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Abstract 

Background  Vector-borne pathogens (VBPs) are increasing in significance in veterinary medicine and public health 
settings, with wildlife playing a potentially crucial role in their transmission. Eurasian badgers (Meles meles) are widely 
distributed across Europe. However, information currently available on the prevalence of VBPs in badgers is limited. 
The objective of the current study was to investigate the occurrence of Anaplasmataceae, Bartonella spp., Mycoplasma 
spp., Rickettsia spp., Piroplasmida, Trypanosomatida and Filarioidea in badgers and subsequently, based on the results, 
assess the potential risk to domestic animals, other wildlife and humans.

Methods  Between 2017 and 2021, blood or spleen samples from 220 badgers were collected in nine continental 
European countries: Austria (n = 7), Bosnia and Herzegovina (n = 2), Croatia (n = 22), France (n = 44), Germany (n = 16), 
Hungary (n = 7), Italy (n = 16), Romania (n = 80) and Serbia (n = 26). VBPs were identified by performing PCR analysis 
on the samples, followed by Sanger sequencing. Additionally, to distinguish between different Babesia lineages we 
performed restriction fragment length polymorphism (RFLP) analysis on piroplasm-positive samples, using HinfI 
as restriction enzyme. A phylogenetic analysis was performed on Mycoplasma spp.

Results  The pathogens identified were Babesia sp. badger type A (54%), B (23%), and C (37%); Trypanosoma pestanai 
(56%); Mycoplasma sp. (34%); Candidatus Mycoplasma haematomelis (8%); Candidatus Mycoplasma haematom‑
inutum (0.5%); and Ehrlichia spp. (2%). Rickettsia spp., Bartonella spp. and filarioid nematodes were not detected 
among the tested samples.

Conclusions  The large sample size and diverse study populations in this study provide valuable insights into the dis‑
tribution and epidemiology of the analyzed pathogens. Some of the VBPs identified in our study show high similarity 
to those found in domestic animals, such as dogs. This finding suggests that badgers, as potential reservoirs for these 
pathogens, may pose a threat not only to other wildlife but also to domestic animals in close vicinity. Continuous 
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Background
Emerging infectious diseases have been increasingly rec-
ognized and deemed significant in Europe in recent years 
[1]. The primary reasons for the increasing emergence 
of vector-borne pathogens (VBPs) in European coun-
tries, which were previously not present or less preva-
lent, include globalization, urbanization, global trade, 
increased travel of humans and domestic animals and 
climatic changes [2, 3]. These substantial changes have 
led to the widespread expansion of VBPs and arthropods 
acting as their vectors [4]. Wildlife serve as potential res-
ervoirs and may therefore play a crucial role in the trans-
mission of these pathogens. Due to the zoonotic potential 
of many VBPs and their capability to infect domestic ani-
mals, VBPs can be  highly important factors in both vet-
erinary and human medicine [5].

The Eurasian badger (Meles meles) is among the most 
prevalent medium-sized carnivores throughout Europe 
[6], where it mainly inhabits woodlands [7, 8]. Despite 
their typically shy and elusive behavior towards humans, 
badgers, along with other wildlife, are regularly found 
near human settlements, influenced by factors such as 
habitat loss and food availability [7, 9]. To date, limited 
information is available on the prevalence of VBPs in 
badgers, particularly in populations beyond the UK [10]. 
However, the close coexistence of humans and badgers, 
with the latter possibly serving as reservoirs for numer-
ous pathogens [11–14], could pose a significant threat 
to the health of both humans and domestic animals. 
For example, badgers are considered to be an important 
source of bovine tuberculosis in the UK due to the pos-
sible transmission of Mycoplasma bovis to cattle [15].

Among the most important parasitic pathogens found 
in badgers are members of the order Piroplasmida. For 
example, badger-associated Babesia parasites, which are 
suspected to belong to the Babesia microti group, have 
been detected in several European countries. Babesia sp. 
isolates badger type A, type B [1, 16–25] and Babesia sp. 
badger, which was labeled type C in one study [25], have 
been identified. In addition to badgers, badger-associated 
Babesia have also been described in other carnivores in 
Europe [16, 19, 26]. Ixodid ticks act as the main vectors 
of Babesia spp. [27]. Another parasite detected in badg-
ers is Trypanosoma (Megatrypanum) pestanai, a species 
that was identified in badgers from the UK, France and 
Italy [28–30], and in a dog (Canis lupus familiaris) from 
Germany [31]. The role of badger fleas (Paraceras melis) 

as vectors for T. pestanai had been confirmed [32] when 
T. pestanai was also detected in ixodid ticks for the first 
time in Italy [29]. In recent years, Eurasian badgers have 
been confirmed as new hosts for the filarioid nematodes 
Dirofilaria immitis [33] and Dirofilaria repens [11, 34]. 
However, the role of the badger as a definite host and a 
reservoir for D. immitis and D. repens remains unclear 
and requires further investigation. The most important 
bacterial VBPs in European carnivores include Myco-
plasma spp., Anaplasmataceae, Borrelia spp., Bartonella 
spp. and Rickettsia spp. [5, 35, 36]. Hemotropic myco-
plasmas (hemoplasmas) have been described in Eura-
sian badgers [37] and a Japanese badger (Meles meles 
anakuma) [38]. Infections with Anaplasma phago-
cytophilum, Ehrlichia sp. [1, 39, 40] and Candidatus 
Neoehrlichia sp. [18, 41] have been identified in badgers 
in different European countries including, for example, 
Italy and the Netherlands. Other pathogens that were 
detected in badgers are Bartonella spp. [42], Rickettsia 
spp. [43], and Borrelia spp. [13, 44].

The objective of our research was to investigate the 
occurrence of Anaplasmatacea, Bartonella spp., Myco-
plasma spp., Rickettsia spp., Piroplasmida, Trypanoso-
matida and Filarioidea in badgers across nine European 
countries. The findings of this study provide valuable 
insights into the epidemiology of these pathogens in 
badger populations, thereby aiding in the assessment of 
potential cross-species transmission risks to domestic 
animals, wildlife and humans.

Methods
Sample collection
Blood (n = 81) or spleen (n = 139) samples from 220 Eura-
sian badgers were analyzed for the presence of VBPs. 
No animal was killed for the study; all samples were col-
lected from individuals that were found dead and were 
taken from fresh cadavers (mainly between 24 and 48 h 
after death). The samples were collected from July 2017 
to August 2021 in nine different European countries: 
Austria (n = 7), Bosnia and Herzegovina (n = 2), Croa-
tia (n = 22), France (n = 44), Germany (n = 16), Hungary 
(n = 7), Italy (n = 16), Romania (n = 80) and Serbia (n = 26) 
(Fig.  1). All samples were kept frozen at -20  °C in 70% 
ethanol until the analysis at the University of Veterinary 
Medicine, Vienna. During necropsy, all individuals were 
examined to determine their sex and age, based on den-
tition stage and tooth wear [45]. According to the age 

surveillance is essential to monitor VBPs in wildlife as a means to enable the assessment of their impact on other wild‑
life species, domestic animals and human health.
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classification, the animals were then divided into two 
groups: juvenile (aged ≤ 12  months) and adult (aged 
> 12 months).

DNA extraction, PCR amplification and sequencing
DNA was extracted from the samples using the DNeasy 
Blood & Tissue kit (250) (QIAGEN, Hilden, Germany), 
following the manufacturer’s instructions. Pathogen 
detection was carried out following seven established 
broad-range PCR assay protocols (Table  1; Additional 
file  1: Table  S1), with each protocol including positive 
and negative controls. The PCR assays targeted sections 
of the 16S ribosomal RNA (rRNA) in Mycoplasma spp. 
and Anaplasmataceae, the 18S rRNA in Piroplasmida 
and Trypanosomatida, the 16S-23S rRNA in Bartonella 
spp., the 23S-5S rRNA intergenic spacer in Rickettsia spp. 
and the COI gene in Filarioidea [46–53]. PCRs were run 
using GoTaq™ DNA Polymerase (Promega, Madison, WI, 
USA).

The PCR products were subjected to electrophoresis 
in 1.8% agarose gels with 4.2  µl Midori Green Advance 

DNA Stain (NIPPON Genetics EUROPE GmbH, Düren, 
Germany). PCR products of positive samples were sent 
to LGC Genomics (Berlin, Germany) for sequencing. The 
chromatograms were visually inspected and edited (using 
Chromas and GeneDoc) and compared against data from 
the NCBI GenBank and the Barcode of Life (BOLD; 
https://​www.​bolds​ystems.​org/) databases.

In the case of Piroplasmida, a restriction fragment 
length polymorphism method (RFLP), using a HinfI 
restriction enzyme (Promega), was conducted on positive 
samples to distinguish between Babesia lineages and to 
detect mixed infections [48]. Three representative sam-
ples (one from each Babesia haplotype identified through 
nested PCR) were selected for sequencing, and these 
were then used as references for the remaining samples.

Phylogenetic analysis
One Mycoplasma sequence obtained in the present 
study (GenBank accession no.: OQ749679) was used to 
search for similar sequences using the BLAST function 
on NCBI GenBank, setting the number of maximum 

Fig. 1  Geographical distribution of the Eurasian badgers (Meles meles) examined in this study (n = 220). The size of the circles indicates the number 
of samples per locality

https://www.boldsystems.org/
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target sequences to 5000. The filter was set to 82–100% 
identity and 98–100% query coverage. The sequences 
were aligned and sorted using the default option (FFT–
NS–2) in MAFFT v.7.520 [54]. All sequences featuring 
obvious sequencing errors and ambiguous characters 
were removed from the alignment and excluded from the 
analysis.

To provide an overview of the diversity of haplotypes, 
maximum likelihood (ML) and Bayesian inference (BI) 
trees were calculated based on an alignment containing 
392 sequences (1030 nucleotide positions). Gaps were 
removed from the alignment using TrimAl v.1.3 (http://​
phyle​mon2.​bioin​fo.​cipf.​es/; [55]), and sequences were 
collapsed to haplotypes using DAMBE v.7.3.32, leaving 
237 haplotypes (963 nucleotide positions). The tree was 
rooted with a sequence of Malacoplasma iowae (Gen-
Bank accession no.: CP129195).

An ML bootstrap consensus tree (1000 replicates) was 
calculated using the W-IQ-TREE web server (http://​
iqtree.​cibiv.​univie.​ac.​at/; [56]) applying the model 
GTR + F + I + G4, which was suggested as the best fit for 
the data set in the model test according to the Bayes-
ian inference criterion (BIC). The BI trees were calcu-
lated using MrBayes v.3.2.7 [57], applying the model 
GTR + G + I. The analysis was run for 106 generations 
(2 runs each with 4 chains), sampling every thousandth 
tree. The first 25% of trees were discarded as burn-in 
and a 50% majority-rule consensus tree was calculated 
based on the remaining 750 trees. The ML and BI trees 

were jointly created using the BI tree as a template, and 
then graphically prepared indicating country and host 
information in CorelDRAW 2024 (Corel, Ottawa, ON, 
Canada).

Statistical analysis
Statistical analysis was conducted using R version 4.3.2 ® 
Foundation for Statistical Computing, Vienna, Austria). 
A Pearson’s Chi-squared (χ2) test was conducted to assess 
the correlation between the detection of pathogens and 
the sex and age of the animals. The association between 
pathogen detection and country of origin, and month 
and year of sample collection, respectively, was assessed 
using Fisher’s exact test. Effects were considered statisti-
cally significant if P < 0.05.

Results
Pathogens detected in the 220 tested blood/spleen sam-
ples from badgers were Piroplasmida (195/220, 88.6%; 
95% confidence interval [CI] 0.844–0.928), Trypano-
somatida (123/220, 55.9%; 95% CI 0.493–0.625), Myco-
plasma spp. (107/220, 48.6%; 95% CI 0.42–0.552) and 
Anaplasmataceae (4/220, 1.8%; 95% CI 0.001–0.036). 
Dirofilaria spp. and other filarioid helminths, Rickett-
sia spp. and Bartonella spp. were not detected in the 
tested samples. No significant correlation was found 
between pathogen occurrence and age (P = 0.219; odds 
ratio [OR] Infinite, 95% CI 0.533-Infinity), sex (χ2 = 0.008, 
df = 1, P = 0.928), year of sample collection (P = 0.439) 

Table 1  Oligonucleotide sequences of primers used in the present study

COI Cytochrome c oxidase I, rRNA ribosomal RNA

Target organism (genetic 
marker)

Primer sequences (5′ → 3′) Product size (bp Annealing 
temperature

Reference

Mycoplasma spp.
(16S rRNA)

HBT-F: ATA​CGG​CCC​ATA​TTC​CTA​CG
HBT-R: TGC​TCC​ACC​ACT​TGT​TCA​

600 60 °C [46]

Mycoplasma spp.
(16S rRNA)

UNI_16 S_mycF: GGC​CCA​TAT​TCC​TAC​GGG​AAG​CAG​CAGT​
UNI_16 S_mycR: TAG​TTT​GAC​GGG​GGG​TGT​ACA​AGA​CCTG​

1000  56 °C [53]

Piroplasmida
(18S rRNA)

BTF1: GGC​TCA​TTA​CAA​CAG​TTA​TAG​
BTR1: CCC​AAA​GAC​TTT​GAT​TTC​TCTC​

930 52 °C [48]

BTF2: CCG​TGC​TAA​TTG​TAG​GGC​TAA​TAC​
BTR2: GGA​CTA​CGA​CGG​TAT​CTG​ATCG​

800 62 °C

Trypanosomatida
(18S rRNA)

Tryp_18S_F1: GTG​GAC​TGC​CAT​GGC​GTT​GA
Tryp_18S_R1: CAG​CTT​GGA​TCT​CGT​CCG​TTGA​

 ~ 1320  56 °C [51]

Tryp_18S_F2: CGA​TGA​GGC​AGC​GAA​AAG​AAA​TAG​AG
Tryp_18S_R2: GAC​TGT​AAC​CTC​AAA​GCT​TTC​GCG​

960 56 °C

Bartonella spp.
(16S-23S rRNA)

Bartgd_for: GAT​GAT​GAT​CCC​AAG​CCT​TC
B1623_rev: AAC​CAA​CTG​AGC​TAC​AAG​CC

179 60 °C [49]

Rickettsia spp.
(23S-5S rRNA)

Ricketts_ITS_for: GAT​AGG​TCG​GGT​GTG​GAA​G
Ricketts_ITS_rev: TCG​GGA​TGG​GAT​CGT​GTG​

 ~ 400 52 °C [52]

Anaplasmataceae
(16S rRNA)

EHR16SD_for: GGT​ACC​YAC​AGA​AGA​AGT​CC
EHR16SR_rev: TAG​CAC​TCA​TCG​TTT​ACA​GC

345 54 °C [50]

Filarioidea
(COI gene)

COIint-F: TGA​TTG​GTG​GTT​TTG​GTA​A
COIint-R: ATA​AGT​ACG​AGT​ATC​AAT​ATC​

668  52.3 °C [47]

http://phylemon2.bioinfo.cipf.es/
http://phylemon2.bioinfo.cipf.es/
http://iqtree.cibiv.univie.ac.at/
http://iqtree.cibiv.univie.ac.at/
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and month of sample collection (P = 0.817). There was a 
significant correlation between pathogen occurrence and 
country of origin (P = 0.013). Additional statistical analy-
ses are presented in Additional file 1: Table S2.

Of the 220 badger samples tested, 47 (21.4%; 95% CI 
0.16–0.268) tested positive for one pathogen only, and 
77 (35.0%; 95% CI 0.287–0.413) and 76 (34.6%; 95% CI 
0.287–0.413) showed a co-infection with two and three 
pathogens, respectively (Fig.  2). The highest prevalence 
of pathogens was found in Austria, Bosnia and Herzego-
vina, Croatia, Germany and Hungary (each 100%), fol-
lowed by Romania (94%), Serbia (92%), France (84%) and 
Italy (63%) (Fig. 3).

Among the 195 samples positive for Piroplasmida, 
119 (61.0%; 95% CI 0.542–0.679) could be assigned to 
Babesia sp. badger type A (GenBank accession number: 
KT223484), 50 (25.5%; 95% CI 0.12–0.318) to Babesia sp. 
badger type B (GenBank accession number: KT223485) 
and 82 (42.1%; 95% CI 0.351–0.49) to Babesia sp. badger 
type C (GenBank accession number: MG799847). Of 
these 195 Piroplasmida-positive badgers, 140 (71.8%; 95% 
CI 0.655–0.781) showed an infection with one lineage 

only, 54 (27.7%; 95% CI 0.214–0.34) showed an infec-
tion with two lineages and one (0.5%; 95% CI 0–0.015) 
showed an infection with all three lineages simulta-
neously (Fig.  4). Three sequences, representative for 
the three haplotypes found in the present study, were 
uploaded to NCBI GenBank (accession nos.: PP621229–
PP621231) (Table 2). The representative samples for type 
A and type B showed 100% identity to Babesia sp. badger 
type A and Babesia sp. badger type B, respectively, found 
in badgers from Spain. The representative sample for 
type C showed 100% identity to Babesia sp. badger “iso-
late Badger-1,” found in a badger from China (Table  2). 
The prevalence of badger-associated Babesia spp. was 
100% in Bosnia and Herzegovina, Germany and Hungary, 
followed by Serbia (92%), Romania (90%), France (84%), 
Austria (71%) and Italy (63%) (Fig. 3).

All 118 samples that tested positive for Trypanosoma-
tida were infected with T. pestanai. Of these, 82 (69.5%; 
95% CI 0.612–0.778) of the sequences were 99.1–100% 
identical to those of T. pestanai from a badger in 
France (GenBank accession number: AJ009159), and 22 
(18.6%; 95% CI 0.116–0.257) were 98.2–100% identical 

Fig. 2  Co-infection scheme of detected pathogens. Numbers represent counts of Eurasian badgers (Meles meles) with respective pathogens 
detected. Percentages represent the proportion of positive badgers among all badgers tested (n = 220). A, Babesia sp.; B, hemotropic mycoplasmas; 
C, Trypanosoma pestanai; D, Ehrlichia sp.
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to T. pestanai detected in a badger in Italy (GenBank 
accession number: MZ144610). Three representative 
sequences were uploaded to NCBI GenBank under 
the accession numbers PP595227–PP595229 (Table 2). 
The sequence quality of the remaining 14 samples was 
poor and therefore could not definitely be assigned to 

a species, although the sequences were similar to those 
of T. pestanai. The prevalence of T. pestanai was high-
est in Bosnia and Herzegovina (100%), followed by Ger-
many (75%), Austria (71%), Croatia (68%), Romania 
(58%), Hungary (57%), Serbia (54%), France (45%) and 
Italy (31%) (Fig. 3).

Fig. 3  Map of the Eurasian badger (Meles meles) samples used for this study, showing the prevalence by state in Europe. The bar charts show 
the prevalence (in %) of hemotropic mycoplasmas, Ehrlichia sp., Trypanosoma pestanai, Babesia sp. badger type A, Babesia sp. badger type B 
and Babesia sp. badger type C by study state
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Fig. 4  Co-infection scheme of detected Babesia sp. lineages. Numbers represent counts of Eurasian badgers (Meles meles) with the respective 
haplotype(s) detected. Percentages represent the proportion of positive badgers among Piroplasmida-positive badgers (N = 195). A, Babesia sp. 
badger type A; B, Babesia sp. badger type B; C, Babesia sp. badger type C

Table 2  Sequencing results for Ehrlichia spp., Trypanosoma pestanai and Eurasian badger-associated Babesia spp. and their closest 
relationship

Accession 
no. (this 
study)

Haplotype (this 
study)

Country (this 
study)

Reference 
haplotype

Reference host Reference country Reference 
accession no.

Identity (in %)

PP595801 Uncultured Ehrli-
chia sp.

Croatia Uncultured Ehrli-
chia sp.

Canis lupus 
familiaris

Hungary MH020203 100.0

PP595227 Trypanosoma 
pestanai

Austria Trypanosoma 
pestanai

Meles meles France AJ009159 100.0

PP595228 Trypanosoma 
pestanai

Austria Trypanosoma 
pestanai

Meles meles France AJ009159 100.0

PP595229 Trypanosoma 
pestanai

Romania Trypanosoma 
pestanai

Meles meles Italy MZ144610 98.7

PP621229 Babesia sp. badger 
type A

France Babesia sp. badger 
type A

Meles meles Spain KT223484 100.0

PP621230 Babesia sp. badger 
type B

Germany Babesia sp. badger 
type B

Meles meles Spain KT223485 100.0

PP621231 Babesia sp. badger 
type C

Croatia Babesia sp. badger Meles meles China MG799847 100.0
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The sequences of three samples that tested positive 
for Anaplasmataceae were 100% identical and one was 
99.5% identical to Ehrlichia sp. found in a dog from Hun-
gary (GenBank accession number: MH020203). Due to 
the low sequence qualities of two sequences, only one 
was uploaded to GenBank under the accession number 
PP595801 (Table  2). Ehrlichia sp. was found in Croa-
tia, Hungary and Romania (n = 2, 1 and 1, respectively) 
(Fig. 3).

Of the samples that tested positive for Mycoplasma 
spp., 19 were subjected to additional PCRs (each with dif-
ferent primers amplifying larger PCR products), and the 
resulting sequences were used for the phylogenetic anal-
ysis. Due to the low quality of the sequences, two were 
excluded from the analysis. The remaining 17 sequences 
were uploaded to NCBI GenBank under the acces-
sion numbers OQ749679–OQ749684 and OQ749687–
OQ749697) (Table 3) and used for phylogenetic analysis 
(Fig. 5; Additional file 2: Figure S1). Among the 107 sam-
ples that tested positive for Mycoplasma spp. during the 
primary PCR, only two sequences showed 100% iden-
tity to sequences uploaded to GenBank, one (GenBank 
accession number: OQ749681) to Mycoplasma sp. from a 
European wild cat (Felis silvestris silvestris) in Bosnia and 
Herzegovina (GenBank accession number: MF614158), 
and one (GenBank accession number:OQ749683) to 
Candidatus Mycoplasma haematomelis found in a 
domestic cat (Felis catus) from Italy (GenBank accession 
number: KR9055451). However, the results from both 
samples differed from those obtained in the secondary 
PCR, where they showed 98.8% identity to Mycoplasma 
sp. found in an American mink (Neogale vison) from 
Chile (GenBank accession number: MT462252), and 
99.6% to Mycoplasma sp. found in a raccoon (Procyon 

lotor) from the USA (GenBank accession number: 
KF743733), respectively. The remaining 105 samples 
showed identities of 96.04–99.8% (Table  4) and notable 
differences from those observed by the second PCR. The 
prevalence of Mycoplasma spp. was highest in Hungary 
(71%), followed by Austria (57%), Germany (56%), Roma-
nia (53%), Bosnia and Herzegovina (50%), Serbia (50%), 
Croatia (45%), France (43%) and Italy (25%) (Fig. 3).

Discussion
This study included a large (N = 220) number of exam-
ined badgers, originating from nine different countries in 
Southern, Western and Eastern Europe [58], thereby pro-
viding a representative cross-section of the badger popu-
lation in continental Europe and its distribution [59]. It 
should be noted, however, that the sample sizes varied 
across the countries, ranging from two to 80 examined 
samples (Fig. 1).

The composition of pathogens identified in the samples 
examined in the present study is roughly comparable to 
that reported in other European studies. The prevalence 
of T. pestanai was high (56%) in our study compared 
to that reported in earlier studies where it ranged from 
10% to 35% [28, 32, 60], but the majority of previous 
publications reporting T. pestanai originated from the 
UK [28, 32, 60]. Apart from these studies, in Europe, T. 
pestanai has only been found in two badgers from Italy, 
which already showed clinical symptoms prior to dying 
[29]. The recent detection of badger-associated T. pesta-
nai in a dog from Germany suggests that the pathogen 
can be transmitted to other carnivores [31]. Therefore, 
the high prevalence of this parasite in the present study 
could represent a potential risk to both wild and domes-
tic carnivores, especially when their immune status is 

Table 3  Sequencing results for Mycoplasma spp., using UNI_16 S_mycF and UNI_16 S_mycR primers, and their closest relationship, 
according to GenBank BLAST results 

Of the samples that tested positive for Mycoplasma spp., 19 were subjected to additional PCRs, of which 2 sequences of minor quality were excluded from the 
phylogenetic analysis (n = 17)

Number 
of 
samples

Accession 
number (this 
study)

Country (this study) Reference haplotype Reference host Reference country Reference
accession number

Identity (in %)

5 OQ749691 Germany, France Candidatus Myco‑
plasma haemato‑
melis

Meles meles anakuma Japan AB848713 99.7

1 OQ749696 Croatia Mycoplasma sp. Canis lupus familiaris Cambodia ON620261 99.4

1 OQ749681 Romania Mycoplasma sp. Neovison vison Chile MT462252 98.8

5 OQ749679 Romania Mycoplasma sp. Procyon lotor USA KF743733 99.6

2 OQ749689 Serbia, Croatia Mycoplasma sp. Procyon lotor USA KF743733 99.5

1 OQ749690 Germany Mycoplasma sp. Procyon lotor USA KF743733 99.4

1 OQ749687 Hungary Mycoplasma sp. Procyon lotor USA KF743733 99.4

1 OQ749688 Serbia Mycoplasma sp. Procyon lotor USA KF743733 99.3
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compromised [29]. Further research is needed in this 
area to enable more precise conclusions.

In 2009, a new piroplasmid species was detected 
in a badger in Spain (GenBank accession number: 
FJ225390), which was considered to belong to Babe-
sia microti-like organisms [21] and which was later 
found in several other studies and referred to as Babe-
sia sp. badger type A by some authors [1, 16–19, 22, 
25]. A different badger-associated Babesia species was 

designated as type B [1, 17, 22, 25]. In 2021, another 
Babesia species was found in one badger from the 
Netherlands [25] which was > 99% identical to a spe-
cies found in a badger in an unpublished Chinese 
study (GenBank accession number: MG799847). These 
authors did not upload it to the GenBank but referred 
to it as Babesia sp. badger type C [25]. In the present 
study, all three badger-associated Babesia species were 
detected, with type A being the most prevalent (61%), 

Fig. 5  Bayesian inference tree featuring 16S rRNA sequences (963 nucleotide positions) of selected Mycoplasma spp. Nodes are marked 
with Bayesian posterior probabilities and maximum likelihood bootstrap values. Accession numbers, species name, host and country are provided 
for every sequence. Sequences which are written in bold are from Meles meles, and sequences marked in red were obtained in this study. The scale 
bar indicates the expected mean number of substitutions per site according to the model of sequence evolution applied. For reasons of clarity, 
the number of sequences has been reduced to up to 4 sequences per clade. The full phylogenetic tree can be found in Additional file 2: Figure S1
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followed by type C (43%) and type B (25%). Interest-
ingly, Babesia sp. type C was not found in Austria, 
France and Germany, but only in Italy and the coun-
tries of Eastern Europe (Fig. 2). This geographical fea-
ture may be attributed to the natural barrier of the 
Alps, which separates north-western and south-eastern 
European countries, impacting wildlife and vectors. 
The unexpectedly high prevalence of type C, previously 
reported only in two other badgers from southern Italy 
and China [16], may be attributed to the large sam-
ple size and diverse geographical origin of the badgers 
examined, thus allowing for a more sensitive and dif-
ferentiated analysis. Moreover, previous studies rarely 
examined samples from badgers south of the Alpine 
and Apennine belts, which could also explain the very 
low number of Babesia sp. type C  found in past stud-
ies. Ixodid ticks are described as the primary vectors 
for Babesia spp. in Europe, and some of these vectors 
are prevalent in Alpine regions [61, 62]. While Babesia 
sp. showing 100% identity to type C was found in Ixodes 
canisuga, the fox tick, in Germany (GenBank accession 
number: JX679177), Babesia sp. badger types A and 
B have not yet been identified in ectoparasite vectors 
[1, 16–19, 22, 25]. However, the geographical distribu-
tion of type C could indicate, that this genotype needs 
a different vector than types A and B. More studies are 
needed to assess the vectors, definite hosts and the pre-
cise life cycle of this pathogen. Badger-associated Babe-
sia spp. have also been detected in wolves (Canis lupus) 
[16], wildcats [26] and even dogs [19] in Europe. This 
indicates that the pathogens are not strictly specific to 
badgers and could therefore be a potential threat to 
both wild and domestic carnivores.

In contrast to other studies carried out in Europe, A. 
phagocytophilum was not detected in the present study 

[1, 40]. Three sequences were 99.5–100% identical to 
Ehrlichia sp. found in a dog from Hungary (GenBank 
accession number: MH020203) [41].

To the authors’ knowledge, only two previous studies 
reported hemoplasmas in badgers, with one describing 
hemoplasmas in a Japanese badger [38] and the other 
describing hemoplasmas in Eurasian badgers from Spain 
[37]. The high prevalence in the present survey is in con-
cordance with the results reported from a study in Spain 
[36], where the prevalence of hemoplasmas was 57%. 
Similarly, a high diversity of Mycoplasma lineages was 
observed in the present study (Table 4).

To obtain more detailed genetic information, we 
selected 19 Mycoplasma-positive samples for performing 
an additional PCR in order to obtain a longer fragment 
of the 16S rRNA gene. The aim was to draw conclusions 
from the representative samples and to adapt the results 
of the remaining 88 sequences accordingly. However, the 
results differed significantly from one another, and DNA 
fragments from samples with 100% identity showed high 
deviations from results obtained with the primary PCR. 
Therefore, it was not possible to infer the Mycoplasma 
species of the samples from the first PCR based on the 
results of the representative 19 samples. The difference 
in results indicates the presence of co-infections with 
two or more Mycoplasma species in some of the badgers 
examined.

The prevalence of hemoplasmas was highest in Hun-
gary, followed by Austria and Germany, and it was low-
est in Italy. Due to the sparse body of literature available 
on hemoplasmas in badgers, a detailed comparison was 
not possible. The prevalence of hemoplasmas in Euro-
pean wild carnivores showed variable results, ranging 
from 2% in foxes (Vulpes vulpes) to 57% in badgers from 
Spain [26, 37, 63–65]. Although studies in domestic cats 

Table 4  Sequencing results for Mycoplasma spp., using HBT-F and HBT-R primers, and their closest relationship, according to GenBank 
BLAST results. 

A Austria, B Bosnia and Herzegovina, C Croatia, F France, G Germany, H Hungary, I Italy, R Romania, S Serbia

Of the samples tested, 13 sequences of minor quality were excluded from further analysis (n = 94)

Number 
of 
samples

Country Reference haplotype Reference host Reference country Reference
accession number

Identity (in %)

18 A, F, R, S Candidatus Mycoplasma haematomelis Meles meles anakuma Japan AB848713 99.3–99.7

1 R Candidatus Mycoplasma haematominu‑
tum

Felis catus Italy KR905451 100.0

5 C, G, R Mycoplasma sp. Canis lupus familiaris Cambodia ON620261 99.1–99.8

11 F, H, R Mycoplasma sp. Procyon lotor USA KF743729 96.0–96.2

50 B, C, F, G,
H, I, R, S

Mycoplasma sp. Procyon lotor USA KF743733 98.9–99.8

1 R Mycoplasma sp. Felis silvestris silvestris Bosnia and Herzegovina MF614158 100.0

8 G, H, R, S Mycoplasma sp. Felis silvestris silvestris Bosnia and Herzegovina MF614159 99.6–99.8
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and dogs revealed a higher prevalence of hemoplasmas in 
warmer regions [46, 66], this difference does not appear 
as pronounced among wild carnivores. In contrast, vari-
ations in prevalence are more noticeable across different 
species. In our study, we observed a higher prevalence 
in colder regions compared to Mediterranean countries 
(e.g. Italy) (Fig.  3). This finding indicates that climatic 
conditions may not be as crucial in the transmission of 
hemoplasmas among wild carnivores as in pets. One pos-
sible explanation based on by new evidence is that hemo-
plasmas may not always require ectoparasite vectors, but 
may be transmitted by different mechanisms, such as 
fighting or social contact [67].

Leishmania infantum was previously identified in 
badgers from Italy and Spain with a prevalence ranging 
from 1.7% to 53% [1, 24, 68–71]. In the present study, 
however, despite examining large sample sizes from 
Mediterranean countries where L. infantum is endemic 
[72], none of the samples tested positive for this patho-
gen. Further studies on the prevalence of this parasite 
in the Eurasian badger population in Europe, especially 
in the Mediterranean region, could be of interest in the 
future due to the badger’s risk of being potential reservoir 
hosts of leishmaniasis [68].

Although we examined samples from countries 
where Filarioidea, such as D. immitis and D. repens, are 
described as endemic (e.g. Italy, Serbia, Hungary and 
Romania) [73–78], we did not detect any filarioid nema-
todes in our studies. Both D. immitits and D. repens have 
been recently detected in badgers [11, 12, 33, 34], which 
indicates that badgers are suitable hosts for Dirofilaria 
spp. It should be considered that the prevalence of D. 
repens in the two studies was quite low (10.6% in Rus-
sia and 1.9% in Poland), and to date, the presence of D. 
immitis in badgers has only been reported from Romania 
and Greece [12, 33].

Rickettsia spp. and Bartonella spp. were not detected 
in this study. Notably, Rickettsia spp. are not regularly 
tested for in badgers, and previous studies have primar-
ily detected these pathogens in skin biopsies rather than 
spleen samples [20, 43, 79]. Regarding Bartonella spp., 
apart from one study from Spain that reported a preva-
lence of 12% [42], no other studies detected Bartonella 
spp. in badgers, including those focusing on vectors 
collected from badgers [20, 23, 80, 81]. Nevertheless, it 
should be noted that the sample sizes used in the latter 
four studies were small, ranging from three to 18 individ-
uals. Due to the infestation of the badgers with multiple 
ectoparasites in the above-mentioned study from Spain 
[42], a determination of vectors for Bartonella sp. found 
in badgers is needed.

As wildlife-borne pathogens are responsible for > 70% 
of emerging zoonotic infectious diseases [82] and also 

play a crucial role as reservoirs for pathogens that can be 
transmitted to domestic animals [20], studies on VBPs in 
wildlife are becoming increasingly relevant. The badger-
associated Babesia spp., T. pestanai and Ehrlichia sp. 
detected in this study are described as badger-specific 
pathogens. However, badger-associated Babesia spp. and 
Ehrlichia sp. as well as T. pestanai have been previously 
found in dogs [19, 31, 41], therefore posing a potential 
risk to pet dogs living in the vicinity of badgers. Hemo-
plasmas can infect a variety of mammals. The myco-
plasmas identified in this study were similar to those of 
species detected in other wild and domestic carnivores. 
Since hemoplasmas have also been described in humans 
[83–85], further investigation of the pathogens in wild 
carnivores would be of interest.

Notably, the overall prevalence of pathogens was 
comparatively low in France and, in particular, in Italy 
(Fig. 3), although no significant correlation was observed 
between pathogen occurrence and the country of ori-
gin of the badgers. Given that many southern European 
countries are known for various endemic VBPs and 
their vectors [86, 87], it was anticipated that the preva-
lence of pathogens in these regions would be higher than 
that in more northern parts of Europe. However, it is 
important to note that much of the existing literature on 
VBPs in these countries has  primarily focused on filari-
oid nematodes and L. infantum, both of which were not 
identified here [86, 87]. Regarding the low prevalence in 
Italy, it should be mentioned that the majority of indi-
viduals tested in Italy came from the southern region of 
Campania (n = 10), while the rest of the samples (n = 6) 
originated from the northern regions Veneto and Friuli-
Venezia Giulia (Fig.  1). Although only four (40.0%) of 
these 10  badgers from southern Italy tested positive, all 
six (100.0%) badgers from the northern region tested 
positive for at least one pathogen. As VBPs and their vec-
tors are quite widespread in southern Italian regions [88–
90], this geographical distribution is rather surprising.

No statistically significant correlation was found 
between the presence of pathogens and the sex or age of 
the animals. Previous research examining the relation-
ship between the presence of VBPs and factors such as 
sex or age has yielded contradictory results and shown 
considerable variability depending on the specific patho-
gen under investigation [91–96].

Conclusions
The large sample size and diverse study populations in 
this research provide valuable insights into the distri-
bution and epidemiology of the pathogens analyzed in 
Eurasian badgers. Several VBPs identified in the pre-
sent study are highly similar to those found in domestic 
animals, such as dogs, which suggests that badgers may 
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pose a threat to other wildlife and domestic animals in 
their vicinity as potential reservoirs of these pathogens. 
Continued surveillance is essential to monitor VBPs 
in wildlife and to assess their impact on other wildlife, 
domestic animals and human health.
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