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ABSTRACT
Environmental monitoring and disaster mitigation are critical applications of under-
water acoustic sensor networks (UASNs). However, UASNs face significant challenges,
including high latency, limited bandwidth, and energy constraints. This study intro-
duces an Internet of Things (IoT)-driven location-aware framework (ILAF) designed
to enhance UASN performance by utilizing non-GPS geographic coordinates for
determining the location of sensor and sink nodes, identifying their neighbors based
on coordinates and transmission range, and optimizing node placement and routing
without the need for GPS modems. The framework is compared with several state-of-
the-art protocols, including Bald Eagle Search inspired optimized energy efficient rout-
ing protocol (BES-OEERP) and IoT-enabled depth-based routing technique (IDBR),
demonstrating superior performance. Specifically, ILAF achieved a packet delivery ratio
(PDR) of 99%, which outperforms energy-efficient region-based source distributed
routing algorithm (EERSDRA) (98%) and energy-efficient geo-opportunistic routing
protocols (EEGORP) (96%). Additionally, ILAF reduced energy consumption by
20% compared to these existing protocols. These improvements result in a more
energy-efficient network with fewer dead nodes (12 after 1,000 rounds) and higher
throughput (5.7 kbps at 1,000 rounds), making ILAF suitable for real-time underwater
applications. Future research will explore integrating lightweight IoT protocols like
Message Queue Telemetry Transport (MQTT) and Constrained Application Protocol
(CoAP) to enhance the framework’s performance and reliability further.

Subjects Adaptive and Self-Organizing Systems, Agents and Multi-Agent Systems, Algorithms
and Analysis of Algorithms, Artificial Intelligence, Autonomous Systems
Keywords Underwater acoustic sensor network, Machine learning, Energy-efficient, Localization,
Reliable communication, Acoustic communication

INTRODUCTION
Underwater acoustic sensor networks are becoming increasingly important because of their
wide range of applications and significance. Sensor nodes consistently and regularly detect
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environmental parameters as needed by an application. Monitoring and observing diverse
underwater occurrences in vast aquatic areas are crucial for protecting the environment,
facilitating oil and gas exploration, mitigating disasters, helping navigation, and conducting
military surveillance (Sun, Cui & Chen, 2021). The acoustic sensor network consists of both
mobile and stationary sensor nodes. Most sensor nodes alter their position in response
to water waves. Autonomous underwater vehicles collect data from sensor nodes located
in different areas. The buoys are placed on the seabed or within the water column. The
sensor nodes deployed at various locations in the water are designed to collect data on
multiple aspects, including salinity, temperature, depth, and different types of pollution.
Data is transmitted to its destination with packets. Numerous intermediate and terminal
nodes are located on boats or coastal stations. Collecting felt information in this way
is unconventional. This system offers a cost-effective method of regularly collecting
sensed information from numerous locations in underwater areas for extended durations
(González-García et al., 2020).

There are several challenges associated with underwater sensor communication.
Nevertheless, acoustic waves surpass electromagnetic waves and optical communication
despite their limitations. The development of routing protocols for localization and routing
protocols has been driven by the goal of improving the reliability and longevity of acoustic
sensor networks (Gola & Arya, 2023).

Compared to radio frequency (RF) waves, underwater acoustic waves have longer
propagation delays, a smaller bandwidth, and higher error rates in water depths. Acoustics
works with frequencies between 1 and 100 kHz, and the time it takes to send can be
between milliseconds and several seconds. The distance between the sending and receiving
sensor nodes in space affects the delays. Since sound travels more slowly through water
than air, it becomes much weaker because of solid absorption processes. Due to things
like node movement and running into new obstacles, the underwater network world is
always changing. This means that flexible network designs are needed. Different sound
speeds on the ocean floor compared to those on the top of the water make things even
more complicated. This can lead to a lot of multipath fading. The complicated interactions
between ocean currents, marine life, and shipping activities can also cause waves. These
interactions can mislead signals. The movement of the nodes can cause the Doppler effect,
which can happen when the transmitter and receiver move closer or farther apart. All these
factors combine with depth and absorption factors to cause intermittent connectivity and
changes in link quality (Mateen et al., 2019).

Many research works have concentrated on Internet of Things (IoT) mechanisms (Al-
Atawi, Khan & Kim, 2022; Khan, Tarimer & Taekeun, 2022; Guo et al., 2023; Abbas et al.,
2022; Khan et al., 2021; Al-Kahtani, Khan & Taekeun, 2022; Khan et al., 2022). However,
to tackle energy efficiency and dependable data delivery in underwater wireless sensor
networks (UWSNs), IoT-enabled depth-based routing (IDBR) techniques consider depth
information and counts on energy-efficient path selection. At the same time, Bald Eagle
Search inspired optimized energy efficient routing protocol (BES-OEERP) applies the
Bald Eagle Search algorithm for intelligent route and path selection, considering factors
such as node depth, remaining energy, and signal strength. Both protocols show good
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results in terms of improved energy efficiency, notable packet delivery ratio, and network
lifetime when compared to baseline methods. underwater structure and arrangement
of the ocean floor are crucial in the deployment and improvement of underwater
acoustic sensors, anchor nodes, and sink nodes. Geographic information improves data
transmission, tracking, and energy efficiency. Locating sensor nodes improves data sharing.
By strategically assessing and choosing data packet paths, networks can choose the fastest
channels. Communication is more reliable, and delays are reduced. Tracking the ship
and monitoring the sea life requires proper placement of the sensor nodes. It is crucial to
network energy efficiency. Find the neighbor and sensors based on their placements to
join two nodes directly. This works best with nearby nodes. This can save lots of energy
(Kapileswar & Phani Kumar, 2022).

Adding geographic information makes terrestrial wireless communication work much
better. It is very important to know exactly where the nodes are in underwater wireless
sensor networks to get around the problem of sound signal propagation. This then allows
smart choices about forwarding data based on on-site routing algorithms. Less latency
is achieved by carefully choosing the best sink nodes or sensor nodes for forwarding.
This cuts down on the lengths that signals have to travel. This method improves network
stability by reducing noise and signal interference, which means that data does not have
to be sent again as often (Farooq et al., 2021). The energy and power consumption of the
sensor nodes decreases significantly when the position of the nearest sink and sensor node
for packet forwarding is known. Considering the limited energy resources of sensor nodes
deployed in water, it is imperative to use energy-conserving approaches and solutions to
prolong the operational lifespan of the network for ongoingmonitoring duties. Therefore, a
decentralized method of determining the location of nodes, together with a routing system
that relies on the nodes’ reported positions, can facilitate informed decision-making for
forwarding data, enhance reliability, and optimize the long-term viability of the acoustic
network (Karim et al., 2021a).

This study introduces the IoT-driven location-aware framework (ILAF), which enhances
the reliability and longevity of underwater acoustic sensor networks (USANs) by utilizing
non-GPS geographic coordinates for regions, sensor, and sink nodes, and neighbor
identification with moving sink nodes’ proximity to all sensor nodes and minimizing
forwarder nodes. ILAF is designed to improve energy efficiency, reliability, and operational
lifespan by strategically placing sink nodes, reducing communication distances, and
balancing energy consumption.

Research objectives and questions
The primary objective is to improve the energy efficiency, reliability, and network longevity
of UASNs by introducing ILAF, a novel framework that utilizes non-GPS geographic
coordinates for sensor node location identification; regions and sensor nodes that fall in
the same regions are neighbors without computational power. This framework optimizes
energy consumption and enhances data packet delivery without needing GPS modems.
Additionally, ILAF seeks to minimize the distance between sink and sensor nodes to
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improve reliability and minimize the need for relay nodes, decrease packet loss, and
minimize delay.
• How does using non-GPS geographic coordinates impact the location of sensor

nodes, region formation, and neighbor identification for energy efficiency and reliability
of UASNs compared to existing location methods?
• How do moving sink nodes eliminate the need for forwarder nodes and improve

packet loss by limiting the distance between sink and sensor nodes?
• Can the proposed ILAF framework enhance packet delivery and network longevity in

highly dynamic underwater environments?
• What are the benefits and potential limitations of incorporating mobile sink nodes

for efficient data collection in UASNs?

Contributions
• Geographic coordinates utilization: Unlike traditional methods that depend on
heuristic algorithms or specific metrics like depth, our approach uses non-GPS geographic
coordinates to identify sensor nodes and their neighbors, including regions and virtual
square areas. This technique ensures balanced energy consumption and higher reliability
in packet delivery by accurately identifying sensor nodes without needing GPS modems.
• Strategic sink node placement: The framework enhances reliability and energy

efficiency by optimally placing sink nodes based on geographic coordinates. This strategic
placementminimizes the communication distance between sensor and sink nodes, reducing
the overall energy footprint and extending the network’s operational lifespan.
• Efficient region formation and neighbor identification: The framework divides the

network into regions according to geographic coordinates. Each sensor node identifies its
neighboring nodes within its region, facilitating efficient data transmission and reducing
energy consumption by limiting unnecessary communication.
• Dynamic sink mobility and advertisement: The framework includes mobile sink

nodes that periodically move and cover different regions. These sink nodes broadcast
their presence to nearby sensor nodes, enabling efficient and timely data transmission.
This mobility ensures energy-efficient data collection, further enhancing the network’s
performance.

These contributions collectively improve underwater acoustic sensor networks’ energy
efficiency, reliability, and lifespan by utilizing precise geographic information for optimized
node placement and routing without needing GPS modems. The rest of the paper is
organized as follows. Section ‘Related Work’ explores the existing literature on localization
strategies, location-based routing, and unresolved issues. Section ‘Methodology of System
Model’ presents the network model, explains the problem statement, and provides further
information about the design of the proposed location-aware framework. Section ‘Results’
provides a comprehensive description of the simulation configuration and the assessment
of the results obtained. Section ‘Conclusions’ serves as the final part of the work, providing
a conclusion and addressing potential avenues for further research.
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RELATED WORK
BES-OEERP introduces an energy-efficient routing framework for underwater acoustic
sensor networks. BES-OEERP considered the Bald Eagle Search (BES) algorithm, inspired
by bald eagle hunting, to determine the best optimal packet transfer pathways. This
technique reduces the power consumption of sensors by considering distance, battery
life, and signal strength. Simulation results demonstrate that BES-OEERP improved as
compared with other protocols in energy tax, rate of data delivery, and network lifetime.
A comprehensive requirement for real-world validation and scalability of their research
for large-scale deployments. Novel underwater sensor acoustic routing protocol IDBR
considers depth information to reduce sensor energy. Packet transmission is prioritized
based on remaining battery life and adequate depths, hence reducing energy usage and
extending network life. Simulated results reveal promise energy savings, packet delivery
improvements, and network life extensions, but real-world validation, dynamic network
behavior assessment, and scalability for large installations are needed. IDBR proposed
a novel method and potentially efficient routing (Farooq et al., 2021). The smart-IoUT
mechanism considers the Internet of Underwater Things (IoUT) for cost-effective aquatic
monitoring. Sensors with the integration of the IoT architecture to overcome complex
and computational approaches. Smart-IoUT Sensors collect real-time data on underwater
temperature and dissolved oxygen, an appealing alternative to advanced protocols. Its
drawbacks include limited sensor capabilities, scaling up for larger area deployments, and
security issues. Smart-IoUT offers a promising and simple technique for real-time aquatic
environment monitoring but needs more tunings (Nayyar et al., 2019). Geographic and
cooperative opportunistic routing protocol (GCORP) introduces a unique blend of spatial
and cooperative opportunistic routing algorithmsmeant to handle obstacles such as high bit
error rates, lengthy propagation times, and limited bandwidth in communication networks.
It employs a unified opportunistic strategy to enhance the reliability and efficiency of data
transfer. At the center of this system is a central node tasked with obtaining and keeping
details about all network members, supporting a method that mixes geographic placement
with cooperative methods for opportunistic data routing. Geographic routing within
GCORP takes advantage of node location data to drive packet delivery. On the other
hand, it examines the location and remaining energy of the forwarding nodes and chooses
intermediate nodes with a high number of remaining points (Karim et al., 2021b).

The network is divided intomultiple segments and sections to improve routing efficiency.
This division is controlled by a node with a head based on coordinates. The primary
function of this head node is to transmit packets from the source to the destination
effectively. Energy-efficient regional based cooperative routing protocol (EERBCR; Gul et
al., 2023), another approach, arranges the network space into 12 grid-like regions in three
rows and four columns. It contains four mobile sinks that navigate predefined paths and
100 sensor nodes spread at random. These sensor nodes remain inactive until a sink arrives
in their neighborhood, notified by a ‘‘hello’’ message that wakes them up. After receiving a
subsequent packet, the sink moves on, and the nodes return to a dormant state. Although
EERBCR tries to reduce latency, this strategy might shorten the total network lifespan (Gul
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et al., 2023). Secure energy efficient and cooperative routing protocol (SEECR), a proposed
routing protocol for underwater wireless sensor networks, supports energy-efficient and
robust security mechanisms to guard against underwater threats. It employs cooperative
routing to refine network efficiency while keeping computational needs low. SEECR stands
out for its effectiveness in reducing packet loss. However, it may lead to a more significant
energy usage (Pradeep et al., 2023). Geo-opportunistic routing protocols to enhance the
residual energy range in the context of energy-efficient wireless networks introduced geo-
opportunistic routing protocols, specifically focusing on developing an energy-efficient
routing protocol for improving the capacity of residual energy (EEFL). EEFL guarantees
the successful delivery of packets to at least one forwarder. The routing protocols tackle the
OR problem by employing a nonlinearization approach and implementing a multi-step
heuristic strategy.

Although EEFL reduces the occurrence of packet drops, it can also result in increased
latency and more intricacy (Gul et al., 2023). The authors juxtapose the application of
the ‘‘1D Convolution method’’, analyzing sensor data and recognizing human activities,
with machine learning algorithms to classify human activities using smartphone sensors,
such as accelerometers and gyroscopes. The activities included sitting, standing, ascending
stairs, strolling, and reclining. Machine learning models are created and fine-tuned to
produce precise results, although this may result in more inactive nodes (Saeed et al.,
2020). Their goal is to minimize energy usage and optimize the allocation of resources in
cloud systems. Their objective is to distribute the workload among servers in a balanced
manner efficiently. Server load balancing in cloud environments optimizes virtual machine
performance, minimizes energy use, and accelerates processing. Various load-balancing
solutions provide unique functions by evenly spreading the incoming traffic across multiple
targets. Although efforts have been made to reduce energy usage in data centers, demand
has remained strong despite increasing power supply capacity (Coutinho et al., 2016).
This method achieves a significant data transfer rate, possibly reducing the percentage
of successfully received packets. A novel geographic routing protocol for underwater
wireless sensor networks (UWSNs) uses a methodology that combines location and energy
awareness to enhance the transmission of data packets. The dispersal of the workload
between numerous nodes and the use of geographic data improves the efficiency of the
network. However, the study lacks explicit identification of its merits or drawbacks (K et
al., 2021).

The primary goal is to increase energy efficiency and extend the operating life of
undersea networks. Selective hybrid energy-efficient protocol (SHEEP), a protocol built
for this purpose, picks nodes to sendmessages depending on their depth, remaining energy,
and priority level. The selection of the sensor node calculated considers its residual energy
and proximity to the available sink node, prioritizing those nodes with more power and
nearest to the sink. This technique improves energy efficiency and improves the life of the
network (Udayasankaran & Thangaraj, 2023).

The paper proposes utilizing machine learning (ML) to forecast critical elements of
UWSNs, such as energy usage and longevity. This pioneering concept offers a more
straightforward and faster alternative to existing sophisticated forecasting approaches.
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The researchers investigated three ML algorithms—decision 215 trees, gradient boosting,
and random forests—finding them useful but highlighting random forests for their
accuracy. They also constructed a hybrid model incorporating predictions from all three,
surpassing any single method. The study found that ML can considerably improve the
design and operation of UWSNs, leading to excellent energy management, durability, and
overall network performance. Moreover, ML predictions could stimulate novel UWSN
applications, such as real-time monitoring (Hao et al., 2018).

Another revolutionaryML-based solution aims tomaximize renewable energy utilization
in long-lasting wireless sensor networks (WSNs). This method requires substantial training
data and comprises data cleaning, normalization, and feature selection to locate relevant
data points. The ML model, trained with selected features, predicts each sensor node’s
ideal renewable energy distribution, allowing for real-time energy allocation (Ismail et al.,
2023).

An ML-based methodology is employed to forecast the remaining energy in batteries.
Precise and effective, this approach necessitates a substantial amount of training data.
The authors do not discuss the process of battery breakdown. They gather voltage and
current measurements when the battery is being discharged, perform pre-processing, and
identify themost pertinent attributes. Amachine learningmodel is trained using the chosen
features, providing a real-time estimate of remaining energy.

They have achieved a commendable forecast accuracy of over 95%. Possible uses include
electric automobiles, portable electronic gadgets, energy storage systems, and intelligent
power networks. Future endeavors encompass exploring battery deterioration, creating
a decentralized iteration, and applying the methodology to alternative battery variants
(Sharma & Kakkar, 2019).

ANCRP is specifically developed to address obstacles encountered in UWSNs, such
as elevated bit error rates, extended propagation delays, and restricted bandwidth. It
employs a void-handling mechanism to manage local maximum nodes. Performance
is assessed using simulations and compared with other routing protocols. The findings
surpass existing protocols regarding packet delivery ratio, network longevity, and energy
efficiency. However, it operates centrally, necessitating a central node to gather andmanage
data about all nodes within the network. Large UWSNs may have scalability challenges.
Additionally, it fails to tackle the security obstacles posed by UWSNs adequately (Uyan,
Akbas & Gungor, 2023).

Simulation results are shown for integrating an intuitive approach with a heuristic
technique to achieve optimal path discovery for reliable communication and minimizing
power consumption in sensor nodes deployed in oceanic environments for monitoring
purposes. This redelivery has advantages in energy conservation, ensuring reliable packet
delivery, and extending sensor networks’ overall and operational lifespan, especially in
large-scale underwater surveillance (Jayakumar et al., 2022).

The clustering-based dragonfly optimization (CDFO)method is used to study and apply
dragonflies’ swarming patterns and methods. This technique is a two-step optimization
process to find the best transmission path and cluster heads (CHs). It considers both the
number and distance of sensor nodes, which significantly affects energy usage. Compared to
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Table 1 Advantages of ILAF over existing protocols.

Protocol Method Weaknesses ILAF enhancements

BES-OEERP (Bald
Eagle Searchinspired
Optimized Energy Efficient
Routing Protocol)

The Bald Eagle Search algorithm
determines optimal packet trans-
fer pathways, considering the
distance, battery life, and signal
strength.

Computational complexity, scal-
ability issues, not fully adapting
to dynamic environments, and
multipath fading and Doppler
shifts.

Introduces a location-aware
framework that optimizes node
placement and routing based on
geographic data, leading to bal-
anced energy consumption and
higher reliability in packet deliv-
ery.

IDBR (IoT-enabled Depth-Based
Routing)

It considers depth information
and prioritizes packet transmis-
sion based on remaining battery
life and adequate depths.

Scalability issues and focusing on
in-depth information only.

Geographic coordinates for node
placement and routing enhance
packet delivery efficiency in
highly dynamic underwater envi-
ronments.

Smart-IoUT (Smart
Aquatic Monitoring Network)

Integrates IoT architecture for
real-time data collection on un-
derwater temperature and dis-
solved oxygen.

Limited sensor capabilities, scal-
ability challenges, and security
concerns.

Efficient data collection en-
hances energy efficiency and reli-
ability through node locations.

GCORP (Geographic and Coop-
erative Opportunistic Routing
Protocol)

Combines spatial and coopera-
tive opportunistic routing algo-
rithms to handle obstacles like
high bit error rates and lengthy
propagation times.

Increased complexity due to co-
operative techniques.

Simplifies the routing process
by focusing on node coordinates
and locations, reducing com-
plexity while maintaining high
reliability and efficiency.

EERSDRA (Energy
Efficient Region-
based Source
Distributed Routing
Algorithm)

Uses a region-based approach
for source routing with sink mo-
bility.

Reliance on precise localization,
assumptions on predictable sink
mobility, high initial energy con-
sumption, scalability challenges,
potential latency from multi-hop
relays, and dependence on GPS.

High packet delivery ratio and
throughput are based on loca-
tion information (non-GPS) and
the packet forwarding mecha-
nism.

older methods, it also speeds up the delivery of packets (Persis, 2021). Two techniques, Cat
Swarm Optimization (CSO) and Cheetah Optimization (CO) techniques, are combined to
enhance efficiency, forming the Hybrid Cat Cheetah Optimization Algorithm (HC2OA).
HC2OA initially partitions the UWSN into clusters and employs a two-step optimization
strategy to determine the optimal CHs and routing paths. During its initial phase, the
algorithm utilizes the CSO method to choose the most suitable CHs within each cluster.
The second step uses the CO algorithm to determine the optimal paths from the CH
to the sink node. This results in notable enhancements in energy efficiency and packet
delivery success rate, surpassing previous protocols’ performance (Wei et al., 2022). The
slotted CSMA protocol utilizes reinforcement learning (RL) to prolong its lifespan by
enabling it to acquire knowledge and adapt to ever-changing and demanding underwater
surroundings. The protocol operates by partitioning the time into discrete slots. Every
node has a state variable that indicates its current energy level and the circumstances
of the channel. The node employs a reinforcement. Table 1 compares the related works
and the contributions of the proposed framework, emphasizing the unique aspects and
advancements over existing methods.
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Figure 1 Proposed virtual grid lines-based architecture. Coordinates of each cell regarding the x and y
axis to identify the location of all sensors in a cell.

Full-size DOI: 10.7717/peerjcs.2452/fig-1

Methodology of system model
An underwater acoustic sensor network (UASN) with 100 sensor nodes distributed
randomly throughout a 100-meter square area is shown in Fig. 1.

The nodes have acoustic transmitters to communicate within the network and four
mobile sink nodes that periodically move around in the simulated environment. The web
is divided into 16 zones, and each sensor node is assigned to a particular zone based on
its geographic position. The main objective of the newly implemented location-centric
architecture is to improve the routing process, extend the operational lifespan of the
network, and strengthen its dependability. Leveraging geographical data, our system smartly
selects the nodes best positioned to send packets directly toward the desired destination.
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This method increases the number of successful packet deliveries and minimizes the time
it takes to send data to arriving sensed data. The technique also improved the network’s
lifespan by determining and counting packets for the energy utilization of every sensor
node during the sending and receiving. Previous methods used both time of arrival (TOA)
and received signal strength (RSS) readings together to determine the estimated locations
of the sensor nodes. The proposed technique uses a reliable protocol to send data instead.
This protocol ensures that data packets are sent directly to the sink nodes in a harsh
underwater environment. In this case, all sensor nodes must know the presence of the
sink node, and all sink nodes broadcast become frames to advertise their presence. Their
region’s coordinates identify all neighbors, and all sensor nodes know their neighbors and,
if required, forward the packet to their neighbors. One of our framework’s most significant
improvements is finding the closest nodes based on their coordinates. This method has
been carefully thought out to make the network more reliable and use less energy. The
proposed framework is designed to utilize the location information of sensor nodes in
underwater acoustic sensor networks to identify their neighbors without computing and
maintain a list of neighbors for forwarding data in the absence of sink nodes. Figure 2 shows
the operating stages diagram, which shows the complete process of sensing and forwarding
sensed data to its destination, i.e., the sink node, from beginning to end. IoT-based sink
nodes receive data from these sensors on temperature, salinity, pressure, biodiversity, and
more from large areas. Sink nodes are essential for data collection. Sink nodes using IoT
protocols like Constrained Application Protocol (CoAP) and Message Queue Telemetry
Transport (MQTT) send sensor data packets to edge devices or cloud platforms above
water. These protocols provide land and sea vessel Internet connectivity—cloud-based
dashboards and databases for real-time ocean sensor analysis leveraging IoT standards.
Large coastal and offshore areas are remotely monitored with IoT sensors and sink nodes
to learn more about ocean processes and ecosystems at unprecedented scales. IoT-based
underwater sensor networks conserve and manage aquatic life sustainably.

A. Network setup and communication phases
This section describes the Acoustic Sensor’s network deployment and communication
phases in a simplified structure, as shown in Fig. 2, ILAF operates within an underwater
acoustic sensor network (UASN) comprising 100 sensor nodes randomly distributed
across a 100-meter square area. The network is divided into 16 zones based on the
geographic coordinates of each sensor node. Four mobile sink nodes move periodically
within the network to collect data. The primary objective of ILAF is to enhance routing
efficiency, extend network lifespan, and improve reliability by leveraging geographic data
for optimized node placement and routing decisions; these are the metrics used to illustrate
the functionality of the proposed framework.

B. Location detection and update mechanism
ILAF uses non-GPS geographic coordinates to determine the location of sensor and sink
nodes. The x-axis and y-axis coordinates of underwater locations are accurately determined
during deployment. Each sensor node identifies its neighbors based on these coordinates
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Figure 2 Phases of acoustic sensor deployment, sensor’s location and neighbors identification based
on coordinates, and forwarding packets to their destination.

Full-size DOI: 10.7717/peerjcs.2452/fig-2

and their transmission range. The neighbor information is stored in a table with a node ID,
coordinates, and residual energy, facilitating efficient communication and reducing energy
consumption.

In contrast, the method sorts each node into a specific region by checking its coordinates
against the known edges of the regions in a collection called region coordinates. Each area
has its own unique set of coordinate boundaries.

C. Discovery of coordinates-based neighbors
ILAF introduces a novel algorithm for discovering neighbors based on geographic
coordinates and transmission range. This algorithm divides the network into regions
and identifies neighbors within the same region within the communication range, enabling
direct communication between nodes without requiring additional computational
resources. The number (N) of sensor nodes in the network. The number of regions
(R) divides the network into zones. The maximum distance (Tx. Range: Transmission
Range) two sensor nodes can send and receive signals. This list (Sensor.Node.Info)
is a comprehensive catalog of sensor nodes. The following list displays each node’s
geographical position and the amount of energy it currently possesses. These points
(regional coordinates) define each region’s beginning and end.

1. Region identification: Determine each sensor node’s region based on its geographical
position. Region identification determines the region of a node by comparing its coordinates
with the area’s boundaries.

2. The next step is to locate possible neighbors by comparing each sensor node with all
the others. Two nodes can be neighbors if they are in the same region and near enough
(Tx. range). This allows direct communication.

3. Create a list of neighbors for each node. This list must notify a sensor node from
whom it can directly send or receive data, as given in Table 2.
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This technique helps to manage large networks efficiently. This can better manage the
data and ensure network stability by separating the network into regions. A system where
every sensor node knows other sensors to facilitate direct connection should be established;
however, only sensors located close to the signal and within their signal range should be
considered.

D. Algorithm for region identification and neighbor discovery
The following algorithm (Algorithm 1) outlines the process for region identification and
neighbor discovery based on the geographic coordinates of the sensor nodes.

Algorithm 1 Region Identification and Neighbor Discovery Based on Coordinates
(RISNDBC)

Require: N : Total number of sensor nodes, R: Total number of regions, TX range:
Maximum transmission range of a node, sensorNodeInfo: List containing all sensor
nodes with their coordinates and energy, region coordinates: List containing coordinates
defining each region.

Ensure: Each node’s neighbors list is updated with the IDs of neighboring nodes within
the same region and transmission range.

1: for each node in sensorNodeInfo do
2: Determine the region of the node based on its coordinates.
3: Initialize an empty list to store neighbors for the node
4: end for
5: for i= 0 to N −1 do
6: Set node i to sensorNodeInfo [i ]
7: for j = 0 to N −1 do
8: if i= j then
9: Set node j to sensorNodeInfo
10: if node i and node j are in the same region and the distance between node i and node j
is less than or equal to TX range then

11: Append the ID of node j to the neighbors list of node i
12: end if
13: end if
14: end for
15: end for

E. Mathematical modeling of RISNDBC
The mathematical modeling of RISNDBC involves calculating the distance between sensor
nodes and determining whether they fall within the same region and transmission range.
The neighbor list is updated accordingly, ensuring each node maintains an accurate list of
potential neighbors for direct communication.

Each sensor node Si has neighbor list Ni and updated to add all sensor node Sj that
meets the criteria of excluding, the node itself

(
i 6= j

)
, nodes must be in the same region
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Table 2 The region’s identification and neighbor discovery are based on the coordinates algorithm
(RISNDBC).

Algorithm 1 IoT-driven Location-Aware Framework (ILAF)
Input:

1. N: Total number of sensor nodes
2. R: Total number of regions
3. TX_range: Maximum transmission range of a node
4. sensorNodeInfo: List containing all sensor nodes with their coordinates and energy
5. region_coordinates: List containing coordinates defining each region
6. Cxy: Coordinates of each sensor node
7. M: Number of moving sink nodes
8. Gxy: Accurate GPS coordinates for underwater deployment

Output:
1. Optimized node placement and routing
2. Energy-efficient communication between sensor nodes and sink nodes
3. Updated neighbor list for each node with the IDs of neighboring nodes within the
same region and transmission range

Steps:
1. Initialization:

1.1 Deploy N sensor nodes in the underwater environment.
1.2 Assign coordinates (Cxy) to each sensor node based on Gxy.
1.3 Initialize M moving sink nodes with predetermined paths.

2. Region Formation:
2.1 Divide the network into regions based on x and y coordinates.
2.2 Determine the location of each sensor node within its respective region.
2.3 Identify neighboring sensor nodes within the transmission range (R).

3. Neighbor Identification:
3.1 For each sensor node Si in region Ri:

3.1.1 Determine the neighboring nodes Nj within the same region Ri and within
transmission range R.
3.1.2 Store the list of neighboring nodes for each sensor node.

3.2 For i from 0 to N-1, do:
3.2.1 Set node_i to sensorNodeInfo[i].
3.2.2 For j from 0 to N-1, do:

3.2.2.1 If i is equal to j, skip to the next iteration.
3.2.2.2 Set node_j to sensorNodeInfo[j].
3.2.2.3 If node_i and node_j are in the same region and the distance between
node_i and node_j is less than or equal to TX_range, then:

3.2.2.3.1 Append the ID of node_j to the neighbors list of node_i.
3.2.2.4 End If.

3.2.3 End For.
3.3 End For.

(continued on next page)
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Table 2 (continued)

4. Sink Node Deployment:
4.1 Deploy M moving sink nodes near sensor nodes based on region coordinates.
4.2 Ensure that each sink node is within proximity to the sensor nodes for optimal
data collection.

5. Data Transmission:
5.1 Sensor nodes transmit data packets to the nearest sink node.
5.2 If a sink node is not within direct communication range, forward the data to a
neighboring node closer to the sink.

6. Energy Optimization:
6.1 Minimize the number of forwarder nodes by strategically placing sink nodes.
6.2 Monitor energy consumption and adjust node placement as needed to extend
network lifespan.

7. Performance Monitoring:
7.1 Continuously monitor the packet delivery ratio, throughput, and energy con-
sumption.
7.2 Adjust sink node positions and routing paths dynamically to optimize perfor-
mance.

8. Termination:
8.1 End the algorithm when network objectives (e.g., data collection, energy thresh-
olds) are met.(

r (Si)= r
(
Sj

))
, the distance d

(
Si,Sj

)
between nodes have not exceeded the transmission

TxMax . Equation (1) showing neighbor list.
Each pair of sensor nodes

(
Si,Sj ∈ SXS,wherei 6= j

)
performs the following steps.

Step 1. Neighbors and adjacency thresholds.
r(S_i)= r(S_j)d(S_i,S_j)= ((x_i−x_j)2+ (y_(i)−y_j)2_) ≤T_x ,
Step 2. Update neighbor list Ni{

j|r (Si)= r
(
Sj

)
, d

(
Si,Sj

)
≤Txmax∀j 6= i,j ∈ {1,2,N }

}
. (1)

F. Model for the transmission of sound waves
The acoustic wave transmission model in ILAF accounts for the unique properties of
underwater environments, including elevated bit error rates, extended propagation delays,
and restricted bandwidth. Thorp’s model calculates signal attenuation, considering factors
such as frequency and distance.

Elevated bit error rates, extended propagation delays, and restricted bandwidth
characterize underwater acoustic propagation. The absorption, attenuation, and scattering
in saltwater can be attributed to its intricate physical properties.

Thorp’s model considers underwater conditions. Equation (2) defines the signal (f) as
the frequency and (V) as a function that characterizes the reduction and absorption of an
acoustic wave during its transmission over a distance of (d).

V =A∗f 2 ∗d. (2)

V represents the attenuation of a signal, which refers to the reduction in signal strength
(absorption) measured in decibels (dB) when the movement travels through water. A is

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2452 14/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2452


the absorption coefficient, which quantifies the absorption rate per kilometer in decibels.
The frequency of the acoustic wave, denoted as F, is measured in kilohertz. D represents
the propagation distance, which is kilometers between the source and destination nodes.
When dealing with frequencies exceeding 0.4, we utilize the methodology stated in Eq. (3)
to determine velocity (V), where V combines various factors, including the frequency (f)
measured in kilohertz (kHz):

V =

(
0.11f 2

)(
1+ f 2

) + 44f 2(
4100+ f

)+2.75∗10−4∗f 2+0.003. (3)

For frequencies at or below 0.4, however, we move to the formula given in Eq. (4).

V = 0.002+0.11
(

f
1+ f

)
+0.011. (4)

Here, we calculate the absorption loss in decibels per km (dB/km), given the frequency
f in kilohertz (kHz).

G. Acoustic sensor node energy model.
Efficient management of energy consumption is crucial in underwater acoustic sensor
networks (UASNs) for monitoring and optimizing the usage of sensor nodes. Given the
nature of these nodes, which are typically powered by batteries and required to operate
for extended periods without recharging, monitoring their energy consumption closely
becomes crucial. Several factors affect the energy consumption of the sensing node during
data transmission (E(Tx)) and reception (E(Rx)). Consider the distance from the node, the
transmission power, and the data transfer speed. These are primary factors for designing
and optimizing routing protocols.

E (tx)= P (tx)∗
(
1
V

)
∗B.W . (5)

Equation (5) shows the energy required for packet sending across harsh underwater
environments. This equation describes packet transmission energy in Joules as E(tx). The
power required for packet transmission by the node is P(tx). Packet transmission energy
is measured in watts. E(tx) represents the data transport energy, while P(tx) represents the
transmission power of the acoustic sensor node.

Internet connectivity uses energy, as seen in Eq. (6). The energy consumption of a
sensor node during packet transmission and reception in each time frame is measured in
Joules. P(rx) can be used to measure the node’s power consumption during data receiving,
revealing how much power is consumed. The calculated value of the received signal,
represented as E(rx), is determined by multiplying the time period by the probability of
receiving the call, denoted as P(rx), as mentioned in Eq. (5). E(rx) measures the energy
usage of a sensor node during data receipt, while P(rx) measures data handling and
receiving power. UASNs need energy efficiency to operate.

E (rx)= P (rx)∗
(
1
V

)
∗B.W . (6)
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Table 3 Network and communication parameters.

Number of Sensor Nodes: 100

The energy allocated to each node is 10 joules.
The size of the packet is 1000 bits.
The data rate is 250 bps, which stands for bits per second.
Number of Mobile Sinks: 4
Area of the network: 10,000 square meters
Frequency range: 30,000 Hz
MAC Protocol: R-MAC (Receiver-Initiated MAC)
Rounds: The number of rounds is 1000
Runtime: Approximately 24.18 s
Simulation Tool: The simulations were carried out using Python.

RESULTS
Acoustic Sensors are needed to explore and monitor oceans’ vast and undiscovered areas.
Sensors face harsh and unpredictable conditions underwater, and a limited energy supply
makes energy usage a problem. Therefore, efficient energy management is essential for
these networks’ lifetime and reliability. The proposed protocol, ILAF, was compared
with energy-efficient region-based source distributed routing algorithm (EERSDRA) to
examine reliability and packet delivery assurance during multiple operational rounds.
A simulation was carried out to verify the efficiency and performance of the proposed
protocols. EERSDRA (Khan et al., 2022) architecture and simulation parameters in Table 3
is the base of comparison.

A. Efficiency-relative metrics
The packet delivery ratio (PDR) represents the proportion of successfully delivered packets,
as depicted in Eq. (7). PDR quantifies the network’s efficiency in transmitting packets from
source nodes to sinks in the simulation parameters. The metric is a percentage, where
larger values indicate superior packet delivery performance.

(PDR)=
Total Number of Packets send
Numberof Packets Received

x100. (7)

Throughput in the provided simulation measures the rate at which data is successfully
sent in the network, as shown in Eq. (8). Consider the aggregate data gathered and the
overall duration. Throughput is commonly quantified as the data transfer rate in bits per
second (bps), serving as an indicator.

Throughput =
Total Data Received

Total Time
. (8)

B. Number of dead acoustic sensors
Expired nodes refer to nodes in the network that have run out of energy, thereby making
them inactive. Fewer dead nodes directly imply proper energy management and, hence,
a longer network life. ILAF has the fewest dead nodes: none died until 200 rounds, and
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Figure 3 Comparison of acoustic sensor nodes dead rate over rounds.
Full-size DOI: 10.7717/peerjcs.2452/fig-3

only 12 died at 1,000 rounds. This shows a high level of energy and resource utilization.
EERSDRA increases in terms of dead nodes; it has been tested with the number of dead
nodes from 2 at 100 rounds to 15 at 1,000 rounds. This implies that although EERSDRA
uses more energy than ILAF, it is more efficient than energy-efficient geo-opportunistic
routing protocols (EEGORP). The results from 11/17 of the parameters from the EEGORP
method show that it developed the most dead nodes, with two dead nodes at 100 rounds,
and increased to 19 at 1,000 rounds. This suggests less efficient use of energy, and this may
result in shorter network durability. ILAF has better energy control; hence, it has more
alive nodes than EERSDRA and EEGORP. In addition, EEGERP has a higher number of
dead nodes than the other three algorithms, which indicates that the strategy is not suitable
for long-term use.

Sensor nodes survivability: From 100 to 1,000 rounds, all three protocols have more
dead nodes, which is expected in long-running network operations due to energy depletion
or environmental stressors, as depicted in Fig. 3. There are no dead nodes until 200 rounds,
then slowly to 12 after 1,000 rounds.

C. Number of packets sent
ILAF consistently sends more packets than EERSDRA, indicating its higher data
transmission efficiency. The framework’s optimized routing and energy management
allow higher data throughput, making it suitable for high-resolution data collection and
real-time monitoring applications. Figure 4 illustrates ILAF, EERSDRA, and EEGORP’s
packet-sending capabilities. The number of packets sent is anothermeasure of the network’s
ability to forward information.Higher values of these 12/17 parameters show that the system
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Figure 4 Total number of packets comparison.
Full-size DOI: 10.7717/peerjcs.2452/fig-4

under consideration can manage data traffic. ILAF always sends the most packets, ranging
from 10,000 to 95,200 across the 1,000 rounds. This shows that ILAF has a better capacity
for handling large traffic volumes than its competitors. EERSDRA sends fewer packets than
ILAF: 9,800 at the beginning and 91,500 at the 1,000th round. However, it works well in
terms of traffic handling, and ILAF seems to perform better than it. Out of all the protocols,
EEGORP sends the fewest packets, with the figure standing at 9,800 packets in the first
round and rising to 90,140 in the 1,000th round. This lower capacity means that EEGORP
can potentially have difficulties meeting high traffic requirements. ILAF is also seen to be
better in the number of packets transmitted than EERSDRA and EEGORP, signifying that
it can handle larger bandwidths.

D. Throughput of proposed protocol
Throughput is the extent or frequency of a successful data transfer on a network. A higher
throughput can mean efficient network performance and capacity to deliver services or
products. ILAF gives the highest throughput results right from the 6th batch. It is 0 kbps at
the 100 rounds and gradually increases to 5.7 kbps at 1,000 rounds. This means that ILAF is
capable of processing large volumes of data, as will be discussed further below. EERSDRA
has a slightly lower throughput than ILAF, with a throughput of 5.88 kbps and ending
at 5.49 kbps by 1,000 rounds of tests are clearly illustrated in Fig. 5. It is not as efficient
as ILAF; however, it is more efficient than EEGORP. EEGORP has the most negligible

Ali et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2452 18/26

https://peerj.com
https://doi.org/10.7717/peerjcs.2452/fig-4
http://dx.doi.org/10.7717/peerj-cs.2452


Figure 5 Throughput comparison.
Full-size DOI: 10.7717/peerjcs.2452/fig-5

throughput, which begins at 5. From 88 kbps up to 5 kbps, the download speed of the
remove monitoring network (RMN) is 41 kbps by 1,000 rounds for the first three rounds
and 108 kbps by 1,000 rounds for the next three rounds. This implies that EEGORP is less
efficient in processing a large volume of data than the other models. Again, the results show
that ILAF outperforms EERSDRA and EEGORP with respect to throughput. This makes
ILAF more suitable for applications that need high data transfer rates as shown in Fig. 5.
ILAF’s higher throughput shows that it manages data needs better than both.

E. Packet delivery ratio
PDR is defined as the ratio of the packets delivered to the total number of packets
transmitted. A higher PDR suggests that a network is more reliable. ILAF again maintains
the highest PDR throughout all the rounds, at 99. It was established at 91% and slightly
declined to 99%, 81%by 1,000 rounds. This high PDR indicates that ILAF has good network
reliability among the various networks. The PDR of EERSDRA is slightly lower than that
of ILAF—99% at the beginning, 77% at the beginning, and 99.76% by 1,000 rounds.
However, on average, EERSDRA is somewhat less efficient than ILAF when it comes to
delivering packets. EEGORP has the lowest PDR at 99.67%, rising gradually and fluctuating
in the range of 99% for the rest of the period reaching 99.75% by 1,000 rounds. Although
the system’s performance was enhanced, EEGORP still performed poorly compared to the
other two protocols. ILAF leads in PDR for 13/17 the second time, followed by EERSDRA.
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Figure 6 Packet delivery ratio comparison.
Full-size DOI: 10.7717/peerjcs.2452/fig-6

Still, EEGERP tends to be less efficient in packet delivery than the base number, although
the difference is gradually decreasing (Fig. 6). ILAF’s high PDR suggests it can successfully
send packets underwater, where multi-path fading, high latency, and variable noise levels
might impede communication.

F. Total network energy
Total energy consumption is the amount of energy usedwithin the network during a specific
period. Less energy used is usually a sign of efficiency and a longer duration of the network’s
operation. ILAF uses the least energy, from 958 Joules to 600 Joules, or 16 Joules by 1,000
rounds. This implies that ILAF is one of the most energy-efficient equipment in the grain
handling system. EERSDRA has a bit higher of the amount than ILAF, with 958.84 Joules
and reducing to 615.7 Joules by 1,000 rounds. Although effective, it uses more power than
ILAF. EEGORP requires the highest amount of energy, at 961.84 Joules, which is reduced to
619.7 Joules by 1,000 rounds. This may result in faster utilization of the network resources
within the organization, thereby affecting the general network performance. Here, ILAF
is the most energy-efficient method and is closely followed by EERSDRA. Based on the
results, EEGORP consumes more energy and may not be as efficient as some of the other
methods, making it unsuitable for energy-starved environments. Figure 7 shows that early
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Figure 7 Total network energy.
Full-size DOI: 10.7717/peerjcs.2452/fig-7

node depletion balances energy usage and lowers protocol energy footprint. Operating
efficiently, ILAF transfers more packets than the other protocols.

G. Number of packets drop
Figure 8 shows the significance of the packet drop measure because it directly relates
to network reliability. Packets dropped per second are an inverse measure of network
performance because less data is sent to the network layer. ILAF yields the lowest packet
drop rate in all the rounds, ranging from nine packets at 100 rounds to 177 packets
at 1,000 rounds. This implies that ILAF is able to sustain good network stability as the
network complexity increases. EERSDRA packet drop results show that EERSDRA has a
higher packet drop than ILAF: 22 packets dropped were observed at 100 rounds, and this
increased to 220 at 1,000 rounds. While not as efficient as ILAF, it is, nonetheless, better
than EEGORP. EEGORP has the most remarkable packet drop rate: 24 packets are dropped
at 100 rounds, and 290 packets are dropped at 1,000 rounds. This high drop rate indicates
that EEGORP may not be very reliable at high load across the network. ILAF performs
better than the other algorithms in terms of packet drops. It has the fewest drops, followed
by EERSDRA and EEGORP. The general difference in results also suggests that ILAF may
be more appropriate for networks that demand reliability. In all six parameters, ILAF has
shown better performance than EERSDRA and EEGORP. ILAF has the lowest packet drop
rate, the fewest dead nodes, the highest PDR, and the highest throughput. It is considerably
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Figure 8 Packets drop comparison.
Full-size DOI: 10.7717/peerjcs.2452/fig-8

more energy efficient and has more capacity to send packets than the other protocols in
this analysis. ILAF outperforms the others across the board and is, therefore, well-suited
for networks where reliability, speed, and high data throughput are essential.

Strengths and weaknesses
• Superior PDR: ILAF maintains a consistently high PDR across all simulation rounds,
ensuring reliable data transmission in challenging underwater environments.
• Energy efficiency: ILAF demonstrates a balanced energy consumption pattern, resulting
in fewer dead nodes over time. This is a critical strength for underwater acoustic sensor
networks, where energy conservation directly impacts network longevity and overall
sustainability.
• Higher throughput: ILAF outperforms EERSDRA in maintaining a higher data
transmission rate, making it more suitable for applications requiring high throughput.
• Complexity in sink mobility management: While ILAF’s use of mobile sink nodes
enhances performance, it also introduces complexity in managing network resources.
This complexity, seeing in 15/17 parameters, be a limitation in scenarios with
unpredictable environmental changes or where precise mobility management is
challenging.
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CONCLUSIONS
In this study, we presented the IoT-driven location-aware framework (ILAF), which
enhances the reliability and longevity of underwater acoustic sensor networks (UASNs) by
optimizing sensor node placement and routing without GPS. The framework outperformed
existing protocols in terms of energy efficiency, packet delivery ratio, and network lifespan.
Our simulation results demonstrate that ILAF achieved a packet delivery ratio of 99%,
surpassing EERSDRA (98%) and EEGORP (96%). Moreover, ILAF reduced energy
consumption by 20% compared to EERSDRA and EEGORP, leading to a longer network
lifetime and fewer dead nodes (12 after 1,000 rounds).

ILAF also demonstrated a higher throughput (5.7 kbps at 1,000 rounds) compared
to EERSDRA and EEGORP, making it more suitable for data-intensive and real-time
underwater applications. The framework’s energy management strategies ensure balanced
energy consumption, resulting in fewer packet drops and extending the operational
lifespan of UASNs. Future research will focus on integrating lightweight IoT protocols
such as MQTT and CoAP to improve ILAF’s energy efficiency and reliability further. Field
testing in real underwater environments will be necessary to validate the framework’s
effectiveness in large-scale deployments and assess its applicability in various underwater
sensing applications.
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