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Abstract 

Background Chagas disease, caused by the parasite Trypanosoma cruzi, is a zoonosis that affects more than seven 
million people. Current limitations on the diagnosis of the disease hinder the prognosis of patients and the evaluation 
of treatment efficacy, slowing the development of new therapeutic options. The infection is known to disrupt several 
host metabolic pathways, providing an opportunity for the identification of biomarkers.

Methods The metabolomic and lipidomic profiles of a cohort of symptomatic and asymptomatic patients with T. 
cruzi infection and a group of uninfected controls were analysed using liquid chromatography/mass spectrometry. 
Differences among all groups and changes before and after receiving anti‑parasitic treatment across those with T. 
cruzi infection were explored.

Results Three lipids were found to differentiate between symptomatic and asymptomatic participants: 
10‑hydroxydecanoic acid and phosphatidylethanolamines PE(18:0/20:4) and PE(18:1/20:4). Additionally, sphinganine, 
4‑hydroxysphinganine, hexadecasphinganine, and other sphingolipids showed post‑treatment abundance similar 
to that in non‑infected controls.

Conclusions These molecules hold promise as potentially useful biomarkers for monitoring disease progression 
and treatment response in patients with chronic T. cruzi infection.
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Background
Chagas disease (CD), caused by the protozoon para-
site Trypanosoma cruzi, is a largely neglected zoono-
sis estimated to affect seven million people and to be 
responsible for approximately 9000 deaths every year 
[1]. Symptomatic disease will appear in 30–40% of those 
chronically infected and can lead to potentially lethal 
cardiac and digestive manifestations [1]. Changes in the 
expression of microRNAs [2] and a variety of other host-
derived molecules [3, 4] have been identified as potential 
markers to predict the progression of organ damage.

More modest progress has been achieved in the iden-
tification of biomarkers of treatment response, which 
largely relies on the longitudinal serologic monitoring of 
patients for long periods of time [5]. At present, the cure 
criterion for chronic T. cruzi infection is seronegativiza-
tion [6], a process that can take up to 30 years, depend-
ing on the stage of the disease [7]. This complicates the 
monitoring of patients and the design of clinical trials 
evaluating new therapeutic options [8], making the iden-
tification of new markers of response to treatment an 
unmet medical need [8].

Trypanosoma cruzi infection disrupts several meta-
bolic pathways, including fatty acid (FA) oxidation, 
phospholipid synthesis, glycolysis, and the catabolism of 
amino acids [9], which are attractive targets for the iden-
tification of novel biomarkers.

Perturbations in steroidogenesis and peptide metabo-
lism have also been linked to the pathogenesis of chronic 
disease [10, 11], and a recent metabolomic study of tis-
sue samples from patients with end-stage heart failure 
revealed changes in amino acid, FA, and glycerophospho-
lipid metabolism [12]. We used similar methods to fur-
ther characterize metabolic changes associated with the 
development of chronic symptomatology as well as the 
response to anti-parasitic treatment in a cohort of par-
ticipants with chronic T. cruzi infection.

Methods
Clinical data and sample collection
Study participants were enrolled at the Hospital Clinic 
of Barcelona (HCB; Spain) between May 2019 and June 
2020. Participants were tested for T. cruzi infection using 
two serologic assays: enzyme-linked immunosorbent 
assay (ELISA) (Vircell Chagas ELISA IgG+IgM, Gra-
nada, Spain) and CMIA ARCHITECT Chagas (Abbot, 
Wiesbaden, Germany). Infected participants were also 
tested using an in-house real-time polymerase chain 
reaction (rtPCR) assay [13], before and after completing 
anti-parasitic treatment. They underwent further clinical 
examination as well, including electrocardiography, tran-
sthoracic echocardiography, and/or chest X-ray. Addi-
tional radiological evaluation was performed on patients 

with digestive symptomatology. Infected participants 
were classified as symptomatic if any Chagas-specific 
cardiac or digestive alterations were detected.

Sample processing
Venous blood was collected in ethylenediaminetet-
raacetic acid (EDTA) tubes. For those with infection, 
samples were obtained before treatment and, on aver-
age, 8 months after completing standard anti-parasitic 
treatment with benznidazole (5 mg/kg/day for 60 days). 
Plasma was segregated within the first hour of collection 
and stored at −80  ºC until further processing. For the 
untargeted metabolomic analysis, plasma samples were 
thawed for 1.5 h and extracted using a chloroform/meth-
anol/water mixture (1:3:1 ratio). Following centrifugation 
at +4 ºC, 200 µl of the samples was stored at −80 ºC until 
processing for liquid chromatography/mass spectrom-
etry (LC/MS). A similar approach was used for the lipid-
omic analysis, but using isopropanol as extraction solvent 
and centrifuging for 10  min at +4  ºC. Pools were made 
for the quality control of both analyses.

LC/MS setup, metabolite quantification, and identification
The LC/MS analysis of the metabolomic samples was 
performed on a Dionex UltiMate 3000RSLC system 
connected to an Orbitrap Fusion mass spectrometer 
(Thermo Fisher Scientific, Hemel Hempstead, UK). 
Separation was achieved with a ZIC-pHILIC column 
(150  mm × 4.6  mm, 5  µm column, Merck SeQuant). 
Mobile phase A was 20 mM ammonium carbonate and 
mobile phase B was acetonitrile. The LC/MS run for 
each sample was conducted with the following gradient: 
0–15 min, 80–20% B; 15–17 min, 5% B; 17–26 min, 80% 
B. The MS was run in positive/negative switching mode 
to acquire both positive and negative ions for each sam-
ple within the same run. Data were acquired at a reso-
lution of 120,000 and across a mass range of 70–1000 
atomic mass units (amu). Raw files from the instrument 
were converted to mzXML files via MSConvert [14] 
and uploaded to Polyomics integrated Metabolomics 
Pipeline (PiMP) [15]. Once uploaded, the data were 
processed using the standard pipeline. Briefly, peaks 
were picked using eXtensible Computational Mass 
Spectrometry (XCMS) combined by sample group [16], 
filtered for noise and on relative standard deviation 
(SD), recombined as a total set, gap-filled, and passed 
on for further processing. For the lipidomic analysis, 
LC/MS was performed with a Vanquish Horizon ultra-
high-performance liquid chromatography (UHPLC) 
system (Thermo Scientific, Waltham, MA, USA) inter-
faced with an Orbitrap ID-X Tribrid mass spectrometer 
(Thermo Scientific, Waltham, MA, USA). Lipids were 
separated by reversed-phase chromatography with an 
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Acquity UHPLC C18-RP (ACQUITY UPLC BEH C18 
1.7  µM, Waters). Mobile phase A was acetonitrile/
water (60:40) (10 mM ammonium formate), and mobile 
phase B was isopropanol/acetonitrile (90:10) (10  mM 
ammonium formate). Separation was conducted under 
the following gradient: 0–2 min, 15–30% B; 2–2.5 min, 
48% B; 2.5–11 min, 82% B; 11–11.5 min, 99% B; 11.5–
12 min, 99% B; 12–12.1 min, 15% B; 12.1–15 min, 15% 
B. For MS detection, heated electrospray ionization set-
tings were set in positive and negative ionization modes 
and a resolution of 120,000. Data were acquired across 
a mass range of 180–1800 amu. The mzXML files were 
further processed and annotated using RHermes soft-
ware [17].

Statistical analysis
All statistical analysis was performed in Metaboanalyst 
5.0 [18] or RStudio version 2023.06.1+524. Processed 
data were log10-adjusted and analysed using Metabo-
analyst 5.0 [18]. A partial least-squares discriminant 
analysis (PLS-DA) was used for an initial evaluation 
of trends in the data, and to identify unexpected vari-
ability. The accuracy of this model was determined by 
estimating its Q2 value [19]. A Q2 value closer to 1 indi-
cates a better predictive capacity. Differences between 
clinical groups were initially compared using a one-way 
analysis of variance (ANOVA). Given the demographic 
differences between the study groups, we used the 
limma R package [20] to run a multiple linear regres-
sion adjusted for sex and age to estimate fold changes 
(FC) and P-values for each feature and comparison. 
Additionally, when pre- and post-treatment samples 
were included in the comparisons, the identification 
(ID) of each participant was blocked and treated as a 
random effect to account for the inclusion of repeated 
samples from a single participant in the model. A 
paired t-test was used to compare pre- and post-treat-
ment groups. All P-values were adjusted for multiple 
comparisons using the Benjamini–Hochberg method 
to control the false discovery rate (FDR). Given the 
exploratory nature of the study, differentially abundant 
features were defined as those with a log2 fold change 
(logFC) ≥ ±0.138 (corresponding to an FC of 1.1) and 
an FDR below 10% (adjusted P-value < 0.1). The geom_
point, geom_boxplot, and geom_jitter functions of the 
ggplot2 package [21] were used to construct volcano 
and box-and-whisker plots. In the latter, the line repre-
sents the median and the box indicates the interquartile 
range. Receiver operating characteristic (ROC) curves 
were constructed in Metaboanalyst 5.0, which was also 
used to construct a PLS-DA algorithm for the clas-
sification model with a two-latent-variable input. The 

predictive accuracy of the model was estimated using 
the cross validation (CV) method and 1000 permuta-
tions [22].

Results
Characteristics of the cohort
Forty-three participants were recruited during the study 
period (Table 1). Samples were obtained from all infected 
participants (n = 28, 20 classified as asymptomatic and 
eight as symptomatic) before starting standard anti-
parasitic treatment with benznidazole and, on average, 8 
months (SD ±3.2 months) after the last dose. Fifteen non-
infected participants from a similar geographical ori-
gin were included as controls. In total, 71 samples were 
processed for the metabolomic and lipidomic analyses 
(40 from asymptomatic participants, 16 from sympto-
matic participants, and 15 from controls). A full descrip-
tion of the clinical characteristics of this cohort has been 
provided elsewhere [23]. While several participants had 
a history of comorbidities (Table 1), these had been suc-
cessfully treated and the patients were asymptomatic at 
the time of inclusion in the study.

Metabolic profiles differ between clinical groups
In total, 442 features were annotated in plasma sam-
ples during the untargeted metabolomic analysis, 
which included pre- and post-treatment samples. PLS-
DA showed a modest capacity to discriminate groups 
(Q2 = 0.24, with five components; Fig.  1a). While symp-
tomatic and asymptomatic participants were adequately 
separated, significant overlap of both groups with con-
trols was observed.

Changes were particularly evident in glycerophospho-
lipids, including several phosphatidylethanolamines (PE) 
and phosphatidylcholines (PC), which were generally 
increased in the symptomatic group. On the other hand, 
free FAs were reduced in infected participants compared 
to controls, while 10-hydroxydecanoic acid was more 
abundant in asymptomatic participants than in the other 
two groups (Fig. 1a). Non-proteinogenic amino acids and 
their derivatives, including l-citrulline, l-homocitrulline, 
and validamine, were also increased in most sympto-
matic and some asymptomatic subjects, compared with 
controls (Fig. 1a).

Upon covariate adjustment, only 10-hydroxydecanoic 
acid was more abundant in the asymptomatic group 
than in controls (Fig. 2a). No significant differences were 
observed between controls and the symptomatic group. 
In contrast, two metabolic features, PE(18:0/20:4) and 
acetaminophen glucuronide, were significantly more 
abundant in symptomatic than in asymptomatic par-
ticipants, while 10-hydroxydecanoic acid was reduced 
in the former (Fig.  2b). Acetaminophen glucuronide 
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is a by-product of acetaminophen metabolism, and is 
unlikely to be associated with CD. Complete results of 
the covariate-adjusted metabolomic model are presented 
in Additional file 1.

We observed increases in 10-hydroxydecanoic 
acid, sphinganine and 4-hydroxysphinganine (4-HS) 
in untreated asymptomatic participants compared 
with controls. The untreated symptomatic group had 
decreased D-glucarate compared with the asymptomatic 
group. PE(18:0/20:4) was increased in treated sympto-
matic participants when compared with the asympto-
matic and control groups (Additional file  2). Complete 
comparisons between clinical groups disaggregated 
based on their treatment status, and controls are fully 
described in Additional files 2 and 3.

Lipidomic analysis
Negatively and positively charged ions were 
reported independently, identifying 784 and 1495 

different features, respectively. A moderate separation 
was observed between symptomatic and asymptomatic 
participants, with a large overlap of the latter and con-
trols (Fig. 1b, c). The overall performance of these models 
was modest (Q2 = 0.27 and 0.29 for negatively and posi-
tively charged lipids, respectively).

Negatively charged lipids: Changes in glycerophos-
pholipid abundance were confirmed in the lipidomic 
analysis, with an apparent enrichment of PE, PC, 
and phosphatidylinositol in the symptomatic group 
(Fig. 1b). Upon covariate adjustment, changes were only 
observed between symptomatic participants and con-
trols, with a deprotonated form of the previously iden-
tified PE(18:0/20:4) and a deprotonated form of related 
PE(18:1/20:4), both being significantly more abundant in 
symptomatic participants (Table 2, Fig. 2c).

Positively charged lipids: An apparent enrichment 
of triglycerides and certain PCs was observed in the 
symptomatic group (Fig.  1c). The protonated forms 

Table 1 Characteristics of the cohort

rtPCR: real‑time polymerase chain reaction; SD: standard deviation

Continuous data are presented as mean/SD or median/range and compared using either a one‑way analysis of variance (ANOVA) or a Kruskal–Wallis test. Categorical 
data are presented as counts and compared using Fisher’s exact test

Asymptomatic Symptomatic Control P‑value

Demographics

 Number of participants (samples) 20 (40) 8 (16) 15 (15) –

 Sex (male/female) 5/15 1/7 6/9 0.39

 Weight in kg (mean ± SD) 68.2 ± 10.4 70.4 ± 8.8 65.3 ± 12.2 0.59

 Age (median, [range]) 46.5 [23–60] 55.2 [40–64] 38.7 [25–53] < 0.001

 rtPCR (positive/tested) 7/20 2/8 0/15 0.02

Geographical origin

 Bolivia 19 7 11 –

 Honduras 1 0 3 –

 Brazil 0 1 0 –

 Paraguay 0 0 1 –

Comorbidities

 Strongyloidiasis 2 0 1 –

 Neurocysticercosis 1 0 0 –

 Helicobacter pylori infection 1 0 0 –

 Chronic arthrosis 1 0 0 –

 Hypothyroidism 0 1 0 –

 Lymphoproliferative syndromes 0 2 0 –

 Asthma 0 1 0 –

(See figure on next page.)
Fig. 1 General metabolic trends observed in the clinical groups. PLS‑DA analysis showing the separation between controls (n = 15 samples from 15 
participants), asymptomatic (n = 40 samples from 20 participants), and symptomatic (n = 16 samples from eight participants) groups and heatmap 
of the top 20 most differentially abundant molecules (covariate‑unadjusted one‑way ANOVA) in the metabolomic (a), negatively charged, (b) 
and positively charged lipidomic analysis (c). Colours in the heatmap represent log10 peak intensity scale. In all cases: A stands for asymptomatic 
group, C for control group, and S for symptomatic group
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Fig. 1 (See legend on previous page.)
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of PE(18:0/20:4) and PE(18:1/20:4) were again more 
abundant in symptomatic participants than in controls 
(Table  2, Fig.  2d). Full results of the covariate-adjusted 
model used in the lipidomic analysis are presented in 
Additional file 4.

Changes in PE and 10‑hydroxydecanoic acid abundance 
differentiate symptomatic participants
In total, six features corresponding to three metabo-
lites were found to be more abundant in symptomatic 
participants: 10-hydroxydecanoic acid, detected in the 

Fig. 2 Differentially abundant metabolites in the clinical groups. Comparison of the metabolomic analysis of asymptomatic versus control 
participants (a). Comparison of symptomatic versus asymptomatic participants (b). Comparison of symptomatic participants versus controls 
in the negatively charged lipidomic analysis (c). Comparison of symptomatic group versus controls in the positively charged lipidomic analysis 
(d). Groups were compared using a multiple linear regression adjusted for sex and age, and treating participant ID as a random effect, to account 
for the inclusion of pre‑ and post‑treatment samples. All P‑values were adjusted using the Benjamini–Hochberg method to control the FDR. 
Features were considered to be differentially abundant if the logFC was >  ± 0.138, and had an FDR < 0.1
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initial metabolomic analysis; PE(18:0/20:4), detected in 
the metabolomic and the two lipidomic analyses; and 
PE(18:1/20:4), which was detected in the two lipidomic 
analyses (Table 2, Fig. 3).

In order to evaluate the potential of these metabolites 
as biomarkers of symptomatic disease, we constructed 
individual ROC curves discriminating between sympto-
matic and asymptomatic participants. We included the 
positively and negatively charged forms of both PEs and 
10-hydroxydecanoic acid. The positively charged forms 
of PE(18:1/20:4) and PE(18:0/20:4) performed best (area 
under the ROC curve [AUC] = 0.87 [95% CI 0.73–0.96] 
and AUC = 0.83 [95% CI 0.70–0.92], respectively). They 
were followed by 10-hydroxydecanoic acid (AUC = 0.83 
[95% CI 0.67–0.94] and the negatively charged forms of 
both PEs (AUC = 0.82 [95% CI 0.68–0.92] and AUC = 0.80 
[95% CI 0.67–0.90], respectively) (Fig. 3a).

We further constructed a PLS-DA classification algo-
rithm with these features, which reached an AUC of 0.88 
(95% CI 0.73–0.99) (Fig.  3a), and a predicted accuracy 
of 80% (P = 0.003 upon 1000 permutations; Additional 
file 5).

Anti‑parasitic treatment is associated with reductions 
in sphingolipid abundance among asymptomatic 
participants
We observed significant (logFC ≥  ± 0.138, P < 0.1) 
increases in 20 metabolites and reductions in eight fea-
tures in the asymptomatic group. Differentially abundant 
metabolites included a variety of peptides and amino acid 
derivatives, sterols,  prenol lipids, carboxylic acids, oligo-
saccharides, and sphingolipids (Fig. 4a, Additional file 6). 
The last group included five of the eight metabolites with 
reduced abundance after treatment: 4-HS, hexadecas-
phinganine, sphinganine, SP dimethyl, amino (18:0/2:0) 
2S-(dimethylamino)-1,3R-octadecanediol, and [SP (14:0)] 
N-(tetradecanoyl)-sphinganine (Table 3).

Post-treatment reductions in 4-HS, sphinganine, and 
hexadecasphinganine are remarkable, since these three 
molecules were significantly increased in untreated 
asymptomatic participants compared with controls 
(t = 5.38, P < 0.001 for 4-HS, t = 5.21, P < 0.001 for hexa-
decasphinganine, and t = 3.95, P = 0.03 for sphinganine), 
but not when the groups were compared after treat-
ment (t < 1.6, P > 0.5 for the  three metabolites) (Fig.  4b; 

Table 2 Metabolic features differentially detected in participants with symptomatic T. cruzi infection

LogFC represents the log2 fold change in the mean abundance of a feature in the symptomatic versus the comparison group. P‑values were obtained using multiple 
linear regression adjusted for age and sex, and treating participant ID as a random effect, to account for the inclusion of pre‑ and post‑treatment samples; P‑values 
account for multiple testing using the Benjamini–Hochberg method to control the FDR

MM: monoisotopic mass; RT: retention time; PE: phosphatidylethanolamine

MM (g/mol) RT (s) Putative annotation Formula logFC Adj. P‑value

Metabolomic analysis

 Symptomatic versus asymptomatic

  767.55 176.69 PE (18:0/20:4) C43H78NO8P ↑ 0.26 0.035

  188.14 203.82 10‑Hydroxydecanoic acid C10H20O3 ↓ −0.16 0.089

Lipidomic analysis

 Negatively charged

 Symptomatic versus control

  764.52 435.79 PE (18:1/20:4) [C43H75NO8P]− ↑ 0.34 0.049

  766.54 476.68 PE (18:0/20:4) [C43H77NO8P]− ↑ 0.29 0.058

 Positively charged

 Symptomatic versus control

  768.55 475.99 PE (18:0/20:4) [C43H79NO8P]+ ↑ 0.35 0.033

  766.54 435.11 PE (18:1/20:4) [C43H77NO8P]+ ↑ 0.36 0.033

(See figure on next page.)
Fig. 3 ROC curve analysis of features differentially abundant in symptomatic participants. ROC curves of the five differentially abundant molecules 
in symptomatic participants, and the combined model (a). Box‑and‑whisker plots of the abundance of metabolites in control (15 samples 
from 15 participants), asymptomatic (40 samples from 20 participants), and symptomatic participants (16 samples from eight participants) (b). 
In the box‑and‑whisker plots, lines represent the median, yellow dots represent group means, and boxes represent the interquartile range (IQR). 
Comparisons between different clinical groups were obtained using a multiple linear regression adjusted for sex and age and treating participant 
ID as a random effect, to account for the inclusion of pre‑ and post‑treatment samples. All P‑values were adjusted using the Benjamini–Hochberg 
method to control the FDR. In the statistical comparisons: *indicates 0.05 < P < 0.1, **indicates 0.01 < P < 0.05, and *** indicates P < 0.01. In all cases, 
A stands for the asymptomatic group, C for the control group, and S for the symptomatic group
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Fig. 3 (See legend on previous page.)
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Additional files 2 and 3). Contrary to other metabolites 
that also changed with treatment (Additional file  6), 
reductions seen in sphingolipids led to post-treatment 
abundance similar to that in non-infected controls 
(Fig. 4b). These changes were not observed in the symp-
tomatic group, where only increases in proclavaminic 
acid were detected (Additional file 6).

Discussion
Previous biomarker discovery studies in patients with 
chronic T. cruzi have mostly focused on amino acidic 
metabolites, found to be altered to different degrees in 
symptomatic and asymptomatic participants [10, 11]. 
While we observed similar changes in unadjusted models 
(Fig. 1a), only changes in lipid metabolites remained evi-
dent in our cohort after accounting for differences in the 
sex and age of participants.

Lipid metabolism is central to the development of 
T. cruzi and the pathogenesis of CD. Parasite lipids 
are known to induce inflammatory responses [24] and 
thrombosis [25]. It is also thought that accumulation of 
cholesterol, long-chain FAs, or phospholipids leads to 
increased oxidative stress in parasitized cells [26, 27].

A previous study has described changes in steroidogen-
esis in animals and humans infected with T. cruzi [10]. 
Changes in carnitine abundance and FA oxidation have 
been described in the hearts of patients with Chagas car-
diomyopathy [12]. All these findings suggest that changes 
in the host’s lipidome might reflect pathological phenom-
ena taking place in parasitized tissues.

Although limited by a small sample size (28 infected 
participants and 15 controls), the description of only rel-
ative abundance data, and pending further validation in 
an independent cohort, our results support the idea that 
altered lipid metabolism plays an important role in the 
pathogenesis of CD.

We detected statistically significant increases in two 
PEs in symptomatic participants: PE(18:0/20:4) and 
PE(18:1/20:4). Glycerophospholipids are the most abun-
dant component of lipid membranes in eukaryotes, with 
PEs being the second most abundant type in T. cruzi 
amastigotes, representing 13% of the parasite’s total 
lipids [24]. The moiety of PEs depends on the nature of 
FAs associated with the hydrophilic head [28]. In T. cruzi 

PEs, these FAs can be either scavenged from the host 
cell or synthesized by the parasites. De novo FA synthe-
sis in trypanosomatids relies on the action of enzymes 
of the elongase (ELO) family [24, 28]. The C18:1, C18:0, 
and C20:4 moieties observed in this study can be pro-
duced by ELO enzymes, and have been observed in PEs 
or lyso-PEs from T. cruzi. However, they are generally 
more abundant in epimastigotes than in tissue-dwell-
ing forms [29], which along with the low parasitaemia 
observed in chronic CD suggests that the PEs identified 
are host-derived.

PEs are also a key component of mammalian cell mem-
branes and participate in a wide variety of biological pro-
cesses. Interestingly, increases have been described in the 
serum of patients with heart failure [30] as well as in mice 
with cardiac remodelling following ischemic disease [31]. 
Furthermore, PE(18:0/20:4) and PE(18:1/20:4) have been 
identified in the blood vessels of atherosclerotic mice [32] 
and in the plasma of humans with aortic dissection [33], 
suggesting a possible association with cardiovascular 
damage, as it has been proposed that increases in glycer-
ophospholipids with long and unsaturated FAs could be a 
delayed adaptative response to tissue ischaemia [34].

Furthermore, increases in glycerophospholipids and 
their derivatives have been described in the hearts and 
digestive tracts of mice acutely infected with T. cruzi Y 
and CL Brener strains [26, 35]. Increases in lysoPE, a 
product of PE metabolism, were also detected in the 
hearts of T. cruzi-infected animals [26] and humans 
[12]. A recent metabolomic study [11] also found PEs 
with 18:0/20:4 and 18:1/20:4 moieties to be increased in 
patients with chronic T. cruzi infection, although more 
clearly in those in the indeterminate (asymptomatic) 
stage, which could be explained by differences in the pro-
cessing and extraction of samples, the staging and treat-
ment of the cohorts, the parasite strains involved in the 
infection, or some other host-derived confounders. It 
should be noted that none of these studies were designed 
to determine the exact sn position of the acyl groups of 
these molecules, which might be different from the one 
putatively assigned.

Asymptomatic participants in our cohort also had 
significant increases in the abundance of 10-hydroxyde-
canoic acid (also known as 10-hydroxycapric acid), an 

Fig. 4 Metabolic changes observed following anti‑parasitic treatment with benznidazole. Metabolites differentially abundant in the asymptomatic 
post‑treatment group (a). Box‑and‑whisker plots of 4‑hydroxysphinganine, hexadecasphinganine, and sphinganine in control (C, 15 samples), 
asymptomatic (A, 20 samples pre‑ and post‑treatment), and symptomatic groups (S, 8 samples pre‑ and post‑treatment) (b). Yellow triangles 
represent group means. P‑values for comparisons between different clinical groups were obtained using a multiple linear regression adjusted 
for sex and age. Comparisons between pre‑ and post‑treatment time points were obtained using a paired t‑test. All P‑values were adjusted using 
the Benjamini–Hochberg method to control the FDR: *indicates 0.05 < P < 0.1, **indicates 0.01 < P < 0.05, and ***indicates P < 0.01

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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unsaturated FA with anti-inflammatory and immu-
nomodulatory properties [36]. This finding contrasts 
with reductions previously described in patients with 
CD [10]. However, 10-hydroxydecanoic acid is a com-
mon component of cosmetics and dietary supplements 
[37], which suggests an exogenous origin and might also 
explain the observed discrepancies, limiting its potential 
utility as a biomarker despite the good discriminatory 
capacity observed in our study.

We also observed changes in the abundance of 28 
metabolites following anti-parasitic treatment. Most 
of these seemed to be due to the direct effect of the 
medication on patient metabolism, as evidenced by the 
important differences between post-treatment samples 
and untreated controls (Additional file  6). Nonetheless 
sphingolipids such as sphinganine, hexadecasphinganine, 
and 4-HS were increased in the untreated asymptomatic 
group when compared with controls, but not after receiv-
ing treatment, when their abundance was significantly 
reduced (Fig. 4).

Reductions in sphingolipid abundance following treat-
ment with benznidazole have been previously described 
in vitro in T. cruzi-infected myoblasts, although problems 
with the precise annotation of the molecules limited the 
interpretation of this finding [38].

Sphinganine (dihydrosphingosine, or DHS) is a long-
chain base (LCB) involved in the synthesis of ceramides. 
Although produced by mammalian cells, it is less abun-
dant than sphingosine, a different LCB [39]. Sphinganine 
plays a key role in the synthesis of inositol phosphoryl-
ceramide (IPC), a major anchor for various important 
surface proteins expressed in the different life stages of T. 
cruzi, including tissue-dwelling amastigotes and blood-
stream trypomastigotes [40, 41].

In eukaryotes, sphinganine is also used to produce 
DHS-1-phosphate (DHS-1P) by sphingosine kinases [41]. 
DHS-1-P and the better studied sphingosine-1-phos-
phate (S1P) are well-known signalling molecules involved 
in downstream immune cell activation and cytokine 

production [42]. A signalling function for unmodified 
sphinganine has also been recently described, and linked 
with modulation of the unfolded protein response (UPR) 
[43], a mechanism of cell stress triggered by the endo-
plasmic reticulum and observed in several conditions, 
including animal models of Chagas cardiomyopathy [44].

Another sphingolipid identified, 4-HS (or phytosphin-
gosine) is an LCB, which in yeast and some kinetoplastids 
is produced by hydroxylation of sphinganine at C-4 and 
can also be used as backbone for the synthesis of IPC [41, 
45]. A recent study of the sphingolipidome of pathogenic 
kinetoplastids identified ceramides containing 4-HS in 
several Trypanosoma species, including T. cruzi, although 
these were particularly enriched in salivary species, such 
as Trypanosoma brucei [46]. In mammals, 4-HS has been 
identified only in specific tissues, such as the epidermis, 
the small intestine, and the kidneys [39]. Hexadecasphin-
ganine, a shorter LCB that also decreased after treatment 
with benznidazole, is known to be depleted in T. brucei 
cultures exposed to high doses of nifurtimox [47].

In addition to these three molecules, we found similar 
changes in N-(tetradecanoyl)-sphinganine (a dihydrocer-
amide) and 2S-(dimethylamino)-1,3R-octadecanediol (SP 
dimethyl, amino(18:0/2:0), also known as dimethylsph-
inganine). Interestingly, dimethylsphinganine increases 
during in  vitro replication of Leishmania donovani 
promastigotes [48], and a structurally similar lipid, 
dimethylsphingosine, is a well-known sphingosine kinase 
inhibitor that reduces S1P and DHS-1P production, and 
has shown beneficial effects in animal models of T. cruzi 
cardiomyopathy, suggesting a possible role of this path-
way in T. cruzi infection and treatment [49].

Sphingolipids are well-known mediators capable of 
modulating immune responses in a complex way [50], 
and their metabolism plays an important role in the pro-
gression of several infectious diseases [42, 51]. Given the 
low parasitaemia observed in chronic infection, most of 
these molecules are expected to come from the host. It 
also seems possible that changes observed in our cohort 

Table 3 Sphingolipids differentially detected in samples from asymptomatic participants following anti‑parasitic treatment

 LogFC represents the log2 fold change in the mean abundance of a feature in the post‑ versus the pre‑treatment group. P‑values were obtained using a paired t‑test, 
and adjusted to account for multiple testing using the Benjamini–Hochberg method to control the FDR

MM: monoisotopic mass; RT: retention time; SM: sphingomyelin; SP: sphingolipid. 

MM (g/mol) RT (s) Putative annotation Formula LogFC Adj. P‑value

317.29 249.78 4‑Hydroxysphinganine C18H39NO3 ↓ −0.40 < 0.001

273.27 268.39  Hexadecasphinganine C16H35NO2 ↓ −0.33 0.001

301.30 258.21  Sphinganine C18H39NO2 ↓ −0.33 0.001

329.33 240.48 SP dimethyl, amino (18:0/2:0) C20H43NO2 ↓ −0.23 0.021

730.60 193.70 SM (d18:0/18:1) C41H83N2O6P ↑ 0.31 0.063

511.50 179.30 [SP (14:0)] N‑(tetradecanoyl)‑sphinganine C32H65NO3 ↓ −0.39 0.066
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reflect a modulatory effect on tissue inflammation caused 
by anti-parasitic treatment, as has been suggested in 
previous studies [52, 53]. Nonetheless, the previously 
described role of some of the identified sphingolipids in 
parasite metabolism suggests that a link between their 
abundance and the presence of parasites in infected tis-
sues cannot be entirely ruled out.

Validation of these findings in independent cohorts 
and a description of their mechanistic nature war-
rants further research. Additionally, despite important 
advances in the recent development of alternative chro-
matographic techniques for lipidomic analysis [54–56] 
and their incorporation into cost-effective microfluidic 
devices [57], regular access to the infrastructure needed 
to measure these metabolites in endemic countries would 
still limit their practical utility, even after successful vali-
dation. Nevertheless, despite these limitations, the fact 
that reductions in LCB abundance were observed in 
asymptomatic patients who cleared parasitaemia, and 
months after the completion of anti-parasitic treatment 
(Fig. 4), is interesting, as it suggests an as-yet undescribed 
role of sphingolipid metabolism in the pathogenesis of 
CD. Furthermore, such reduction highlights its appeal for 
the identification of biomarkers to monitor the response 
to antiparasitic treatment.

Conclusions
Changes in PE and sphingolipid abundance show prom-
ise as potential tools for monitoring disease progression 
and treatment response in chronic T. cruzi infection, 
pending thorough validation of their clinical significance 
in independent cohorts.
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