
Clone detection for business process
models
Mahdi Saeedi Nikoo1, Önder Babur1,2 and Mark van den Brand1

1 Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands

2 Information Technology Group, Wageningen University & Research, Wageningen, The
Netherlands

ABSTRACT
Models are key in software engineering, especially with the rise of model-driven
software engineering. One such use of modeling is in business process modeling,
where models are used to represent processes in enterprises. As the number of these
process models grow in repositories, it leads to an increasing management and
maintenance cost. Clone detection is a means that may provide various benefits such
as repository management, data prepossessing, filtering, refactoring, and process
family detection. In model clone detection, highly similar model fragments are mined
from larger model repositories. In this study, we have extended SAMOS (Statistical
Analysis of Models) framework for clone detection of business process models. The
framework has been developed to support different types of analytics on models,
including clone detection. We present the underlying techniques utilized in the
framework, as well as our approach in extending the framework. We perform three
experimental evaluations to demonstrate the effectiveness of our approach. We first
compare our tool against the Apromore toolset for a pairwise model similarity using
a synthetic model mutation dataset. As indicated by the results, SAMOS seems to
outperform Apromore in the coverage of the metrics in pairwise similarity of models.
Later, we do a comparative analysis of the tools on model clone detection using a
dataset derived from the SAP Reference Model Collection. In this case, the results
show a better precision for Apromore, while a higher recall measure for SAMOS.
Finally, we show the additional capabilities of our approach for different model
scoping styles through another set of experimental evaluations.

Subjects Data Mining and Machine Learning, Software Engineering
Keywords Model-driven engineering, Business process models, Model analytics, Model clone
detection, Vector space model, Clustering, Repository mining, Software maintenance

INTRODUCTION
Model-driven engineering (MDE) is being adopted and used by increasingly more
software-driven organizations and enterprises. As models are central artifacts in the MDE
paradigm, their analysis also has gained more importance over time. With the proliferation
of models, duplication in software and model repositories has become more evident
(Koschke, 2008; Roy, Cordy & Koschke, 2009). This is also the case for business process
model repositories in industry (Weber et al., 2011).

Clones in model repositories may originate from reusing existing models, where a
process designer generates new models by copy-pasting and modifying existing models

How to cite this article Saeedi Nikoo M, Babur Ö, van den Brand M. 2022. Clone detection for business process models. PeerJ Comput.
Sci. 8:e1046 DOI 10.7717/peerj-cs.1046

Submitted 10 March 2022
Accepted 27 June 2022
Published 23 August 2022

Corresponding author
Mahdi Saeedi Nikoo,
m.saeedi.nikoo@tue.nl

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 35

DOI 10.7717/peerj-cs.1046

Copyright
2022 Saeedi Nikoo et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1046
mailto:m.�saeedi.�nikoo@�tue.�nl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1046
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

(Rattan, Bhatia & Singh, 2013). This can also result from co-existing a set of model
variants belonging to the same process family. As an example, consider an airport check-in
process every passenger has to go through and the possible variations in the steps (e.g.,
online vs. in-person check-in). There may be variants of the process with similarities which
would manifest itself in the form of clones. In both mentioned cases, the developed models
would show a high degree of lexical similarity. These duplications may lead to several
issues. For instance, inconsistencies may occur across models if clones are modified
separately by different stakeholders. Also, as duplications increase, repositories grow in
size, which also incurs extra maintenance and management costs.

There may be various reasons behind finding similarity in models. Foremost, clones
may imply scenarios for refactoring and quality assurance in MDE/DSL ecosystems
(Deissenboeck et al., 2010). Also, since such ecosystems in larger enterprises may consist of
several DSLs, clone detection across different DSLs and their versions offers a good
potential for empirical studies on them and on their evolution (Tairas & Cabot, 2011).
Furthermore, clone detection in model repositories could provide enterprises with benefits
such as better repository management, exploration, data preprocessing, filtering, and
empirical studies regarding their origin, distribution, and so on (Uba et al., 2011). There
could also be other uses, e.g., for analyzing conformance to a given reference model, or for
standardization such as generation of a standard process model from a set of similar
models (La Rosa et al., 2015). Finally, we might use clone detection to find process model
variants which can be considered a process family in process line engineering discipline
(Boffoli et al., 2012). Although outside the scope of this article, in our research, we’re
interested in the latter direction. Using clone detection, our overarching goal is to identify
potential business process families in large model repositories, which would subsequently
be used for building product lines based on them and managing their variability (Cognini
et al., 2018).

Our clone detection technique is implemented based on the BPMN 2.0 notation as it is
the de-facto standard for business process modeling, but the technique could also be
adapted for other process modeling notations. To achieve this goal, we started to look into
the available tooling for business process model clone detection. However, our search led
to finding only one publicly available tool (Apromore) which we could use in our
comparative evaluations. We found another relevant tool which is introduced in
Skouradaki et al. (2016). Although it is partially similar to our work, in the sense that both
approaches include identifying similarities between models, however, the scope and goal of
the works are different. The approach by Skouradaki et al. (2016) is about detecting
structural patterns among a set of BPMN 2.0 models. Also, it does not consider textual
similarities of model elements, which means the detected pattern fragments are not similar
from a content point of view. A detected pattern among a given set of model fragments
does not necessarily mean they are clones. Therefore we did not include this in our study.
Our technique is implemented as an extension to Statistical Analysis of Models (SAMOS)
framework (Babur, Cleophas & van den Brand, 2019).

SAMOS is a framework for large-scale analysis of models based on information retrieval
and machine learning techniques. The underlying techniques used in the framework are

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 2/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

generic to graph-based modeling languages, and have been successfully applied to e.g.,
Ecore metamodels (Babur, Cleophas & van den Brand, 2019), feature models (Babur,
Cleophas & van den Brand, 2018), statecharts (Wille et al., 2018) and industrial domain-
specific models (Babur et al., 2020). As business process models also use a graph-based
structure for workflow definition, we found the framework to be suitable for implementing
our approach. In this work, we have made the following contributions:

� We present a technique for business process model clone detection which is realized as
an extension to SAMOS.

� We present a set of applied adaptations and refinements on the base framework
SAMOS.

� We provide quantitative comparative evaluations of our refined approach with other
existing approaches in terms of accuracy and effectiveness using various metrics.

The results show that, by extending SAMOS, as a generic framework for model clone
detection, we are able to get promising accuracy in results for clone detection of business
process models.

The rest of the article is organized as follows: In “BPMN Clones”, we provide an
introduction to BPMN model clone detection. In “Preliminaries”, a brief review of
background knowledge relevant to our study is provided. In “Methodology”, we present
our clone detection approach. “Experimental Evaluation”, explains multiple experimental
evaluations used to compare and evaluate our approach against the existing tools. “Overall
Discussion”, provides a discussion about the possible future work. “Related Work”,
discusses some major related works in the domain. Finally, “Conclusion and Future Work”
concludes the article.

BPMN CLONES
In this study, our aim is to find similar fragments in BPMN models. There can be several
reasons for applying clone detection. One is that clones can result in scenarios for quality
assurance and refactoring in MDE ecosystems. In the case of refactoring, for instance, it
can be used to extract methods by grouping together similar code fragments in different
classes in the code (Arcelli Fontana et al., 2013). Also, model repositories in industry,
publicly available ones, and the ones used for research, could leverage clone detection for
different purposes such as repository management, exploration, data filtering and
processing, and empirical studies. Lastly, clone detection can be used for detecting
plagiarism and possibly in grading assignments in educational courses about modeling. A
similar idea is followed in the source code domain (Prechelt, Malpohl & Philippsen, 2002).

The following classification scheme is widely used in the literature for model clone
detection as a standard, which was initially developed for Simulink models (Alalfi et al.,
2012):

� Type-I (exact) model clones: Identical model fragments except for variations in visual
presentation, layout, and formatting.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 3/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

� Type-II (blind renamed, or consistently renamed) model clones: Structurally identical
model fragments except for variations in labels, values, types, visual presentation, layout,
and formatting.

� Type-III (near-miss) clones: Model fragments with further modifications, such as
changes in position or connection with respect to other model fragments and small
additions or removals of blocks or lines in addition to variations in labels, values, types,
visual presentation, layout, and formatting.

� Type-IV (semantic) clones: Model fragments with different structure but equivalent or
similar behavior.

SAMOS has adopted a slightly different classification scheme than the above, which is
an adaptation of the scheme presented by Störrle (2015) for UML models.

� Type-A duplicate model fragments except formatting, layout, or internal identifiers.
Also, any cosmetic changes to name (lower/upper case, snake/camel case, and similar
minor changes).

� Type-B duplicate model fragments with limited amount of changes to types, names,
attributes, and few addition and/or removal of elements. Also, may include multiple
syntactic/semantic changes to the names such as typos, synonyms, semantically relevant
terms.

� Type-C duplicate model fragments with significant amount of change/additions/
removals of types, names, attributes, and parts.

� Type-D semantically equivalent or similar model fragments with different structure and
content.

In this study, we use the classification as defined in SAMOS, with one special
consideration. In the latter scheme, Type-A clones correspond to Type-I (exact) clones in
the standard scheme, while Type-B clones are closely related to Type-III clones in the
standard scheme. As Type-C clones include the same type of changes as Type-B clones,
only in a higher magnitude, we do not distinguish between the two classes in this study.
These both are the type of clones that emerge as a result of copy-pasting existing models in
model repositories and applying arbitrary changes to them. In this study, we do not
consider Type-D clones as they introduce bigger challenges to tackle.

PRELIMINARIES
In this section, first, we provide an overview of business process modeling and briefly
discuss the used notations. Next, we introduce the two model clone detector tools, namely
SAMOS and Apromore, which are used in this work. SAMOS is used as the base
framework in our approach, while Apromore is used as the only available tool that offers
process model clone detection. Later in our experiments, we compare SAMOS to
Apromore to provide an evaluation of our approach. An overall discussion of the
underlying techniques used in the two tools is presented in this section.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 4/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

Business process models
Several modeling notations have been introduced so far to model the business processes,
including UML Activity Diagrams (Fowler, 2004), Event-driven Process Chains (EPCs)
(Mendling, 2008), Business Process Modeling Notation (BPMN) (Object Management
Group (OMG), 2013), Yet Another Workflow Language (YAWL) (Van Der Aalst & Ter
Hofstede, 2005), among others. Among these, BPMN is the most commonly used modeling
notation.

EPC notation was introduced in 1992 with the purpose of creating a language for a clear
representation and documentation of business process models (Keller, Scheer & Nüttgens,
1992). EPC models consist of core and extended elements. The core elements provide a
basic definition of a process model. Only the core elements are formalized and well-
documented. Extended elements were added to add some organizational structure and
data flow to the process models, which could not be specified by the core elements. The
core elements of EPC models consist of functions, events, and connectors. Functions
model the activities of a business process, while events indicate occurrence of activities,
which affects the following process flow. Connectors are used to describe how functions
and events are connected, and may be one of AND (logical conjunction), OR (inclusive
disjunction), or XOR (exclusive disjunction) types. Connectors, also have a splitting or
joining behavior, which can start with functions or events. The connection between
process elements is via control-flow arcs.

BPMN (Object Management Group (OMG), 2013) is a modeling language standardized
by the Object Management Group (OMG) for describing the functional behavior of a
business process. The main goal of BPMN is to allow designing visual models of business
or organizational processes in a standardized notation that are understandable by all
business stakeholders. BPMN defines a Business Process Diagram (BPD), which is using
flowcharting techniques for creating graphical models of business process operations.
Before the standardization of the BPMN notation, EPC models were widely used as a de-
facto standard in industry. With more expressive power and tool support behind it, BPMN
has become more widely used in the industry.

Accordingly, a business process model consists of a network of graphical objects, which
are mainly activities (i.e., tasks) with flow controls that define their order of execution
(White, 2004). The concrete syntax of BPMN consists of four basic categories of elements:
Flow Objects, Connecting Objects, Swimlanes, and Data.

� Flow objects form the overall process workflow. The three main flow objects are events,
activities, and gateways. Events serve as a trigger, initiating a start point, intermediate
step, or end point of a process. Activities illustrate a specific task performed by a person
or system. Activities can also be in various forms such as ones that occur once, occur
multiple times, or occur if a specific set of conditions are met. Gateways represent
decision points that determine the directions to take along a process.

� Connecting objects are used to connect process elements together. Sequence flow is the
main connecting object that is used to connect and show order of flow objects.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 5/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

� Swimlanes represent participants of a business process. There are two types of
swimlanes: pools and lanes. A pool represent an entire department such as marketing,
while lanes encompass the activities for a specific role such as sales engineer in the
department.

� Data objects are used to represent a certain type of data or information consumed or
produced during the execution of a process.

A simplified version of the BPMN metamodel is presented in Fig. 1 that includes the
subset of the language concepts that cover the mentioned four basic categories of elements.
The full specification of BPMN notation can be found in (Object Management Group
(OMG), 2013). There are also other elements such as Event types that can be assigned to
Event nodes, or various types of Tasks such as Manual or Service Task which are not
shown in Fig. 1 as core concepts in BPMN process modeling, which are also considered in
our study. This is elaborated more under “Methodology”. In this study, we consider the
represented elements in the depicted metamodel, which constitute the essential elements
for defining a process model using BPMN notation. There is also a support for
choreography modeling in BPMN, but as we do not consider this type of modeling, the
corresponding elements are excluded from our study.

SAMOS model clone detector
SAMOS (Statistical Analysis of Models) is a framework for large-scale analysis of models
(Babur, Cleophas & van den Brand, 2019). It treats models as documents in the
Information Retrieval (IR) terminology. Starting with a feature extraction phase on these
models, further analysis and clustering can be performed. Features can be as simple as
element names in models, or more complex structures including fragments of the model
graph structure such as n-grams (Manning & Schutze, 1999). SAMOS calculates a vector
space model (VSM), and applies weighting schemes and natural language processing

Business Process Model Diagram

BPMN Element

Artifact

Data Object Group

from Flow Object

Activity

Task SubProcess

Event

Start Intermediate End

AND OR XOR

Gateway

to

Connecting Object

AssociationSequence Flowfrom Message FlowPool

Swimlane

Lane

to

Figure 1 A simplified version of BPMN metamodel. Full-size DOI: 10.7717/peerj-cs.1046/fig-1

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 6/40

http://dx.doi.org/10.7717/peerj-cs.1046/fig-1
http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

(NLP) techniques. It can also perform sophisticated statistical calculations such as distance
measuring and clustering via the R statistical computing language.

The underlying techniques used in SAMOS are mainly inspired from information
retrieval (IR) and machine learning (ML) domains. IR deals with indexing, analyzing,
searching and comparing different forms of contents from document repositories,
particularly textual information (Manning, Raghavan & Schtze, 2008). As a starting point,
the collected documents are indexed via some unit of representation (vocabulary), which
can include a bag of words (all words or selected ones). As an alternative, n-grams, which
originate from computational linguistics can be used, which are more complex constructs.
N-grams represent a linear encoding of (text) structure, e.g., “Julius Caesar” as a single
entity instead of identifying each word separately.

VSM can be used to implement an index construction. A VSM has the following main
components: (1) a vector representation of the vocabulary occurrence or frequency of a
document. (2) Optionally zones, e.g., ‘author’ or ‘title’, (3) weighting schemes such as
inverse document frequency (IDF), and zone weights, (4) NLP techniques for treating
compound terms, detecting synonyms or semantical similarities.

To give an example of a VSM, Table 1 shows an excerpt from Manning, Raghavan &
Schtze (2008) that presents a simplistic representation of Shakespeare’s play. The
vocabulary covers some important terms, and the vector space is filled with the incidence
(i.e., not frequency) of these terms in the respective plays.

As shown, using the VSM we can transform a document into an n-dimensional vector,
and as a result in anm × nmatrix form documents. With the VSM, we can define distance
using e.g., Euclidean, Manhattan, or cosine between two given vectors. Following the
incidence matrix in the given example, a simple dot product of the VSM in Table 1, would
result in the m × m pair-wise distance matrix, where for instance “Anthony and
Cleopatra”·“Julius Caesar”=3, “Julius Caesar”·“Hamlet”=2 and “Julius Caesar”·“The
Tempest”=0.

With such a distance matrix, we may then apply an unsupervised ML technique called
clustering to identify similar groups of documents (Manning, Raghavan & Schtze, 2008;
Jain & Dubes, 1988). K-means and hierarchical clustering are the two well-known
techniques for this. With k-means, the aim is to find cluster centers and minimize the
residual sum of (square of) distances of the assigned points in each cluster. With

Table 1 An example of term incidence matrix representation of Shakespeare’s plays (excerpt from
Manning, Raghavan & Schtze (2008)).

Anthony and cleopatra Julius caesar The tempest Hamlet Othello Macbeth …

Anthony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

…

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 7/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

hierarchical clustering, there is no assumption on the number of clusters, and rather a
nested tree structure (dendrogram) is built from the data points, which represents
proximity and potential clusters.

Apromore approximate model clone detector
La Rosa et al. (2015) present an approach for approximate clone detection for business
process models. The ultimate goal in their work is to retrieve clusters of approximate
clones for standardization and refactoring into shared subprocesses. The approach is
geared towards detecting approximate clones of fragments that originate from copy-
pasting followed by independent modifications applied to the copied fragments.

According to the authors, the presented approach in the article applies to directed
graphs with labeled nodes, which can be applied to different process modeling notations
such as EPC and BPMN. They initially define an abstract representation of process models
based on labeled graphs. The definition is limited to control-flow elements of process
models, namely events and tasks, which are labeled, and gateways, which are unlabeled.
However, as mentioned in their article (La Rosa et al., 2015), it can be extended to be
applied to non-control-flow elements such as object and roles.

For comparing pairs of process models, they first define distance measures for doing
comparison in node level. For calculating distance between labeled nodes, they adopt
combination of two techniques, namely syntactic and semantic distance. In syntactic
distance, labels are treated as strings and a string-edit distance technique is applied. For
semantic distance, however, semantic relatedness such as synonymy of labels is considered.
They use a WordNet library for the semantic measure. In the case of comparing gateway
nodes which are unlabeled nodes, they adopt another approach named context distance,
where they compare the preceding and succeeding labeled nodes of gateway nodes.

Having the distance measure defined for nodes, they then define a distance measure for
process graphs based on the known notion of graph-edit distance (Messmer, 1995). The
graph-edit distance between two graphs is the minimum number of operations required to
transform one graph to the other. To lower the computational complexity of measuring
graph-edit distance, they adopt a greedy heuristic, as the original algorithm is NP-complete
(Dijkman, Dumas & Garca-Bañuelos, 2009). The defined process graph and graph-edit
distance are assumed to work for graphs with labeled nodes and unlabeled edges, but the
authors claim they can be extended to work with edge labels (Dijkman et al., 2011a; La
Rosa et al., 2013).

They have three main considerations for the approximate clones. One is to avoid
containment clones, i.e., avoid calling two fragments an approximate clone only because of
one being contained in the other. The second is that given the goal of refactoring identified
approximate clones into subprocesses which follows a call-and-return semantics, the
detected clones need to be in the form of single-entry, single-exit (SESE) fragments. In
short, an SESE fragment has exactly two boundary nodes: one entry and one exit. The third
one is to avoid trivial clones, i.e., fragments with single activity which are not suitable to be
a subprocess.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 8/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

The proposed approach is based on the two techniques: Refined Process Structure Tree
(RPST) (Vanhatalo, Völzer & Koehler, 2009), and RPSDAG (Dumas et al., 2013). The
RPST, which is a parsing technique, is used to compute a unique tree representing the
hierarchy of SESE fragments retrieved from the given process model. RPSDAG is an index
structure that is used to hold up the union of RPSTs of process models. RPSDAG, which is
built incrementally by adding new process models, allows for exact clone identification in a
collection of process models, also shows the containment hierarchy of model fragments to
be used during clustering.

The mentioned techniques are utilized for the approximate clone detection among the
extracted SESE fragments. To that end, a distance matrix is generated for the collection of
fragments using different distance measures, including the graph-edit distance between a
pair of fragments. In order to detect approximate clones, two different clustering
algorithms namely Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) and Hierarchical Agglomerate Clustering (HAC) are used. The presented
approach is implemented as a plugin of the Apromore platform (La Rosa et al., 2011).

METHODOLOGY
In this section, we present our methodology for clone detection in BPMNmodels. For that,
we show how we utilize existing set of techniques provided by a generic model analytics
framework (i.e., SAMOS) with the goal of conducting clone detection for BPMN models.
We present the set of customizations we apply to the framework to achieve this goal. Each
section presents a relevant technique or aspect in the framework and provides a more in-
depth discussion on the extensions and the changes applied to the framework.

Using and extending SAMOS for business process model clone
detection
Our approach in this article is based on SAMOS (Babur, Cleophas & van den Brand, 2019).
The framework provides a generic (notation-neutral) set of techniques that can be used for
clone detection of any given graph-based modeling notation. SAMOS has already been
applied for metamodel clone detection. Given that, for using the framework for a specific
modeling notation, parts of the applied techniques need to be specialized based on the
target notation. For BPMN notation, these customizations are specifically applied to the
scoping for similarity checking, feature extraction, and vertex and n-gram comparison
stages in the framework. The main customizations are given below and their detailed
explanations are provided in the following sub-sections:

� Scoping for similarity checking: This concept is related to any type of modularity
inherent in the given notation. As the framework is language-neutral, we defined a set of
scoping concepts specific to BPMN notation. Scoping concept is defined in “Scoping for
Similarity Checking” and elaborated more in “Experiment 3: Clone DetectionWith Lane
and Subprocess Scoping”.

� Feature extraction: Feature extraction in its naive meaning encompasses the extraction
of all the existing data and their local relations from the language metamodel as

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 9/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

information units for clone detection. However, in practice this is not feasable for a
given notation, as every piece of information extracted from metamodel is not of the
same value for our purpose. We applied BPMN-specific customizations for this stage as
elaborated in “Extracting Model Element Information”.

� Vertex and n-gram comparison: We applied another set of customizations on how
vertex and n-grams are compared. A different similarity calculation formula with a set of
adjustments considering BPMN elements were defined, which are explained in more
detail in “Vertex and N-gram Comparison”.

In the following sections, we explain different aspects and functionalities of the
framework. Figure 2 shows an overview of the key steps taken in SAMOS for clone
detection.

Scoping for similarity checking
An important criterion in similarity measurement in clone detection is the input for the
similarity algorithm. Schoknecht et al. (2017) propose a classification in Schoknecht et al.
(2017) on the input based on 4 categories: (1) similarity between (sets of) model elements,
(2) similarity between sub-graphs, (3) similarity between two models, and (4) similarity
between sets of models. The mentioned classification corresponds to the notion of scoping
in SAMOS.

By scoping, we can define the granularity in which we want to do feature extraction
from the models. By default, the extraction process extracts data about all the model
elements. For BPMN models, we may have several scopes, but in this study we define the
following scopes: the whole model, SESE, Subprocess and Lane. The SESE scoping is not
currently implemented in SAMOS, however, we utilize Apromore to indirectly apply this
scoping to BPMN models. This is shown in “Experiment 2: Model Clone Detection on
Asset Management Dataset” in more detail. These scopes are chosen as they constitute
main elements in the containment tree of a process model which contain other elements.
That is why they make a natural slicing of models into logically grouped set of elements
that can potentially be clone fragments in models. The scoping is set at the beginning of
each run of the clone detection (Babur, Cleophas & van den Brand, 2019). The user thus

SAMOS model clone detection framework

NLP

Tokenization
synonym
detection

filtering ...

vector space
model

1.5 4 3.6

5 3.4 2.7

1 0 5.2

model-1 model-2

model-1 0 0.03

model-2 0.03 0

distance matrix

clustering

model clonesmodel
repository

model
files

Features
(NGram, Subtree)

model clones
model clones

Figure 2 SAMOS clone detection workflow. Full-size DOI: 10.7717/peerj-cs.1046/fig-2

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 10/40

http://dx.doi.org/10.7717/peerj-cs.1046/fig-2
http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

can choose one of the mentioned scopes besides the default scoping, which is at the model
level, consisting of all elements in a model.

Extracting model element information
Features basically define the unit of information extracted from models that represent
essential information for the type of processing done on models. The basic definition of a
feature in SAMOS has previously been the so called type-name pair, which would map to a
vertex in the graph of the model. Such a pair is enough to encode the domain-specific type
information, such as EClass, and the name, such as Book, of a model. To improve clone
detection, we need to extend this definition to include the attributes in model elements
(e.g., whether an EClass is abstract) and cardinalities, e.g., of EReferences. Capturing edge
information such as containment is also helpful in the comparison. The current feature
hierarchy in SAMOS which covers the mentioned model information is represented in
Fig. 3. The mentioned extensions for feature extration in the feature hierarchy are shown as
(1) AttributedNode, which holds all the information of a vertex covering its domain-
specific type, name, type, and attributes as key-value pairs; and (2) SimpleType, which
indicates whether an edge is of contatinment or supertype (i.e., superclasses as named in
EMF). The mentioned feature types are subclasses of Simple-Feature class and represent
non-composite, stand-alone features.

There are some key points to mention regarding the feature extraction component of
our tool. These are mainly about how features are extracted, what criteria are considered
for the extraction process and the processing applied on the feature names.

Metamodel-based feature extraction
In our implementation, we use the BPMN 2.0 Ecore-based metamodel as a reference and
use the Eclipse plugin BPMN2 Modeler (Eclipse, 2021) API to extract model information.

Feature

SimpleFeature AggregateFeature

NGram SubtreeAttributedNodeTypedName

SimpleType ...

Figure 3 Feature hierarchy used in SAMOS: simple features for encoding vertices and edges, and
aggregate features for representing structure. Full-size DOI: 10.7717/peerj-cs.1046/fig-3

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 11/40

http://dx.doi.org/10.7717/peerj-cs.1046/fig-3
http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

Feature selection

Features in SAMOS make up a representation of a given model that are used as the only
source of information in the next phases of clone detection. In a naive strategy for the
feature extraction, we would transform the whole model (i.e., covering all the elements in
the metamodel) into a set of features based on our feature definition. Due to the big size of
the BPMN 2.0 metamodel and the large number of artifacts defined in the notation,
extracting all corresponding features from a model leads to a huge amount of information,
a significant part of which is not much relevant for the clone detection. Therefore, we limit
our implementation mainly to flow elements of the process graph and the relevant features
based on that. The process graph oriented feature extraction is enriched with extra
attributes which would otherwise be extracted as separate nodes from the model.

Additional attributes for features
As our feature extraction mainly considers features related to flow elements in BPMN 2.0,
by excluding other features we lose part of the information that may improve the accuracy
of our similarity algorithm. Our approach to partly compensate for this information loss is
to embed such information somehow in the selected extracted features. For instance, a
feature for an Event element is extracted, but the Event Definition of that event is excluded
based on the mentioned reasoning. However, we may add additional attributes to the
extracted feature for Event to show the type of Event Definition of it. Similarly, there is no
extracted feature for a subprocess, but it can be added as an attribute to all child elements
of the subprocess to preserve such information. This can be seen in the examples in the
Listing 1.

Feature name normalization
We use a normalizing pass on all the names of the extracted elements to convert them into
a uniform format composed of the lemmatized tokens with all white spaces trimmed and
stop words removed. This results in a better treatment of the names in the vertex
comparison algorithm introduced in “Vertex and N-gram Comparison”

To exemplify, Listing 1 shows the extracted features for the marked vertices in Fig. 4.
A naive feature extraction according to the full metamodel specification would normally

result in much more features than the ones shown in Listing 1. However, we have applied

Listing 1 Selected bigram extractions from the model in Fig. 4.

v1 = {type:StartEvent, name:every_ten_minute, lane: import_order_from_marketplace_to_erp, parellelMultiple:false,

eventDefinition:timer_event_definition_impl, isInterrupting:true},

v2 = {type:UserTask, name:collect_all_order_from_marketplace, lane: import_order_from_marketplace_to_erp,

completionQuantity:1, isForCompensation:false, startQuantity:1},

v3 = {type:Task, name:check_order_datum, lane: import_order_from_marketplace_to_erp, subprocess:handle_order,

completionQuantity:1, isForCompensation:false, startQuantity:1},

v4 = {type:ExclusiveGateway, name:datum_correct_?, lane: import_order_from_marketplace_to_erp, subprocess:handle_order,

gatewayDirection:diverging}

v5 = {type:SequenceFlow, name:yes,isImmediate:false}

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 12/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

modifications to the feature extraction component in our approach. There are basically
two adjustments: The first one is to limit the number of features to the ones most essential
for our clone detection goals. The second one is to enrich included features with additional
attributes extracted from the excluded features (i.e., removed as a result of the first
adjustment). As an example, in v1 there is an attribute named eventDefinition which would
normally be a separate feature with its own set of attributes, but is injected as an attribute to
StartEvent. The main reason behind this is to avoid the redundant information that does
not play a significant role to distinguish between two given BPMN models in our initial
attempt for BPMN clone detection. It is also important to note that every feature that we
extract from a model has a part in the representation of the model as a whole as well as all
the furthur processing based on the feature set afterwards. Therefore, cluttering the feature
list with non-primary features has a negative impact on result accuracy of the tool.

Encoding structure in n-grams
As we elaborate more in “Distance Measurement”, there are different dimensions for
similarity measurement of business process models. There are already multiple studies
considering structural aspects in process model similarity measurement (see for example
La Rosa et al. (2013) and Sánchez-Charles et al. (2016)). Our approach also relies on a
(graph) structural context in similarity measurement. To that end, model fragments are
extracted, which are encoded as features. SAMOS supports three different settings for
encoding features. In our implementation so far, we are using unigram and n-gram settings
and leave subtrees for future work.

� Unigram: model structure is ignored and nodes are used as-is (Babur, Cleophas & van
den Brand, 2016);

Figure 4 A sample BPMN model for handling orders. Full-size DOI: 10.7717/peerj-cs.1046/fig-4

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 13/40

http://dx.doi.org/10.7717/peerj-cs.1046/fig-4
http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

� N-gram: model structure is encoded in linear chunks (Babur & Cleophas, 2017) (for
n > 1);

� Subtree: model structure is encoded as fixed depth subtrees.

In the above-mentioned settings, unigrams correspond to SimpleFeatures in the
conceptual feature hierarchy in Fig. 3. N-grams and subtrees (potentially with depth n > 1)
are aggregated features containing multiple SimpleFeatures. According to a graph
representation of a model, we can think of n-grams as n consecutively connected vertices.
In order to represent the edge information, edges are incorporated as SimpleTypes in the
n-gram encoding. The readers can refer to Babur & Cleophas (2017) for a more detailed
discussion on graph traversal and n-gram extraction. Some bigrams (n = 2) from Fig. 4 are
given below:

� b1 = (v1, outgoing, v2)

� b2 = (v4, outgoing_yes, v5)

We make a modification to bigram extraction to decrease the repetition in the extracted
features. This is due to the fact that in BPMN specification, connectors such as sequence
and message flow are also flow elements, thus considering them as separate vertices results
in encoding a fragment such as [A] seqFlow [B] as two separate features: A seqFlow and
seqFlow B. The partial repetition here increases dramatically when there are tens of such
fragments in the model. The result set thus has a negative effect in the VSM building,
which propagates to the next steps in clone detection. For this reason, we consider BPMN
connectors as edges. Bigram b2 in the above list shows an example of how the encoding
works. The middle part in bigram b2 means there is an outgoing sequence flow labeled yes
from v4 to v5.

Vertex and n-gram comparison
As aggregate features consist of multiple Feature vertices, we first give a definition of the
vertex comparison. Vertex comparison in SAMOS is defined as a multiplicative formula as
given in Eq. (1), where nameSim holds the NLP-based similarity between the names, while
typeSim and eTypeSim hold the similarity of the domain types and eTypes in the vertices,
respectively. The last variable attrSim, defined in Eq. (2) is used for measuring similarity of
attributes of model elements which are defined in the metamodel (for instance,
gatewayDirection in a Gateway or isForCompensation in a Task element).

vSimðn1; n2Þ ¼ nameSimðn1; n2Þ � typeSimðn1; n2Þ � eTypeSimðn1; n2Þ
� attrSimðn1; n2Þ

(1)

attrSimðn1; n2Þ ¼ 1�# unmatched attributes between n1 and n2
total# attr: for that domain type

(2)

In our implementation, we opt for an additive formula as shown in Eq. (3), instead of a
multiplicative one, with the same variables as defined in Eq. (1). This change is made as we
need to make multiple tweaks to the similarity measures in the formula, and we can do this

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 14/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

in a more controlled way with an additive formula. Another change is on the nameSim
variable, whose effect in the formula is doubled, as we want to give somewhat more weight
to element names in the comparison. The last change is about the omission of the eType
parameter. eType is a classifier parameter used in Ecore metamodel elements. We exclude
it in our similarity calculation, as it has a trivial effect in the formula compared to other
parameters.

vSimðn1; n2Þ ¼ 2 � nameSimeðn1; n2Þ þ typeSimðn1; n2Þ þ attrSimðn1; n2Þ (3)

The above formula may not be the optimal one, and we formulated it this way after
some explorative iterations of running the tool and looking for the best results. We leave it
as future work to improve this scheme. For N-gram comparison, we use the semi-relaxed
formula (Babur & Cleophas, 2017), i.e., given n-grams v1

! and v2
! with 2n − 1 elements (n

vertices and n − 1 edges corresponding to v1::2n�1
1 and v1::2n�1

2), the n-gram similarity is:

nSimðv1!; v2
!Þ ¼ 1þ jnonzero vSimmatches between v1

!and v2
!j

1þ ð2n� 1Þ (4)

Considering the various possible BPMN model element compositions, there also needs
to be additional workaround in the similarity measurement. Below, we provide the ones
already present in SAMOS and the ones we add in the scope of this article:

� In SAMOS, in the case of non-matching types, the attributes are ignored altogether.

� SAMOS ignores edge-only matches such as A-relation-B vs. C-relation-D when A-C and
B-D have a zero similarity. The relation in our case can be e.g., an outgoing sequence
flow from A to B.

� We give a lower weight to sequence flows, thus its similarity weight is halved.

SAMOS also supports NLP techniques in computing nameSim, including label
normalization in case of mixed-casing, tokenization and compound word similarity,
stemming and lemmatization, Levenshtein distance for typos, and Wordnet-based
synonym checking.

Additional customizations

In order to increase our tool’s accuracy for distance calculation, we apply some additional
minor customizations on the n-gram comparison component of SAMOS. For a better
distance measurement, the goal is to increase the distance between more dissimilar models
and decrease it for more similar ones. The applied changes are listed below:

� While comparing two bigrams, say AxB and CyD (A, B, C, D being vertices; x and y
being edges), when there is no name similarity between the vertices, i.e., A compared to
C and B compared to D, then the edge similarity is set to 0.

� We always assume attribute similarity score of edges to be 1. This is because edges do not
have any attributes in the bigram formulation in SAMOS.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 15/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

� When the types of two vertices do not match, their corresponding name and attribute
values are set to 0.

� The comparison algorithm has a different treatment when the compared vertex types
belong to the same family. For instance, both User Task and Manual Task are subtypes
of Task, thus there should be less distance between them when compared to a different
type.

� If there is name match on one vertex only in bigram, the type, and attribute weights for
that vertex, as well as the edge weight is lowered.

� Modifying a gateway with multiple incoming and/or outgoing connectors has a higher
impact on the overall similarity score. A local weighting scheme is applied to adjust the
similarity score based on the incoming/outgoing flow size of gateways.

VSM calculation
SAMOS provides two modes for VSM calculation: linear and quadratic (all-pairs). Linear
VSM counts the exact feature occurrences, meaning it computes the total frequencies of
features, but this mode is not powerful enough to calculate synonyms or fine-grained
differences in features such as attributes and types. However, quadratic VSM compares
each feature occurrence in a model against the entire feature set of all models and does a
better treatment of fine-grained differences. Regarding their performance, linear mode is
much faster and cheaper as a single pass is enough to build the VSM, while quadratic mode
leads to an expensive (quadratically complex) calculation.

Distance measurement
Several dimensions can be applied in quantifying similarity between business process
models (Schoknecht et al., 2017). They focus on different business process model aspects in
similarity calculation. These aspects mainly cover the following categories: natural
language aspect which can cover syntactic and semantic analysis; graph structure aspect,
model behavior aspect, human estimation aspect which may involve expert opinions on
similarity, and other aspects. Model clone detection tools may cover one or more of these
aspects in calculating model similarities. Our approach mainly relies on the natural
language and graph structure dimensions.

Originally, SAMOS applies a distance measurement over the built VSM. Different
distance measures such as cosine and Manhattan (Ladd, 2020) are available in the
framework. For clone detection, the framework offers an extended distance measurement,
which we also used in our experiments. The following are some arguments on the distance
measurement of the framework:

� For clone detection, a normalized and size-sensitive measure is preferred. There are
several available techniques in the literature that meet these criteria. The Bray–Curtis is
the one with an R implementation that is used in the framework (Deza & Deza, 2009).

� In basic VSM approach, orthogonality is considered, which is about taking into account
all columns for distance calculation. In the case of clone detection, this is violated by the

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 16/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

framework, as there is usually (partial) similarity among many model features which
would result in unreasonably high similarities between models. Consequently, the union
of only the set of features for the two models to be compared are considered, rather than
the whole feature set in the dataset.

For these reasons, in previous work, a masked variant of the Bray–Curtis distance (Eq.
(5)) was integrated into SAMOS, which extends the distance function available in the R
package vegan. Given an N dimensional vector space, with P and Q as data points for
BPMNmodels representing the whole model, or smaller scopes such as lane or subprocess;
P consisting of features P1,…, Pm and Q consisting of features Q1; . . . ;Qn, p and q the
corresponding vectors on the whole vector space for P and Q, the masked Bray-Curtis
distance is measured on the vector subspace P ∪ Q (size ≤ m + n) as:

bray0ðP;QÞ ¼
PP[Q

i jpi � qij
PP[Q

i ðpi þ qiÞ
; (5)

Clustering
As the final step in clone detection workflow in SAMOS, a clustering is done over the
calculated distance matrix in the previous step. The goal is to find the groups of data point
or model clusters in our case that meet at least a set of requirements. They need to be non-
singleton (size ≥ 2) with a minimum size (size ≥ n) group of data points that are similar
(distance ≥ t), with n and t thresholds which can vary based on the application scenario.
SAMOS already has support for different clustering technique: k-means, hierarchical
clustering, and Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
(Ester et al., 1996). In our experiments, we opt for DBSCAN clustering, as it was also
applied in the original study of clone detection in SAMOS (Babur, Cleophas & van den
Brand, 2019). Also, it seemed to be better suited for clone detection because of the
following reasons:

� detecting clusters in various shapes (non-spherical, non-convex),

� detection of noise, i.e., non-clones

� suitability for larger datasets.

EXPERIMENTAL EVALUATION
In this section, we present three experiments that we perform to evaluate the capabilities of
our tool SAMOS and compare it with the Apromore toolset. All the output in the following
experiments are produced based on the implemented techniques that are presented in this
study. The experiments mainly evaluate the accuracy of the tools in question. The
experiments are developed based on the following empirical research questions:

RQ1: How accurately does each tool compare a pair of models?

RQ2: How accurately does each tool discover clone pairs in a real model dataset?

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 17/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

RQ3: How accurately can SAMOS detect clones in lane and subprocess decomposition in
BPMN models?

For doing the experiments, we use the extended version of SAMOS along with the
approximate clone detection tool and the similarity tool of Apromore.

� Experiment 1: Mutation Analysis: In this experiment, we perform an analysis based on
an artificially generated mutation model set we ourselves created. During this study,
pairwise distances between a base model and its mutants are measured to test the
accuracy of our technique in different settings against that of the other tools. This
experiment addresses RQ1.

� Experiment 2: SESE Fragment Clone detection on EPC Models: In our second
experiment, We perform an evaluation on the clone detection accuracy of our tool
compared to Apromore on a real model dataset. This experiment addresses RQ2.

� Experiment 3: Clone Detection on BPMN Models with Lane and Subprocess Scope:
In the last experiment, the aim is to show the strength of our tool beyond what is offered
by Apromore. For that, we work on the decomposition capability of SAMOS on the Lane
level. This experiment addresses RQ3.

Experiment 1: mutation analysis
The first experiment is based on a conceptual framework proposed by Stephan (2014a),
Stephan, Alalfi & Cordy (2014) to validate our approach. The framework promotes the use
of mutation analysis for evaluating model clone detection tools and techniques. In this
section, we provide the details of our assumptions, case design, and goals. Finally, we
present the results obtained and discuss the pros and cons of each tool.

Experiment design
As an initial step, we make a simplifying assumption that the scope of this experiment is
limited to the control flow elements of BPMN 2.0. The reason for this decision is that
Apromore supports only these elements in its current implementation. In this experiment,
we first build a model mutation dataset using some commonly used mutation operators
(Stephan, 2014b). The operators cover different notable changes that are possible such as
applying changes on a model element and add/move/remove elements, which can better
show the shortcomings of each tool. Some additional cases are also included to show more
exceptional model change scenarios, similar to what is done by Roy (2009). Finally, all the
tools are run using this list of models and results are collected. We evaluate the accuracy of
each tool on the mutation dataset. As listing all possible mutations is not feasible, we give a
representative list of such common changes applied on BPMN models in Table 2. A
description on the mutation sets is given as follows:

� Set 1a: This set consists of mainly trivial atomic changes applied on a model. The change
operations include various types of single changes, including adding and removing
elements, changing their type, and label changes that rename an element to a different
name.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 18/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

Table 2 Pairwise relative distances (reverse similarity) for SAMOS and Apromore.

Set Id Base model Mutant model SAMOS
unigram

SAMOS
bigram

Apromore
clone
detection

Apromore
sim tool
v7.15

la 1 baseProcess atomic-changeEventNameRandom 0.98 0.97 0.94 0.9

2 baseProcess atomic-addEvent 0.96 0.96 0.941 0.88

3 baseProcess atomic-addTask 0.96 0.95 0.941 0.88

4 baseProcess atomic-changeOrderTasks 1 0.93 0.91 0.95

5 baseProcess atomic-changeTaskNameRandom 0.98 0.94 0.907 0.87

6 baseProcess atomic-changeTypeGateway 0.99 0.95 0.85 1

7 baseProcess atomic-removeEvent 0.96 0.97 0.967 0.77

8 baseProcess atomic-removeTask 0.96 0.95 0.935 0.87

9 baseProcess atomic-changeGatewayNameRandom 0.99 0.97 1 1

10 baseProcess atomic-changeSeqFlowNameRandom 0.98 0.99 1 1

11 baseProcess atomic-changeElementAttribute 0.96 0.99 1 1

12 baseProcess atomic-removeSeqFlow 0.97 0.96 0.941 0.85

13 baseProcess atomic-changeTypeTask 0.99 0.98 1 1

1b 14 baseProcess atomic-changeTaskNameCosmetic-
addWhitespace

1 1 0.97 0.91

15 baseProcess atomic-changeTaskNameCosmetic-
changeCase

1 1 0.7 1

16 baseProcess atomic-changeTaskNameCosmetic-
addExtraChar

1 1 0.75 0.97

17 baseProcess atomic-changeTaskNameSyn 0.98 0.94 0.907 0.87

18 baseProcess atomic-changeEventNameSyn 0.99 0.97 0.937 0.9

19 baseProcess atomic-changeGatewayNameSyn 0.98 0.84 1 1

20 baseProcess atomic-changeTaskNameTypo 0.98 0.94 0.996 0.98

2 21 baseProcess atomic-moveTaskOtherPlace 1 0.93 0.91 0.97

22 baseProcess atomic-swapTasks 1 0.95 0.94 0.97

23 baseProcess-moveTaskToSimilarContext baseProcess-moveTaskToSimilarContext 1 1 0.94 1

3 24 baseProcess cum-addMultipleElements 0.83 0.81 0.791 0.6

25 baseProcess cum-changeMultipleGatewayTypes 0.98 0.89 0.978 1

26 baseProcess cum-moveMultipleElements 1 0.85 0.82 0.87

27 baseProcess cum-removeMultipleElements 0.87 0.82 0.61 0.62

28 baseProcess cum-renameMultipleElements 0.92 0.72 0.64 0.46

29 baseProcess cum-changeMultipleElementsAttr 0.94 0.93 1 1

4 30 ex-baseProcess-sameElements-
diffStructureDiffNaming

ex-sameElements-
DiffStructureDiffNaming

0.69 0.3 0.4 0.28

31 ex-baseProcess-diffStructureSimilarNames ex-diffStructureSimilarNames 0.98 0.605 0.73 0.95

32 ex-baseProcess-multiplePartialSimilarNames ex-multiplePartialSimilarNames 0.85 0.454 0.57 0.57

33 ex-baseProcess-multiExitGateway ex-atomic-multiExitGateway-changeType 0.99 0.908 0.64 1

34 ex-baseProcess-similarStructureDiffNaming ex-cumulative-changeAllNames 0.26 0.343 0.49 0.44

35 ex-baseProcess-compareSmallWithBigModel ex-compareSmallWithBigModel-
diffNames

0.62 0.265 0.44 0.27

(Continued)

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 19/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

� Set 1b: The aim of this set is to evaluate the NLP-related capacity of the tools in the form
of subtle element name changes: cosmetic renaming (such as camel vs. snake case, lower
vs. upper case), making minor typos, and replacing a word by its synonym.

� Set 2: This set covers some main possible movements in a model. For this set we have
swapping, and two types of moving model elements: One is moving a model element to
another place with different context, and the second is moving to a similar context. In
swapping, an element is swapped with another element at a different point in the model.
In first type of moving, an element is moved to an arbitrary place in the model, while in
the second type, an element is moved to a place in the model with similar neighbor
vertices as the ones in its original place.

� Set 3: In this set, a base model is modified to include multiple possible changes applied
on the model. The aim of developing this set is to examine the behavior of the tools
where such accumulated changes are applied to a model. The targeted change operations
include adding, removing, moving, renaming multiple elements at different places in the
model. There are also cases for changing type of multiple gateways, and changing some
element attributes, e.g., adding loop characteristics or conditions on a Task element.

� Set 4: This set is added to show some exceptional cases that may not usually happen in
real models, but may give us some clue about functioning of the tools and their reaction
to such extreme cases. These changes include the following: keeping the same elements,
change model structure and change labels; change the model structure using the same
elements; change several element names to similar ones; change the type of a gateway
that has multiple gates; change all element names in the model; extend model to a bigger
model with mostly different labels; extend a model with other elements which still
contains the original model as a fragment; extend model to a bigger model with similar
names; use the label from the first model in multiple labels in the second model.

For the manual creation of the mutation sets, we use average-size BPMNmodels as base
models (Kunze et al., 2011). It is also important to note that atomic mutation operations do
not always lead to an atomic change on the model, i.e., a single change on an element may
lead to changes on the surroundings of that element. This depends highly on which
element you want to modify and the connections between the element and the rest of
elements in the model. For instance, a renaming operator often affects a single element,
while removing a gateway with several incoming or outgoing connections has a bigger

Table 2 (continued)

Set Id Base model Mutant model SAMOS
unigram

SAMOS
bigram

Apromore
clone
detection

Apromore
sim tool
v7.15

36 ex-firstProcess-oneIncludesAnother ex-secondProcess-oneIncludesAnother 0.83 0.88 0.63 0.4

37 ex-baseProcess-compareSmallWithBigModel ex-compareSmallWithBigModel-
sameNames

0.66 0.52 0.66 0.44

38 ex-firstbase-
multipleUseOfSameElementName

ex-secondModel-
multipleUseOfSameElementName

0.44 0.07 0.26 0.2

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 20/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

impact on the model. In the design of our mutation set, we tried to include some of such
possible changes to better show the idea.

Goals for distance measures
It turns out there is no standard way to precisely measure the similarity of a pair of models.
However, we can specify a set of distance metrics to approximate the distance between a
pair of models or fragments. We are expecting fine-tuned distances for small changes. This
is because we want to be able to detect clones where there are multiple such small changes
e.g., cosmetic label changes or replacing several labels with their synonym should result in
an accumulated small enough distance between two models in order to still be counted as
clones. As a rule of thumb, removing an element should result in a higher distance than
changing the same element to a similar type, and similarly the latter should result in a
higher distance compared to renaming the same element to a synonym. Further details
about these measures are provided in Babur, Cleophas & van den Brand (2019).

Running tools on the mutation set
As expected, each tool runs under some configurable settings. For SAMOS, we consider the
Unigram and Bigram settings. The second tool, Apromore similarity plugin, can be run
using either of the Hungarian or Greedy algorithms. We run the tool in Hungarian mode.
Apromore also allows the user to adjust some thresholds including model, label, and
context similarity thresholds (with default values as 0.6, 0.6, and 0.75 respectively) to
parameterize the similarity search process. For example, the label similarity threshold
provides the similarity threshold of the different labels of a model. The similarity
thresholds provide a filtering on the result set. All the three thresholds are set to zero to let
models possibly with similarities under the thresholds appear in the result set. For the third
tool, Apromore approximate clone detector, the default settings are applied.

Another consideration is the input model type used by the tools. Apromore has
developed a canonical format to capture different business process models in a common
representation (La Rosa et al., 2011). Models from different business process model
notations are initially transformed to this format. Apromore offers a Canonizer service
which allows for transforming between different notations through the canonical format.
Despite that, there is a limitation in the input format for the Apromore tools. The
similarity plugin of Apromore reads models in BPMN only, while approximate clone
detection tool reads models in EPC format only. To be consistent in the whole experiment,
we build the models in BPMN 2.0 notation and transform them to their EPC counterpart
through the Canonizer service of Apromore to be used by its clone detection tool.

Evaluation of the results

Looking at the distance measurements reported in Table 2, it is noticeable that tools are
revealing where they are doing better and where are the shortcomings. We can distinguish
categories in the result set from a single tool’s perspective. There are points at which a tool
is doing fine, and other points where the tool is not showing a good result. To get even
more insight, we may look at the points where only a tool is able to show reasonable results,
while others are failing. In the following, we will have a closer look at these points.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 21/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

For the following cases, it seems SAMOS is outperforming Apromore:

� Naming: The naming in gateways and sequence flows are ignored in Apromore. It also
seems SAMOS is able to better handle minor cosmetic changes such as white space, case
change, and addition of extra chars on the label.

� Attributes: Element attributes (as defined in metamodel) are not taken into account in
Apromore.

� Type change: As there is a family of Task types in BPMN 2.0, changing from one type to
another can be seen by SAMOS but not by Apromore.

The main reason for most of the failures for Apromore mentioned above seems to come
from the previously mentioned fact that Apromore is not considering language-specific
information in a process model, as they are treating process models in the form of a more
generic structure of a process graph captured in their canonical representation.

On the other hand, there is a case that Apromore is able to detect, which is not captured
by SAMOS. It is about the moving of an element to another place with a similar context in
the model (with same preceding and succeeding neighbors). This originates from a
limitation of using Bigram where only two consecutive nodes are considered as a unit of
feature extraction in SAMOS. This can be improved by taking bigger chunks of n-grams as
features.

Regarding the distance measures specified in “Goals for Distance Measures”, the tools
seem to show different behaviour about specific mutation operations, but for the majority
of the cases, they all show an acceptable sensitivity regarding the impact size of atomic and
cumulative change operations. There are still cases at which the tools do not seem to
behave as expected. For instance, Apromore clone detection tool seems to show an
excessive impact by cosmetic changes (e.g., for case changes). On the other hand, the
Similarity tool seems to show a higher sensitivity for adding or removing elements
compared to other tools. Also for SAMOS, it seems it is less sensitive about renaming
multiple elements. Note that deciding about the right impact size for a modification is not
always straightforward. For instance, in the example of atomic changing a gateway type
with multiple in or out flow connections, Apromore seems to showmuch higher sensitivity
than SAMOS, but deciding which one is better may be a preference to the user or the case
applied.

Experiment 2: model clone detection on asset management dataset
After obtaining results of the first experiment, we now have a basic idea about the two
tools. To further understand the differences between SAMOS and Apromore, we proceed
to the second experiment, where we compare the clone detection capability of the two tools
by running them on a real dataset. For this experiment, we run the tools on EPC models.
The decision is made as Apromore approximate clone detection tool reads only EPC
models. For the dataset we do not have many options as EPCmodels seem to be rarely used
nowadays. For this experiment, we chose the Asset Management dataset from the Model
Matching Contest 2015 which is derived from the SAP Reference Model Collection

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 22/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

(Enterprise Modelling and Information Systems Architectures, 2015). The Asset
Management dataset consists of 36 pairs of similar EPC models, resulting in a total of 72
models.

Methodology
Given the 36 model pairs, we performed the following steps to run the tools on this model
set.

1. Apromore clone detection: run clone detection of Apromore with default settings on the
models.

2. Fragmentation: extract all SESE fragments from all models using Apromore toolset in
the form of separate EPC models.

3. Transformation: transform the EPC models to BPMN models through the Apromore
canonical format.

4. SAMOS clone detection: run clone detection of SAMOS with default settings on the
BPMN models obtained from the previous step.

5. Validation: inspect random subsets from the three sets obtained from the clustering
result of the two tools:

� Clone pairs common for both: SAMOS ∩ Apromore

� Clone pairs only in SAMOS: SAMOS – Apromore

� Clone pairs only in Apromore: Apromore – SAMOS.

Note that the Apromore tool works in the scope of SESE fragments for clone detection,
while currently there is no support for this scoping for BPMN models in SAMOS.
Therefore, for a comparison between the two tools, we need to obtain the SESE fragments
of given models and run clone detection on them. This way, both tools would be running
clone detection in the same scoping which makes them comparable. We obtain the SESE
fragments identified by Apromore as separte EPC models, which then are transformed to
BPMN models to be used in SAMOS (step 2 and 3 in the methodology).

Regarding step 4 (SAMOS clone detection), a pre-processing is done on the distance
matrix before applying the clustering algorithm. The aim of this pre-processing is to avoid
overlapping clone pairs where one fragment contains another. A definition that considers
two fragments as clones only because one contains another leads to many false-positives
and should be avoided. This is a known issue in the code and model detection domain
(Pham et al., 2009). Apromore avoids this problem in its definition and by the techniques
such as RPST that they apply. Since in SAMOS we do not support the SESE decomposition,
in this experiment, we obtain the fragment containment information from Apromore and
use it to mask out overlapping pairs in the distance matrix before continuing with
clustering for clone detection.

Results
The number of generated pairs based on the obtained results are given in Table 3.
Considering the one big cluster (with over 500 data points) produced in SAMOS, the

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 23/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

resulting number of pairs is much bigger in comparison to the one for Apromore. For
SAMOS, there are 49 clusters in total, while for Apromore, this number is 156 which is
much larger than that of SAMOS. The number of data points in clusters for Apromore is
also much lower than that of SAMOS which means the corresponding group of data points
were distinctive enough in the default adjusted distance threshold of 0.3.

As mentioned in “Methodology”, we relied on a manual validation for measuring the
accuracy of the tools. Random subset of common and different pairs from the two tools
were inspected. The random sampling was done with a confidence level of 90% and with a
10% margin of error to build the manual validation sets. Table 4 shows the resulting set
sizes. Two of the models were incompatible with Apromore, thus being removed.

A preprocessing was done to remove possible duplicates from the original sets. Also,
before doing the sampling in the produced three sets, the exact clone (Type-A) pairs were
excluded from the lists. To do that, originally an internal function of the Apromore tool
was used to get the list of exact clones. However, by checking the database of the tool, we
noticed the existence of additional fragment pairs with distance 0 that were missing in the
original results, which were also added to the list.

We use stratified sampling in this experiment, meaning the whole clone pair set is
treated as subgroups which correspond to clusters and sampled separately for each cluster.
This way the samples represent best the whole population set.

Apromore by default allows for overlapping in clusters, which may result in repetition
of clone pairs. With a separate filtering pass, the duplicate pairs are removed.

For a quantitative evaluation of the results we use precision and recall measures as well
as the F-score (harmonic mean of the recall and precision) (Larsen & Aone, 1999).
Precision and recall are widely used performance metrics in Information Retrieval and
Machine Learning that apply to data retrieved from a collection. Precision is the fraction of
relevant instances among the retrieved instances, while recall is the fraction of relevant
instances that were retrieved. Relevant instances correspond to real clones in our case.
Table 5 shows the aggregated results from all the validation sets for precision, relative recall
and the F-score separately for SAMOS and Apromore. The calculation of the precision,
relative recall, and F-score are based on the sample sets shown in Table 4. In this
experiment, we follow a similar approach for calculating the mentioned measures as in
Babur, Cleophas & van den Brand (2019).

Table 3 Number of clone pairs found in the Asset Management dataset.

Type B, C
#pairs

SAMOS 166,659

Apromore 898

SAMOS–Apromore 165,914

Apromore–SAMOS 153

SAMOS ∩ Apromore 745

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 24/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

The calculation of the precision for each tool is based on the samples taken from the
relevant sets for the tool. For instance, in the case of SAMOS, we look into the two sets
“SAMOS–Apromore” and “SAMOS ∩ Apromore” sets. Regarding the recall, while we
cannot assess the absolute recall, we give an assessment of (relative) recall in this
experiment. The number of real clones (as labelled manually) required for the relative
recall is obtained through the following steps: (1) obtain the percentage of the relevant
clones in all the validation sets, (2) extrapolate the percentages to the original sets
regarding the validation sets (i.e. multiply percentages with the sizes) and (3) take the
average over all the sets. Regarding the extrapolation step, we rely on the underlying
assumption that choosing a statistically significant sample size for valiation sets, well
represents the population, i.e., the full set of clones, from which the samples were taken.

The calculation of the mentioned measures for each tool is based on the formulas given
in Eqs. (6) to (10). Given the three sets defined before, SAMOS–Apromore (set1), SAMOS
∩ Apromore (set2), Apromore–SAMOS (set3), the letters used in the below equations
mean the following: Ti corresponds to the number of true positives (correctly identified as
clones) in the ith set, Ni corresponds to the total number of elements in the ith set, and Si
corresponds to the number of elements in the sample set of the ith set.

SAMOS precision ¼ ðT1 � N1Þ=S1 þ ðT2 � N2Þ=S2
N1 þ N2

(6)

SAMOS relRecall ¼ ðT1 � N1Þ=S1 þ ðT2 � N2Þ=S2
ðT1 � N1Þ=S1 þ ðT2 � N2Þ=S2 þ ðT3 � N3Þ=S3 (7)

Apromore precision ¼ ðT2 � N2Þ=S2 þ ðT3 � N3Þ=S3
N2 þ N3

(8)

Apromore relRecall ¼ ðT2 � N2Þ=S2 þ ðT3 � N3Þ=S3
ðT1 � N1Þ=S1 þ ðT2 � N2Þ=S2 þ ðT3 � N3Þ=S3 (9)

F � Score ¼ 2 � precision � recall
precisionþ recall

(10)

Note that the precision and recall in Eq. (10) are the metrics calculated separately
for each tool as reported in Table 5. For intacne, in the case of SAMOS, the precision
in the formula corresponds to SAMOS_precision, and the recall corresponds to
SAMOS_relRecall, calculated using Eqs. (6) and (7) respectively.

Table 4 Size of the validation sets.

Type B, C

SAMOS–Apromore 69

Apromore–SAMOS 48

SAMOS ∩ Apromore 63

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 25/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

Discussion
In this experiment, a comparative clone detection was performed on a real dataset. Overall,
Apromore outperforms SAMOS in precision, but the results show a much higher relative
recall for SAMOS.

Given the rather small dataset used in this experiment, the exact runtime of the tools is
not provided. Both tools get slower as the input size increases. However, for this
experiment, both tools ran in order of few minutes. For SAMOS, the VSM computation
and the distance calculation are the main parts that slow down the tool. The complexity of
the tool is quadratic with respect to the total feature set size of the model dataset. The
feature comparison techniques such as Hungarian algorithm and the applied NLP
techniques also increase the computation time. While for Apromore, it seems one of the
main bottlenecks is about the costs related to the incremental building of the RPSDAG
(Dumas et al., 2013). We plan to improve our tool performance by applying optimizations
on the used techniques and by a distributed computing.

One of the causes for the lower precision of our tool in this experiment seems to be
originating from the fact that our current implementation performs best when the majority
of the model elements are labeled. EPC models do not support labels for connectors
(gateways in BPMN) and sequence flows; since we used EPC models for this experiment,
this seems to also have a negative effect on the final results. In the next experiment, we use
BPMN models with different fragmentation techniques, where we get a better precision
compared to this experiment.

Experiment 3: clone detection with lane and subprocess scoping
We perform another experiment to demonstrate the potential of our tool in clone
detection for different model scoping settings. Basically, scoping in SAMOS boils down to
how granular we want the feature extraction to be. For instance, this can be for the whole
model which is assumed to be the default mode, or it can be for smaller fragments in the
model. It all depends on how we want to slice a given model into logically connected
elements for similarity detection.

In the case of BPMN models, we can think of different ways of decomposing models
into smaller parts. For this experiment, we look into Lane and Subprocess elements in
BPMN specification. They are specifically chosen as both of them provide a form of logical

Table 5 Aggregated results from all the validation sets for precision, relative recall, and F-score of
SAMOS and Apromore.

Type II, III

SAMOS Precision 0.638

Rel. recall 0.998

F-Score 0.778

Apromore Precision 0.920

Rel. recall 0.007

F-Score 0.014

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 26/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

grouping with sub-elements. In this experiment, we limit the results of clone detection for
the mentioned decomposition styles, but the idea can easily be generalized for other ways
of fragmenting process models.

Methodology
In the following, we give an outline of the followed steps for this experiment. The steps are
repeated for both of the decomposition styles we chose for this experiment.

1. GitHub search: search for models containing the decomposition element in the model.

2. Model filtering: filter out all invalid, irrelevant, too small, non-English, and duplicate
models.

3. Clone detection: run the tool with the default settings on the model set to find type-A
(exact clone), and type-B and type-C (approximate clones), among the model fragments.
The Bigram encoding with a distance threshold of 0.30 is applied.

4. Validation: manually inspect a randomly selected sample set of the clone pairs (with
confidence of 90% and 10% margin of error) to find true/false clone pairs.

Note that for this experiment, similar to the previous experiment, we address the
overlapping clone issue. This means that, given a pair of lanes, if one lane contained the
other, the pair is considered as overlapping clones, and thus it is excluded from the result
set. Similarly, this is done for Subprocess clone pairs.

Model collection
For this experiment, we needed to run our tool on two sets of models separately for each
decomposition setting. As we wanted to run the experiment on real models, we decided to
collect models mainly from GitHub. The model collection was done in October 2021. For
each set, all models needed to have the corresponding decomposition element, i.e., for Lane
decomposition, all models needed to have at least one lane, and the same for the
Subprocess decomposition. For that, we did separate GitHub searches: To get models with
a Lane element, we used the GitHub advanced search with the keyword “bpmn:lane”, with
bpmn file extension, and different size settings to collect a more diverse model set: 0 to
100 kb with 10 kb intervals. Similarly, to get models with a Subprocess element, we repeated
the same search process with the keyword “bpmn:subprocess”. In each search, the
candidate models were collected randomly from separate result pages. For Lane
decomposition, 395 models were collected in total. After a filtering, 171 models remained
for the clone detection process. In the case of Subprocess decomposition, 270 models were
collected in total, from which 28 models remained after the filtering process.

To get a list of suitable models for clone detection, a filtering is applied on the collected
models. We use the following criteria for filtering:

� Remove models not in the BPMN 2.0 XML serialization format,

� Remove models that are too small,

� Remove models with non-English labels,

� Remove duplicate models.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 27/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

For the Subprocess case, as the final list of models after the filtering was small, other
valid models from the Lane search with Subprocess element, as well as an additional set of
models that were collected from the RePROSitory open access business process model
database (PROS-Lab, 2019) were added to the list. The final list totaled 92 models. As a
final note, during this experiment we do not check the models for any possible syntactical
or semantical rule violations, as this is not a major issue for our clone detection process.
Figure 5 gives an overview of the model sets for each decomposition.

Clone detection with lane decomposition
Lanes in BPMN correspond to roles in organizations. Lanes consist of a set of activities that
are handled by an actor, such as a person or a system. They are represented by a box-
shaped graphical element with a clear boundary around it. Lanes seem to be a good
candidate to decompose process models, as typically there are roles in business process
models that take care of a set of actions. The rationale behind the lane decomposition for
clone detection is to find out about other roles who take care of similar sets of activities.
This, for example, allows us to further analyze the connections between such roles or to
find out about alternatives for a specific role in a business process.

Results

Starting with 172 models and following the clone detection steps, the clustering resulted in
59 clusters. Figure 6 shows an overview of the clustering result, labeled with the number of
data points (i.e., each as a lane fragment) identified in each cluster. The cluster content
were then all converted as pairs. This resulted in a total of 7,590 pairs. Based on a 90% of
confidence threshold and a 10% error rate, 68 sample pairs were randomly selected from
the whole pair list. With 52 pairs manually evaluated as True clone pairs, the resultant
precision was about 76%.

100

200

300

400 395

177

original size

after fil
tering

100

200

300

400

270

28

original size

after fil
tering

92

after in
clusion

of additio
nal

models

nu
m

be
r

of
 m

od
el

s

A. Models dataset for Lane
decomposition

B. Models dataset for Subprocess
decomposition

Figure 5 Model datasets for lane and subprocess decomposition.
Full-size DOI: 10.7717/peerj-cs.1046/fig-5

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 28/40

http://dx.doi.org/10.7717/peerj-cs.1046/fig-5
http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

Clone detection with subprocess decomposition
We repeat the experiment for Subprocesses, similar to what we did for Lanes. Subprocess is
another self-contained element in BPMN that are used to simplify the development and
use of business process models. They resemble functions in programming languages with
an input and output. Subprocess seems also to be another reasonable candidate for model
decomposition.

Results

In this case, we had collected 92 models in the model set. The clustering phase resulted in
18 clusters, which then again were converted as pairs. Figure 6 shows an overview of the
clustering result, labeled with the number of data points (i.e., each as a subprocess
fragment) identified in each cluster. This resulted in a total of 472 pairs. Based on a 90%
confidence threshold and a 10% error rate, 60 sample pairs were randomly chosen from the
whole pair list. With 52 pairs manually evaluated as True clone pairs, the resulting
precision was about 87%.

Discussion

Overall, our tool shows an acceptable precision for both of the scoping settings. Obviously,
there is much improvement in the precision from the 2nd experimental evaluation. As
noted in the 2nd experimental evaluation, our clone detection tool shows better results
when the majority of model elements are labeled, which leads to a better distinction

Figure 6 Clustering results for (A) lane scoping, and (B) subprocess scoping in SAMOS. Full-size DOI: 10.7717/peerj-cs.1046/fig-6

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 29/40

http://dx.doi.org/10.7717/peerj-cs.1046/fig-6
http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

between model elements in the process of clone detection. This seems to be the reason to
get better precision for this experiment. As shown in Fig. 6, there are two broader clusters
(encompassing more data points) in each scoping. This is partly due to the use of DBSCAN
clustering algorithm, as it tends to include a chain of data points in a single cluster, where
the two ends may not be highly similar compared to the neighboring data points.
Evaluating alternative clustering techniques, such as hierarchical clustering would be an
interesting future work to find the best possible technique for this problem.

A design decision for the decomposition that has a significant impact on the tool
accuracy is how we want to include N-grams on the boundary of the selected scope. This
happens when there are connections between elements inside and outside a given scope.
This is especially the case for the lane decomposition, where there are typically multiple
incoming and outgoing connections to/from a lane. For the lane decomposition, our
current design allows Bigrams in the extracted features where, e.g., the first part of the
Bigram is inside a lane, and the second part is outside it, with a connection between them.
This design decision seems to also have negative implications on the tool accuracy. As an
alternative, the design could be changed so that such features on the boundary would be
excluded.

We use stratified sampling in this experiment, which means the whole clone pairs
coming from different clusters are not treated as a single list but as subgroups, thus the
sampling is done separately for each cluster. This way, the sample set gives a better
representation of the whole population set.

As there is no BPMN clone detection tool with such a scoping capability, we are not able
to measure a relative recall similar to what was done in the 2nd experimental evaluation.

OVERALL DISCUSSION
In this section, we discuss some important aspects of our approach and the developed tool.

Underlying framework
The presented technique in this article is built on top of SAMOS, which enables us to
exploit its capabilities in NLP and statistical algorithms. The extensibility of the framework
allows us to add feature extraction for BPMN specification and customize and add new
distance measures. With the support of R in the back-end, we are able to do more advanced
statistical and data mining techniques. We’ve been working on integrating our tool along
with other related tools under the Eclipse Arrowhead framework. The other tools function
as model repository, model management, and visualizing dashboards that interoperate as a
toolchain through the Eclipse Arrowhead framework (Arrowhead, 2021).

Accuracy
Our approach as implemented, shows an acceptable accuracy as reported under the
experimental evaluations. Apromore clone detection tool shows a better precision
compared to our tool, however, regarding the recall measure, our tool yields better results.
Our assessment on the recall is relative to the tool results which is reported in the 2nd

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 30/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

experimental evaluation. A qualitative analysis on the cases where both the tools show
weaknesses will help us to work towards a better performance in our tool.

Performance and scalability
Overall, performance for both SAMOS and Apromore can be improved. For SAMOS, this
is mainly related to the quadratic complexity of VSM and distance calculations, employing
a complex NLP, and the comparison algorithm performed. For Apromore, there are partly
similar problems as calculating different levels of distance measurements and seemingly
the most expensive task of building the RPST and related calculations on top of that.
Persisting and retrieving all the data into/from a relational database during the clone
detection process may also have an extra added burden to the time complexity of the
algorithm. SAMOS has already been tested for its scalability to handle quite large datasets
(in the order of tens of thousands of models), although with optimizations and in iterative
mode (Babur, Cleophas & van den Brand, 2019). For Apromore, as claimed in La Rosa
et al. (2015), the RPSDAG implementation employed by the tool can handle repository
sizes in the magnitude of hundreds of models. The authors intend to improve on the
scalability with some optimizations regarding the distance calculation.

Genericness
SAMOS, the underlying framework, is in principle generic, meaning it can be used for any
graph-based modeling notation. As the starting point for the analytics in the framework is
based on the extracted features from models in an encoding defined in the framework, in
practice, it is enough for one to generate their so-called features, and use the rest of the
framework as-is without the need to modify it in a domain-specific way. As stated in the
article, our feature extraction relies on and covers main parts of the BPMN 2.0 metamodel
for process modeling.

Clustering
An important aspect of our approach is about clustering. Handling of the connectivity in
the used clustering technique as spherical/convex vs. non-spherical/convex shapes
influences our clustering results. This is a known issue in the data mining domain, but not
much studied in the clone detection domain. As it appears in the 2nd experimental
evaluation, among our clustering results we encountered a single very big cluster compared
to other clusters, which seems to be a result of the same issue. We plan to tackle this issue
more by comparing our clustering technique with others such as Hierarchical clustering
techniques.

Improving on SAMOS
A set of custom-tailored improvements are added to SAMOS to serve better our business
process model clone detection. These changes and additions are specifically done to
improve the distance measurement calculations. After inspecting the results from the
experimental evaluations, we further plan to improve on other aspects of the framework.
More work can be done regarding the use of NLP for more accurate results on label
similarity measurements. For their semantic similarity measurement, inclusion of domain-

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 31/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

specific ontologies could also be considered. Another improvement could be about
optimizations in the VSM construction to lower its time and space complexity as this is the
most costly step in the clone detection workflow of SAMOS.

More powerful NLP
Having a strong NLP component in place is central to a quality clone detection tool.
Obviously, labeled elements are frequently used in business process models and play an
important role when comparing model elements. SAMOS already utilizes some commonly
used NLP functionality such as tokenization, stemming, lemmatization, and Wordned-
based measures, but there is still room to strengthen this by adding more advanced features
such as context-based or domain-specific semantic checking.

Other practical aspects
There are various aspects to consider when applying model clone detection in practice
(Deissenboeck et al., 2010; Stephan, 2014a). One of the known issues is that of overlapping
clones which is common in the code and model clone detection domain. In our
experimental evaluation, we try to partially address this issue, but still more work needs to
be done in this regard. Also, we have ongoing work such as visualizing clone detection
results for a more convenient inspection of the results.

Threats to validity
A threat to validity of this work is regarding the usage of the Apromore tool in our
experiments. The clone detection tool developed by the Apromore constitutes a part of the
much bigger ecosystem under the Apromore platform. Although there are multiple
publications on the approach and the utilized techniques, still there is no documentation
on different aspects of the tool in implementation level and how to properly run the tool
for clone detection as intended. We ran the tool with the default settings for clone
detection and obtained the results accordingly, as reported in the experimental evaluations.

Another threat to validity of this work is the absence of measuring the absolute recall,
although we compared our technique to the state-of-the-art Apromore clone detection
tool. There is no other tool against which we can compare our tool, but for a better
assessment of our tool, we can follow a more automated mutation analysis (Stephan &
Cordy, 2019). We also applied a manual validation approach to assess the precision of the
tool, which is an error-prone process as it is mainly a labor-intensive activity. To overcome
this, we plan to have multiple assessors do the validation, also get the help of domain
experts from the community and the industry, to build more precise knowledge about the
notion of BPM clones (Stol, Ralph & Fitzgerald, 2016).

RELATED WORK
There has been a wide range of research activities going on about clone detection. We will
refer to some related work in this domain. The works in clone detection mainly stem from
the bigger software clone detection (Koschke, 2007) field, and the majority of the work
done in the literature is based on code clone detection (Roy, 2009). Clone detection in
software repositories has also been an active research filed over the last years (Koschke,

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 32/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

2008; Roy, 2009; Rattan, Bhatia & Singh, 2013). In the broader view, the research in model
clone detection can be considered as a subdomain of model comparison (Stephan & Cordy,
2013). Also, our study is closely related to the similarity search field (Shimomura et al.,
2021). There are similarities in the applied techniques, as for example, how complex data
are represented in terms of feature vectors for comparison. In clone detection, we also look
for similarities between models, however, in our case, there is no such a query model to
search among a set of models. Our approach aims to detect similar models and group them
as separate clusters. We look at some relevant studies applying different code and model
clone detection techniques.

There are numerous approaches for code clone detection, as reported in Baxter et al.
(1998), Jiang et al. (2007), Gabel, Jiang & Su (2008), Krinke (2001). Some of them are using
tree-based techniques. For instance, Baxter et al. (1998) propose a clone detection
approach based on abstract syntax tree (AST) for detecting exact and near-miss clones for
arbitrary fragments of program source code. In the process, source code is parsed and an
AST is generated, which then is used to find similar subtrees on it. Another tree-based
approach is DECKARD (Jiang et al., 2007) which detects code clones again using ASTs in
which subtrees are characterized as numerical vectors in the Euclidean space and using
algorithms to cluster them based on their Euclidean distance.

There are other works for code clone detection using graph-based approaches. In Gabel,
Jiang & Su (2008), they offer an extension of DECKARD to deal with program dependence
graphs (PDGs). In the process, they first extract a group of subgraphs with potential clone
candidates. Then, a group of ASTs are generated from the selected subgraphs. After that,
the approach in DECKARD is applied to identify clones. The approach is based on the
semantics of PDGs and is not directly applicable to process models. The proposed
technique is scalable to hundreds of thousands of models, which is similar to SAMOS in
that case. Another approach for clone detection in PDGs is the work by Krinke (2001)
which is a heuristic based approach for finding similar subgraphs in PDGs, therefore it
considers not only the syntactic structure of programs but the semantics (using data flow)
is also captured. The approach aims to find maximal isomorphic graphs in fine-grained
program dependence graphs.

There are also clone detection approaches in MDE. In Deissenboeck et al. (2008)
the authors present CloneDetective, which is a method for clone detection of
Matlab/Simulink/TargetLink models widely used in the automotive domain. The proposed
approach is claimed to be applicable to most data-flow graph-based languages. They
partition models into connected components, which are compared using a heuristic
matching algorithm. A clustering algorithm is used to group the components based on the
sets of their node labels. As claimed in Pham et al. (2009), CloneDetective has a tendency to
detect as large clones as possible, which means smaller clone pairs are absorbed by the
bigger ones. In our approach, we produce clone pairs for different model granularities to
avoid this issue. The work in Pham et al. (2009) introduces a tool named ModelCD with
two techniques namely eScan and aScan for exact and approximate detection of clones in
Matlab/Simulink models. Our work is similar to this work in the sense that they also
represent graphs by a set of vectors built from graph features, e.g., vertex in/out degrees and

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 33/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

path lengths. Another work done in Störrle (2013) applies to UML domain models such as
class or activity diagrams. In this work, they form fragments using objects, their properties,
and child objects and measure similarity of fragment pairs. The fragment similarity is
calculated through adding up pairwise similarities of their elements. Unlike our approach
in SAMOS, they do not take into account the structural similarity and there is not
clustering technique applied. SIMONE uses another approach for finding near-miss
clones, which is presented in Alalfi et al. (2012). The work provides an adaptation to the
code clone detection tool NICAD to detect structurally meaningful near-miss clones in
graphical models. This is done by transforming the graph-based models to a text form and
using NICAD afterwards. The technique is applied for Simulink models as Simulink
already provides a textual representation, but could be extended for process models if a
normalized textual representation of such models were generated. From this aspect, this is
similar to SAMOS where also models are transformed into a set of textual features for
clone detection. Finally, in Dijkman et al. (2011b) they identify refactoring opportunities
by suggesting pairs of similar process fragments to the user. Unlike our work in SAMOS
that considers labels, types and structure in models, they look exclusively at labels. Again,
they’re not also doing clustering, but rather a pairwise fragment comparison.

Looking at some mentioned approaches, they may have the potential of being extended
for applying to business process models, currently there is no such a tool-based approach
except the existing one offered by Apromore. However, the approach in Apromore still
treats process models in a generic way, i.e., considering their universal internal
representation for process models, which limits the tool applicability when it comes to
specific languages such as BPMN. In our approach however, although SAMOS, the
underlying framework, is generic, our extension is completely geared towards BPMN
language, which makes it a language-specific clone detection approach.

CONCLUSION AND FUTURE WORK
In this article, we present an approach for conducting clone detection on BPMN models.
Our approach relies on the techniques implemented in SAMOS. SAMOS is a generic
framework for large-scale analysis of models based on information retrieval and machine
learning techniques. We present the underlying techniques utilized in the framework, and
show how we extend it for clone detection of BPMN models. We have extended SAMOS
with customized feature extraction, comparison schemes, customized distance measures
and additional scoping in the context of model clone detection.

We evaluate our approach along with the starte-of-the-art business process analytics
platform, Apromore, through three different experiments: first one, using a set of synthetic
mutation set; second one, using a real model dataset; and third one, using collected models
from the GitHub. In the first experiment, we do a comparative evaluation of the tools based
on their accuracy in pairwise model similarity. As the results indicate, SAMOS shows a
better performance regarding the coverage of the metrics in pairwise model similarity. The
second and third experiment aim to provide an evaluation on the clone detection
approaches taken by the tools. In the second experiment, we use a dataset from the known
SAP Reference Model collection. EPC Models are fragmented as SESE fragments for this

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 34/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

experiment, as this is the only scoping supported by Apromore, the other tool involved in
this study. In this case, the results reveal a better precision for Apromore, while a higher
recall measure for SAMOS. Our third experiment covers other possible BPMN scoping
evaluations in clone detection (i.e., lane and subprocess scoping styles) which covers
additional capabilities of our approach. For the last case, we achieve more promising
results compared to the second experiment. The results, as well discussions on the tool
performance, are provided for each experiment.

There are several possibilities for future improvements. One of them is about scoping.
In the current implementation, our tool supports setting of a fixed scoping at each run.
However, it would be useful to have a dynamic scoping in place where the tool would
automatically adjust the possible scoping settings or find the best scoping and run
accordingly.

A second improvement is to consider extracting model features with bigger structures.
The results of the current experimental evaluations show that feature extraction in
Unigram and Bigram levels do not seem to suffice for getting the best possible results for
similarity measure. The next step would be to try with more complex features, such as
trigrams or subtrees.

Another interesting future work would be to include execution semantics in clone
detection. In that case, the clone detection tool would be able to detect process models that
are similar in functionality, but not necessarily with a lexical and syntactical similarity,
meaning that they can have different number and type of elements or structurally different.
Considering the wide variation in purposes and practices for business process model
development, it becomes challenging to detect semantic clones in such models.

Another future improvement can be possible optimizations on the VSM building and
application, e.g., through dimensional reduction or handling sparse matrices. As VSM
building and the calculations thereof play a central role in our approach, and considering
the fact that increase in VSM size leads to more time and space complexities, any
optimization on it would significantly reduce our costs.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research is funded by ECSEL, the Electronic Components and Systems for European
Leadership Joint Undertaking under grant agreement No 826452 (Arrowhead Tools
project), supported by the European Union Horizon 2020 research and innovation
programme and by the member states. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
ECSEL.
Electronic Components and Systems for European Leadership Joint Undertaking: 826452.
European Union Horizon 2020 research and innovation programme.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 35/40

http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Mahdi Saeedi Nikoo conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

� Önder Babur conceived and designed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

� Mark van den Brand conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Data and code are available at Zenodo:
Saeedi Nikoo, Mahdi, Babur, Önder, & van den Brand, Mark. (2022). Clone Detection

for Business Process Models - supplemental material [Data set]. Zenodo. DOI 10.5281/
zenodo.6630475.

REFERENCES
Alalfi MH, Cordy JR, Dean TR, Stephan M, Stevenson A. 2012. Models are code too: near-miss

clone detection for simulink models. In: 2012 28th IEEE International Conference on Software
Maintenance (ICSM). Piscataway: IEEE, 295–304.

Arcelli Fontana F, Zanoni M, Ranchetti A, Ranchetti D. 2013. Software clone detection and
refactoring. International Scholarly Research Notices 2013:1–8 DOI 10.1155/2013/129437.

Arrowhead E. 2021. Eclipse arrowhead project. Available at https://projects.eclipse.org/projects/iot.
arrowhead.

Babur Ö, Cleophas L. 2017. Using n-grams for the automated clustering of structural models. In:
Steffen B, Baier C, van den Brand M, Eder J, Hinchey M, Margaria T, eds. SOFSEM 2017: Theory
and Practice of Computer Science. SOFSEM 2017. Lecture Notes in Computer Science. Vol. 10139.
Cham: Springer DOI 10.1007/978-3-319-51963-0_40.

Babur Ö, Cleophas L, van den Brand M. 2019.Metamodel clone detection with samos. Journal of
Computer Languages 51(2):57–74 DOI 10.1016/j.cola.2018.12.002.

Babur Ö, Cleophas L, van den Brand M. 2016. Hierarchical clustering of metamodels for
comparative analysis and visualization. In: Wąsowski A, Lönn H, eds. Modelling Foundations
and Applications. ECMFA 2016. Lecture Notes in Computer Science. Vol. 9764. Cham: Springer
DOI 10.1007/978-3-319-42061-5_1.

Babur Ö, Cleophas L, van den Brand M. 2018.Model analytics for feature models: case studies for
S.P.L.O.T. repository. In: Proceeding of MODELS 2018 Workshops, co-located with ACM/IEEE
21st International Conference on Model Driven Engineering Languages and Systems (MODELS
2018), Copenhagen, Denmark, October, 14, 2018. Piscataway: IEEE, 787–792.

Babur Ö, Suresh A, Alberts W, Cleophas L, Schiffelers R, van den Brand M. 2020. Model
analytics for industrial mde ecosystems. In: Model Management and Analytics for Large Scale
Systems. Amsterdam: Elsevier, 273–316.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 36/40

https://doi.org/10.5281/zenodo.6630475
https://doi.org/10.5281/zenodo.6630475
http://dx.doi.org/10.1155/2013/129437
https://projects.eclipse.org/projects/iot.arrowhead
https://projects.eclipse.org/projects/iot.arrowhead
http://dx.doi.org/10.1007/978-3-319-51963-0_40
http://dx.doi.org/10.1016/j.cola.2018.12.002
http://dx.doi.org/10.1007/978-3-319-42061-5_1
http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

Baxter ID, Yahin A, Moura L, Sant’Anna M, Bier L. 1998. Clone detection using abstract syntax
trees. In: Proceedings International Conference on Software Maintenance (Cat. No. 98CB36272).
Piscataway: IEEE, 368–377.

Boffoli N, Caivano D, Castelluccia D, Visaggio G. 2012. Business process lines and decision tables
driving flexibility by selection. In: Gschwind T, De Paoli F, Gruhn V, Book M, eds. Software
Composition. SC 2012. Lecture Notes in Computer Science. Vol. 7306. Berlin, Heidelberg:
Springer DOI 10.1007/978-3-642-30564-1_12.

Cognini R, Corradini F, Gnesi S, Polini A, Re B. 2018. Business process flexibility-a systematic
literature review with a software systems perspective. Information Systems Frontiers 20(2):343–
371 DOI 10.1007/s10796-016-9678-2.

Deissenboeck F, Hummel B, Juergens E, Pfaehler M, Schaetz B. 2010. Model clone detection in
practice. In: Proceedings of the 4th International Workshop on Software Clones. 57–64.

Deissenboeck F, Hummel B, Jürgens E, Schätz B, Wagner S, Girard J-F, Teuchert S. 2008. Clone
detection in automotive model-based development. In: 2008 ACM/IEEE 30th International
Conference on Software Engineering. Piscataway: IEEE, 603–612.

Deza MM, Deza E. 2009. Encyclopedia of distances. New York: Springer, 1–583.

Dijkman R, Dumas M, Garca-Bañuelos L. 2009. Graph matching algorithms for business process
model similarity search. In: Dayal U, Eder J, Koehler J, Reijers HA, eds. Business Process
Management. BPM 2009. Lecture Notes in Computer Science. Vol. 5701. Berlin, Heidelberg:
Springer DOI 10.1007/978-3-642-03848-8_5.

Dijkman R, Dumas M, Van Dongen B, Käärik R, Mendling J. 2011a. Similarity of business
process models: metrics and evaluation. Information Systems 36(2):498–516
DOI 10.1016/j.is.2010.09.006.

Dijkman R, Gfeller B, Küster J, Völzer H. 2011b. Identifying refactoring opportunities in process
model repositories. Information and Software Technology 53(9):937–948
DOI 10.1016/j.infsof.2011.04.001.

Dumas M, Garca-Bañuelos L, La Rosa M, Uba R. 2013. Fast detection of exact clones in business
process model repositories. Information Systems 38(4):619–633 DOI 10.1016/j.is.2012.07.002.

Eclipse. 2021. Bpmn2 modeler. Available at https://www.eclipse.org/bpmn2-modeler.

Enterprise Modelling and Information Systems Architectures. 2015. The second Process Modell
Matching Contest. Available at https://ai.wu.ac.at/emisa2015/contest.php.

Ester M, Kriegel H-P, Sander J, Xu X. 1996. A density-based algorithm for discovering clusters in
large spatial databases with noise. In: KDD’96: Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining. 96:226–231.

Fowler M. 2004. UML distilled: a brief guide to the standard object modeling language. Boston:
Addison-Wesley Professional.

Gabel M, Jiang L, Su Z. 2008. Scalable detection of semantic clones. In: Proceedings of the 30th
International Conference on Software Engineering. 321–330.

Jain AK, Dubes RC. 1988. Algorithms for clustering data. Hoboken: Prentice-Hall, Inc.

Jiang L, Misherghi G, Su Z, Glondu S. 2007. Deckard: scalable and accurate tree-based detection
of code clones. In: 29th International Conference on Software Engineering (ICSE’07). Piscataway:
IEEE, 96–105.

Keller G, Scheer A-W, Nüttgens M. 1992. Semantische Prozeßmodellierung auf der Grundlage
“Ereignisgesteuerter Prozeßketten (EPK)”. St. Gallen: Inst. für Wirtschaftsinformatik.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 37/40

http://dx.doi.org/10.1007/978-3-642-30564-1_12
http://dx.doi.org/10.1007/s10796-016-9678-2
http://dx.doi.org/10.1007/978-3-642-03848-8_5
http://dx.doi.org/10.1016/j.is.2010.09.006
http://dx.doi.org/10.1016/j.infsof.2011.04.001
http://dx.doi.org/10.1016/j.is.2012.07.002
https://www.eclipse.org/bpmn2-modeler
https://ai.wu.ac.at/emisa2015/contest.php
http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

Koschke R. 2007. Survey of research on software clones. In: Dagstuhl Seminar Proceedings. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

Koschke R. 2008. Identifying and removing software clones. In: Software Evolution. New York:
Springer, 15–36.

Krinke J. 2001. Identifying similar code with program dependence graphs. In: Proceedings Eighth
Working Conference on Reverse Engineering. Piscataway: IEEE, 301–309.

Kunze M, Luebbe A, Weidlich M, Weske M. 2011. Towards understanding process modeling-the
case of the bpm academic initiative. In: Dijkman R, Hofstetter J, Koehler J, eds. Business Process
Model and Notation. BPMN 2011. Lecture Notes in Business Information Processing. Vol. 95.
Berlin, Heidelberg: Springer DOI 10.1007/978-3-642-25160-3_4.

La Rosa M, Dumas M, Ekanayake CC, Garca-Bañuelos L, Recker J, ter Hofstede AH. 2015.
Detecting approximate clones in business process model repositories. Information Systems
49(7):102–125 DOI 10.1016/j.is.2014.11.010.

La Rosa M, Dumas M, Uba R, Dijkman R. 2013. Business process model merging: an approach to
business process consolidation. ACM Transactions on Software Engineering and Methodology
(TOSEM) 22(2):1–42 DOI 10.1145/2430545.2430547.

La Rosa M, Reijers HA, Van Der Aalst WM, Dijkman RM, Mendling J, Dumas M,
Garca-Bañuelos L. 2011. Apromore: an advanced process model repository. Expert Systems
with Applications 38(6):7029–7040 DOI 10.1016/j.eswa.2010.12.012.

Ladd J. 2020. Understanding and using common similarity measures for text analysis. The
Programming Historian 9:9 DOI 10.46430/phen0089.

Larsen B, Aone C. 1999. Fast and effective text mining using linear-time document clustering. In:
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. New York: ACM, 16–22.

Manning CD, Raghavan P, Schtze H. 2008. Relevance feedback and query expansion. In:
Introduction to Information Retrieval. New York: Cambridge University Press.

Manning C, Schutze H. 1999. Foundations of statistical natural language processing. Cambridge:
MIT press.

Mendling J. 2008. Event-driven process chains (epc). In: Metrics for Process Models. New York:
Springer, 17–57.

Messmer BT. 1995. Efficient graph matching algorithms. PhD thesis, University of Bern,
Switzerland.

Object Management Group (OMG). 2013. Business process model and notation v.2.0.2. Available
at https://www.omg.org/spec/BPMN/2.0.2.

Pham NH, Nguyen HA, Nguyen TT, Al-Kofahi JM, Nguyen TN. 2009. Complete and accurate
clone detection in graph-based models. In: 2009 IEEE 31st International Conference on Software
Engineering. Piscataway: IEEE, 276–286.

Prechelt L, Malpohl G, Philippsen M. 2002. Finding plagiarisms among a set of programs with
jplag. Journal of Universal Computer Science 8(11):1016.

PROS-Lab. 2019. Repository of open process models and logs. Available at https://pros.unicam.it:
4200/index.

Rattan D, Bhatia R, Singh M. 2013. Software clone detection: a systematic review. Information
and Software Technology 55(7):1165–1199 DOI 10.1016/j.infsof.2013.01.008.

Roy CK. 2009. Detection and analysis of near-miss software clones. In: 2009 IEEE International
Conference on Software Maintenance. Piscataway: IEEE, 447–450.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 38/40

http://dx.doi.org/10.1007/978-3-642-25160-3_4
http://dx.doi.org/10.1016/j.is.2014.11.010
http://dx.doi.org/10.1145/2430545.2430547
http://dx.doi.org/10.1016/j.eswa.2010.12.012
http://dx.doi.org/10.46430/phen0089
https://www.omg.org/spec/BPMN/2.0.2
https://pros.unicam.it:4200/index
https://pros.unicam.it:4200/index
http://dx.doi.org/10.1016/j.infsof.2013.01.008
http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

Roy CK, Cordy JR, Koschke R. 2009. Comparison and evaluation of code clone detection
techniques and tools: a qualitative approach. Science of Computer Programming 74(7):470–495
DOI 10.1016/j.scico.2009.02.007.

Sánchez-Charles D, Muntés-Mulero V, Carmona J, Solé M. 2016. Process model comparison
based on cophenetic distance. In: La Rosa M, Loos P, Pastor O, eds. Business Process
Management Forum. BPM 2016. Lecture Notes in Business Information Processing. Vol. 260.
Cham: Springer DOI 10.1007/978-3-319-45468-9_9.

Schoknecht A, Thaler T, Fettke P, Oberweis A, Laue R. 2017. Similarity of business process
models—a state-of-the-art analysis. ACM Computing Surveys (CSUR) 50(4):1–33
DOI 10.1145/3092694.

Shimomura LC, Oyamada RS, Vieira MR, Kaster DS. 2021. A survey on graph-based methods for
similarity searches in metric spaces. Information Systems 95(3):101507
DOI 10.1016/j.is.2020.101507.

Skouradaki M, Andrikopoulos V, Kopp O, Leymann F. 2016. Rose: reoccurring structures
detection in bpmn 2.0 process model collections. In: OTM Confederated International
Conferences “On the Move to Meaningful Internet Systems”. Cham: Springer, 263–281.

Stephan M. 2014a. Model clone detector evaluation using mutation analysis. In: 2014 IEEE
International Conference on Software Maintenance and Evolution. Piscataway: IEEE, 633–638.

Stephan M. 2014b. A mutation analysis based model clone detector evaluation framework. PhD
thesis, Queen’s University Kingston, Ontario, Canada. Available at https://qspace.library.
queensu.ca/bitstream/handle/1974/12376/Stephan_Matthew_D_201408_Phd.pdf?sequence=1.

Stephan M, Alalfi MH, Cordy JR. 2014. Towards a taxonomy for simulink model mutations. In:
2014 IEEE Seventh International Conference on Software Testing, Verification and Validation
Workshops. Piscataway: IEEE, 206–215.

Stephan M, Cordy JR. 2013. A survey of model comparison approaches and applications. In:
Modelsward 2013 - Proceedings of the 1st International Conference on Model-Driven Engineering
and Software Development. 265–277.

Stephan M, Cordy JR. 2019. Mumonde: a framework for evaluating model clone detectors using
model mutation analysis. Software Testing, Verification and Reliability 29(1–2):e1669
DOI 10.1002/stvr.1669.

Stol K-J, Ralph P, Fitzgerald B. 2016. Grounded theory in software engineering research: a critical
review and guidelines. In: Proceedings of the 38th International Conference on Software
Engineering. 120–131.

Störrle H. 2013. Towards clone detection in uml domain models. Software & Systems Modeling
12(2):307–329 DOI 10.1007/s10270-011-0217-9.

Störrle H. 2015. Effective and efficient model clone detection. In: Software, Services, and Systems.
New York: Springer, 440–457.

Tairas R, Cabot J. 2011. Cloning in dsls: experiments with OCL. In: Sloane A, Aβmann U, eds.
Software Language Engineering. SLE 2011. Lecture Notes in Computer Science. Vol. 6940. Berlin,
Heidelberg: Springer DOI 10.1007/978-3-642-28830-2_4.

Uba R, Dumas M, Garca-Bañuelos L, Rosa ML. 2011. Clone detection in repositories of business
process models. In: International Conference on Business Process Management. Springer, 248–
264.

Van Der Aalst WM, Ter Hofstede AH. 2005. Yawl: yet another workflow language. Information
Systems 30(4):245–275 DOI 10.1016/j.is.2004.02.002.

Vanhatalo J, Völzer H, Koehler J. 2009. The refined process structure tree. Data & Knowledge
Engineering 68(9):793–818 DOI 10.1016/j.datak.2009.02.015.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 39/40

http://dx.doi.org/10.1016/j.scico.2009.02.007
http://dx.doi.org/10.1007/978-3-319-45468-9_9
http://dx.doi.org/10.1145/3092694
http://dx.doi.org/10.1016/j.is.2020.101507
https://qspace.library.queensu.ca/bitstream/handle/1974/12376/Stephan_Matthew_D_201408_Phd.pdf?sequence=1
https://qspace.library.queensu.ca/bitstream/handle/1974/12376/Stephan_Matthew_D_201408_Phd.pdf?sequence=1
http://dx.doi.org/10.1002/stvr.1669
http://dx.doi.org/10.1007/s10270-011-0217-9
http://dx.doi.org/10.1007/978-3-642-28830-2_4
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1016/j.datak.2009.02.015
http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

Weber B, Reichert M, Mendling J, Reijers HA. 2011. Refactoring large process model repositories.
Computers in Industry 62(5):467–486 DOI 10.1016/j.compind.2010.12.012.

White SA. 2004. Introduction to bpmn. BPTrends. Available at https://www.bptrends.com/bpt/wp-
content/publicationfiles/07-04%20WP%20Intro%20to%20BPMN%20-%20White.pdf.

Wille D, Babur Ö, Cleophas L, Seidl C, van den Brand M, Schaefer I. 2018. Improving custom-
tailored variability mining using outlier and cluster detection. Science of Computer Programming
163(3):62–84 DOI 10.1016/j.scico.2018.04.002.

Saeedi Nikoo et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1046 40/40

http://dx.doi.org/10.1016/j.compind.2010.12.012
https://www.bptrends.com/bpt/wp-content/publicationfiles/07-04%20WP%20Intro%20to%20BPMN%20-%20White.pdf
https://www.bptrends.com/bpt/wp-content/publicationfiles/07-04%20WP%20Intro%20to%20BPMN%20-%20White.pdf
http://dx.doi.org/10.1016/j.scico.2018.04.002
http://dx.doi.org/10.7717/peerj-cs.1046
https://peerj.com/computer-science/

	Clone detection for business process models
	Introduction
	BPMN clones
	Preliminaries
	Methodology
	Experimental evaluation
	Overall discussion
	Related work
	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

