not survived. For instance, Volpato et al. (2017) analyzed 20
reference architectures,most of themdestined to software systems based on service-oriented
architecture (SOA), an architectural style widely adopted to develop software-intensive
systems for different and even critical domains. Results showed 12 of them did not present
any evidence (publications, projects, and/or websites) indicating updates or initiatives
for using or disseminating them. In addition, these architectures did not have a good
architectural description in the sense that it provided good support for the use and
dissemination of these architectures. It is important to mention that other factors, such as
financial support, economic viability, and the existence of a consortium, also impact the
sustainability of reference architectures (Volpato et al., 2017).

On the other hand, reference architectures that have a good description have survived
for decades, being constantly updated accordingly to the advance of their application
domain. For instance, AUTOSAR, a well-known reference architecture for the automotive
sector, adopts an update policy with release and version control of its documentation
to manage evolution (Venters et al., 2018). Their current version is described in 22,271
pages organized into 220 files. The same occurs in other reference architectures, such as
AXMEDIS and ARC-IT with life cycles of over 14 and 25 years, respectively.

In this scenario, sustainability in the context of reference architectures can have two
perspectives (Volpato et al., 2017): (i) the perspective ‘‘IN’’ is about understanding how
sustainable the concrete software architectures that are instantiated from a given reference
architecture are; and (ii) the perspective ‘‘OF’’ (which is addressed in this work) refers to
how the reference architectures themselves are sustainable. Regarding this last perspective,
this study also highlights the reference architecture descriptionmust be continually updated
and aligned with the state of practice to achieve sustainable architectures; also, this study

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 5/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

exemplifies eight reference architectures that have sustained over time by keeping their
description updated.

Related work
With regard to the related work, we identified a systematic literature review (SLR) on
architectural description of software architectures and reference architectures of embedded
systems (Guessi et al., 2012). This work identified 24 studies to answer: (i) how software
architectures and reference architectures of the embedded systems have been modeled;
and (ii) which approaches have been adopted for that. As the main result, the authors
concluded that there is no consensus on how to better describe the architectures of
embedded systems. They also identified a range of quality requirements and constraints
that have been considered in the architectural description of embedded systems.

Another SLR was conducted to understand how Systems-of-Systems (SoS) software
architectures have been described (Guessi et al., 2015). The authors selected 38 primary
studies to answer their research questions: (i) how the literature has addressed the
architecture description of SoS; and (ii) which techniques have been used in the description
of software architectures of SoS. The authors suggested that more research should be
conducted for effectively using architecture descriptions in the evaluation and evolution
of SoS. They also proposed a set of research lines to be further addressed, including the
establishment of architecture viewpoints framing important quality attributes for SoS and
a consensus on the formalism level required at each stage of their life cycle.

As far as we know, there are not literature surveys, systematic mapping study (SMS), or
other SLR on approaches for describing reference architectures. Then, the novelty of our
work is to present a wider panorama of these approaches (independently of the domain of
the reference architectures or type of systems) and also analyze how well-known, successful
reference architectures have been described.

RESEARCH METHOD
To support the definition of the panorama of the approaches to describe reference
architectures, we conducted an SMS and also examined four well-known, large, and
successful reference architectures. The planning and conduction of the research method
are presented in ‘Planning’, ‘Conduction’ respectively.

Planning
Weadopted theGQM(Goal Question Metric) approach (Basili, Caldiera & Rombach, 1994)
to support the conduction of our SMS and also to examine the four reference architectures.
GQM is composed of three parts (Basili, Caldiera & Rombach, 1994): (i) the goal to be
achieved; (ii) a set of questions that must be answered to achieve the goal; and (iii) a set of
metrics needed to answer the questions. Hence, the goal of this work is:
Analyze approaches to describe reference architectures
for the purpose of their evaluation and classification
with respect to adherence to the ISO/IEC/IEEE 42010
from the viewpoint of the software engineering research

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 6/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

2We used the version of 2011 of
ISO/IEC/IEEE 42010 in this work since
the last version (of 2020) has just been
submitted to the ISO Secretariat for
balloting.

Table 1 Research questions andmetrics.

Research Questions Metrics

RQ1: Which approaches have been proposed to de-
scribe reference architectures?

M1.1: Approaches proposed by year

M1.2: Approaches proposed in academia and in-
dustry contexts
M1.3: Approaches proposed for reference architec-
tures in specific applications domains
M1.4: Types of contribution (i.e., process, frame-
works, methods, models)

RQ2: Which is the adherence level of approaches
to describe reference architectures to the standard
ISO/IEC/IEEE 42010?

M2.1: Types of architectural views considered (if
so) in the approach

M2.2: Types of architectural viewpoints considered
(if so) in the approach
M2.3: Types of models considered in the approach
M2.4: Class of stakeholders defined in the approach
M2.5: Concerns types described in the approach
M2.6: Architectural decisions considered in the ap-
proach
M2.7: Rationale description strategies by the ap-
proach
M2.8: ADL proposed by the approach
M2.9: Types of architectural decisions (i.e., archi-
tectural patterns, styles, technologies) used by the
approach

RQ3: How sustainable reference architectures have
been described?

M3.1: Year of establishment

M3.2: Number of pages in the first and the last ver-
sion
M3.3: Dissemination of reference architecture
M3.4: Life cycle
M3.5: Number of releases
M3.6: ISO/IEC/IEEE 42010 Adherence Level
M3.7: Description of approaches

in the context of sustainability.
It is worth highlighting that we adopted the international standard ISO/IEC/IEEE

42010.2

Table 1 presents the three research questions (RQs) and their respective metrics.
RQ1 aims to collect possibly all existing approaches to describe reference architectures

through metrics M1.1 to M1.4. RQ2 intends to analyze the adherence of the approaches to
ISO/IEC/IEEE 42010, which is an international standard for architecture descriptions of
systems and software. Metrics M2.1 to M2.9 aim to collect nine elements directly related
to the description of reference architectures: view, viewpoint, type of model, stakeholder,
concern, architectural decision, rationale, ADL, and type of architectural decisions. RQ3

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 7/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

3For this search string, we also consider
the plural form of all terms, but for
simplification, only the singular terms
are showed here.

Table 2 Search strings adapted for each publication database.

Source Search string

Scopus TITLE-ABS-KEY((‘‘software architecture’’) AND
(‘‘software architecture’’ OR ‘‘software structure’’ OR
’’software design’’ OR ‘‘system architecture’’ OR ‘‘system
structure’’ OR ‘‘system design’’))

IEEE Xplore (‘‘Abstract’’:reference architecture) AND
(‘‘Abstract’’:software architecture OR ‘‘Abstract’’:software
structure OR ‘‘Abstract’’:software design OR
‘‘Abstract’’:system architecture OR ‘‘Abstract’’:system
structure OR ‘‘Abstract’’:system design)

ACM Library [[[Abstract: ‘‘reference architecture’’] AND [[Abstract:
‘‘software architecture’’] OR [Abstract: ‘‘software
structure’’] OR [Abstract: ‘‘software design’’] OR [Abstract:
‘‘software structure’’] OR [Abstract: ‘‘system structure’’]
OR [Abstract: ‘‘system design’’]]]

Web of Science AB=((‘‘software architecture’’) AND (‘‘software
architecture’’ OR ‘‘software structure’’ OR ’’software
design’’ OR ‘‘system architecture’’ OR ‘‘system structure’’
OR ‘‘system design’’))

ScienceDirect Title, abstract, keywords: ((‘‘software architecture’’) AND
(‘‘software architecture’’ OR ‘‘software structure’’ OR
’’software design’’ OR ‘‘system architecture’’ OR ‘‘system
structure’’ OR ‘‘system design’’))

SpringerLink ((‘‘software architecture’’) AND (‘‘software architecture’’
OR ‘‘software structure’’ OR ’’software design’’ OR ‘‘system
architecture’’ OR ‘‘system structure’’ OR ‘‘system design’’))

aims to analyze how well-known, successful reference architectures have been described
and is answered by examining four reference architectures through metrics M 3.1 to M3.7.

To define the search string of our SMS, we selected two keywords: reference architecture
and software architecture. As reference architecture is a well-known, disseminated term,
we did not consider other related terms. Otherwise, we considered the following similar
terms of software architecture as also used in Qureshi, Usman & Ikram (2013): software
structure, software design, system architecture, system structure, and system design.
Hence, the final search string3 was: (‘‘reference architecture’’ and (‘‘software architecture’’
or ‘‘software structure’’ or ‘‘software design’’ or ‘‘system architecture’’ or ‘‘system structure’’ or
‘‘system design’’)). As shown in Table 2, we accordingly adapted this string to the specific
syntax of each publication database to perform the searches.

With regard to the publication databases, we selected those recommended in (Kitchen-
ham et al. (2009): Scopus (http://scopus.com), Web of Science (http://isiknowledge.com),
IEEE Xplore (https://ieeexplore.ieee.org), ACM Digital Library (http://dl.acm.org),
ScienceDirect (http://sciencedirect.com), and SpringerLink (http://link.springer.com).
Scopus, ScienceDirect, and Web of Science are general indexing systems and allow us to
cover a broader scope for our search. IEEE Xplore, ACM Digital Library, and SpringerLink
publish works of the most important venues (conferences and journals) related to software

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 8/36

https://peerj.com
http://scopus.com
http://isiknowledge.com
https://ieeexplore.ieee.org
http://dl.acm.org
http://sciencedirect.com
http://link.springer.com
http://dx.doi.org/10.7717/peerj-cs.392

Figure 1 Process for the selection of relevant primary studies. .
Full-size DOI: 10.7717/peerjcs.392/fig-1

architectures. We also defined one inclusion criterion (IC) and three exclusion criteria
(EC):
1. IC1: The study proposes an approach to describe reference architectures.
2. EC1: The study does not address an approach to describe reference architectures.
3. EC2: The study does not permit to identify information about the approaches, because

it is a table of contents, short course description, invited talk of events, summary of
events, among others, or written in other languages than English.

4. EC3: The study was not peer-reviewed.

Conduction
This SMS was first conducted from January to July 2018 by four researchers from both
industry and academia and with experience in reference architectures and software
architectures, besides their experience in researching, conducting, and updating a number
of SMS and SLR. Figure 1 depicts the steps of the selection process. By adapting the search
string for each database, we performed the searches and obtained a total of 989 studies.
After removing the duplicated studies, 589 studies remained. After the first selection where
we applied the selection criteria on title, abstract, and keywords, 183 studies were selected.
After reading the full text of these studies and applying the selection criteria again, 17
studies were finally selected. Besides that, an inspection of the list of references of each
selected study (through snowballing approach (Wohlin, 2014)) made us possible to include
other two relevant studies, totaling 19 studies. To support this selection process, we used
JabRef (http://www.jabref.org).

Considering the need of updating our SMS (Mendes et al., 2020), in December 2020, we
updated it aiming at including studies published in 2018 (i.e.,months not covered in the first
version of the SMS), 2019, and 2020. For that, we used the snowballing approach that refers
to using the reference list of a study or the citations to a given study to identify additional
studies. According to Wohlin (2014), snowballing is particularly useful for extending an
SLR or SMS, since new studies almost certainly must cite at least one study among the

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 9/36

https://peerj.com
https://doi.org/10.7717/peerjcs.392/fig-1
http://www.jabref.org
http://dx.doi.org/10.7717/peerj-cs.392

previously relevant studies. Hence, snowballing is by deduction a better approach than a
database search for extending SMS (Wohlin, 2014). Felizardo et al. (2016) also found that
snowballing presents an overall precision to search for new studies similar to searches in
databases.

In particular, we applied forward snowballing, since it could identify new studies
published in 2018, 2019, and 2020. For that, the reference lists of the 19 studies initially
included in our SMS were considered. Following, we used information made available in
Google Scholar to find all studies that cited those 19 studies and, as a result, we identified
108 candidate studies. We checked the title, abstract, and keywords of the 108 studies
and applied the inclusion and exclusion criteria. Hence, 82 studies were excluded and 26
remained. Following, we read the full text of the 26 studies and applied again the inclusion
and exclusion criteria. As a result, no new study published between 2018 and 2020 was
suitable to answer our RQ; hence, no new study was included in our SMS.

We used an online form for the data extraction and analysis of each study. This form
was designed to collect data to answer RQ1 and RQ2. Data from each study was then
extracted by one researcher involved in this study and when there were doubts, discussions
with other researchers were conducted. The dataset gathered from this form together with
a qualitative and qualitative analysis supported us to synthesize results, answer these RQs,
and further draw conclusions.

To answer RQ3 and identify the state of the practice about how reference architecture
has been described, we examined four reference architectures (AUTOSAR, ARC-IT, IIRA,
and AXMEDIS), which are from different application domains. Based on our experience of
more than 15 years at researching and establishing reference architectures, we selected such
architectures because they are widely known in the industry, besides presenting long-time
existence. We also have previously investigated them in our research group, i.e., we have
followed the evolution of these architectures over the years.

RESULTS
Section ‘Overview of studies’ firstly presents an overview of the 19 studies resulting from
the SMS, while ‘Approaches to reference architecture description’, ‘Adherence of the
Approaches to ISO/IEC/IEEE 42010’, ‘Analysis of four successful reference architectures’
answer, respectively, RQ1, RQ2, and RQ3.

Overview of studies
Table 3 lists the 19 studies included in our SMS, together with their ID (S1 to S19), title,
publication year, reference, publication venue (i.e., W= workshop, TR= technical report,
C = conference, J = journal, or BC = book chapter), context where the approach was
developed (i.e., A= academia or I= industry), quantity of reference architectures described
using the approach, domain for which the approach was created, and type of the approach
(e.g., process, method, model, among others).

It is observed that the first three studies (S1, S2, and S3, published in 1994, 1998, and
1998, respectively) were published in workshops when the first events in this area were
proposed. Hence, regarding the publication venues, while around one-third of studies were

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 10/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

Table 3 Approaches to describe reference architectures (Venue: C = Conference, W =Workshop, J = Journal, TR = Technical Report, BC = Book chapter); (Context:
A = Academia, I = Industry)).

ID Title Year Ref. Venue Context RA Domain Type

S1 A reference architecture for control of me-
chanical systems

1994 Kramer et al. (1994) W A 1 Mechanical
systems

Process

S2 NSA’s MISSI reference architecture - Moving
from prose to precise specifications

1998 Meldal & Luckham (1998) W A 0 Generic ADL

S3 PuLSE-DSSAa method for the development
of software reference architectures

1998 DeBaud, Flege & Knauber (1998) W I 0 Generic Method

S4 Describing, instantiating and evaluating a ref-
erence architecture: A case study

2003 Avgeriou (2003) TR A 0 Generic Method

S5 Definition of reference architectures based on
existing systems

2004 Bayer et al. (2004) TR I 0 Generic Process

S6 An Approach to Reference Architecture De-
sign for Different Domains of Embedded Sys-
tems

2008 Dobrica & Niemelä (2008) C A 0 Generic Method

S7 Architectural Knowledge in an SOA Infras-
tructure Reference Architecture

2009 Zimmermann, Kopp & Pappe (2009) BC I 0 Generic Method

S8 A Methodology for Developing an Agent Sys-
tems Reference Architecture

2011 Nguyen et al. (2011) W A 0 Generic Process

S9 A reference architecture for integrated EHR
in Colombia

2011 Cruz et al. (2011) J A 0 Agent Systems Process

S10 Empirically-grounded reference architec-
tures: A proposal

2011 Galster & Avgeriou (2011) C A 1 Health Process

S11 A reference architecture template for
software-intensive embedded systems

2012 Eklund et al. (2012) C A 0 Generic Document
template

S12 RAModel: A Reference Model for Reference
Architectures

2012 Nakagawa, Oquendo & Becker (2012) C A 0 Generic Model

S13 Towards a bottom-up development of refer-
ence architectures for smart energy systems

2013 Irlbeck et al. (2013) W I 0 Smart Energy
Systems

Process

S14 An approach for capturing and documenting
architectural decisions of reference architec-
tures

2014 Guessi, Oquendo & Nakagawa (2014a) C A 0 Generic Method

S15 Development and Specification of a Refer-
ence Architecture for Agent-Based Systems

2014 Regli et al. (2014) J A 0 Agent Systems Process

(continued on next page)

D
ias

Valle
etal.(2021),PeerJ

C
om

put.Sci.,D
O

I10.7717/peerj-cs.392
11/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

Table 3 (continued)

ID Title Year Ref. Venue Context RA Domain Type

S16 Modeling and reusing robotic software archi-
tectures: The HyperFlex toolchain

2014 Gherardi & Brugali (2014) C A 1 Robotic Process

S17 Variability viewpoint to describe reference ar-
chitectures

2014 Guessi, Oquendo & Nakagawa (2014b) C A 0 Generic Viewpoint

S18 Design and Evaluation of a Customizable
Multi-domain Reference Architecture on Top
of Product Lines of Self-driving Heavy Vehi-
cles: An Industrial Case Study

2015 Schroeder et al. (2015) C A 1 Automotive Process

S19 Quality-based heuristic for optimal product
derivation in Software Product Lines

2015 Losavio & Ordaz (2015) C A 1 Generic Process

D
ias

Valle
etal.(2021),PeerJ

C
om

put.Sci.,D
O

I10.7717/peerj-cs.392
12/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

published in workshops, around half part of the studies were published in conferences;
besides that, only two studies were published in journals, equally as the two technical
reports, and only one book chapter. The concentration of studies in events (conference
and workshops) may be related to the fact that studies are not still enough mature to be
published in high-impact journals.

It is also worth highlighting that the first studies were published in 1994 and 1998
and, after that, there is a gap until 2003 when other studies started to be published. This
gap may have happened because only after the 2000s, reference architectures started to
show their value to the software systems development and, hence, they became more
popular together with the software architecture area. Consequently, studies concerning
representation/description of these architectures becomenecessary andhave beenpublished
in the last almost two decades.

Moreover, around one-third of the studies focused on describing reference architectures
of specific application domains, mainly those critical, while around two-thirds intended
to be generic enough to address different domains. In these 19 studies, we found the
description of only five reference architectures using the proposed approaches. Similarly,
only four studies were developed in the industry context. Hence, the research topic of
reference architecture description is still relatively new and requires to be matured and
disseminated.

Approaches to reference architecture description
This section deeps the analysis of the existing approaches through data collected using
metrics M1.1 (Number of approaches proposed by year), M1.2 (Number of approaches
proposed in academia and industry, i.e., the Context), M1.3 (Application Domains targeted
by the approach), and M1.4 (Type of contribution). Regarding M1.1, the first study was
published in the early of 1990s and most of them are concentrated in the last decade, as
illustrated in Fig. 2, showing a trend to an increased interest in this area. Concerning the
other three metrics, a summary of the analysis is shown in Fig. 3 and is detailed below.

Context of the approaches
To find the context of the approaches, for each study, we analyzed all authors’ affiliations
and how the development and evaluation of such approaches were performed. As result,
we found four studies (S3, S5, S7, and S13) were carried out in the industry. In particular,
S3 and S5 were authored by Fraunhofer Institute for Experimental Software Engineering
Fraunhofer IESE) (https://www.iese.fraunhofer.de/), in Germany, a leading research
institution in the area of software and systems engineering, while S7 was authored by IBM
Research and IBM Global Technology Services, located in Switzerland and Germany,
respectively. Regarding S13, one of its authors is part of Fortiss GmbH, located in
Germany, a research institution for software-intensive systems and services. Finding
1: All contributions from industry had the participation of German industry.

The remaining 15 studies were proposed and validated in the academic context from
different institutions in North and Latin America, Europe, and Asia, more specifically,
the United States, Germany, France, Netherlands, Sweden, Switzerland, Finland, Cyprus,
Romania, Brazil, Colombia, Venezuela, and China.

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 13/36

https://peerj.com
https://www.iese.fraunhofer.de/
http://dx.doi.org/10.7717/peerj-cs.392

Figure 2 Amount of studies by year and publication venue.
Full-size DOI: 10.7717/peerjcs.392/fig-2

Domains targeted by the approaches
We checked whether the approaches were proposed for specific domains or for general
purpose. As summarized in Fig. 3, seven studies considered a particular application domain.
Two of them (S9 and S15) focused on describing reference architectures for agent-based
systems, while the other studies (S1, S10, S13, S16, and S18) considered, respectively,
mechanical, health, smart energy, robotics, and automotive systems. Most of these studies
were proposed in the academic context. The remaining 12 studies targeted a general
purpose solution, i.e., they presented means that could be used to describe any reference
architectures independently of their application domain. It is worth highlighting that three
of four studies that had involvement of industry also aimed generic purpose solutions.
Finding 2: Most approaches are generic and could serve to describe reference architectures
independently from their domain. However, generic approaches are overall less detailed than
approaches for specific domains, as expected.

Types of contribution
From the studies, we identified six different types of contributions (i.e., process, method,
ADL, reference model, architecture viewpoint, and architectural template), as presented in
Fig. 3.

Most studies proposed processes to support the description of reference architectures.
A process can be defined as a logical sequence of tasks performed to achieve a particular
objective. It defines what is to be done, without specifying how each task is performed. We
identified 10 processes, as listed in Table 4, including two studies (S5 and S13) conducted
in the industry. While S5 presented a process to describe reference architectures from
experience accumulated of existing systems, S13 presented a process for the incremental
description of reference architectures for smart energy systems.

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 14/36

https://peerj.com
https://doi.org/10.7717/peerjcs.392/fig-2
http://dx.doi.org/10.7717/peerj-cs.392

S1

S2

S4

S6

S8,S9,
S10

S11,
S12

S13

S14,S16,
S17

S18,
S19

S3

S5

S7

S1

S9

S15

S10

S13

S16

S18

S2,
S3

S4

S5

S6

S7

S8

S11,
S12

S14,
S17

S19

S17

S2 S3

S4

S6

S7

S14

S11 S12

S1

S5

S8,S9,
S10

S13

S15,
S16

S18,
S19

1994

1998

2003

2004

2008

2009

2011

2012

2013

2014

2015

A
ca

de
m

y

In
du

st
ry

M
ec

ha
ni

ca
l

S
ys

te
m

s

A
ge

nt
S

ys
te

m
s

H
ea

lth

S
m

ar
t

E
ne

rg
y

R
ob

ot
ic

A
ut

om
ot

iv
e

G
en

et
ic

V
ie

w
po

in
t

A
D

L

M
et

ho
d

D
oc

um
en

t
Te

m
pl

at
e

M
od

el

P
ro

ce
ss

Context (M 1.2) Domain (M 1.3) Type of Contribution (M 1.4)

Figure 3 Characterizing approaches for reference architecture description with regard to the Context
(measured usingM1.2), Domain (M1.3), and Type of contribution (M1.4).

Full-size DOI: 10.7717/peerjcs.392/fig-3

Table 4 Processes for describing reference architectures.

ID Architectural design activities Context Evaluation

S1 Analysis and Synthesis Academy No Evaluation
S5 Synthesis Industry Case study
S8 Synthesis Academy Case study
S9 Analysis and Synthesis Academy No Evaluation
S10 Analysis and Synthesis Academy No Evaluation
S13 Analysis, Synthesis, and Evaluation Academy Case study
S15 Analysis and Synthesis Academy Case study
S16 Analysis and Synthesis Academy Case study
S18 Analysis and Synthesis Academy Case study
S19 Synthesis Academy No Evaluation

We also analyzed the coverage of each process comparing them with the Holfmeister et
al.’s generic architectural process (Hofmeister et al., 2007), which presents three main
activities: analysis, synthesis, and evaluation. While some studies encompassed the

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 15/36

https://peerj.com
https://doi.org/10.7717/peerjcs.392/fig-3
http://dx.doi.org/10.7717/peerj-cs.392

architectural analysis (that addresses requirements of reference architectures), all of
them considered the synthesis, in which the reference architecture description itself is
performed. Differently from other studies, S13 considered all three activities, including
a means to evaluate reference architectures. Regarding the maturity of the processes, in
general, an effective evaluation is still widely missing. In particular, only S5 was evaluated
in the real-world industry scenarios and, therefore, they could be considered more mature
than the others. Otherwise, S1, S9, S10, and S19 only presented the steps contained in the
processes without any evaluation.

Studies also provided methods for describing reference architecture. In the context of
this work, a method refers to a means to perform a task, i.e., the how of that task. We
classified the identified approaches as a method when they also used the terms technique,
practice, and procedure and identified five studies (S3, S4, S6, S7, and S14). S3 and S7 were
carried out in the industry context. While S3 proposed the systematic, iterative method
to describe reference architectures for SPL, S7 showed an industrial case study to create
and use architectural knowledge to describe reference architectures. For this, the authors
introduced knowledge about the business domain, service portfolio, and knowledge
management. S4, S6, and S14 carried out case studies to evaluate the applicability of the
methods proposed by them. S4 presented an architecture instance that was designed for the
development of a prototype of a learning management system. In S6, the authors presented
an example using their method to model a reference architecture for embedded systems.
The main contribution of this study was the synthesis of the most important issues of
product-line architectures in their development strategy for cross-domain architecture
design of systems-of-systems. In S14, the authors illustrated a method for documenting
architectural decisions into a reference architecture design process.

We identified only one study (S2) that discussed the use of a formal ADL to model
reference architectures. An ADL is any form of expression that can be used to the
architecture descriptions (International Organization for Standardization, 2011). It provides
one or more model kinds as a means to frame some concerns for the audience of
stakeholders. In S2, the authors discussed the reading of an architecture description,
mainly about the question of what the description actually means needs to be resolved
unambiguously in the readers’ and designers’ minds to evaluate and then implement a
given architecture. In particular, this ADL (in this case, Rapide) presents an event-based
architecture model, i.e., the architecture components are defined by the kinds of events
that they may generate or react to. In short, the authors concluded that Rapide allowed
drawing unambiguous conclusions from the formalization based on testable arguments.
As a contribution to the reference architecture area, Rapide can provide architects with
the opportunity to define architectures in a descriptive rather than a prescriptive manner.
Besides that, it is important to highlight that semi-formal languages were also found in
the studies. For instance, S6 used UML-RT, a real-time extension of UML, to express the
architecture views of the reference architecture. Both S5 and S13 from the industry also
suggested UML to model the views and viewpoints of reference architectures.

Concerning the variety of elements that different reference architectures contained, S12
presented a reference model, called RAModel, which outlines the elements that should be

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 16/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

contained in reference architectures (Nakagawa, Oquendo & Becker, 2012). This model also
aimed to improve the understanding of what reference architectures are and, therefore, it
intended to support the design, use, and evolution of such architectures.

There are different architecture viewpoints and views used to represent reference
architectures, as further detailed in ‘Analysis of four successful reference architectures’.
However, we found a proposal (S17) to describe variability in reference architectures. Such
variability is not usually found in the description of existing reference architectures. S17
proposed an architecture viewpoint, the steps to create this viewpoint, and a technique to
represent it. In turn, an architecture viewpoint refers to a representation of one or more
aspects of an architecture that illustrates how it addresses the concerns held by one or more
of its stakeholders (International Organization for Standardization, 2011).

We also found a document template for describing reference architectures. A document
template addresses the somewhat conflicting needs when documenting a reference
architecture. S11 presented a document template that prescribes two separate documents:
(i) one document captures essential principles and evolution of the reference architecture;
and (ii) another document captures technical details, providing the foundation for
the implementation of concrete architecture. Besides, this template makes it possible
to document and manage subsequent versions/releases of the reference architecture
description.

Overall, the 19 approaches identified in this SMS were presented at a higher level
of abstraction and without detailed guides that can support architects to easily apply
them. Finding 3: Contributions from different perspectives from processes to document
template for describing reference architectures have been proposed, but they should mature
in the sense they become more widely experimented with and used in academic and mainly
industry context.

Adherence of the approaches to ISO/IEC/IEEE 42010
Figure 4 summarizes the results.

An architecture view considers one or more of the concerns held by the system’s
stakeholders, i.e., it expresses the architecture of a system from the perspective of specific
system concerns (International Organization for Standardization, 2011). To identify the
architecture views in the studies, we considered those views proposed, used, and/or cited
throughout each study. Table 5 shows the 21 different views (exactly as mentioned and
found in nine studies), together with a description of each view.

An architecture viewpoint establishes the conventions for the construction,
interpretation, anduse of architecture views to frame specific system concerns (International
Organization for Standardization, 2011).We identified 25 architectural viewpoints thatwere
proposed, used, and/or cited in one-third of the studies (6 of 19). Table 6 presents these
viewpoints and studies that addressed them. Still in this table, we present a description of
each viewpoint to help architects and researchers to better understand them and further
select them to represent their reference architectures. As shown in Table 6, S5 is the most
complete study compared with the others by proposing seven viewpoints, while S17 only
considered one viewpoint.

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 17/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

S3

S2

S4

S4

S4

S4

S4

S5

S5

S5 S6

S7

S7

S7

S7

S7

S8,S9,
S10

S9

S8

S10,
S8

S11 S13 S15

S14,
S17

S14,
S17

S14,S15,
S17

S14,
S15

S14

S19

S18

S18,
S19

M2.1: Views

M2.2: Viewpoints

M2.3: Model Kind

M2.4: Stakeholders

M2.5: Concerns

M2.6: Architectural
Decisions

M2.7: Rationale

M2.8: ADL

M2.9: Types of Architectural
Decisions

19
94

19
98

20
03

20
04

20
08

20
09

20
11

20
12

20
13

20
14

20
15

Figure 4 Adherence of the approaches to the international standard ISO/IEC/IEEE 42010.
Full-size DOI: 10.7717/peerjcs.392/fig-4

Amodel kind defines the conventions for one type of architecture model (International
Organization for Standardization, 2011). We identified 13 different model kinds (i.e.,
diagrams) to describe reference architectures in approximately half part of the studies (9 of
19), as shown in Table 7. Model kinds that can represent the behavior of components and
systems built from the reference architectures were the most recurrent in the studies. More
specifically, S3, S4, S5, S7, and S8 used UML behavior diagrams: use case diagram, activity
diagram, sequence diagram, state diagram, and collaboration diagram. UML structure
diagrams were also suggested: component diagram, package diagram, and class diagram.
Moreover, S17 explored the SysML internal block diagram, while two studies (S3 and S5)
used the workflow diagram.

A stakeholder can be an individual, team, or organization that have an interest in a
system (International Organization for Standardization, 2011). As presented in Table 8, we
identified ten different stakeholders in six studies to be considered during the description
of reference architectures, including mainly software architects, project managers, and
developers. However, these studies did not present how to involve them and which their
tasks are.

A concern refers to any interest in the system (International Organization for
Standardization, 2011). A concern can appear in different forms, such as quality attributes,
architecture decisions, risks, and other issues. Only two studies (S4 and S7) addressed
concerns, but few details were presented. S4 provided means to describe the stakeholders’
concerns in the viewpoints and, for this, a set of questions guide architects to understand
stakeholders’ concerns. S7 considered concerns related to business rules to describe

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 18/36

https://peerj.com
https://doi.org/10.7717/peerjcs.392/fig-4
http://dx.doi.org/10.7717/peerj-cs.392

Table 5 Architectural views addressed by the approaches for describing reference architectures.

Views Studies Description

S4 S5 S8 S9 S10 S11 S13 S15 S19

Functional Logical
√ √ √ √ √

It describes the most important classes, their organi-
zation in packages and subsystems, and the organi-
zation of these packages and subsystems into layers.

Process
√ √ √ √

It describes the design concurrency and synchro-
nization aspects.

Components
√ √ √

It shows the components and topologies needed for
the development of an instance of the system family
or for the development of the domain.

Implementation
√ √ √ √

It describes the package layout of the system from
the perspective of the system architect.

Scenario
√ √ √

This crosscutting view is composed of narrative use
cases to provide an executive-level view of the archi-
tecture.

Platform
√ √

It shows the elements (including hardware, operat-
ing systems, and middleware), their topology, and
the allocation of software components to hardware.

Technical
√ √

It defines the components and might refine compo-
nents of the logical view. This view is used when de-
tailed architectures are needed

Physical
√

It describes the mapping of the software onto the
hardware and reflects its distributed aspects.

Context
√

It shows dynamic system properties such as capacity,
liveness, and correct behavior, and all the ilities of a
system such as reliability and maintainability.

Informal
√

It describes both how to logically solve the upgrade
problem and what components need to be active.

Information Models
√

It is used to describe the data required. This is ac-
complished through the use of schemes, which de-
scribe the state and structures.

Domain
√

It shows the problem space and what functions and
capabilities must be provided, which are common
and which are variable across a family, and how the
functions are interrelated through information flow
or in cooperation to provide capabilities.

Interface
√

It is architectural views as a means of communi-
cation vehicle between design and recovery, and
among stakeholders.

Code
√

It isolates the construction and development aspects
of a software system, and organize them in a sepa-
rate view according to the organizations particular
development environment.

Module
√

It organizes modules into two orthogonal structures:
decomposition and layers. The decomposition of
a system captures the way a system is decomposed
into a hierarchy of subsystems and modules.

(continued on next page)

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 19/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

Table 5 (continued)

Views Studies Description

S4 S5 S8 S9 S10 S11 S13 S15 S19

Execution
√

It comprises the runtime aspects of the software sys-
tem and explains the deployment of the system and
how the elements of the code, module, and concep-
tual view can be mapped to concrete external ele-
ments.

Conceptual
√

This view is closest to the application domain. It can
be a key facilitator to interact with domain experts
who are not interested in the details of the software
system, but in what the system does in terms of do-
main concepts.

New
√

It creates a new representation for the elements and
relationships defined in the meta-model.

Filtered
√

It filters out elements in an existing view (in case
they are not important for the new view) or high-
lighted (in case they are the focus of attention). An
example of highlighting is a structural architecture
view in which the elements that are made persistent
are marked for a persistence view.

Augmented
√

It adds new elements to an existing view, for exam-
ple, annotations for performance data in dynamic
views.

Deployment
√

It concerns the identification of the various compu-
tational nodes and protocols specified in the refer-
ence architecture. In other words, it depicts all the
system servers that are connected to the application
server through appropriate protocols.

reference architectures, but few details were provided on how these concerns should be
considered.

An architecture decision affects the architecture description elements and pertains
to one or more concerns (International Organization for Standardization, 2011). Only
three studies (S7, S14, and S15) addressed architectural decisions for the design of
reference architectures. S7 represented architectural decisions in a semi-formal way using
architectural patterns and a meta-model, while S14 and S15 represented such decisions in
an informal way through text description.

A rationale refers to the explanation, justification, or reasoning about architecture
decisions that have been made and also architectural alternatives not chosen (International
Organization for Standardization, 2011).Only S7 and S14 considered rationale. S7 addressed
rationales for architectural decision-making through a textual description, while S14 used
a meta-model and textual description to represent rationales.

An ADL refers to any form of expression for the architecture description (International
Organization for Standardization, 2011). Some representative examples are Rapide, SysML,
and ArchiMate. Only S2 considered a formal ADL, namely Rapide ADL, for the reference

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 20/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

Table 6 Architectural viewpoints addressed by the approaches for describing reference architectures.

Viewpoint Studies Description

S4 S5 S7 S9 S14 S17

Use-case
√

It describes a certain behavior of the system by capturing
how the static elements of the conceptual architecture view
or the static modules of the module view interact in order
to show the activities and the order in which a scenario is
realized

Logical
√

It shows the decomposition and behavior of the system at a
logical level of abstraction

Deployment
√

It shows how one or more applications are realized on the
infrastructure

Implementation
√

It is concerned with the technical representation of a system
and the technologies and system components required for
implementing the activities and functions prescribed

Data
√

It shows the persistent data that are stored and manipulated
by the system

Build-time architecture
√

It can close the gap between the code architecture and the
execution architecture view by explicitly describing the
build process and its elements

Behavioral
√

It captures how the structural elements of a software system
interact for given scenarios

Execution
√

It comprises the runtime aspects of the software system
and explains the deployment of the system and how the
elements of the code, module, and the conceptual view can
be mapped into concrete external elements.

Code architecture
√

It isolates the construction and development aspects of
a software system, and organize them in a separate view
according to the organizations particular development
environment

Module architecture
√

It organizes modules into two orthogonal structures:
decomposition and layers. In the module view, all the
application functionality, control functionality, adaptation,
and mediation must be mapped to the module

Conceptual architecture
√

It describes the method used to extract conceptual
components from User manuals

Feature
√

It shows parts of the feature model (features and some
relationships) can be found in the documentation

Physical
√

It represents physical elements that operate in the field and
the back-office, the functionality contained within those
elements, the roles elements play in delivering user services,
and the connections between those elements

Scenario
√

It describes the architecture using a small set of use cases, or
scenarios, which become a fifth view. The scenarios describe
sequences of interactions between objects and between
processes. They are used to identify architectural elements
and to illustrate and validate the architectural design

(continued on next page)

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 21/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

Table 6 (continued)

Viewpoint Studies Description

S4 S5 S7 S9 S14 S17

Decision
√

It is suitable for dealing with diverging stakeholder
concerns, evaluating technological alter-natives and
uncovering relationships between decisions to be made

Enterprise
√

It represents the business processes of the target system at
architectural level

Information
√

It shows the reflection on information models based on the
local and/or international terminologies

Computational
√

It represents the functional aggregation of the systems
components and services

Engineering
√

It describes the system infrastructure and mechanisms
supporting distribution, in other words, how the system is
deployed

Technology
√

It shows the architectural model to be implemented
Detail

√
It shows information about individual decisions

Relationship
√

It shows the relationship between architectural design
decisions and their current state in a particular moment in
time

Chronology
√

It presents all versions of an architectural decision
Stakeholder involvement

√
It shows stakeholders responsibilities in the decision-
making process

Variability
√

It represents the variability in reference architectures

architecture description and specified from simple protocols for interaction to more
complicated requirements regarding information flow.

We also looked for types of architectural decisions (e.g., architectural patterns, styles,
and technologies) which approaches considered. However, three studies (S4, S7, and S15)
only mentioned the possibility of using them, without in fact using them. S4 mentioned
the architectural styles client–server, Model-View-Controller, layered, event-driven, and
blackboard. S7 mentioned the SOA architectural style, while S15 mentioned the Jade and
AGLOBE patterns.

As described along with this section, we can observe that three common elements
(architectural view, viewpoint, and model kind) proposed by ISO/IEC/IEEE 42010 are
recurrent in the state of the art, but the other six elements are not widely treated in the
approaches. Finding 4: The existing approaches do not consider important elements proposed
by ISO/IEC/IEEE 42010 that could describe reference architectures suitably.

The next section examines the description of four reference architectures, also analyzing
which elements of ISO/IEC/IEEE 42010 they considered in their descriptions.

Analysis of four successful reference architectures
AUTOSAR (https://www.autosar.org) is a well-known reference architecture for the
automotive sector and has brought several significant benefits related to standardization,
interoperability facilitation, knowledge reuse, and improvement in the communication
among interested parties (e.g., vehicle manufacturers, suppliers, and other companies

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 22/36

https://peerj.com
https://www.autosar.org
http://dx.doi.org/10.7717/peerj-cs.392

Table 7 Model kinds addressed by the approaches for describing reference architectures.

Model Kind Studies Description

S3 S4 S5 S6 S7 S8 S14 S17 S18

Activity diagram
√ √ √

It shows sequence and conditions for coordinating
lower-level behaviors, rather than which classifiers
own those behaviors

Requirements diagram
√

It shows sets of requirements and their relations
Parametric diagram

√
It enables integration between the design and analy-
sis models. It does this by binding the parameters of
the analysis equations that are defined for each anal-
ysis to the properties of the subject of the analysis

State machine diagram
√ √

It models the discrete behavior through finite state
transitions. Also, it expresses the behavior of a part
of the system, state machines can also be used to ex-
press the usage protocol of part of a system

Use case diagram
√ √ √ √ √ √

It describes a set of actions (use cases) that some sys-
tem or systems (subject) should or can perform in
collaboration with one or more external users of the
system (actors)

Component diagram
√ √ √ √

It shows components and dependencies between
them. This type of diagrams is used for component-
based development (CBD) and to describe systems
with SOA

Package diagram
√ √ √

It shows packages and relationships between the
packages

Workflow diagram
√ √

It is a visual representation of a business process,
usually done through a flowchart. Therefore, it pro-
vides a graphical overview of the business process

Sequence diagram
√ √ √

It focuses on the message interchange between life-
lines (objects)

Collaboration diagram
√ √

It shows objects in a system cooperating with each
other to produce some behavior of the system

Class diagram
√ √ √

It shows the structure of the designed system at the
level of classes and interfaces, shows their features,
constraints, and relationships - associations, gener-
alizations, and dependencies.

Feature model
√

It is a compact representation of all the products of
the Software Product Line (SPL)

Internal block diagram
√

It is a static structural diagram owned by a particu-
lar Block that shows its encapsulated structural con-
tents: Parts, Properties, Connectors, Ports, and In-
terfaces

from the electronics, semiconductors, and software industry). This architecture was
established in 2002 and is currently maintained by the core partners of manufacturers,
such as BMW Group, PSA Group, Ford, Toyota, Volkswagen, and Bosch. To maintain
the 18-year life cycle, AUTOSAR adopts an update policy with release and version control
of its documentation. Similarly, ARC-IT (Architecture Reference for Cooperative and
Intelligent Transportation) (https://local.iteris.com/arc-it/index.html) was designed by
the US Department of Traffic in 1996. After 24 years, this architecture has 13 versions

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 23/36

https://peerj.com
https://local.iteris.com/arc-it/index.html
http://dx.doi.org/10.7717/peerj-cs.392

Table 8 Stakeholders addressed by the approaches for describing reference architectures.

Stakeholders Studies

S4 S8 S11 S14 S15 S17

Software architects
√ √ √ √

System designers
√ √

Leaders
√

Project managers
√ √ √ √ √

Developers
√ √ √

Domain experts
√

Business-persons
√

Customers
√ √ √

System users
√ √

Engineers
√ √ √

with updates in the communication standards among intelligent vehicles and refinement
in their description. Another reference architecture analyzed is for Industry 4.0. IIRA
(Industrial Internet Reference Architecture) (https://www.iiconsortium.org/IIRA-1.7.htm)
enables architects of industrial internet of things systems to design systems based
on a common framework and concepts. The architecture team maintains a living
document that is updated to reflect learnings from real-world projects and the latest
technologies. AXMEDIS (Architecture for Automating Production of Cross Media
Context) (http://www.axmedis.org/com/) is also a sustainable reference architecture.
In its 15-year life cycle, the AXMEDIS team provided three big releases with updates in
standards to content management of partners, such as BBC and HP, and refinement of
their description with new viewpoints.

Following, we depict our analysis of how these architectures were described.

Architectural description of the four reference architectures
We examined the documents of the first and last versions of each architecture to measure
them regarding M3.1 to M3.7, which are the metrics specific to RQ3 (previously listed
in Table 1) and also M2.1 to M2.9 that are related to the adherence of the architecture
description to ISO/IEC/IEEE 42010. Table 9 summarizes the results of the analysis of these
four architectures using these metrics.

These documents were accessed according to how each architecture was disseminated.
Some reference architectures offer the description available through websites and pdf
documents, while others provide the description in file sets according to architectural
modules and even databases. It is interesting to note that the ADL used in each architecture
was identified only when we reviewed the latest available documentation because initially
some architectures were informally described. For instance, in the middle of the 1990s
when ARC-IT was first published, it was informally described. In that time, the first events
in the area of software architecture had started and, therefore, the culture of using ADL
was not a consensus. We also observe that the adherence to formal and semi-formal ADL
was gradual in these architectures.

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 24/36

https://peerj.com
https://www.iiconsortium.org/IIRA-1.7.htm
http://www.axmedis.org/com/
http://dx.doi.org/10.7717/peerj-cs.392

Table 9 Summary of the architectural description of AUTOSAR, ARC-IT, IIRA, and AXMEDIS.

Reference Architectures

AUTOSAR ARC-IT IIRA AXMEDIS

Domain Automotive Transportation Industry 4.0 Media transmission and
management

M3.1 - Year of establishment 2002 1996 2015 2005
Last analyzed version 4.4.0 8.3 1.9 4.5
M3.2 - Pages (first version) 2,638 pages

48 files
1,568 pages
8 files

100 pages
1 file

432 pages
4 files

M3.2 - Pages (last version) 22,271 pages
220 files

5,204 pages
25 files

365 pages
4 files

1,295 pages
13 files

M3.3 - Dissemination - Website
- Documents
(.pdf; .zip; .exe)
- Models
- Meta-models

- Website
- Documents
(.pdf; .zip; .jpg)
- Database

- Website
- Documents (.pdf)
- White papers
- Technical reports

- Website
- Documents (.pdf, .iso)
- Videos (.wmv)
- Player (.mpeg-4)

M3.4 - Life cycle (years) 17 23 4 14
M3.5 - Number of Releases 10 13 3 3
M3.6 - ISO 42010 Adherence Level
M2.1 - Views Application, Runtime, Sys-

tem Services, Hardware,
and Micro-controller

Enterprise, Functional,
Physical, and Communica-
tions

Business, Usage,
Functional,
and Implementation
views

Simplified view, and Tech-
nical view

M2.2 - Viewpoints Specification viewpoints
(such as use-case, logical,
deployment, and imple-
mentation)

Enterprise, Functional,
Physical, and Communi-
cations (diagrams, tables,
and databases)

Business, Usage, Func-
tional, and Implementa-
tion viewpoints

Not adhered

M2.3 - Models Standards divide into Plat-
forms described in UML
diagrams, models, and
meta-models

‘‘Services Packages’’ di-
vided into Physical dia-
grams described in UML,
and tables

Component, Sequence,
and State Diagrams

Not adhered

(continued on next page)

D
ias

Valle
etal.(2021),PeerJ

C
om

put.Sci.,D
O

I10.7717/peerj-cs.392
25/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

Table 9 (continued)

Reference Architectures

AUTOSAR ARC-IT IIRA AXMEDIS

M2.4 - Stakeholders Class of Partners (Core,
Premium, Development,
and Associate), and Atten-
dees

Class of stakeholders di-
vided according to their
role in ’’Services Packages’’

Parties (agent, human or
automated)

Not adhered

M2.5 - Concerns types Motivation and Goals,
Reuse, Quality Attributes,
and Safety

Mission, Quality
attributes, and Risks

Safety, Security, and Inter-
operability

Interoperability, and Scal-
ability

M2.6 - Architectural Decisions (AD) Architectural patterns,
models, and meta- models

Recorded decisions using
informal and semi-formal
notations

Architectural patterns,
Functional maps, and Im-
plementation maps

Workflows,
Communication and
distribution channels

M2.7 - Rationale decisions Constraints and Trade-offs
represented asmeta-model

Alternatives and Trade-
offs represented in a semi-
formal way

Constraints and Trade-
offs represented in a semi-
formal way

Decisions described in an
informal way

M2.8 - ADL Informal and Semi-formal
(UML)

Informal and Semi-formal
(UML)

Informal and Semi-Formal
(UML)

Informal and Semi-formal
(UML)

M2.9 - Types of AD Standards, Software In-
terface, Communications
protocols, Hardware Inter-
face

Layered Style, Communi-
cations Profiles, and Cor-
respondence Rules of the
domain.

Layered Databus Architec-
ture, Interfaces, Patterns,
and Standards

Communications chan-
nels, and Editorial Formats

M3.7 - Description approaches
Process Classic Platform designed

using the experience of ex-
isting standards

Architecture defined using
the experience of existing
systems

Architecture defined using
the experience of existing
systems

Architecture defined using
existing technologies

Method Sharing architectural
knowledge by Basic
Partners (BMW, Bosch,
Chrysler, and VW)

Creation and usage of
architectural knowledge
management by
DOT/USA

Sharing architectural
knowledge by Industrial
Internet Consortium
Architecture Task Group

Sharing architectural
knowledge by AXMEDIS
Consortium

Architectural style Blend of Layered, Mod-
ules, and Component-
and-Connector Styles

Layered-Style, and
Component-and-
Connector

Layered-style Component-and-
Connector, and Client-
server

Document template Documents follow a de-
sign/methodology estab-
lished by AUTOSAR Re-
lease Management Team

Documents follow a design
established by DOT/USA
Architectural Team

Templates provide by In-
dustrial Internet Consor-
tium

Template established by
the European Commis-
sions in IST FP6

D
ias

Valle
etal.(2021),PeerJ

C
om

put.Sci.,D
O

I10.7717/peerj-cs.392
26/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

While new releases have included refinement/extension, this has resulted in a significant
increase in the amount of documentation. For instance, AUTOSAR presented in its first
version a description with 2,638 pages distributed in 48 files, as seen in Table 9. The current
version (4.4.0) has 22,271 pages organized into 220 files, disseminated through a website
and documents in pdf, zip, and exe. A good practice adopted by the AUTOSAR architecture
team is the description of the change history in each document. This section (referred to as
‘‘Document Change History’’) in each document details information, such as the release
date, version, change manager, brief description of the change, and if new standards
were adopted or standards were changed. Similarly, the detailed description of ARC-IT has
ensured a life cycle that has been sustained over 23 years. Even when it was first proposed in
1996 as a set of standards defining basic services for transportation systems, its description,
spread over 1,568 pages, detailed information, such as functional entities, communication
services, cost analysis, implementation strategy, and parameters. Currently, version 8.3
features the description on 5,204 pages. Furthermore, the architecture team maintains
a database with all data flows, physical, functional components, and communication
protocols to facilitate the dissemination and adoption of the architecture.

Analyzing the content of these architectures, it was also found that their description,
as it is updated and refined, allows the architecture to be aligned with the state of the art,
i.e., the current knowledge of the application domain. For example, version 7.0 of ARC-IT
described 22 communications profiles that were developed following closely the naming
practices of the OSI (Open Systems Interconnection)Model (International Organization for
Standardization, 2020). In its latest version, ARC-IT describes 25 communication profiles.
In particular, DSRC-UDP (Vehicle-to-Vehicle/Infrastructure using UDP) (USA, 2019) is
one of these profiles that describe a set of standards applicable to broadcast, frequent,
medium latency, and vehicle-to-vehicle and vehicle-to-infrastructure communications
using the User Datagram Protocol (UDP). The architecture description details that this
communication profile dropped to support the IEE 802 MAC (IEEE, 2020) in Data Link
Layer and update the communication standard in Presentation Layer, replacing the
standard ISO ASN.1 DER to ISO.ASN.1 UPER, which was introduced in 2015.

The dissemination of the description of reference architectures is also a contributing
factor to their sustainability. Even with a small life cycle of four years, the dissemination
of IIRA across the industry has allowed rapid adoption by the partners. These partners
(https://www.iiconsortium.org/IIRA-1.7.htm/) provide feedback as the architecture is
instantiated and assist in updating the description. For instance, the latest version
of IIRA introduces a refinement of viewpoints and describes more appropriately key
crosscutting concerns and their associated system characteristics, such as safety and
security. Furthermore, this latest version introduces the Layered Databus Architecture
Pattern (Industrial Internet Consortium, 2020), a common architecture across IoT systems
in multiple industries, offering benefits as (Industrial Internet Consortium, 2020): (i) fast
device-to-device integration; (ii) automatic data and application discovery; (iii) scalable
integration; and (iv) hierarchical subsystem isolation, enabling the development of complex
system designs. This same scenario is observed in AXMEDIS (http://www.axmedis.org/
com/index.php?option=com_content&task=view& id=80&Itemid=84). In addition to the

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 27/36

https://peerj.com
https://www.iiconsortium.org/IIRA-1.7.htm/
http://www.axmedis.org/com/index.php?option=com_content&task=view&id=80&Itemid=84
http://www.axmedis.org/com/index.php?option=com_content&task=view&id=80&Itemid=84
http://dx.doi.org/10.7717/peerj-cs.392

website and documents, the AXMEDIS architecture team provides videos (wmv) and
players (mpeg-4) with adjustments to standards and laws in the architecture description
for the digital content management domain.

We also look at the description of these four architectures from the perspective of the
adherence to the ISO/IEC/IEEE 42010 standard. Looking at the first documentation
of these architectures, we find that they were initially described at a high-level of
abstraction. For instance, the first ARC-IT document for the ‘‘Standards Development
Plan" (https://local.iteris.com/arc-it/documents/sdp/sdp.pdf), released in 1996, describes a
general process to assist standards development and suggests beneficial actions to support
and encourage Intelligent Transportation Systems (ITS). Besides that, the document
describes specific and potential standards needs for ITS, but this description is at a high-level
of abstraction, presenting only some diagrams and other information described in informal
language. However, throughout updates, this description has been refined and currently,
in its latest version (https://local.iteris.com/arc-it/html/viewpoints/viewpoints.html), the
architecture team has organized the standards into groups called profiles, which are
represented in viewpoints. Each profile is described detailing the related physical objects,
source and destination information flow, data flow, and the required protocols. The same
is also observed in AUTOSAR and IIRA, which in their latest versions have descriptions
that adhere to all metrics related to ISO/IEC/IEEE 42010 adherence. Here, it is important
to note that adherence to ISO/IEC/IEEE 42010 was gradual to AUTOSAR, according to
versions released after 2011 when such standard was established. IIRA, established in 2015,
has already presented in its first documents descriptions that follow this standard. In the
case of AXMEDIS, the architectural description has not yet adhered to all metrics. One of
the reasons may be because there was only one update after 2011.

Good practices for describing reference architectures
As a result of the analysis of the description of these four sustainable reference architectures,
it is possible to outline some practices that could be contributing to the sustainability of
these architectures:

• Adherence level to standards: To effectively serve as a guide for the development,
standardization, and evolution of a collection of systems, it is recommended that
the description of reference architectures follow known standards. In this way, it is
possible for these architectures to communicate in a reliable way the knowledge they
contain, considering that a reference architecture involves a huge amount of concerns,
stakeholders, and domain experts. The four architectures analyzed presented good
adherence of their description to ISO/IEC/IEEE 42010. Other standards exist in the
literature (DeBaud, Flege & Knauber, 1998; Dobrica & Niemelä, 2008; Cruz et al., 2011)
and can be also used as an alternative.
• ‘‘Living’’ document: Keeping documentation updated is another practice observed
in good examples of sustainable reference architectures. In particular, the architecture
team of these architectures provides the description according to new understandings
or refinements that arise over the application domain. These new documents are soon
made available (even when a new version of the architecture has not still been released)

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 28/36

https://peerj.com
https://local.iteris.com/arc-it/documents/sdp/sdp.pdf
https://local.iteris.com/arc-it/html/viewpoints/viewpoints.html
http://dx.doi.org/10.7717/peerj-cs.392

because the content of such documents becomes important to keep users, partners, and
stakeholders aligned with the state of the art.
• Summary with change history: A good practice adopted by the analyzed reference
architectures, specially AUTOSAR and ARC-IT, is to present at the beginning of each
of their document a summary of the change history. It may contain information, such
as major changes from one version to another, the inclusion or exclusion of some
view/viewpoint, the adoption of new terminologies, and corrections that may have been
necessary for that new version.
• Availability of a repository with original documents: Documents that compose the
description may be renamed or even merged with other documents. Besides, the
terminology may change as understanding of the application domain advances. To
avoid misunderstanding in the architectural description, a good practice is to keep a
repository containing all original (and/or most important) documents.
• Organization of the documentation: Another good practice adopted by these
architectures is the facility to find specific information or document. For example,
the description of ARC-IT is divided into ‘‘Service Packs’’ where 142 modules are
detailed. When the description of each module is opened, information from other views
regarding this module, such as enterprise, functional, goals and objectives, needs and
requirements, and standards, are also presented in a sub-menu. AUTOSAR also adopts
a similar practice.

It is also observed that these good practices for describing reference architectures
are directly associated with a significant amount of documentation to be managed (i.e.,
prepared, updated, and understood for a proper use). Such management is not a trivial,
cheap task, requiring a considerable amount of financial and organizational resources and
efforts. Hence, the support of large communities and/or consortia that involve various
partners (e.g., companies, research centers, universities, and/or others interested) becomes
fundamental to the long-term existence of these architectures.

The next section provides an overall discussion encompassing both perspectives (state
of the art and state of the practice) concerning the description of reference architectures.

DISCUSSIONS
Comparing the state of the art (contained in the answer to RQ1 and RQ2, ‘Approaches
to reference architecture description’, ‘Analysis of four successful reference architectures’
respectively) and the state of the practice (RQ3, ‘Analysis of four successful reference
architectures’), we observe a considerable misalignment among them. It is worth
highlighting that the state of the practice was collected based on four successful reference
architectures and, therefore, they could serve as good examples when targeting the
sustainability of these architectures. If a random set of reference architectures is considered,
including those that have not survived along the time, results could have been different.

Regarding the state of the art, the 19 existing approaches presented different solutions
(from processes to ADL) to support the description of reference architectures. In summary,
we found that: (i) few approaches consider the international standard for architecture

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 29/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

description (the ISO/IEC/IEEE 42010); (ii) most approaches enable the description of
reference architectures in a higher level of abstraction; and (iii) most approaches were
not applied and/or validated in real-world scenarios or even in industry. In this sense, we
identify important research perspectives that should be still explored:

• Need for adherence to standards: The adherence to international standard
ISO/IEC/IEEE 42010 is important considering that this standard dictates what is
relevant to be considered in architectural description. In general, approaches were
not fully adherent to this standard. Additionally, taking into account the few studies
that considered the ISO/IEC/IEEE 42010’s elements, these elements were described in
a high level of abstraction. In this scenario, approaches that were already proposed or the
new ones should systematically incorporate ISO/IEC/IEEE 42010’s elements. As a result,
the adoption of these approaches could promote: (i) standardization of reference
architectures descriptions; (ii) better understanding of the descriptions; and (iii)
improvement in the communication among stakeholders.
• Need for detailed approaches: The description of reference architectures is not a trivial
activity, because it encompasses different elements that are not sometimes easy to
capture. At the same time, such description and associated updates are not cheap tasks,
hence requiring the support of companies, governments, or other entities (preferably
forming a consortium of partners interested in it). Approaches also need to be detailed
with suitable tasks/activities for architecture descriptions. Hence, approaches should be
detailed enough, indicating not only what to do but also how to do, besides the artifacts to
be created as well as steps to manage them.
• Availability of supporting tools: The architectural description of a given software
system is already naturally a complex, error-prone, and costly task, similar to the
description of reference architectures, when manually performed or performed
without appropriate tools. For the while, approaches have not given attention to
providing associated supporting tools. These tools could automate activities, easing
the representation of such architectures. Therefore, the availability of tools to specifically
describe, control, and also instantiate reference architectures is necessary, providing support
to different, diverse stakeholders and companies interested in the architectures.
• Description of reference architectures of current software-intensive systems: The
size and complexity of software-intensive systems have increased, resulting in what
has been referred to as ultra-large systems, systems-of-systems, cyber-physical systems,
and others that sometimes present dynamic architectures. In this scenario that involves
different partners and even competitors in a target project, reference architectures
become even more important. However, approaches did not adequately address both
dynamism and interoperability. The description of such large-scale, dynamic reference
architectures should receive special attention together with a change in the mindset of
practitioners and researchers regarding the processes to design and evolve them.
• Improvement in the collaboration between academia and industry: Among the
studies found in our SMS, only four were proposed and/or validated by industry.
In this sense, academia may be conducting research that has not focused on the real

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 30/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

industry needs. Then, it is further necessary to conduct new research to understand
the difficulties of the industry to describe reference architectures, together with
a wider investigation about the way industry has represented its architectures, as
initially presented in ‘Analysis of four successful reference architectures’. Besides that,
joint research collaboration between academia and industry occurs in different ways
depending on the cultural, political, and economic aspects of each country or region.
This scenario also requires changes in how to develop research collaboration on reference
architectures, including their description. Hence, for the future, the research on reference
architectures description should encompass a proper collaboration between academia and
industry, matching real industry needs with a wider evaluation of approaches through real-
world reference architectures.
• Reference architectures and interoperability: Despite reference architectures have
already contributed to promoting the interoperability among modules and systems
implemented following the architectures (Avgeriou, 2003; Valle, Garcés & Nakagawa,
2019), the studies found in the literature have not explicitly provided means (e.g., model
kinds, mechanisms, or others) to describe the interoperability in reference architectures.
Therefore, new approaches to model interoperability in reference architectures and means
to deal with such interoperability when instantiating the architectures are necessary.

Reference architectures themselves need to evolve together with the target application
domain that often also continually evolves. Software systems of that domain also evolve
according to constantly changing stakeholders’ requirements, business rules, technologies,
and others, generating new knowledge that can be used as feedback to evolve the reference
architecture. Hence, the reference architecture descriptions should be built in such a
way that facilitates changes and evolution and, as a consequence, the sustainability of
reference architectures over the years. Successful reference architectures as those four
analyzed in this work have already provided a way of how they have managed their
description and all associated documentation. However, they are isolated cases in the
sense each one has addressed the documentation in a way that better works. Some good
practices for describing reference architectures could be extracted from investigations like
those presented in ‘Analysis of four successful reference architectures’, but they cannot be
considered a generic solution that could work in any architecture. Therefore, more research
from a closer collaboration of academia and industry should be conducted to propose a
more standardized, generic solution to describe sustainable reference architectures.

Threats to validity
To minimize biases of our study, we present below the potential threats to validity and
actions that we performed to mitigate them:

• Missing of important studies: Studies that proposed approaches to describe reference
architectures may not have been considered in our analysis. To mitigate this threat, we
systematically followed the SMS protocol, besides adopting six databases considering as
the most relevant sources in the software engineering area. We also carried out a manual

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 31/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

search using Google Scholar, conferences and journals of the area, technical reports, and
book chapters.
• Data extraction: During data extraction, we created a data extraction form to fill and
save all answers from each study. However, not all the information were obvious to
be extracted from the studies and, then, some information had to be interpreted; for
instance, the elements of ISO/IEC/IEEE 42010 considered by each approach. In addition,
in the event of a disagreement among reviewers, discussions were conducted.
• Relevance of studies: The amount and relevance of the studies selected in our SMS may
be considered as a threat to validity to the generalization of the results. To minimize this
threat, we systematically followed the SMS protocol to select relevant studies together
with the entire involvement of all authors of this work.

FINAL REMARKS
Reference architectures have been increasingly acknowledged for their capability to
aggregate the knowledge in various critical, complex domains and support the development
and evolution of software-intensive systems in those domains. Hence, an adequate
description of these architecture becomes of utmost importance to effectively promote
such knowledge reuse and dissemination. Such description becomes even more important
in the current scenario where most reference architectures have not survived after their
first publication.

This work drew a wide panorama of the means used to describe reference architectures
and was built from both the research perspective (which depicted the state of the art)
and the practical perspective (which brought scenarios of real-world, successful reference
architectures). As a main result, we observe there is a mismatch between the state of the
art and the state of the practice. Hence, it is clear the need for developing more integrated
research collaboration between academia and industry. While academic research could
become aligned to the real-world needs regarding reference architecture description, the
industry could benefit from scientific methods already being explored by the software
architecture research community.

We also pointed out future research lines highlighting the need for new approaches
for reference architectures description that consider important issues, including: (ii) size
and complexity of reference architectures that involve diverse stakeholders from different
partners, segments, and interests; (iii) need to adequately represent interoperability in
reference architectures in a scenario where large software systems (also referred to
as Systems-of-Systems, large-scale systems, cyber-physical systems, and others) have
sometimes resulted from the interoperability of diverse constituent systems; and (iv) need
to adequately represent dynamism in reference architectures, as current software systems
have increasingly presented dynamic architectures. More importantly, these approaches
must provide the means to assure the sustainability of reference architectures, i.e., the
architectural description of these architectures must be developed and organized to
primordially facilitate its update and maintenance together with a reduction of required
resources and effort.

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 32/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.392

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work is supported by the National Council for Scientific and Technological
Development - CNPq (Grants: 312634/2018-8) and the São Paulo Research Foundation -
FAPESP (Grants: 2015/24144-7, 2017/06195-9, 2018/07437-9, and 2017/22107-2), and the
Beatriz Galindo programme. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Council for Scientific and Technological Development - CNPq: 312634/2018-8.
São Paulo Research Foundation - FAPESP: 2015/24144-7, 2017/06195-9, 2018/07437-9,
2017/22107-2.
Beatriz Galindo Programme.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Pedro Henrique Dias Valle conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.
• Lina Garcés and Silverio Martínez-Fernández conceived and designed the experiments,
performed the experiments, analyzed the data, authored or reviewed drafts of the paper,
and approved the final draft.
• Tiago Volpato performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the paper, and approved the final draft.
• Elisa Yumi Nakagawa conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

This is a literature review and did not generate raw data.

REFERENCES
Angelov S, Grefen P, Greefhorst D. 2012. A framework for analysis and design of soft-

ware reference architectures. Information and Software Technology 54(4):417–431
DOI 10.1016/j.infsof.2011.11.009.

AUTOSAR. 2020. Automotive Open System ARchitecture. Available at http://www.
autosar.org/ .

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 33/36

https://peerj.com
http://dx.doi.org/10.1016/j.infsof.2011.11.009
http://www.autosar.org/
http://www.autosar.org/
http://dx.doi.org/10.7717/peerj-cs.392

Avgeriou P. 2003. Describing, instantiating and evaluating a reference architecture: a case
study. Enterprise Architect Journal 24:1–24.

Avgeriou P, Stal M, Hilliard R. 2013. Architecture Sustainability. IEEE Software
30(6):40–44 DOI 10.1109/MS.2013.120.

Basili V, Caldiera G, Rombach H. 1994. The goal question metric approach. Encyclopedia
of Software Engineering 2:528–532.

Bass L. 2013. Software architecture in practice. 3rd edition. Boston: Addison-Wesley.
Bayer J, Forster T, Ganesan D, Girard J, John I, Knodel J, Kolb R, Muthig D. 2004.Def-

inition of reference architectures based on existing systems. Kaiserslautern: Fraunhofer
IESE, TR.

Bellini P, Nesi P. 2005. An architecture of automating production of cross media content
for multi-channel distribution. In: AXMEDIS. 11–19.

Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Merson P, Nord R,
Stafford J. 2011.Documenting software architecture: views and beyond. Boston:
Addison-Wesley.

Cloutier R, Muller G, Verma D, Nilchiani R, Hole E, BoneM. 2010. The concept of
reference architectures. Systems Engineering 13(1):14–27.

Cruz E, Lopez D, Uribe G, Gonzalez C, Blobel B. 2011. A reference architecture for inte-
grated EHR in Colombia. Studies in Health Technology and Informatics 169:305–309.

DeBaud J, Flege O, Knauber P. 1998. PuLSE-DSSA—a method for the development of
software reference architectures. In: ISAW. 25–28.

Dobrica L, Niemelä E. 2008. An approach to reference architecture design for different
domains of embedded systems. In: SER. 287–293.

Eklund U, Jonsson N, Bosch J, Eriksson A. 2012. A reference architecture template for
software-intensive embedded systems. In:WICSA. 104111.

Felizardo K, Mendes E, Kalinowski M, Souza E, Vijaykumar N. 2016. Using forward
snowballing to update systematic reviews in software engineering. In: ESEM. 1–6.

Galster M, Angelov S, Martínez-Fernández S, Tofan D. 2017. Reference architectures
and scrum: friends or foes? In: ESEC/FSE. 896–901.

Galster M, Avgeriou P. 2011. Empirically-grounded reference architectures: a proposal.
In: QoSA/ISARCS. 153158.

Garlan D. 2000. Software architecture: a roadmap. In: ICSE. 91–101.
Gherardi L, Brugali D. 2014.Modeling and reusing robotic software architectures: the

HyperFlex toolchain. In: ICRA. 6414–6420.
Guessi M, Nakagawa E, Oquendo F, Maldonado J. 2012. Architectural description of

embedded systems: a systematic review. In: ISARCS. 31–40.
Guessi M, Neto V, Bianchi T, Felizardo K, Oquendo F, Nakagawa E. 2015. A systematic

literature review on the description of software architectures for systems of systems.
In: SAC/SA-TTA. 14331440.

Guessi M, Oquendo F, Nakagawa E. 2014a. An approach for capturing and documenting
architectural decisions of reference architectures. In: SEKE. 162–167.

Guessi M, Oquendo F, Nakagawa E. 2014b. Variability viewpoint to describe reference
architectures. In:WICSA. 1–6.

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 34/36

https://peerj.com
http://dx.doi.org/10.1109/MS.2013.120
http://dx.doi.org/10.7717/peerj-cs.392

Hofmeister C, Kruchten P, Nord R, Henk O, Ran A, America P. 2007. A general model
of software architecture design derived from five industrial approaches. Journal of
Systems and Software 80(1):106–126 DOI 10.1016/j.jss.2006.05.024.

IEEE. 2020. IEEE 802 LAN/MAN Standards Committee. Available at https://www.
ieee802.org .

Industrial Internet Consortium. 2020. IIRA (industrial internet reference architecture),
version 1.7. Available at http://www.iiconsortium.org/ IIRA.htm.

International Organization for Standardization. 2011. ISO/IEC/IEEE 42010:2011
systems and software engineering - architecture description. Technical report.

International Organization for Standardization. 2020. 35.100 - Open Systems Intercon-
nection (OSI). Available at https://www.iso.org/ ics/ 35.100/x/ .

IrlbeckM, BytschkowD, Hackenberg G, Koutsoumpas V. 2013. Towards a bottom-up
development of reference architectures for smart energy systems. In: SE4SG. 9–16.

Kitchenham B, Brereton O, Budgen D, Turner M, Bailey J, Linkman S. 2009. Systematic
literature reviews in software engineering: a systematic literature review. Information
and Software Technology 51(1):7–15 DOI 10.1016/j.infsof.2008.09.009.

Kramer T, Senehi M, Michaloski J, Ray S, RippeyW,Wallace S, Quintero R, Albus J.
1994. A reference architecture for control of mechanical systems. In: ECBS. 1–7.

Kruchten P. 1995. The 4+1 View Model of architecture. IEEE Software 12(6):42–50.
Kruchten P. 2000. The rational unified process: an introduction. In: The Addison- Wesley

Object Technology Series. 2nd edition. Boston: Addison-Wesley.
Losavio F, Ordaz O. 2015. Quality-based heuristic for optimal product derivation in

software product lines. In: ITA. 125–131.
Martínez-Fernández S, Ayala C, Franch X, Marques HM, Ameller D. 2014. Towards

guidelines for building a business case and gathering evidence of software reference
architectures in industry. Journal of Software Engineering Research and Development
2(1):1–23 DOI 10.1186/2195-1721-2-1.

Martínez-Fernández S, Ayala CP, Franch X, Marques HM. 2017. Benefits and draw-
backs of software reference architectures: A case study. Information and Software
Technology 88:37–52 DOI 10.1016/j.infsof.2017.03.011.

Martnez-Fernandez S, Ayala CP, Franch X, Nakagawa EY. 2015. A survey on the
benefits and drawbacks of AUTOSAR. In:WASA. 19–26.

Meldal S, LuckhamD. 1998. NSA’s MISSI reference architecture—moving from prose to
precise specifications. In: RTSE. 293–329.

Mendes E,Wohlin C, Felizardo K, Kalinowski M. 2020.When to update systematic
literature reviews in software engineering. Journal of Systems and Software 167:1–24.

Muller G. 2008. A reference architecture primer. Notodden, Noruega: Eindhoven
University of Technology.

Nakagawa E, Guessi M, Maldonado J, Feitosa D, Oquendo F. 2014. Consolidating a
process for the design, representation, and evaluation of reference architectures. In:
WICSA. 143–152.

Nakagawa E, Oliveira P, Becker M. 2011. Reference architecture and product line
architecture: a subtle but critical difference. In: ECSA, 207–211.

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 35/36

https://peerj.com
http://dx.doi.org/10.1016/j.jss.2006.05.024
https://www.ieee802.org
https://www.ieee802.org
http://www.iiconsortium.org/IIRA.htm
https://www.iso.org/ics/35.100/x/
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1186/2195-1721-2-1
http://dx.doi.org/10.1016/j.infsof.2017.03.011
http://dx.doi.org/10.7717/peerj-cs.392

Nakagawa E, Oquendo F, Avgeriou P, Cuesta CE, Drira K, Maldonado J, Zisman A.
2015. Towards reference architectures for systems-of-systems. In: SESoS. 1–4.

Nakagawa E, Oquendo F, Becker M. 2012. RAModel: a reference model for reference
architectures. In:WICSA/ECSA. 297–301.

Nguyen D, Usbeck K, MonganW, Cannon C, Lass R, Salvage J, Regli W, Mayk I, Urness
T. 2011. A methodology for developing an agent systems reference architecture. In:
AOSE. 177–188.

Pohl K, Böckle G, Linden F. 2005. Software product line engineering: foundations,
principles and techniques. Amsterdam: Springer Science & Business Media.

Qureshi N, UsmanM, IkramN. 2013. Evidence in software architecture, a systematic
literature review. In: EASE. 97–106.

Regli W, Mayk I, Cannon C, Kopena J, Lass R, MonganW, Nguyen D, Salvage J, Sul-
tanik E, Usbeck K. 2014. Development and specification of a reference architecture
for agent-based systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems
44(2):146–161 DOI 10.1109/TSMCC.2013.2263132.

Sang G, Xu L, Vrieze P. 2016. A reference architecture for big data systems. In: SKIMA.
370–375.

Schieferdecker I, Tcholtchev N, Lämmel P, Scholz R, Lapi E. 2017. Towards an open
data based ICT reference architecture for smart cities. In: SKIMA. 184–193.

Schroeder J, Holzner D, Berger C, Hoel C, Laine L, Magnusson A. 2015. Design and
evaluation of a customizable multi-domain reference architecture on top of product
lines of self-driving heavy vehicles: an industrial case study. In: ICSE. 189–198.

USA. 2019. Architecture reference for cooperative and intelligent transportation ARC-IT.
Available at https:// local.iteris.com/arc-it .

Valle P, Garcés L, Nakagawa E. 2019. A Typology of architectural strategies for interop-
erability. In: SBCARS. 3–12.

Venters C, Capilla R, Betz S, Penzenstadler B, Crick T, Crouch S, Nakagawa E,
Becker C, Carrillo C. 2018. Software sustainability: research and practice from
a software architecture viewpoint. Journal of Systems and Software 138:174–188
DOI 10.1016/j.jss.2017.12.026.

Volpato T, Oliveira B, Garcés L, Capilla R, Nakagawa E. 2017. Two perspectives on
reference architecture sustainability. In: ECSAC. 188–194.

Wohlin C. 2014. Guidelines for snowballing in systematic literature studies and a
replication in software engineering. In: EASE. 1–10.

YimamD, Fernandez E. 2016. Building compliance and security reference architectures
(CSRA) for cloud systems. In: IC2E. 147–150.

Zimmermann O, Kopp P, Pappe S. 2009. Architectural knowledge in an soa infrastruc-
ture reference architecture. In: Software architecture knowledge management. Berlin:
Springer, 217–241.

Dias Valle et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.392 36/36

https://peerj.com
http://dx.doi.org/10.1109/TSMCC.2013.2263132
https://local.iteris.com/arc-it
http://dx.doi.org/10.1016/j.jss.2017.12.026
http://dx.doi.org/10.7717/peerj-cs.392

