
Ensuring reliability in electronic
examinations through UPPAAL-based
trustworthy design
Wenbo Zhou1,2,3, Yujiao Zhao1, Ye Zhang1, Liwen Mu1,4, Yiyuan
Wang1,3 and Minghao Yin1,3

1 School of Information Science and Technology, Northeast Normal University, Changchun,
China

2Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University,
Guilin, China

3 Key Laboratory of Applied Statistics of Ministry of Education, Northeast Normal University,
Changchun, China

4 School of Physics, Northeast Normal University, Changchun, China

ABSTRACT
Electronic examination serves as an efficient method for assessing learning outcomes,
yet the integration of computers into exam processes introduces potential for
unreliability. In this article, we propose a formal model for electronic examinations
using timed automata, providing a structured approach to understanding and
managing the complexities. The electronic examination process is modeled by
defining four UPPAAL templates, i.e., candidate, administrator, invigilator, and
examiner. Crucial properties specific to electronic examination are encoded as
specifications in UPPAAL. Verification against these properties demonstrates the
validity and reliability of this model. The modelable and verifiable electronic
examination designed with UPPAAL suggests great potential for deeper exploration
in trustworthy digital education.

Subjects Theory and Formal Methods, Software Engineering
Keywords Electronic examination, Timed automata, Formal verification, System design,
Trustworthy digital education

INTRODUCTION
Examinations play a preeminent pedagogical role, enabling individuals to assess their skills
and knowledge in a specific subject (Giustolisi, 2018). In contemporary education, e-
learning has emerged as a prevalent option for universities, facilitating the convenient
expansion of teaching or learning activities at any time and from anywhere. Particularly
with the outbreak of the epidemic, e-learning has garnered increased attention in the field
of education. As a vital component of e-learning, electronic examinations serve an
irreplaceable function in facilitating efficient evaluation of learning outcomes.

Electronic examinations offer a convenient means to assess learning outcomes utilizing
ubiquitous internet-connected devices. The adoption of online learning management
systems has enabled universities to boost enrollments without the need for additional
lecture halls (Ngqondi, Maoneke & Mauwa, 2021). However, electronic examinations have
been met with skepticism, primarily due to concerns about academic fraud (Ngqondi,
Maoneke & Mauwa, 2021). Introducing computers into various phases of examinations

How to cite this article Zhou W, Zhao Y, Zhang Y, Mu L, Wang Y, Yin M. 2024. Ensuring reliability in electronic examinations through
UPPAAL-based trustworthy design. PeerJ Comput. Sci. 10:e2377 DOI 10.7717/peerj-cs.2377

Submitted 17 April 2024
Accepted 10 September 2024
Published 4 October 2024

Corresponding authors
Yiyuan Wang,
wangyy912@nenu.edu.cn
Minghao Yin, ymh@nenu.edu.cn

Academic editor
M. Emilia Cambronero

Additional Information and
Declarations can be found on
page 36

DOI 10.7717/peerj-cs.2377

Copyright
2024 Zhou et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2377
mailto:wangyy912@�nenu.�edu.�cn
mailto:ymh@�nenu.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2377
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

brings new security challenges (Bella et al., 2017). Simultaneously, many learners express
apprehensions about potential technical glitches during the implementation of electronic
examinations (Ilgaz & Afacan Adanır, 2020). In such a scenario, ensuring the reliable, fair,
and seamless execution of electronic examinations in e-learning becomes paramount
(Muzaffar et al., 2021). The design of electronic examination systems should prioritize
reliability, taking into account its significance and impact. Current electronic examination
systems face inherent limitations, primarily due to a lack of focus on robust system model
design. This often results in system designs that struggle to ensure dependable and effective
implementation, leading to potential inconsistencies and vulnerabilities. These issues
highlight the need for improved system designs that promote reliability in electronic
examinations.

Reliability in the context of electronic examinations is pivotal to ensure the seamless
execution of exams and uphold fairness. In the realm of education, examination rules are
explicitly outlined and must be strictly followed, often enforced in an artificial manner. For
electronic examinations, it becomes imperative for such rules to seamlessly integrate with
examination systems. Correct-by-construction is among the most effective approaches to
guarantee the reliability of software systems right from the source. Formal methods
provide robust assurances during system design, ensuring the strict adherence to
examination rules. These methods typically involve constructing suitable formal models
and verifying them before proceeding to further implementation. Adopting this
methodology offers numerous advantages. On one hand, it allows for the identification and
correction of errors at an early stage, preventing them from evolving into intricate and
challenging faults that are both costly and time-consuming to diagnose and repair. On the
other hand, formal methods employ a range of proving or model-checking techniques.
Notably, executable models can be directly simulated and analyzed, enabling the
exploration of diverse design options and verification possibilities (Bobba et al., 2018).

To construct an abstract and executable model, the chosen formal method must be
appropriate and highly applicable. As one of the most widely employed formal methods,
timed automata are a valuable formalism for verifying concurrent systems under timing
constraints (Arcile & André, 2022). It has been extensively applied to modeling and
analysis of many critical systems as well as assistance in the generation of new methods
(Hofmann & Schupp, 2023; Lehmann & Schupp, 2022), including various industrial
applications (Basile et al., 2021; Sakata et al., 2023). One of the most significant advantages
of time automata lies in their comprehensibility through graphical representation. Another
strength is their executability with timing constraints, enabling the exploration of diverse
scenarios and the validation of critical properties. Furthermore, well-established support
tools such as UPPAAL (Behrmann, David & Larsen, 2004), SPIN (Holzmann, 2004),
NuSMV (Cimatti et al., 2002) and PAT (Sun et al., 2009), contribute substantial
capabilities to practical modeling, simulation, and verification. UPPAAL is developed in
collaboration between the Department of Information Technology at Uppsala
University (UPP) in Sweden and the Department of Computer Science at Aalborg
University (AAL) in Denmark, with input from several other universities around the world
(Uppsala University & Aalborg University, 2021). Due to its wide application and powerful

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 2/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

modeling capabilities, we use UPPAAL to model and analyze the electronic examination
system.

In this article, we introduce a model for an electronic examination system based on
timed automata. We conduct simulations and analyses of crucial properties using the
UPPAAL tool. The UPPAAL model we developed is archived and can be found at our
GitHub repository (Zhou, 2024). To the best of our knowledge, this is the initial attempt to
model examinations using UPPAAL. Our UPPAAL-based framework offers a structured
method to understand and manage the complexities inherent in electronic examinations.
By leveraging the modeling and verifiable capabilities of UPPAAL, there exists a potential
for assessing and enhancing electronic examinations in a precise manner. This electronic
examination model can function as a foundational component, offering more possibility
for further exploration in the realm of trustworthy digital education. To save space, we
assume the reader has a fundamental understanding of the UPPAAL tool. More detailed
definitions regarding the syntax and semantics of languages used in UPPAAL can be
referenced in Behrmann, David & Larsen (2004). We note that cryptography aspects are
not within the scope of this article. The novel contributions of this study include:

. Developing a formal model for electronic examinations based on timed automata.

. Encoding typical properties related to electronic examinations as specifications in
UPPAAL.

. Verifying our model against these properties using UPPAAL to demonstrate the
reliability of electronic examinations.

The significance and impact of this research are multifaceted. By developing a formal
model for electronic examinations, our approach tries to enhance the effectiveness of
digital assessments to some extent, which is particularly relevant with the increased
reliance on e-learning. We acknowledge that our approach is preliminary and
foundational, but it is a potential attempt to apply UPPAAL in the education field. Our
model can serve as a basic framework for further research in statistical model checking and
temporal analysis, aiding in the practical development of more reliable electronic
examination systems.

The remainder of this article is structured as follows. “Preliminaries” provides a brief
overview of the background on electronic examinations and UPPAAL. “Modeling
electronic examination using UPPAAL” details the model specification and property
specification for electronic examination. In “Validation and verification in UPPAAL”, we
analyze and check typical properties using UPPAAL. “Related work” presents a
comparison of related research. “Discussions” covers the experience with UPPAAL,
limitations and potential biases, and ethical and privacy aspects. Finally, “Conclusions”
summarizes this article and outlines future work.

PRELIMINARIES
In this section, fundamental concepts about electronic examinations and UPPAAL are
introduced to enhance comprehension of the following models. Regarding electronic

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 3/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

examinations, we illustrate the roles of participants and their interactions. As for UPPAAL,
a concise description of its core components is provided.

Electronic examination
Electronic examinations offer a convenient way for assessing the knowledge and abilities of
learners with the help of computer and network technologies. The participants in
electronic examinations are similar to those in traditional examinations, with the
difference that certain operations are conducted through network communications.

Roles of participants
In a general way, there are four roles in an electronic examination, i.e., candidate,
administrator, invigilator, and examiner. We list their functions as follows.

. Candidate: A candidate is a student taking the examination.

. Administrator: An administrator is responsible for registering candidates for the
examination.

. Invigilator: An invigilator is tasked with distributing questions, supervising the
examination and collects answers.

. Examiner: An examiner marks the examination and notifies students their scores.

Each participant is assigned specific tasks, and through collaborative efforts, they
contribute to the successful execution of electronic examinations.

Interactions among participants
This subsection explores the dynamic interactions that take place among the various
participants involved in the electronic examination process. As depicted in Fig. 1, we use
the UML sequence chart notation to illustrate the interactions among participants in the
electronic examination process. Prior to the commencement of an electronic examination,
the examiner must establish correct answers for the questions (corrAns). The sequence
unfolds as follows: First, a candidate, denoted as ci, registers with the administrator
(register). Then, ci logs into the examination system and notifies the invigilator
(login). Next, the invigilator dispatches a question to ci (get), who, in turn, formulates
and submits an answer (submit). Upon receiving the answer, the invigilator confirms the
submission through acknowledgment (accept). This iterative process may repeat
multiple times according to the examination time and the number of questions. When the
candidate’s examination time expires or the candidate has completed all their answers,
they await their scores. Afterward, the invigilator notifies the examiner to commence
grading (mark) and inform ci of his/her scores (notify). Finally, the candidates,
invigilator and examiner complete their processes (end), and the administrator resets the
system (reset). The entire examination process ends when all candidates have been
notified of their scores. This ensures that the system correctly captures and evaluates all
responses before terminating the examination. The reset ensures that all candidates, the
invigilator, and the examiner are reset simultaneously. This is achieved by the

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 4/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

Figure 1 Interactions among examination participants. Full-size DOI: 10.7717/peerj-cs.2377/fig-1

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 5/39

http://dx.doi.org/10.7717/peerj-cs.2377/fig-1
http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

administrator sending a reset signal, which all other components receive and act upon,
restoring the system to its initial state. There are two main loops in our sequence:

. Candidate answering loop: This loop involves the candidate answering questions one by
one. Upon receiving each answer, the invigilator accepts the answer and moves on to the
next question until the candidate completes all their answers or the candidate’s
examination time expires.

. Examination conclusion loop: This loop addresses the overall conclusion of the
examination process. Once all candidates have been notified of their scores, the
administrator initiates the reset of the system, ensuring that all processes are completed,
and the system is prepared for the next examination session.

These loops help ensure that every response is systematically captured and evaluated,
enabling the examination to conclude accurately and the system to transition smoothly to
the next session.

Model simplification and justification
The model simplification considered in this article includes multiple students, but only one
examiner and one invigilator. This simplification is justified to some extent because it
allows for a focused analysis of the interactions between different roles involved in
electronic examinations while managing complexity.

Focused analysis. By reducing the number of examiners and invigilators to one, we can
concentrate on the key interactions between candidates and the examination
administration. This makes it easier to understand the overall system behaviors with a
focus on candidate-centric interactions. We acknowledge that having multiple invigilators
and examiners would be more realistic and provide a more generalizable model, but this
may result in complex scheduling strategies, which is beyond the scope of this article’s
assumptions.

Manageability and foundational understanding. The simplified model is more
manageable for several reasons. On the one hand, it reduces variables and interactions,
making it easier to track and analyze processes. On the other hand, it clarifies core issues
and interactions, resulting in a more straightforward and manageable system. This
manageability provides a clear starting point for developing more complex models. This
approach, while basic, helps identify fundamental issues and interactions crucial for
further analysis, such as statistical model checking and temporal analysis.

UPPAAL
UPPAAL, a real-time system model checker based on timed automata, developed
collaboratively by Uppsala University and Aalborg University (Behrmann, David &
Larsen, 2004; David et al., 2015; Uppsala University & Aalborg University, 2023), is widely
used in domains such as network protocols (Valero, Diaz & Cambronero, 2017),
transportation systems (Basile et al., 2021), and cyber-physical systems
(Hasrat et al., 2023). UPPAAL comprises an editor, two simulators, and a verifier. The
functions of the editor, simulator, and verifier are briefly introduced as follows.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 6/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

Editor
The editor is utilized for system modeling, involving the construction of a network of
timed automata. A system model primarily includes declarations for global variables,
templates (comprising local variable declarations), and system declarations. Global
variables encompass synchronization variables, clock variables, and other relevant
variables. Each template corresponds to a timed automaton and serves as a model
specification, as detailed below. System declarations instantiate templates, leading to in the
creation of a network of timed automata.

Model specification. The target system is represented as a network of timed automata
using UPPAAL’s graphical editor. Types of timed automata are established as process
templates in UPPAAL, with each process template capable of process instantiation as a set
of automata of the same type. A process template primarily consists of two elements:
locations and edges (Uppsala University & Aalborg University, 2023).

Location. A location in UPPAAL represents a process state within the system. A process
state represents a stay point in the execution of a process instance. Process states can have
invariants, which are conditions that must be true for the system to stay at that state. There
are four types of locations, which help define specific behaviors and timing constraints
within the system, allowing for precise modeling and verification of real-time properties.

– Regular location: A state in the timed automaton where the system can stay and time can
pass.

– Initial location: The starting state of a timed automaton.

– Urgent location: Time does not pass while the system is in this location.

– Committed location: Time also does not pass in this location; however, the next transition
must be an outgoing edge from any committed location.

. Edge. An edge connects two locations (or itself), representing the transition between two
states. It involves four types of expressions: select, guard, synchronization, and update.

– Select: The non-deterministic selection of a value within a range.

– Guard: A Boolean expression used to determine the enabling of a transition.

– Synchronization: Synchronization is achieved through channels, using two expressions,
c! and c?, on the channel variable c. The c! expression sends a synchronization signal,
while the c? expression receives it. Synchronization ensures that transitions in different
automata occur simultaneously, allowing for coordinated behavior between concurrent
processes.

– Update: Changing values of variables.

Variables in UPPAAL can be integers, Booleans, clocks, constants, arrays, structs,
channels, or doubles. Integer and Boolean variables capture various aspects of the system,
such as event counts or conditions, and can be read and updated during transitions. Clock
variables manage time, increasing continuously and being reset as needed. They are used in
invariants and guards to enforce timing constraints, ensuring transitions occur within
specific time bounds.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 7/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

Channel is a synchronization mechanism used in timed automata to facilitate
communication between different automata or processes. Channels enable processes to
synchronize their transitions by sending and receiving signals. Channels in UPPAAL are
used as follows:

. channel c: This declares a specific channel named c used for communication.

. c!: This denotes a sending action on channel c. When a process executes c!, it sends a
signal through channel c, indicating that it is ready to synchronize with any process that
is set to receive on this channel.

. c?: This denotes a receiving action on channel c. When a process executes c?, it waits to
receive a signal through channel c and will synchronize its transition with the process
sending the signal.

There are two types of channels in UPPAAL:

. Binary channels: These channels enable one-to-one communication between two
processes. One process will send a signal (c!) while the other process will receive it (c?),
and both processes will synchronize their transitions simultaneously.

. Broadcast channels: These channels allow a signal to be sent to multiple receivers
simultaneously. Any process set to receive the signal will synchronize with the sender.

Time management in UPPAAL is achieved with clocks, which define timing constraints
and conditions for locations and transitions. In our UPPAAL model, we use two clocks, t
and pt. The clock tmanages the candidates’ examination time, specifically during the get,
submit, and accept loop, where the answering process ends when t exceeds a threshold
value, MaxT. The clock ptmanages the entire examination period, covering activities such
as corrAns, register, login, mark, etc. This time management is implemented by
associating clock conditions with channel synchronization, ensuring that synchronization
occurs when the guard conditions involving the clocks are satisfied, and by assigning
invariants to locations to ensure that the process can stay at a location only if the invariant
conditions are met.

Information management in UPPAAL involves updating and synchronizing variables
across different components of the system. Transitions can assign new values to variables,
and channels can be used to synchronize information between concurrent processes. For
example, during a transition, a process might synchronize with another process using a
channel and update a variable to reflect the occurrence of an event. In our UPPAALmodel,
we use several queues to record variable information (such as candidate id, question id, or
answer id) and synchronization information (such as operation type). This method aims to
facilitate further verification processes.

Simulator
The simulator serves the purpose of (1) validating and debugging the model via interactive
and visual step-through behavior, and (2) demonstrating (counter) example/witness
traces/paths. Two types of simulators are available: a symbolic simulator and a concrete

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 8/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

simulator. The symbolic simulator executes “symbolic” transitions, which correspond to
many compressed concrete transitions. While this simulator is very effective, it can be
confusing. In contrast, the concrete simulator uses concrete timings, making it easier to
understand but less effective. Both simulators are used for trace displays: the symbolic
simulator is used for symbolic queries, and the concrete simulator is used for SMC queries.
These simulators offer a variety of operations, including Reset,Next, Prev, Replay, Random,
Shrink, Expand, and Speed Selection. Within the graphical windows, state diagrams and
message sequence charts are presented to enhance the understanding of simulations.

Verifier
The verifier exhaustively explores the state space corresponding to a system model,
checking whether the specified properties are satisfied. The properties are specified using a
specific query language.

Property specification. In UPPAAL, the query language is a subset of timed
computation tree logic (TCTL) language (Alur, 1992). The query language primarily
encompasses five types of path formulae, i.e., E<>p, A<>p, E[]p, A[]p, and p->q, where p
and q are state formulae such as i==4. In UPPAAL, state formulae are logical expressions
used to specify and verify properties of system states. They involve variables, clocks, and
state conditions to check requirements such as safety, liveness, and reachability. For
example, a state formula might ensure that a variable never exceeds a certain value or that a
specific state is eventually reached.

E<>p signifies there exists a path with a state satisfying the predicate p. Note that E
quantifies over paths, while <> quantifies over a state in a path. A<>p indicates that in every
path, there exists a state that satisfies p. E[]p denotes that there exists a path where all
states satisfy p. A[]p signifies that in all paths, all states satisfy p. Finally, p->q means that
whenever p is satisfied, q is also satisfied in future.

Once users define property specifications and click the Check button, the verifier checks
whether the system model satisfies each property.

MODELING ELECTRONIC EXAMINATION USING UPPAAL
In this section, we provide a detailed introduction to the notation, model specification, and
property specification related to electronic examinations.

Notation
There are primarily three data structures: Operation, Item, and TotalScore. We present
their definitions as follows. An operation is a quadruple (id, op, q, a) where:

1) id represents the identifier of a candidate, where id∈Z.
2) op denotes an operation, where op∈ {register, login, get, submit, accept, corrAns, mark,

notify, end, reset}.

3) q indicates a question.

4) a indicates an answer.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 9/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

An operation captures the details of an action performed by a role, encompassing four
types of information: candidate identifier, operation, question, and answer. Each candidate
has a unique identifier. Eleven operations are considered to facilitate interactions among
different roles. The mark, end, and reset indicate distinct phases in an electronic
examination. For example, mark indicates that the examination has concluded, and it is
time for scoring. register and login require only candidate identifier information. corrAns is
used to set the correct answer for each question, necessitating information about the
question. Similarly, notify requires candidate identifier information. Finally, get, submit,
and accept are designated for handling actions such as receiving a question, submitting an
answer, and accepting a submission. An example of a submission operation is provided in
Example 3.1.

Example 3.1. A submission operation, denoted as (cand1, submit, q2, a2), signifies that
the candidate cand1 is submitting an answer a2 in response to question q2.

In the UPPAAL implementation, when certain information is unnecessary, we set the
corresponding value to −1. An example of a correct answer setting operation is illustrated
below.

Example 3.2. A correct answer setting operation is denoted as (−1, corrAns, q3, a3). This
operation indicates the correct answer for a question q3 is set to a3.

For each question, the candidate submits a corresponding answer, and the examiner
marks it according to the correct answer. We define an item as a tuple that associates a
question with the candidate’s answer and the score marked by the examiner. An item is a
triple (q, a, s) where:

1) q represents a question.

2) a represents an answer.

3) s denotes the score corresponding to the question and the answer.

An item exclusively records information about a single question. Consequently, we
further define MarkScore to collect all the items and calculate the total score to notify a
candidate. A candidate is a pair (items, total) where:

1) items indicates a set of items.

2) total denotes the total score with respect to the items.

After defining the above concepts and encoding them into declarations in UPPAAL, we
can construct a series of models for an electronic examination system using these data
structures.

Model specification
In UPPAAL, the model specification is presented in the form of timed automata templates.
In our model, there are four templates corresponding to the candidate, administrator,
invigilator, and examiner, as follows.

Candidate template
A candidate is an individual taking the examination as shown in Fig. 2. Initially, the
candidate must register with the administrator using the register[i]! synchronization.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 10/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

Following a permission check, the candidate can log in to commence the examination. The
current question number, denoted as q_cnt, is initialized to 0. The candidate engages in a
loop where they receive a question, submit its answer, and confirm the acceptance of the
answer.

The get[i]? synchronization is used to acquire questions sequentially from the
invigilator. Upon obtaining a question, the question number is recorded in cand, a data
structure implementing a set of candidates. After receiving to the question, the candidate
uploads the answer using the submit[i]! synchronization.

When there is a submission, the synchronization occurs using Submit[i]! and then
the function SetA(i, ans[i][q_cnt[i]]) is executed. Due to UPPAAL not directly
supporting string types, integers are used to denote answers. The Candidate template is
parameterized to directly set the candidates’ answers.

//set a current answer of candidate i

SetA(ID i, ANS a){

cand[i].item[q_cnt[i]].a = a;

}

The SetA(ID i, ANS a) function assigns the answer a (which is set when a Candidate
template is instantiated) to the current question item of the candidate identified by i.
Specifically, it updates the answer field a in the item structure for the candidate i at their
current question count q_cnt[i]. This helps in managing and recording the candidates’
answers during an electronic examination.

To ensure acknowledgment of the answer by the invigilator, the candidate uses an
accept[i]? synchronization. When the examination time expires (t > MaxT) or the
candidate has completed all their answers (i.e., the number of answered questions equals or
exceeds Q, where Q is the total number of questions), the candidate transitions to the
Notify location to await their scores, and the cend[i] flag is set to true. Finally, upon
receiving notification of their scores through the notify[i]? synchronization, the
candidate reaches the End location. Subsequently, all states are reset using the reset?

Figure 2 Candidate template. Full-size DOI: 10.7717/peerj-cs.2377/fig-2

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 11/39

http://dx.doi.org/10.7717/peerj-cs.2377/fig-2
http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

synchronization. The examination process ends when all candidates have been notified of
their scores, as explained in the “Preliminaries” section.

Upon reaching the End location, we use reset? to reinitialize a candidate. The reset is
a broadcast channel. All candidates, the invigilator, and the examiner can only be reset
after the Administrator sends a reset! signal. This ensures that the system is restored
to its initial state.

Administrator template
The administrator is responsible for information management, encompassing
initialization, correct answer setting, and registration information maintenance, as shown
in Fig. 3. Before any processes, the administrator automaton must initialize all necessary
variables and reach the Ready location. Through the corrAns synchronization, correct
answers to questions are set. Subsequently, the administrator automaton moves to the
Start location, signifying the commencement of the examination. Concurrently, a start
operation, encoded as (-1, 0, -1, -1), is added to the T queue. Note that the entire
examination time is controlled by the state invariant (pt ≤ ExpT).

In our system, queues are used to manage various operations related to candidates
during the electronic examination process. Four instances of OpQueue are declared to
categorize different types of operations: T for total operations, R for register operations, S
for submit operations, and A for accept operations. Each queue stores operations that are
performed during the examination, such as registering candidates, submitting answers,
and accepting results. These structures and instances collectively facilitate the organized
and efficient processing of tasks within the system.

//T: Total, R: Register, S: Submit, A: Accept

OpQueue T, R, S, A;

The OpQueue structure represents these queues and includes fields for storing
operations and managing the front and rear of the queue. The OpQueue structure manages
a queue of Operation elements, using an array (Operation data[MaxSize]) to store
the elements of the queue, with front and rear indices indicating the head and tail of the
queue, respectively. The OpQueue structure is defined as follows:

Figure 3 Administrator template. Full-size DOI: 10.7717/peerj-cs.2377/fig-3

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 12/39

http://dx.doi.org/10.7717/peerj-cs.2377/fig-3
http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

//OpQueue Type

typedef struct{

Operation data[MaxSize]; //store the elements of a queue

int front; //queue head

int rear; //queue tail

}OpQueue;

Each OpQueue can store multiple operations, where each operation is represented by the
Operation structure. The fields in Operation include id for the identifier of a candidate,
op for the type of operation (e.g., register, submit), q for the question identifier, and a

for the answer provided by the candidate. The operation type is encoded by integer values,
such as −1 for none, 0 for start, 1 for register, 2 for login, and so on, up to 10 for
reset. Note that the use of numeric values for operation types is necessary because
UPPAAL does not support string types.

//Operation Type

typedef struct{

NCID id; //candidate id

OpType op;//operation type: -1: none, 0: start, 1: register,

2: login, 3: get, 4: submit,

5: accept, 6: corrAns, 7: mark,

8: notify, 9: end, 10: reset

NCQS q; //question id

ANS a; //answer id

}Operation;

We initialize and manage these queues using various functions. Their declarations are as
follows and more information about implementations can be found in the GitHub site
(Zhou, 2024). We briefly introduce their functionality here. The InitOpQueue function
initializes a queue by setting all operation fields to default values and resetting the front and
rear indices. The EnOpQueue function adds a new operation to the queue. The
FindElement function determines whether an operation with candidate identifier xi
belongs to the Q queue. The FindOperation function determines whether an operation
belongs to the Q queue based on all operation fields.

//Initialize an OpQueue

void InitOpQueue(OpQueue& q)

//Add an element to an OpQueue

bool EnOpQueue(OpQueue& q, int xi, int xop, NCQS xq, int xa)

//Find an element in an OpQueue according to identifier

bool FindElement(OpQueue q, int xi)

//Find an element in an OpQueue according to all operation fields

bool FindOperation(OpQueue q, int xi, int xop, int xq, int xa)

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 13/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

When a candidate requests registration in the examination system, the administrator
checks whether the candidate has already registered. If not, the candidate’s registration
information is stored in the R queue. Additionally, a register operation, encoded as (i,
1, -1, -1), is enqueued to the T queue. The (i, 1, -1, -1) tuple encodes that candidate
i has been registered, with 1 indicating the regist operation. The question and answer
fields are set to -1, denoting “none”, as this information is not required for the registration
process. Finally, when the examiner confirms that all automata have reached an End

location through the end synchronization, the administrator issues an instruction to reset
all automata.

Invigilator template

An invigilator oversees the examination proceedings, taking on the responsibility of
checking candidates’ logins, dispatching questions to candidates, receiving and confirming
the submission of answers, as shown in Fig. 4.

Initially, as candidates log in, the system transitions to the Login location. Once all
candidates are prepared for the examination (i.e., the number of logged-in candidates
equals N), the invigilator synchronizes with candidates using get[i]! and SetQ to
transmit and update the questions. Simultaneously, a get operation, represented as (i, 3,
GetQ(i), GetA(i)), is placed into the T queue.

Upon a candidate submitting an answer, the invigilator checks their registration. If
confirmed, the submit[i]? synchronization takes place, and a submit operation,
encoded as (i, 4, GetQ(i), GetA(i)), is queued. The local variable isa is used to store
the current candidate id to avoid any potential confusion. Subsequently, the automaton
reaches the Submit location. Through the accept[isa]! synchronization, the invigilator

Figure 4 Invigilator template. Full-size DOI: 10.7717/peerj-cs.2377/fig-4

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 14/39

http://dx.doi.org/10.7717/peerj-cs.2377/fig-4
http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

notifies the candidate that their answer to the question has been received. Additionally, the
accept operation is added to the T queue, and the question counter is updated.

Finally, if all candidates have responded to all questions, the invigilator automaton
advances to the End location, notifies the examiner that the marking process can
commence, and sets the iend flag to true. Note that if there is a timeout (t > MaxT),
regardless of whether it occurs at the Submit or Process location, the system will
transition to the End location immediately.

Examiner template
An examiner is responsible for setting the correct answers to questions, evaluating
candidates’ responses, and communicating their scores to the candidates, as shown in
Fig. 5. Initially, the examiner employs the corrAns synchronization to provide the correct
answers before the examination, and a corrAns operation, represented as (-1, 6, -1,
-1), is inserted into the T queue. In the meantime, the CorrAns function is executed,
which sets the correct answers for the questions. The ca[Q] is an array of type CAS, where
CAS is of type int. This means that each question has a correct answer. Due to the array’s
characteristics, the identifiers of the Q questions range from 0 to Q-1. For simplicity, we
assume that each correct answer is set to the question’s identifier, as our purpose is to
analyze the model rather than use real information. However, the correct answer array can
be set to any integer values.

//correct answers type

typedef int CAS;

//the question with id belongs to [0, Q-1] having a correct answer

CAS ca[Q];

//Set correct answers ca[Q] to questions

void CorrAns(CAS& ca[Q]){

Figure 5 Examiner template. Full-size DOI: 10.7717/peerj-cs.2377/fig-5

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 15/39

http://dx.doi.org/10.7717/peerj-cs.2377/fig-5
http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

int i;

for(i = 0; i < Q; i++)

ca[i] = i;

}

Subsequently, upon receiving the synchronization signal mark?, the examiner assesses
each candidate. A mark operation, encoded as (-1, 7, -1, -1), is then added to the T
queue. The marking process is achieved by executing the MarkScore function. The
MarkScore function is used to evaluate and assign scores to each candidate based on their
answers. The function iterates through all candidates and their respective answers,
comparing each candidate’s answer with the correct answer stored in the ca array. If a
candidate’s answer matches the correct answer, the score (cand[i].item[j].s, where i
denotes the candidate identifier and j denotes the question identifier) for that question is
set to 1; otherwise, it is set to 0. The function also calculates the total score (cand[i].
total) for each candidate by summing the scores of all their answers.

//mark socres and the total score for every candidate

void MarkScore(CandidateType& cand[N], CAS& ca[Q]){

int i, j, k;

for(i = 0; i < N; i++)

{

cand[i].total = 0;

for(j = 0; j < Q; j++)

{

if(cand[i].item[j].a == ca[j])

cand[i].item[j].s = 1;

else

cand[i].item[j].s = 0;

cand[i].total = cand[i].total + cand[i].item[j].s;

}

}

}

Note that the cand variable represents an array of type CandidateType, corresponding
to candidate introduced in “Preliminaries”. The CandidateType type comprises two
elements: item[Q] and total. The item array is of type ItemType, which includes the
question (q), the answer (a), and the score (s). The total element represents the sum of
scores for all questions answered by the candidate.

//Candidate Type

typedef struct{

ItemType item[Q]; //items

int total; //total score: sum(s[Q])

}CandidateType;

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 16/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

CandidateType cand[N];

//Item Type

typedef struct{

NCQS q; //question

ANS a; //answer

MS s; //score

}ItemType;

The ComputeSMatrix function is executed simultaneously with the mark
synchronization. This function computes the similarity of answers between candidates for
subsequent cheater detection. We consider a simplified version of cheater detection by
referring to the approach described in Kassem, Falcone & Lafourcade (2017). In our article,
if two candidates have a high number of the same answers, it may indicate a cheating event.
The ComputeSMatrix function computes the similarity matrix for a set of candidates. It
compares the answers of each pair of candidates for all questions. If two candidates have
the same answer for a question, the similarity score for that pair is incremented. This
results in a matrix (sm) where each element sm[i][j] represents the number of questions
for which candidates i and j provided the same answer.

//compute Similarity Matrix

void ComputeSMatrix(CandidateType& cand[N]){

int i, j, k;

for(i = 0; i < N; i++)

for(j = i + 1; j < N; j++)

for(k = 0; k < Q; k++)

if(cand[i].item[k].a == cand[j].item[k].a)

sm[i][j]++;

}

Following the evaluation, the examiner uses the notify[imn]! synchronization to
inform candidates of their scores. Finally, all candidates are notified of their scores (i.e.,
imn ≥ N).

System declaration
Based on the four UPPAAL templates mentioned above, a comprehensive system can be
generated by interconnecting these timed automata into a network. The system declaration
is presented as follows. The following code snippet initializes the main components of the
electronic examination system. C0 and C1 represent two candidates, initialized with the
identifiers 0 and 1, respectively. Assume there are three questions, with the answers for C0
and C1 set to {0, 1, 2} and {2, 1, 0}, respectively. AD is the administrator, I is the
invigilator, and E is the examiner. The system statement combines these components into a
single system, enabling interaction between candidates, the administrator, the invigilator,
and the examiner during the electronic examination process. Here, we have instantiated
two candidates and additional candidates can be added in a similar manner.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 17/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

//Template instantiations

const array answer = {{0, 1, 2}, //candidates′ answers

{2, 1, 0}};

C0 = Candidate(0, answer);

C1 = Candidate(1, answer);

AD = Administrator();

I = Invigilator();

E = Examiner();

//System Declaration

system C0, C1, AD, I, E;

Property specifications
A trustworthy electronic examination system must adhere to a set of properties to ensure
reliability. These properties can be articulated through formal specifications. According to
the literature (Kassem, Falcone & Lafourcade, 2017), we consider the following twelve
properties, which are encoded using a simplified version of TCTL, serving as property
specifications in UPPAAL.

(1) No deadlock
In the electronic examination model, the absence of deadlocks is crucial to prevent any

“never-ending” scenarios. Deadlocks, where processes wait indefinitely for each other,
disrupt the system’s flow. By implementing effective process synchronization and careful
system design, we ensure a smooth examination experience, free from any prolonged or
unresolved situations. Describing the absence of deadlocks in UPPAAL as a query is
straightforward:

A[] not deadlock

(2) Candidate registration
The candidate registration property requires that a candidate can submit an answer only

if they have registered. This assertion is verified using two queues, namely R and S,
dedicated to storing register and submit operations, respectively. The query is
formulated as follows, where forall(i:ID) denotes every candidate, and FindElement

(Q, i) is a function that determines whether an operation with candidate identifier i
belongs to the Q queue. The candidate registration property emphasizes that submission is
contingent upon prior registration, and this condition is rigorously checked through the R
and S queues.

A[] forall (i:ID) not (not FindElement(R,i) and

FindElement(S,i))

The query asserts that for every state within each path of the state space, there is no
instance where an operation exists in the S queue but is absent in the R queue. In simpler
terms, it implies that no candidate can submit without first registering.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 18/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

(3) Candidate eligibility
The candidate eligibility property signifies that a candidate’s answer can be accepted

only if they have registered. To formulate this query, we use two queues R and A,
specifically for the register and accept operations. The query is expressed as follows.

A[] forall (i:ID) not (not FindElement(R,i) and

FindElement(A,i))

In this query, for every state within each path of the state space, there is no instance
where an operation exists in the A queue but is absent in the R queue. In other words, it
asserts that if a candidate does not register, their answer cannot be accepted.

(4) Answer authentication
The answer authentication property requires that a candidate’s answer can be accepted

only if they have submitted the answer. To articulate this query, we use two queues for
submit and accept operations, denoted as S and A respectively. The query is formulated
as follows.

A[] forall (i:ID) not (not FindElement(S,i) and

FindElement(A,i))

This query asserts that, for every state within each path of the state space, there is no
instance where an operation exists in the A queue but is absent in the S queue. In essence, it
emphasizes that if a candidate does not submit an answer, that answer cannot be accepted.

(5) Answer singularity
The answer singularity property signifies that, for each candidate, only a singular

response can be deemed acceptable per question. The function OneAnswerEachQuestion

is designed to verify the presence of operations within queue A that share identical
questions.

A[] forall(i:ID) OneAnswerEachQuestion(A, i)

The query checks each state within every path of the state space, ensuring that the
OneAnswerEachQuestion function consistently yields true. This indicates that, for each
question, only a single response is admissible from a given candidate. The
OneAnswerEachQuestion function is implemented as follows.

//check whether only one answer for every question xq from a candidate xi is

accepted in an OpQueue

bool OneAnswerEachQuestion(OpQueue q, int xi)

{

int xq;

int i, j;

for(xq = 1; xq < Q + 1; xq++)

for(i = q.front; i < q.rear; i++)

for(j = i + 1; j < q.rear; j++)

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 19/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

if(q.data[i].id == xi && q.data[j].id == xi && q.

data[i].q == xq && q.data[j].q == xq)

return false;

return true;

}

The OneAnswerEachQuestion function checks whether each candidate has provided
only one answer per question in an OpQueue. It iterates through the queue, and for each
question, it verifies that no candidate has submitted more than one answer. If a candidate is
found to have multiple answers for the same question, the function returns false; otherwise,
it returns true.

(6) Acceptance assurance
The acceptance assurance property specifies the requirement that an answer submitted

by a candidate should be accepted if the candidate’s examination time has not expired. In
this context, emphasis is placed on the initial submission, implying that the first submit
operation related to a question from a candidate is succeeded by an accept operation. The
following FirstSubmitFollowAccept function describes this query.

A[] forall(i:ID) FirstSubmitFollowAccept(T, i)

In this query, for each state in every path of the state space, the
FirstSubmitFollowAccept function consistently yields true. This implies that, after the
first submission of an answer from a candidate, the invigilator accepts the answer. The
FirstSubmitFollowAccept function is implemented as follows.

//check whether the first occurrence of submit is followed by accept from a

candidate xi is accepted in an OpQueue if the candidate's examination time

has not expired

bool FirstSubmitFollowAccept(OpQueue q, int xi)

{

int i;

OpQueue tmp; //tmp records the first "submit" of a candidate and a

question

InitOpQueue(tmp);

for(i = q.front; i < q.rear + 1; i++)

{

if(q.data[i].id == xi && q.data[i].op == 4 &&

!FindOperation(tmp, xi, 4, q.data[i].q, -1) && i < q.rear && cexpire[xi] !=

true) //"!FindOperation" checks whether it is the first "submit" of

candidate xi

{

if((q.data[i+1].id != xi || q.data[i+1].op != 5 || q.

data[i+1].q != q.data[i].q) && (q.data[i+1].id != -1 && q.data[i+1].op !=

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 20/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

-1 && q.data[i+1].q != -1)) //except the sequence "{4,2,2,3},{-1,-1,-1,

-1}", where {-1,-1,-1,-1} is a default operation

return false;

EnOpQueue(tmp, xi, 4, q.data[i].q, -1);

}

}

return true;

}

The FirstSubmitFollowAccept function checks whether the first occurrence of a
submit operation by a candidate is immediately followed by an accept operation for the
same question in an operation queue (OpQueue). It initializes a temporary queue to keep
track of the first submit operations for each question by the candidate. As it iterates
through the main queue, it verifies that each submit operation is followed by a
corresponding accept operation. Note that the cexpire[xi] != true expression is used
to exclude the scenario where the candidate’s examination time has expired, as this
property does not apply in such cases. If any submit operation is not followed by an
accept operation, the function returns false. If all submit operations are followed by
accept operations, the function returns true.

(7) Question ordering
The question ordering property emphasizes that a candidate can proceed to the next

question only after the answer to the current question is accepted. The GetAcceptGet
function formulates this property by specifying that a get operation for question i is
succeeded by an accept operation for the answer to question i. Furthermore, the accept
operation is succeeded by a get operation for question i+1. It is important to note that the
handling of the last question involves a special consideration.

A[] forall(i:ID) GetAcceptGet(T, i)

The aforementioned query signifies that, for each state in every path of the state space,
the sequence of operations, namely get(i)-accept(i)-get(i+1), remains unbroken.
Consequently, this ensures that a candidate can systematically answer questions one after
another. The GetAcceptGet function is implemented as follows.

//check whether get(xi, q) is followed by accept(xi, q) and accept(xi, q) is

followed by get(xi, q + 1) in an OpQueue

bool GetAcceptGet(OpQueue q, int xi)

{

int i, j, k;

bool flag1 = 0;

bool flag2 = 0;

for(i = q.front; i < q.rear - 1; i++)

{

if(q.data[i].id == xi && q.data[i].op == 3)

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 21/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

{

flag1 = 0; //ensure that it is the first accept(xi, q) after

get(xi, q).

for(j = i + 1; j < q.rear; j++)

{

if(q.data[j].id == xi && q.data[j].op == 5 && flag1 ==

0)

{

if(q.data[j].q != q.data[i].q)

return false;

flag1 = 1; //find the first accept(xi, q) after get

(xi, q), set flag1 to 1.

flag2 = 0; //ensure that it is the first get(xi, q+1)

after accept(xi, q).

for(k = j + 1; k < q.rear + 1; k++)

{

if(q.data[k].id == xi && q.data[k].op == 3 &&

flag2 == 0)

{

if(q.data[k].q != q.data[i].q + 1)

return false;

flag2 = 1; //find the first get(xi, q+1) after

accept(xi, q), set flag2 to 1. For the OpQueue {5, 2, 1, 0}, : : : , {3, 2, 2,

0}, : : : , {3, 2, 3, 0}, the {3, 2, 3, 0} should not be considered.

}

}

}

}

}

}

return true;

}

The GetAcceptGet function checks the sequence of operations for a candidate in an
operation queue (OpQueue). Specifically, it verifies whether a get operation (get(xi, q))
is followed by an accept operation (accept(xi, q)) and then by another get operation
(get(xi, q + 1)) for the same candidate. The function iterates through the queue, setting
flags to ensure that it correctly identifies and validates these sequences. If all sequences are
correctly followed, the function returns true; otherwise, it returns false.

(8) Exam availability
The exam availability property requires that the acceptance of an answer from a

candidate is permissible only during the examination period. This implies the presence of

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 22/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

an accept operation between the start operation and the end operation within the T
queue. This property is specified using the StartAcceptEnd function in the following
query.

A[] StartAcceptEnd(T)

The query checks whether the StartAcceptEnd function is satisfied for every state in
every path of the state space. Given the singular occurrence of both the Start and End

operations, we abstractly take the sequence spanning from Start to End as the
examination period. The StartAcceptEnd function is implemented as follows.

//check whether every accept is preceded by start and followed by end in an

OpQueue

bool StartAcceptEnd(OpQueue q)

{

int i, j;

for(i = q.front; i < q.rear; i++)

{

if(q.data[i].op == 5)

for(j = i + 1; j < q.rear + 1; j++)

if(q.data[i].op == 0)

return false;

if(q.data[i].op == 9)

for(j = i + 1; j < q.rear + 1; j++)

if(q.data[j].op == 5)

return false;

}

return true;

}

The StartAcceptEnd function checks whether every accept operation (op == 5) in
an OpQueue is preceded by a start operation (op == 0) and followed by an end operation
(op == 9). It iterates through the queue to ensure that each accept operation has a
preceding start operation and no subsequent accept operation after an end operation.
If these conditions are met, the function returns true; otherwise, it returns false.

(9) Answer-score integrity
The answer-score integrity property ensures that the correct answer cannot be modified

after the examination starts. This property is captured as the following NoStartCorrAns
function in the query.

A[] NoStartCorrAns(T)

This query guarantees that no corrAns operation is succeeded by start in the T queue,
signifying that the correct answers can only be set before the commencement of an
examination. The NoStartCorrAns function is implemented as follows.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 23/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

//check whether no corrAns is followed by start in an OpQueue

bool NoStartCorrAns(OpQueue q)

{

int i, j;

for(i = q.front; i < q.rear; i++)

if(q.data[i].op == 0)

for(j = i + 1; j < q.rear + 1; j++)

if(q.data[j].op == 6)

return false;

return true;

}

The NoStartCorrAns function checks whether there are no start operations (op ==

0) that follow a corrAns operation (op == 6) in an OpQueue. It iterates through the queue
and ensures that if a start operation is encountered, no subsequent corrAns operations
are found. If any corrAns operation is found after a start operation, the function returns
false; otherwise, it returns true.

(10) Cheater detection
During an examination process, cheating may take place, e.g., one candidate copies the

answers of the other candidate. In this article, we only consider the basic form of cheating,
namely copying. The NoDistanceExceed function is employed to verify this property.

A[] NoDistanceExceed(sm)

To assess the answer similarity between two candidates, a matrix, denoted as sm[i][j],
is computed to measure the degree of similarity between candidate i and candidate j. If
sm[i][j] > D where D is a constant representing the tolerance for duplication, the
NoDistanceExceed function returns false, indicating a potential cheating event. Here, the
sm[i][j] corresponds to the count of same answers between candidate i and candidate j.
The NoDistanceExceed function is implemented as follows.

//check whether there exists a distance between two candidates is greater

than D

bool NoDistanceExceed(int sm[N][N])

{

int i, j;

for(i = 0; i < N; i++)

for(j = 0; j < N; j++)

if(sm[i][j] > D)

return false;

return true;

}

Here, we consider a simplified cheater detection method based on the approach
described in Kassem, Falcone & Lafourcade (2017). This method detects potential cheating

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 24/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

by evaluating the similarity in answers between two candidates. We parameterized the
Candidate template to allow setting the candidates’ answers. For instance, if there are
three questions and the answers for candidates C0 and C1 are {0, 1, 2} and {0, 1, 2}

respectively, their answer similarity is 3, as computed by the ComputeSMatrix function. If
the minimum allowed distance between candidates’ answers is 2, then the cheater
detection property is not satisfied. Conversely, if the answers for candidates C0 and C1 are
{0, 1, 2} and {2, 1, 0}, their answer similarity is 1, and the cheater detection property is
satisfied (this case is shown in our verification results).

(11) Marking correctness.
The marking correctness property asserts that once marking has occurred, the correct

answers cannot be modified. This property is verified by the following query, using a
function named NoCorrAnsMark.

A[] NoCorrAnsMark(T)

This query ensures that no corrAns operation is succeeded by the mark operation in
the T queue, preventing any modification of correct answers during the marking process.
The NoCorrAnsMark function is implemented as follows.

//check whether no corrAns is followed by mark in an OpQueue

bool NoCorrAnsMark(OpQueue q)

{

int i, j;

for(i = q.front; i < q.rear; i++)

if(q.data[i].op == 7)

for(j = i + 1; j < q.rear + 1; j++)

if(q.data[j].op == 6)

return false;

return true;

}

The NoCorrAnsMark function checks whether no corrAns operation (op == 6) is
followed by a mark operation (op == 7) in an OpQueue. It iterates through the queue to
ensure that if a mark operation is found, there is no subsequent corrAns operation. If this
condition is met for all mark operations, the function returns true; otherwise, it returns
false.

(12) Mark integrity.
The mark integrity property ensures that each candidate receives notification after

marking, and all answers from candidates are duly marked. The verification of this
property is performed through the MarkIntegrity function as follows.

A[] MarkIntegrity(T)

The MarkIntegrity function consists of two subfunction, namely NoNotifyMark and
AllMarked. NoNotifyMark assesses whether there is no notify operation preceding a

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 25/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

mark operation. Simultaneously, AllMarked determines whether all the answers have
been appropriately marked. Through these checks, the integrity of the marking process is
assured. The MarkIntegrity function is implemented as follows.

//check the integrity of the marking process

bool MarkIntegrity(OpQueue q)

{

if(FindOperation(q, 9, -1, -1, -1))

if(NoNotifyMark(q) && AllMarked())

return true;

else

return false;

else

return true;

}

The MarkIntegrity function checks the integrity of the marking process in an
OpQueue. It first checks if an end operation (op == 9) is present in the queue using the
FindOperation function. If an end operation is found, it then verifies that no notify

operation is followed by an unmarked answer (using NoNotifyMark(q)) and that all
answers have been marked (using AllMarked()). If both conditions are met, the function
returns true; otherwise, it returns false. If no end operation is found, the function returns
true. The NoNotifyMark and AllMarked functions are implemented as follows.

//check whether no mark is followed by notify in an OpQueue

bool NoNotifyMark(OpQueue q)

{

int i, j, k;

int c;

for(k = 0; k < N; k++)

for(i = q.front; i < q.rear; i++)

if(q.data[i].op == 8 && q.data[i].id == k)

{

c = q.data[i].id;

for(j = i + 1; j < q.rear + 1; j++)

if(q.data[i].op == 7 && q.data[i].id == c)

return false;

}

return true;

}

The NoNotifyMark function checks whether a notify operation (op == 8) for any
candidate is not followed by a mark operation (op == 7) for the same candidate in an
OpQueue. It iterates through the queue to ensure that after a notify operation is found for

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 26/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

a candidate, no subsequent mark operation exists for that candidate. If this condition is
met for all notify operations, the function returns true; otherwise, it returns false.

//check whether all the answers are marked (i.e., score is not -1) for every

candidate

bool AllMarked()

{

int i, j;

for(i = 0; i < N; i++)

for(j = 0; j < Q; j++)

if(cand[i].item[j].s == -1)

return false;

return true;

}

The AllMarked function checks if all answers for every candidate have been marked. It
iterates through all candidates and their respective answers, returning false if any score is
-1 (indicating the answer has not been marked). If all scores are valid (not -1), the
function returns true.

VALIDATION AND VERIFICATION IN UPPAAL
In our study, we use UPPAAL to rigorously verify the reliability of our electronic
examination model. This includes evaluation metrics, verification results, and security
aspects. Specially, the validation and verification process involved simulating a scenario
and verifying key properties to ensure the model meets the required standards for an
electronic examination system.

Evaluation metrics
To evaluate the robustness and effectiveness of our electronic examination model, we used
two evaluation metrics, focusing on functionality. These include:

. Model consistency: Ensuring that the model consistently adheres to a general
examination process and validating that it aligns with common-sense understanding
through simulations and manual checks.

. Property verification: Verifying key properties such as candidate registration, answer
authentication, and exam availability, which are crucial for maintaining the reliability
and integrity of electronic examinations.

While these metrics provide a comprehensive understanding of the model’s reliability,
there are certain limitations. The model is based on theoretical scenarios and simulations,
which may not cover all real-world complexities. Performance under extreme conditions
or with many candidates is yet to be fully assessed. These limitations highlight areas for
future improvement and suggest further validation under diverse real-world conditions.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 27/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

Validation and verification results
To ensure the reliability of our electronic examination model, we conducted a verification
process on the specified property specifications using UPPAAL. The verification
experiment is performed on a computer equipped with an Intel(R) Core(TM) i7-1360P,
2,200 Mhz, running Java 17.0.7, and using UPPAAL version 5.0.0.

In our experiment, we focused on a scenario involving two candidates. It’s noteworthy
that more complex setups with additional candidates share similarities with this specific
instance. The parameter configurations, detailed in Table 1, encompass a total of eight
parameters. N is set to 2, indicating two candidates. Q is set to 3, denoting three questions. M
is set to 2, signifying two scores. MaxSize is set to 50, indicating the maximum size of a
queue is 50. MaxT is set to 1,000, denoting the maximum time (exam time) as 1,000. ExpT is
set to 10,000, indicating the expiration period of the entire examination process (including
setting correct answers, registration, and marking, etc.). Finally, the minimum permissible
distance between candidates’ answers is set to 2, denoted as D, and the upper limit value of
answers is set to 10, denoted as U.

As shown in Fig. 6, we simulate the electronic examination in this scenario using
UPPAAL and validate the model consistency of the examination process with colleagues.
Based on their feedback, our model conforms to common-sense understanding of general
electronic examination process.

Table 2 and Fig. 7 present the verification results of our electronic examination model
using UPPAAL. Each property listed in the table corresponds to a specific aspect of the
system’s functionality that was verified. The results include the verification time, kernel
time, total time, resident memory, and virtual memory peak for each property. The
“Satisfied” result indicates that the property was successfully verified, meeting the specified
criteria.

The properties verified include ensuring that the system does not reach a state where no
further progress is possible (No deadlock); verifying that a candidate can only submit an
answer if they have registered (Candidate registration); ensuring that only registered
candidates can participate in the examination (Candidate eligibility); confirming that a
candidate’s answer is accepted only if it has been submitted (Answer authentication);

Table 1 Parameter settings.

Parameter Value Meaning

N 2 The number of total candidates

Q 3 The number of total questions

M 2 The number of total scores

MaxSize 50 The max size of a queue

MaxT 1,000 The candidates’ examination time

ExpT 10,000 The expiration period of the entire examination process (including setting correct answers, registration, and marking, etc.)

D 2 The minimum permissible distance between candidates’ answers

U 10 The upper limit value of answers

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 28/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

Figure 6 Simulation and validation. Full-size DOI: 10.7717/peerj-cs.2377/fig-6

Table 2 Verification results.

No. Property Verification time/Kernel time/Total time (s) Resident memory/Virtual memory peak (KB) Result

(1) No deadlock 0.265 s/0 s/0.518 s 39,760 KB/105,400 KB Satisfied

(2) Candidate registration 0.032 s/0 s/0.398 s 40,248 KB/106,356 KB Satisfied

(3) Candidate eligibility 0.03l s/0 s/0.435 s 39,972 KB/105,948 KB Satisfied

(4) Answer authentication 0.047 s/0 s/0.43 s 39,980 KB/105,964 KB Satisfied

(5) Answer singularity 0.03l s/0.015 s/0.536 s 39,892 KB/105,792 KB Satisfied

(6) Acceptance assurance 0.344 s/0 s/0.892 s 39,836 KB/105,708 KB Satisfied

(7) Questions ordering 0.218 s/0 s/0.613 s 39,868 KB/105,744 KB Satisfied

(8) Exam availability 0.047 s/0 s/0.496 s 39,896 KB/106,056 KB Satisfied

(9) Answer-score integrity 0.094 s/0 s/0.407 s 39,912 KB/106,076 KB Satisfied

(10) Cheater detection 0.188 s/0 s/0.347 s 39,924 KB/105,908 KB Satisfied

(11) Marking correctness 0.109 s/0 s/0.413 s 39,900 KB/105,920 KB Satisfied

(12) Mark integrity 0.031 s/0 s/0.425 s 40,136 KB/106,596 KB Satisfied

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 29/39

http://dx.doi.org/10.7717/peerj-cs.2377/fig-6
http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

ensuring that each candidate can submit only one answer per question (Answer
singularity); verifying that all submitted answers are accepted when no examination time
expiration (Acceptance assurance); ensuring that candidates receive and answer questions
in the correct order (Questions ordering); confirming that the exam is available during the
specified period (Exam availability); ensuring that correct answers cannot be modified
after the exam starts (Answer-score integrity); detecting any potential cheating by

Figure 7 Verification results. Full-size DOI: 10.7717/peerj-cs.2377/fig-7

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 30/39

http://dx.doi.org/10.7717/peerj-cs.2377/fig-7
http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

comparing answers between candidates (Cheater detection); ensuring that correct answers
cannot be changed after marking has begun (Marking correctness); and verifying that all
answers are marked and candidates are notified of their scores (Mark integrity).

These verification results demonstrate that our model meets the essential requirements
for a reliable electronic examination system. The detailed metrics provide insights into the
efficiency and resource usage of the verification process.

Security aspects
The security of electronic examination systems is paramount to ensure the integrity and
fairness of the examination process. Our model incorporates several security properties to
address potential threats and vulnerabilities:

. Candidate authentication and eligibility: Ensures that only registered candidates can
participate in the examination and have their answers accepted. This is verified through
the Candidate Registration (Property 2) and Candidate Eligibility (Property 3)
properties.

. Data integrity and confidentiality: Ensures that examination data, such as questions
and answers, are protected from unauthorized modification and are only accessible
during the examination period. This is verified by the Answer Authentication (Property
4), Answer-Score Integrity (Property 9), and Exam Availability (Property 8) properties.

. Cheating prevention: Measures are implemented to detect and prevent cheating. The
Cheater Detection property checks for answer similarity between candidates to identify
potential cheating (Property 10).

. Non-repudiation and accountability: Ensures that actions taken during the
examination process can be traced back to specific participants. This is supported by the
Acceptance Assurance (Property 6), Marking Correctness (Property 11), and Mark
Integrity (Property 12) properties.

. Order and consistency: Ensures that candidates proceed in a specified order and that
each question receives only one answer. This is verified through the Question Ordering
(Property 7) and Answer Singularity (Property 5) properties.

By integrating these security properties into the UPPAALmodel, we enhance the overall
reliability of the electronic examination system, providing a robust framework for secure
digital assessments.

RELATED WORK
Enhancing the reliability and security of examinations is a crucial prerequisite to
ensure accurate assessments of learners’ knowledge and abilities. In the realm of
electronic examinations, these properties become even more pivotal due to the
incorporation of digital techniques. This overview summarizes existing research on the
design of electronic examination process and the application of formal methods for
electronic examination.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 31/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

Design of electronic examination process
The design of electronic examination process encompasses the analysis of learner
requirements and the construction of a robust system structure. Many researchers are
dedicated to the meticulous process of requirement analysis and the implementation of
frameworks for electronic examination systems.

Muzaffar et al. (2021) presented a systematic literature review of online examination,
identified five leading features, discussed 16 important techniques/algorithms, 11 datasets
as well as 21 online exam tools and investigated the participation of countries in online
exam research. Butler-Henderson & Crawford (2020) reviewed the contemporary literature
on online examinations and explored nine key themes, including student perceptions,
student performance, anxiety, cheating, staff perceptions, authentication and security,
interface, design and technology issues. Ilgaz & Afacan Adanır (2020) analyzed learners’
academic achievement and perceptions in online exams at a public state university,
showing that learners report positive attitudes towards online exams and that there was no
statistically significant difference in the students’ academic achievement in online and
traditional exams. Jiang et al. (2019) proposed a web-based online examination system
using PHP, Ajax and other technologies, which has been applied to a course involving
more than 1,000 students per semester at Guangzhou University of Foreign Studies.

Specifically, certain research endeavors concentrate on the various facets of cheating
within electronic examination systems. Li et al. (2021) developed an optimization-based
anti-collusion approach for distanced online testing (DOT) by minimizing the collusion
gain, which can be coupled with other techniques for cheating prevention. Ngqondi,
Maoneke & Mauwa (2021) used a literature review to understand academic fraud and
respective security measures and propose a framework of online examinations for South
African universities. Noorbehbahani, Mohammadi & Aminazadeh (2022) presented a
systematic review of research on cheating in online exams from 2010 to 2021, showed the
categorization of the research and discussed topic trends in the field of online exam
cheating.

Analyzing requirements and implementing systems are crucial elements; however, the
absence of essential quality assurance presents challenges for electronic examination
systems that prioritize fairness. The application of formal methods proves beneficial in
ensuring the reliability and security of the software process. The integration of formal
methods into electronic examination systems significantly contributes to enhancing the
overall system.

Formal methods for electronic examination
Formal methods cover the use of mathematically precise notations to specify and to reason
about systems (Marmsoler, 2022). These methods, such as automata and Petri nets, prove
valuable in enhancing the reliability and security of electronic examinations.

Kassem, Falcone & Lafourcade (2017) proposed an event-based model of e-exams,
defined several security properties and validated these properties by analyzing real e-exams
at UGA using ProVerif and MarQ. However, the explicit interactions between roles in
electronic exams are not taken into consideration. In their models, two methods are

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 32/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

employed, namely ProVerif and QEA (Quantified Event Automata). We consistently
utilize the UPPAAL automaton to model all these processes.

Bella et al. (2017) proposed a secure exam protocol with the design principle of
minimizing the reliance on the trusted parties, meeting a series of security requirements
and resisting threats. However, this work primarily emphasizes cryptographic aspects,
overlooking the absence of a visual and easily understandable modeling approach. A
comprehensible model would significantly contribute to the explainability of electronic
examinations, benefitting both system designers and teacher/student users.

Xu et al. (2009) proposed an approach for modeling online score system using
hierarchical colored Petri nets and analyzed concurrency, conflict and causal dependency
in CPN Tools. However, this work solely delves into an online score phase and its
associated few properties. Our model comprehensively captures the entire processes of
electronic examination and verifies a more extensive set of properties across all phases
using UPPAAL.

In contrast to their work, our model is both executable and comprehensible. Leveraging
the capabilities of UPPAAL, we present general templates and verify critical properties,
thereby enhancing the trustworthiness of the electronic examination system.

Table 3 provides a comparative summary of studies in this area, highlighting their focus
areas/ contributions, techniques/methods, and limitations. This table illustrates the diverse
methodologies appeared in previous studies and demonstrates the novelty of our
approach. Our comprehensive electronic examination model uses UPPAAL automata for
formal verification, addressing multiple properties such as authentication, cheating
prevention, data integrity, and more. Additionally, while our model provides a robust
framework for secure digital assessments, we acknowledge the need for it to be more
closely aligned with practical cases and the steep learning curve for non-experts.

DISCUSSIONS
While our study presents a detailed model for electronic examinations using UPPAAL,
there are several broader aspects that could benefit from further exploration. These include
our experience with UPPAAL, the limitations and potential biases, and the ethical and
privacy of the proposed solution.

Experience with UPPAAL
Our experience with UPPAAL has been largely positive. The graphical interface simplified
the modeling process, making it easier to visualize and construct the timed automata.
However, the process required adequate effort in overcoming the learning curve, model
validation, debugging process, and development time.

. Learning curve: Initially, our team spent adequate time familiarizing ourselves with
UPPAAL’s syntax and semantics, leveraging available tutorials, documentation, and web
resources. The C-like scripting language, although powerful, is primarily designed for
computer programming and only supports a subset of C language syntax, which limited

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 33/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

its ease of use and learning. The prior experience of some team members in
programming languages and formal methods was helpful in mitigating these challenges.

. Model validation: Validating the model required a thorough understanding of both the
examination protocol and UPPAAL’s features. The tool’s robust validation capabilities,
including the need to understand Computation Tree Logic (CTL) and timing
mechanisms like clocks, greatly assisted in ensuring the correctness and reliability of our
model.

. Debugging process: Debugging is essential, with UPPAAL’s simulation capabilities and
clear error messages being very helpful in identifying and correcting issues. The
debugging process requires much time and attention to detail, highlighting the
importance of understanding UPPAAL-specific primitives such as synchronization.

. Development time: The development of the models extended over approximately
5 months, although the actual development time was around 1 month due to other

Table 3 Comparison of related work.

Reference Focus area/Contributions Techniques/
Methods

Limitations/Remarks

Xu et al. (2009) Modeling online score system using hierarchical
colored Petri nets

Hierarchical
colored Petri nets,
CPN Tools

Focuses on online scoring phase, does not cover
entire examination process or comprehensive
properties

Bella et al. (2017) Secure exam protocol minimizing reliance on
trusted parties

Cryptographic
protocols

Primarily cryptographic focus, lacks a visual and
easily understandable modeling approach

Kassem, Falcone &
Lafourcade (2017)

Event-based model of e-exams with security
properties validated using ProVerif and MarQ

ProVerif,
Quantified Event
Automata

Lacks explicit interactions between roles, focuses
on specific properties

Jiang et al. (2019) Web-based online examination system using PHP
and Ajax

System
implementation
using PHP, Ajax

Specific to one implementation, lacks
generalizability and comprehensive security
analysis

Butler-Henderson &
Crawford (2020)

Review of online examinations covering various
themes like student perceptions, performance,
anxiety, etc.

Literature review General overview, does not delve into security
properties or detailed modeling

Ilgaz & Afacan Adanır
(2020)

Analysis of learners’ academic achievement and
perceptions in online exams

Empirical study Focus on academic achievement and perceptions,
lacks security aspect

Muzaffar et al. (2021) Systematic review of online examination features,
techniques, datasets, tools, and research
participation

Literature review General overview, lacks specific focus on security
and detailed modeling

Li et al. (2021) Optimization-based anti-collusion approach for
distanced online testing

Optimization
algorithms

Focus on anti-collusion, does not address other
security properties comprehensively

Ngqondi, Maoneke &
Mauwa (2021)

Framework for online examinations addressing
academic fraud and security measures

Framework
proposal

High-level framework, lacks detailed
implementation and validation

Noorbehbahani,
Mohammadi &
Aminazadeh (2022)

Systematic review of cheating in online exams
from 2010 to 2021

Literature review Focus on cheating, lacks comprehensive security
measures and modeling

Our work Comprehensive electronic examination model
ensuring security properties using UPPAAL

UPPAAL, formal
verification

Model needs to be more closely aligned with
practical cases, steep learning curve for non-
experts

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 34/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

teaching tasks and research projects. This period included initial learning, model
development, extensive testing, validation, and collaborative discussions based on
feedback from team members to enhance the correctness and reliability of the models.

In summary, while the learning and implementation phases were intensive, the tools
provided by UPPAAL prove invaluable for ensuring the reliability and robustness of our
electronic examination system.

Limitations and Potential Biases
While our study presents a robust model for ensuring reliability in electronic examinations
using UPPAAL, it is not without limitations and potential biases that should be
acknowledged to provide a balanced perspective.

. Scope of the model: Our model focuses on the technical aspects of electronic
examinations, specifically the roles of candidates, administrators, invigilators, and
examiners. However, it does not account for all possible scenarios, such as those
involving multiple administrators or more complex invigilation processes.

. Simulation constraints: The simulations conducted were based on a specific set of
parameters (e.g., number of candidates, questions, and examination time). These
parameters may not cover the full spectrum of real-world examination settings.
Therefore, the generalizability of our findings to all electronic examination contexts may
be limited.

. Evaluation metrics: The reliability of our model was assessed using a set of predefined
properties. While these properties are somehow comprehensive, they may not
encompass all potential reliability concerns in electronic examinations. Additional
evaluation metrics and real-world testing are necessary to fully validate the model.

. Security questions. The current model assumes that all participants, including
candidates, follow the expected protocols strictly. However, in security scenarios, this
assumption may not hold. It is necessary to consider the behavior of candidates who
might attempt to exploit the system. Therefore, our future work will include stress-
testing the model under conditions where candidates can issue arbitrary requests. This
will help us analyze if a candidate can achieve a good grade without submitting correct
answers, thereby ensuring the robustness of the examination protocol against such
malicious behaviors.

By acknowledging these limitations and potential biases, we aim to provide a more
balanced and critical view of our study, paving the way for future research to address these
gaps and enhance the reliability and applicability of electronic examination systems.

Ethical and privacy aspects
In this article, we focus on constructing and verifying a formal model for electronic
examinations using UPPAAL, using simulated data for verification. Recognizing the
importance of ethical and privacy considerations, we discuss these concerns as follows:

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 35/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

. Data privacy and consent: Data collection will be limited to essential information for
the examination process. We will implement secure storage methods, including
encryption and strict access controls, ensuring only authorized personnel have access.
Transparency will be maintained by informing candidates about data collection
processes and purposes, obtaining informed consent before participation.

. Anonymity, confidentiality, and ethical considerations: Measures will be taken to
ensure candidates’ personal data remains confidential and anonymous. We will identify
and mitigate biases to ensure fairness, maintain transparency about system operations,
and reference relevant data protection regulations such as GDPR (General Data
Protection Regulation).

As part of our future work, we plan to integrate these ethical and privacy considerations
more deeply, incorporating real-world data and addressing the additional challenges this
introduces to ensure our model’s responsible and ethical application in practical scenarios.

CONCLUSIONS
This article introduces a UPPAAL-based model for electronic examinations, focusing on
both model specification and property specification. The model specification encompasses
candidate, administrator, invigilator, and examiner templates. Property specification
outlines 12 properties related to electronic examinations, covering aspects like candidate
registration and exam availability. Utilizing UPPAAL, all properties are rigorously verified,
and the results indicate that our model is reasonably reliable. This offers valuable guidance
for system designers and teacher/student users alike.

In future work, we plan to integrate UPPAAL statistical model checking to conduct a
more detailed and various evaluation of the developed model, including different scenarios
with various numbers of candidates, questions, and scores. We will also integrate multiple
administrators and invigilators to better reflect real-world examination scenarios.
Additionally, we aim to broaden the scope of examination events to consider non-
deterministic candidate automata, potential misbehaviors, and malicious attacks,
addressing more complex scenarios. This will include developing non-deterministic
automata to interact with the system in arbitrary ways, stress-testing the model by allowing
candidates to issue arbitrary requests, and ensuring the examination protocol is robust
against denial attacks and misbehaviors. We will also relax current assumptions to develop
a more flexible model, investigate the scalability of verification for various parameter sizes,
and focus on extensive performance analysis using monitoring methods.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Science and Technology Development Plan Project of Jilin
Province of China under Grant No. YDZJ202201ZYTS423, the Fundamental Research
Funds for the Central Universities under Grant Nos. 2412022QD040, 2412022ZD018, the
Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security under

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 36/39

http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

Grant No. MIMS23-06 and CCF-Huawei Populus Grove Fund under Grant No. CCF-
HuaweiLK2023001. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Science and Technology Development Plan Project of Jilin Province of China:
YDZJ202201ZYTS423.
Fundamental Research Funds for the Central Universities: 2412022QD040,
2412022ZD018.
Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security:
MIMS23-06.
CCF-Huawei Populus Grove Fund: CCF-HuaweiLK2023001.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Wenbo Zhou conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Yujiao Zhao performed the experiments, prepared figures and/or tables, and approved
the final draft.

. Ye Zhang analyzed the data, prepared figures and/or tables, and approved the final draft.

. Liwen Mu analyzed the data, prepared figures and/or tables, and approved the final draft.

. Yiyuan Wang conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

. Minghao Yin conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The model is available at GitHub and Zenodo:
- https://github.com/TURTING-BO/An-Electronic-Examination-Model-Based-on-

UPPAAL
- Zhou, W. (2024). An Electronic Examination Model Based on UPPAAL. Zenodo.

https://doi.org/10.5281/zenodo.12787513.

REFERENCES
Alur R. 1992. Techniques for automatic verification of real-time systems. Stanford: Stanford

University.

Arcile J, André É. 2022. Timed automata as a formalism for expressing security: a survey on theory
and practice. ACM Computing Surveys 55(6):1–36 DOI 10.1145/3534967.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 37/39

https://github.com/TURTING-BO/An-Electronic-Examination-Model-Based-on-UPPAAL
https://github.com/TURTING-BO/An-Electronic-Examination-Model-Based-on-UPPAAL
https://doi.org/10.5281/zenodo.12787513
http://dx.doi.org/10.1145/3534967
http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

Basile D, Fantechi A, Rucher L, Mandò G. 2021. Analysing an autonomous tramway positioning
system with the UPPAAL statistical model checker. Formal Aspects of Computing 33(6):957–987
DOI 10.1007/s00165-021-00556-1.

Behrmann G, David A, Larsen KG. 2004. A tutorial on UPPAAL. Formal Methods for the Design of
Real-Time Systems, International School on Formal Methods for the Design of Computer,
Communication and Software Systems, SFM-RT. Bertinoro, Italy: Berlin, Heidelberg: Springer
Verlag, 200–236.

Bella G, Giustolisi R, Lenzini G, Ryan PYA. 2017. Trustworthy exams without trusted parties.
Computers & Security 67(6):291–307 DOI 10.1016/j.cose.2016.12.005.

Bobba R, Grov J, Gupta I, Liu S, Meseguer J, Ölveczky PC, Skeirik S. 2018. Survivability: design,
formal modeling, and validation of cloud storage systems using Maude. In: Campbell RH,
Kamhoua CA, Kwiat KA, eds. Assured Cloud Computing. Hoboken: Wiley-IEEE Press, 10–48.

Butler-Henderson K, Crawford J. 2020. A systematic review of online examinations: a pedagogical
innovation for scalable authentication and integrity. Computers & Education
159:104024:104021–104024:104012 DOI 10.1016/j.compedu.2020.104024.

Cimatti A, Clarke EM, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, Sebastiani R,
Tacchella A. 2002. NuSMV 2: an OpenSource tool for symbolic for symbolic model checking.
In: Brinksma E, Larsen KG, eds. Proceedings of the 14th International Conference on Computer
Aided Verification. Copenhagen, Denmark: Springer, 359–364.

David A, Larsen KG, Legay A, Mikučionis M, Poulsen DB. 2015. UPPAAL SMC tutorial.
International Journal on Software Tools for Technology Transfer 17(4):397–415
DOI 10.1007/s10009-014-0361-y.

Giustolisi R. 2018. Modelling and verification of secure exams. New York: Springer International
Publishing.

Hasrat IR, Jensen PG, Larsen KG, Srba J. 2023. A toolchain for domestic heat-pump control using
UPPAAL Stratego. Science of Computer Programming 230(3):102987
DOI 10.1016/j.scico.2023.102987.

Hofmann T, Schupp S. 2023. Controlling timed automata against MTL specifications with TACoS.
Science of Computer Programming 225:102898:102891–102898:102895
DOI 10.1016/j.scico.2022.102898.

Holzmann GJ. 2004. The SPIN model checker: primer and reference manual. Boston: Addison-
Wesley.

Ilgaz H, Afacan Adanır G. 2020. Providing online exams for online learners: does it really matter
for them? Education and Information Technologies 25(2):1255–1269
DOI 10.1007/s10639-019-10020-6.

Jiang J, Wu B, Chang L, Liu K, Hao T. 2019. The design and application of an Web-based online
examination system. In: Proceedings of the 4th International Symposium on Emerging
Technologies for Education, 246–256.

Kassem A, Falcone Y, Lafourcade P. 2017. Formal analysis and offline monitoring of electronic
exams. Formal Methods in System Design 51(1):117–153 DOI 10.1007/s10703-017-0280-0.

Lehmann S, Schupp S. 2022. Bounded DBM-based clock state construction for timed automata in
Uppaal. International Journal on Software Tools for Technology Transfer 25(1):19–47
DOI 10.1007/s10009-022-00667-x.

Li M, Luo L, Sikdar S, Nizam NI, Gao S, Shan H, Kruger M, Kruger U, Mohamed H, Xia L,
Wang G. 2021. Optimized collusion prevention for online exams during social distancing. NPJ
Science of Learning 6(1):9 DOI 10.1038/s41539-020-00083-3.

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 38/39

http://dx.doi.org/10.1007/s00165-021-00556-1
http://dx.doi.org/10.1016/j.cose.2016.12.005
http://dx.doi.org/10.1016/j.compedu.2020.104024
http://dx.doi.org/10.1007/s10009-014-0361-y
http://dx.doi.org/10.1016/j.scico.2023.102987
http://dx.doi.org/10.1016/j.scico.2022.102898
http://dx.doi.org/10.1007/s10639-019-10020-6
http://dx.doi.org/10.1007/s10703-017-0280-0
http://dx.doi.org/10.1007/s10009-022-00667-x
http://dx.doi.org/10.1038/s41539-020-00083-3
http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

Marmsoler D. 2022. Review on modelling and verification of secure exams. Formal Aspects of
Computing 34(2):1–3 DOI 10.1145/3545182.

Muzaffar AW, Tahir M, Anwar MW, Chaudry Q, Mir SR, Rasheed Y. 2021. A systematic review
of online exams solutions in E-Learning: techniques, tools, and global adoption. IEEE Access
9:32689–32712 DOI 10.1109/ACCESS.2021.3060192.

Ngqondi T, Maoneke PB, Mauwa H. 2021. A secure online exams conceptual framework for
South African universities. Social Sciences & Humanities Open 3(1):100132
DOI 10.1016/j.ssaho.2021.100132.

Noorbehbahani F, Mohammadi A, Aminazadeh M. 2022. A systematic review of research on
cheating in online exams from 2010 to 2021. Education and Information Technologies
27(6):8413–8460 DOI 10.1007/s10639-022-10927-7.

Sakata K, Fujita S, Sawadab K, Iwasawaa H, Endoha H, Matsumoto N. 2023.Model verification
of fallback control system under cyberattacks via UPPAAL. Advanced Robotics 37(3):156–168
DOI 10.1080/01691864.2022.2134737.

Sun J, Liu Y, Dong JS, Pang J. 2009. Towards flexible verification under fairness. In: Bouajjani A,
Maler O, eds. Proceedings of the 21st International Conference on Computer Aided Verification.
Grenoble, France: Springer, 709–714.

Uppsala University, Aalborg University. 2021. UPPAAL/About/Introduction/Team. Available at
https://www2.it.uu.se/research/group/darts/uppaal/about.shtml (accessed 27 July 2024).

Uppsala University, Aalborg University. 2023. UPPAAL Home. Available at https://uppaal.org/
(accessed 8 December 2023).

Valero V, Diaz G, Cambronero ME. 2017. Timed automata modeling and verification for publish-
subscribe structures using distributed resources. IEEE Transactions on Software Engineering
43(1):76–99 DOI 10.1109/TSE.2016.2560842.

Xu Y, Xie X, Xia D, Liu Z, Chen L. 2009. Modeling and analysis of an online score system using
Colored Petri Nets. In: Proceedings of the 3rd International Conference on Anti-counterfeiting,
Security, and Identification in Communication, 1–5.

Zhou W. 2024. An electronic examination model based on UPPAAL. Available at https://github.
com/TURTING-BO/An-Electronic-Examination-Model-Based-on-UPPAAL (accessed 27 July
2024).

Zhou et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2377 39/39

http://dx.doi.org/10.1145/3545182
http://dx.doi.org/10.1109/ACCESS.2021.3060192
http://dx.doi.org/10.1016/j.ssaho.2021.100132
http://dx.doi.org/10.1007/s10639-022-10927-7
http://dx.doi.org/10.1080/01691864.2022.2134737
https://www2.it.uu.se/research/group/darts/uppaal/about.shtml
https://uppaal.org/
http://dx.doi.org/10.1109/TSE.2016.2560842
https://github.com/TURTING-BO/An-Electronic-Examination-Model-Based-on-UPPAAL
https://github.com/TURTING-BO/An-Electronic-Examination-Model-Based-on-UPPAAL
http://dx.doi.org/10.7717/peerj-cs.2377
https://peerj.com/computer-science/

	Ensuring reliability in electronic examinations through UPPAAL-based trustworthy design
	Introduction
	Preliminaries
	Modeling electronic examination using uppaal
	Validation and verification in uppaal
	Related work
	Discussions
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

