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Molecular xenomonitoring reveals Anopheles 
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Abstract 

Background Lymphatic filariasis (LF) is an infectious neglected tropical disease caused by mosquito-borne nema-
todes such as Wuchereria bancrofti, Brugia malayi, and Brugia timori. Globally, LF affects 51 million people, with approx-
imately 863 million at risk in 47 countries. In Kenya, filariasis is endemic along the entire coastal strip, and more 
recently, at the Kenya–Ugandan border. The World Health Organization (WHO) recommends mass drug administra-
tion to reduce disease transmission and morbidity. Monitoring the effectiveness of such interventions relies on robust 
surveillance, achieved through microscopic examination of microfilariae in nighttime blood, detection of circulating 
filarial antigens (CFA), and molecular xenomonitoring. We focused on molecular xenomonitoring along the Kenyan 
coast due to its noninvasive nature and the opportunity to identify new vectors.

Methods In 2022, mosquitoes were collected from Kilifi, Kwale, and Taita-Taveta counties located within the LF 
endemic region in Kenya. Subsequently, genomic deoxyribonucleic acid (gDNA) was extracted from these mosqui-
toes for speciation and analysis of Wuchereria bancrofti infection rates. The impact of sociodemographic and house-
hold attributes on infection rates was assessed using generalized estimating equations.

Results A total of 18,121 mosquitoes belonging to Culicinae (63.0%, n = 11,414) and Anophelinae (37.0%, n = 6707) 
subfamilies were collected. Morphological identification revealed that Anopheline mosquitoes were dominated 
by An. funestus (45.4%, n = 3045) and An. gambiae (42.8%, n = 2873). Wuchereria bancrofti infection rates were highest 
in Kilifi (35.4%; 95% CI 28.0–43.3%, n = 57/161) and lowest in Taita Taveta (5.3%; 95% CI 3.3–8.0%, n = 22/412). The major 
vectors incriminated are An. rivulorum, An. funestus sensu stricto, and An. arabiensis. Mosquitoes of the An. funestus 
complex were significantly associated with LF transmission (OR 18.0; 95% CI 1.80–180; p = 0.014). Additionally, a higher 
risk of transmission was observed outdoors (OR 1.74; 95% CI 1.08–2.82; p = 0.024) and in homesteads that owned 
livestock (OR 2.00; 95% CI 1.09–3.66; p = 0.025).

Conclusions In this study, we identified An. funestus s.l. sibling species, An. rivulorum and An. funestus s.s., as the pri-
mary vectors of lymphatic filariasis along the Kenyan coast. These findings also highlight that a significant portion 
of disease transmission potentially occurs outdoors where indoor-based vector control tools, including long-lasting 
insecticidal nets and indoor residual spray, may not be effective. Therefore, control measures targeting outdoor resting 
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Background
Lymphatic filariasis (LF) is an infectious neglected tropi-
cal disease caused by mosquito-borne nematodes such as 
Wuchereria bancrofti, Brugia malayi, and Brugia timori. 
Globally LF accounts for 51 million cases with approxi-
mately 863 million people in 47 countries still at risk of 
infection [1]. Clinical symptoms of LF include hydrocele, 
lymphedema, and adenolymphangitis. At an advanced 
stage, lymphedema develops into elephantiasis, which is 
characterized by swollen body parts (mainly legs, geni-
tals, arms, and breasts) and disfiguration that results 
in sociopsychological problems for patients and their 
families. In sub-Saharan Africa, filariasis is transmitted 
to humans by mosquitoes of the genera Anopheles and 
Culex. In urban areas, transmission is mainly carried 
out by Culex quinquefasciatus, whereas in rural areas 
it is dominated by An.  funestus s.l. and An. gambiae s.l. 
mosquitoes [2]. Transmission occurs through bites from 
female mosquitoes infected with L3 larvae, which develop 
from microfilariae ingested from infected humans. Once 
they penetrate the skin, the L3 larvae migrate to the lym-
phatic system where they mature into adult worms, caus-
ing disruption in normal circulation leading to clinical 
symptoms previously described. The worms also produce 
microfilariae that migrate back to the blood stream and 
get ingested by a mosquito during a subsequent blood 
meal perpetuating the transmission cycle. In Kenya, fila-
riasis is endemic along the coastal region [3–9] and has 
recently been reported further inland in Busia County, 
located at the Kenyan–Ugandan border [10]. The main 
vectors of LF in Kenya are An. gambiae s.l., An. funestus 
s.l., and Cx. quinquefasciatus, with varying transmission 
intensities attributed to diverse ecological and environ-
mental conditions [6, 8, 11–13].

In 2002, the World Health Organization (WHO) 
launched the Global Programme to Eliminate Lymphatic 
Filariasis (GPELF) with the ambitious target of eliminat-
ing LF by 2020 through mass drug administration (MDA) 
[1]. Co-administration of albendazole (400  mg) and 
diethylcarbamazine citrate (DEC) (6 mg/kg) was recom-
mended by the WHO for all eligible individuals in fila-
riasis-endemic areas to reduce transmission and disease 
morbidity. New treatment guidelines recommend a triple 
therapy regimen consisting of diethylcarbamazine, alben-
dazole, and ivermectin in countries without onchocer-
ciasis. Mass drug administration has been tremendously 
successful, leading to a 74% decline in LF globally. Kenya 

initiated LF elimination efforts in 2002 through annual 
MDA campaigns using DEC and albendazole. MDA 
began in Kilifi district; a known LF foci followed by scale-
up campaigns in Kwale and Malindi districts in 2003 and 
subsequently to Tana River, Taita-Taveta, and finally in 
Mombasa [7].

The success of this strategy relies on robust surveillance 
and monitoring of parasite infection. Tracking data on 
local populations of filariasis-transmitting vectors pro-
vides an opportunity for monitoring disease transmis-
sion dynamics. Monitoring MDA performance is mainly 
achieved through microscopic examination of microfilar-
iae in nighttime blood and detection of circulating filarial 
antigens (CFA). Although microscopic examinations pro-
vide the most reliable estimates, nighttime sampling is a 
major challenge, and infections may be missed in pres-
ence of unmated adult worms [14–16]. While monitoring 
CFA can provide accurate information about the preva-
lence of W. bancrofti infection, antibody testing offers a 
sensitive indicator of exposure levels but cannot distin-
guish between previous and current infections, poten-
tially leading to an overestimation of the true burden of 
infection. Molecular xenomonitoring (MX) that relies on 
polymerase chain reaction (PCR) has been suggested by 
the WHO as an important noninvasive surveillance tool 
to complement human surveys [16, 17]. MX provides 
a platform for monitoring infection in known vectors 
and provides an opportunity to incriminate new vectors 
involved in the transmission of W.  bancrofti [18]. The 
present paper reports LF surveillance in adult mosqui-
toes collected on the Kenyan coast.

Methods
Study area
The study was conducted in the selected sites of Kilifi, 
Kwale, and Taita-Taveta counties along the Kenyan coast 
(Fig.  1). These three counties experience a moderately 
hot (21–31  °C) and moist (> 1000  mm precipitation per 
year) climate and have a combined population of approx-
imately 2.4 million people. Climatic changes observed in 
recent years include delays in the onset of rains, reduc-
tion in water volume or drying up of wells and rivers, and 
increases in temperatures [19–21]. Despite shared cli-
matic conditions, mosquito composition and abundance 
are heterogeneous, with a notable decline in the An. gam-
biae s.s. population [22]. A total of 16 sites were selected 
for vector sampling (Fig.  1). In Kilifi County, sampling 

mosquitoes such as zooprophylaxis, larval source management, and attractive sugar baits may have potential for LF 
transmission reduction.

Keywords Lymphatic filariasis, Anopheles funestus, Kenya, Xenomonitoring
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was conducted in two former administrative units, Kilifi 
and Malindi district, because MDA activities had previ-
ously been carried out extensively in the two regions.

Mosquito collection
This cross-sectional study involved mosquito collection 
both indoors and outdoors in 10 households at each of 
the 16 sites using Centers for Disease Control and pre-
vention light traps (CDC-LT). Sampling was carried out 
during the dry season (January, February, and March) and 
at the end of the wet season (July) in 2022. The traps were 
set at dusk (1800  h) and collected at dawn (0600  h) on 
the next day. Geo-reference coordinates were collected 
using the  eTrex® 10 (Garmin, Kansas, USA). Indoor 
traps were set in houses where at least one member of 
the household person spent the night, while the outdoor 
traps were placed next to livestock sheds or within a dis-
tance no more than 5 m from the house containing the 
indoor trap. The collected mosquitoes were identified 
using the morphological keys of Gillies and Coetzee [23], 
sorted by sex and physiological state, and then counted. 

All anopheline mosquitoes were preserved individually 
in micro centrifuge tubes containing a desiccant (silica 
pellets) and transported to the Kenya Medical Research 
Institute-Wellcome Trust Research laboratory for further 
analysis. A small proportion of the culicine mosquitoes 
were archived, and the rest were discarded.

Mosquito dissection
Using sterile scalpels and forceps, the adult female 
anopheline mosquitoes were dissected into two parts: 
head/thorax and abdomen, and stored at −80 °C.

DNA extraction
Genomic deoxyribonucleic acid (gDNA) was extracted 
from the mosquito head and thorax as previously 
described, with minor modifications [24]. Briefly, sterile 
tungsten beads were transferred into the 1.5  ml micro-
centrifuge tubes and topped up with 100 µl of 10% chelex 
and lysed using a tissue lyser at 30  Hz for 1  min. The 
beads were removed from the tubes and the lysate incu-
bated at 100 °C for 10 min in a Thermomixer (Eppendorf, 

Figure 1 A map showing mosquito sampling sites. Sampling in Kilifi County was divided into two districts: Kilifi and Malindi
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Hamburg, Germany). The solution was then centrifuged 
at 10,000 × g for 2 min, and supernatant was transferred 
to a new microcentrifuge tube and stored at −80 °C.

Molecular identification of Anopheles gambiae 
and Anopheles funestus sibling species
Diagnostic polymerase chain reaction (PCR) for An. gam-
biae sibling species was done using primers targeting the 
intergenic spacer (IGS) region of the ribosomal DNA 
[25]. For An. funestus, PCR primers targeting the internal 
transcribed spacer region 2 (ITS2) were used [26]. Each 
PCR reaction consisted of 4 µL 5X Green  GoTaq® Flexi 
Buffer, 2.4  µL magnesium chloride, 4  µL nuclease free 
water, 0.5  µL deoxynucleoside triphosphates (dNTPs), 
0.1 µL  GoTaq® G2 Flexi DNA Polymerase, 1 µL of each 
primer, and 4  µL of the mosquito DNA template. Ther-
mocycling conditions consisted of an enzyme activation 
step at 95 °C for 5 min, followed by 35 cycles of denatura-
tion at 95 °C for 15 s, annealing at 55 °C for 20 s, exten-
sion at 72 °C for 30 s, and a final elongation step at 72 °C 
for 10 min. PCR amplicons were resolved on a 1.5% aga-
rose gel stained using  RedSafe™ Nucleic Acid Staining 
Solution (iNtRON Biotechnology, Korea) and visualized 
using the ChemiDoc Imaging System (Bio-Rad, USA) to 
resolve the different species.

Detection of Wuchereria bancrofti
Wuchereria bancrofti was detected using the method 
described by Zhong et al. [27] with minor modifications. 
The PCR primers target the genus-specific, multicopy 
(~ 300 copies) Ssp I repeat DNA family. The PCR reaction 
consisted of 4 µL 5X Green  GoTaq® Flexi Buffer, 2.4 µL 
magnesium chloride, 7  µL nuclease free water, 0.5  µL 
deoxynucleoside triphosphates (dNTPs), 0.1  µL  GoTaq® 
G2 Flexi DNA Polymerase, 1 µL of each primer, and 4 µL 
of the mosquito DNA. The cycling conditions consisted 
of an initial enzyme activation step at 95  °C for 5  min, 
followed by 35 cycles of denaturation at 95  °C for 15  s, 
annealing at 55  °C for 20  s, extension at 72  °C for 30  s, 
and a final elongation step at 72 °C for 10 min. Amplicons 
were resolved on a 1.5% agarose gel stained with Red-
Safe™ Nucleic Acid Staining Solution (iNtRON Biotech-
nology, Korea) and visualized on the ChemiDoc Imaging 
System (Bio-Rad, USA). Samples with a band size of 188 
base pairs were identified as positive.

Statistical analysis
Data were entered and cleaned in a Microsoft excel file. 
Statistical analysis and data visualization were conducted 
using R software, version 4.2.1 [28]. Infection propor-
tions in the mosquito vectors were determined by divid-
ing the number of W.  bancrofti positive mosquitoes by 
the total number of mosquitoes analyzed per county in 

Kwale and Taita-Taveta, and per district in Kilifi County 
(Kilifi and Malindi). To assess the impact of various soci-
odemographic and household attributes on LF positiv-
ity, we employed a multilevel logistic regression model 
using generalized estimating equations (GEE) assuming 
a binomial distribution. The GEE approach was chosen 
to account for the correlated nature of repeated obser-
vations within the regions. The model was fitted using 
the geeglm function, with LF positivity as the binary 
outcome variable. The risk factor variables included sea-
son, site of mosquito collection, mosquito species, pres-
ence or absence of eaves, livestock, poultry, bed nets, 
type of material used in roofs and walls, and number of 
occupants. These factors have previously been shown to 
influence the transmission of vector-borne diseases [29–
32]. We specified a logistic link function and selected 
an independent correlation structure. This was done to 
model within-region correlations considering the binary 
outcome of LF (positive or negative) and the clustered 
nature of the data. The results are reported as odds ratios 
(OR) along with 95% confidence intervals (CI) to quantify 
the association between the risk factor and LF positivity.

Results
Vector composition and abundance
A total of 18,121 mosquitoes were collected from 16 sites 
(Table  1). They belonged to the Culicinae (n = 11,414, 
63%) and Anophelinae (n = 6707, 37%) subfamilies, with 
most of them being caught outdoors (Fig.  2). Morpho-
logical identification revealed that Anopheles mosquitoes 
consisted of An. funestus s.l. (n = 3045, 45.4%), An. gam-
biae s.l. (n = 2873, 42.8%), An.  coustanii (n = 662, 9.9%), 
An.  pharoensis (n = 75, 1.1%), An.  maculpalpis (n = 27, 
0.4%), An.  pretoriensis (n = 23, 0.3%), and An.  moucheti 
(n = 2, 0.03%).

Bancroftian filariasis infection rates
Infection rates varied across sites, with the highest 
observed in Kilifi (35.4%; 95% CI 28–43.3%, n = 57/161), 
followed by Kwale (11.7%; 95% CI 8.1–16.3%, n = 31/264), 
Malindi (8.3%; 95% CI 5.2–12.6%, n = 20/240), and Taita-
Taveta (5.3%; 95% CI 3.4–8.0%, n = 22/412) (Table 2). In 
Kilifi, the highest proportions of W.  bancrofti-infected 
mosquitoes were An. funestus s.l. (42.1%, n = 51) followed 
by An.  gambiae s.l. (15.4%, n = 6). A similar trend was 
observed for Malindi, Kwale, and Taita Taveta.

Infection rates at sibling species level
At the vector sibling species level, parasite infection 
rates were highest in An.  rivulorum (8.7%, n = 94), fol-
lowed by An.  funestus s.s. (1.1%, n = 12), An.  arabien-
sis (0.9%, n = 10), and An.  merus (0.5%, n = 5) (Table  3). 
Notably, An.  rivulorum is the dominant vector of LF in 
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Kilifi, Kwale, and Malindi, whereas in Taita-Taveta it is 
An. funestus s.s. (n = 11) (Fig. 3).

Factors associated with bancroftian filariasis transmission
The An.  funestus s.l. mosquitoes exhibited a signifi-
cant association with lymphatic filariasis transmission 

(OR 18.0; 95% CI 1.80–180, p = 0.014) (Fig. 4). Addition-
ally, outdoor resting mosquitoes (OR 1.74; 95% CI 1.08–
2.82, p = 0.024) and the presence of livestock around 
homesteads (OR 2.00; 95% CI 1.09–3.66, p = 0.025) 
were also significantly associated with LF transmis-
sion. Although households with thatched roofs showed 
increased odds of LF transmission, this association did 
not reach statistical significance. Conversely, poultry 
ownership demonstrated a significant reduction in the 
odds of LF transmission. While bed net ownership in the 
study area was associated with protection, this associa-
tion did not attain statistical significance (OR 0.40; 95% 
CI 0.12–1.34, p = 0.14).

Discussion
We investigated the vectorial systems for LF in rural 
coastal Kenya and factors associated with the risk of dis-
ease transmission in the region. Efforts to eliminate LF 
through MDA (albendazole and diethylcarbamazine cit-
rate), as recommended by the WHO, began in the coastal 
region more than two decades ago. It was carried out in 
subsequent years and briefly interrupted by the coronavi-
rus disease 2019 (COVID-19) pandemic. Various survey 
studies conducted during this period reported CFA prev-
alence rates ranging from 0.3% to 6.3% in Kwale, Kilifi, 
and Lamu counties; however, no LF cases were reported 
in Taita-Taveta county [7]. A mosquito survey in Malindi 
in 2012 showed very low prevalence, where only 1 out of 
1055 pools of mosquitoes were positive for LF [33]. Using 
MX, we have demonstrated that there is active trans-
mission of LF in Kilifi, Kwale, and Taita-Taveta counties 
warranting further MDA campaigns. The reasons for the 

Figure 2 Proportion of mosquito collections indoors and outdoors

Table 2 Wuchereria bancrofti prevalence rates in the three 
coastal counties. However, it is important to note that Kilifi 
County is divided into Kilifi and Malindi districts

District Species LF positive Total tested Infection rates

Kilifi An. funestus 51 121 42.1

An. gambiae 6 39 15.4

An. nili 0 1 0.0

Total 57 161 35.4

Kwale An. funestus 27 123 22.0

An. gambiae 4 138 2.9

An. maculpalpis 0 3 0.0

Total 31 264 11.7

Malindi An. coustanii 1 5 20.0

An. funestus 15 62 24.2

An. gambiae 4 165 2.4

An. pharoensis 0 8 0.0

Total 20 240 8.3

Taita Taveta An. coustanii 0 63 0.0

An. funestus 18 121 14.9

An. gambiae 3 222 1.4

An. pharoensis 1 5 20.0

An. pretoriensis 0 1 0.0

Total 22 412 5.3
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persistent transmission are unclear but could be due to 
MDA adherence issues, therapeutic efficacy, or vector 
competence [7].

Malaria and LF are co-endemic in the Kenyan coast 
and are transmitted by similar vectors [11, 29]. Over the 
last two decades, campaigns to control malaria relying 
on long-lasting insecticide bed nets (LLINs) and indoor 
residual sprays (IRS) have been associated with decreased 

malaria incidence by limiting indoor biting and rest-
ing of anthropophilic vectors, thereby shifting vectors 
to more outdoor transmission [22]. This study reveals a 
higher prevalence of LF in outdoor resting mosquitoes, 
while LLIN ownership was associated with reduced risk 
of LF. This suggests that malaria interventions may alter 
LF transmission dynamics and complement MDA efforts 
[22, 34]. These findings call for the deployment of control 

Table 3 Wuchereria bancrofti infection rates in the mosquito vectors captured in the Kenyan coastal region

1 Identified morphologically
2 Identified by the An. gambiae or the An. funestus complex PCR assay
3 Identified by sequencing of the ribosomal DNA internal transcribed spacer region 2 (rDNA ITS2)

Species W. bacrofti infection rates by PCR

Positive (n) Negative (n) Species infection rate (%) Overall 
infection rate 
(%)

An. rivulorum2 94 193 32.8 8.7

An. funestus s.s.2 12 67 15.2 1.1

An. arabiensis2 10 359 2.7 0.9

An. merus2 5 91 5.2 0.5

An. funestus not detected by PCR2 3 18 14.3 0.3

An. leesoni2 2 23 8.0 0.2

An. gambiae not detected by PCR2 1 10 9.1 0.1

An. pharoensis1 1 12 7.7 0.1

An. coustanii1 1 67 1.5 0.1

An. quadriannulatus2 1 85 1.2 0.1

An. parensis2 0 12 0.0 0.0

An. vaneedeni2 0 3 0.0 0.0

An. gambiae s.s.2 0 2 0.0 0.0

An. maculpalpis1 0 3 0.0 0.0

An. nili3 0 1 0.0 0.0

An. pretoriensis1 0 1 0.0 0.0

Total 130 947 12.1

Figure 3 Distribution of Anopheles vectors infected with W. bancrofti in the Kenya coastal region
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interventions targeting outdoor resting mosquitoes such 
as attractive toxic sugar baits [35, 36], larvicides [37, 38], 
genetic vector control approaches [39], and endectocides 
[40, 41].

An. funestus s.l. and An. gambiae s.l. are both involved 
in the transmission of LF in the study area, with 
An.  funestus s.l. playing a more significant role. In the 
An.  funestus complex, An.  rivulorum is the dominant 
vector of LF in counties adjacent to the Indian ocean, 
whereas An.  funestus s.s. dominates further inland. In 
the An.  gambiae complex, An.  arabiensis, An.  merus, 
and An. quadriannulatus were positive for LF without a 

clear regional preference. Other mosquito species, such 
as An. coustanii and An. pharoensis, were indicative of LF 
infection, although we had very few positive samples to 
draw substantive conclusions about their role in LF trans-
mission. Despite observing high densities of Cx. quinque-
fasciatus, this study did not focus on this vector due to its 
well-understood role in LF transmission in urban areas 
[42, 43].

The presence of livestock in a homestead was strongly 
associated with LF transmission, suggesting that domes-
tic animals play a critical role in sustaining LF vectors 
[34]. Similar observations have been made for Aedes 

Figure 4 Multilevel logistic regression model based on generalized estimating equations on the various factors that may be associated 
with lymphatic filariasis transmission
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albopictus, which disappeared with the elimination of 
rats, their preferred vertebrate host [44]. Therefore, 
incorporating vector control tools that restrict access to 
livestock can help suppress mosquito populations and 
potentially contribute to the elimination of lymphatic fil-
ariasis. Several studies are evaluating such tools, includ-
ing endectocides such as ivermectin for controlling 
exophagic and zoophilic mosquitoes [45–47].

Houses with thatched roofs had increased odds of LF 
transmission, which is consistent with reports from India 
[48, 50]. These structures may provide favorable resting 
sites for mosquitoes. Therefore, improvements in house 
design to incorporate mosquito screens using relatively 
abundant and affordable materials, such as papyrus mats 
ceilings, have been shown to reduce An.  funestus and 
An. gambiae entry by nearly 80% [49]. Similar modifica-
tions could be adopted to limit LF transmission in coastal 
Kenya.

Interestingly, poultry keeping was associated with a 
lower risk of LF infections, a phenomenon previously 
observed where An. arabiensis, despite opportunistically 
feeding on livestock, avoids chickens as potential source 
of bloodmeals. Factors contributing to this behavior 
include physical barrier such as chicken feathers, chicken 
predation on mosquitoes [50, 52], host-choice evolution 
driven by variation in the physical and chemical proper-
ties in the host blood, or a combination of these factors 
[51, 52]. Additionally, chickens produce volatiles such as 
isobutyl butanoate, naphthalene, hexadecane, and trans-
limonene oxide, which repel mosquitoes [50]. Therefore, 
poultry keeping in peridomestic space may offer addi-
tional benefits by controlling mosquito vectors.

Conclusions
In this study, we identified An.  funestus s.l. sibling spe-
cies, An. rivulorum and An. funestus s.s., as the dominant 
vectors of lymphatic filariasis along the Kenyan coast. We 
also showed that a higher proportion of transmission is 
likely to take place outdoors, necessitating the implemen-
tation of vector control strategies that target exophilic 
mosquitoes, such as zooprophylaxis and larval source 
management. We also showed the importance of MX in 
LF surveillance, as it is noninvasive and has the potential 
for incriminating new LF vectors.
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