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Abstract 

Background  Parascaris spp. represent a significant threat to equine health worldwide, particularly in foals. The long-
term survival of parasites in the host necessitates persistent modulation of the host immune response. Intercellular 
communication achieved through the exchange of molecules via extracellular vesicles (EVs) released from the para-
site could be a crucial factor in this regard. This study aimed to isolate and characterize EVs released by adult male 
and female Parascaris worms and conduct a proteomic analysis to identify sex-specific proteins and potential immu-
nomodulatory factors.

Methods  Live adult Parascaris worms were collected, and EVs were isolated from spent culture media using differ-
ential ultracentrifugation. Nanoparticle tracking analysis and transmission electron microscopy confirmed the size, 
concentration, and morphology of the isolated EVs. Proteins within the isolated EVs were analyzed using mass 
spectrometry-based proteomics (LC–MS/MS).

Results  Proteomic analysis revealed a total of 113 proteins in Parascaris EVs, with several proteins showing homology 
to known helminth exosome proteins and exhibiting immunomodulatory functions. Sex-specific differences in EV 
protein composition were observed, with a distinct abundance of C-type lectins in female EVs, suggesting potential 
sex-specific roles or regulation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analyses revealed metabolic pathways shared between male and female Parascaris EVs, as well as differences in signal 
transduction, and cell growth and death pathways, indicating sex-specific variations.

Conclusions  These findings imply that Parascaris EVs and their protein cargo are complex. This data potentially 
opens avenues for discovering innovative approaches to managing and understanding helminth infection.
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Background
Parascaris is an intestinal roundworm that infects 
horses, especially foals, globally. Two species, the pre-
dominant Parascaris univalens, and the less frequently 

encountered P. equorum, have been recognized based on 
their karyotype differences [1, 2]. Being morphologically 
and biologically indistinguishable, these equine ascarids 
are referred to as Parascaris spp. Infection occurs when 
horses ingest embryonated Parascaris eggs from their 
surroundings. Once the eggs hatch in the small intestine, 
the larvae move through the liver and lungs before re-
entering the small intestine to mature into adult worms. 
The migrating Parascaris larvae can cause severe damage 
to the lungs and liver, leading to inflammation, hemor-
rhage, and edema [3]. Approximately 10–15 weeks after 
the onset of infection, mature female worms in the small 
intestine release a large number of eggs in the horse’s 
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feces, contaminating the surrounding environment and 
causing further infections for years to come. Affected 
young foals exhibit various clinical signs, such as ill thrift, 
dull coat, stunted growth, colic, diarrhea, and respiratory 
distress [3]. Small intestine impaction from adult worms 
is a significant concern and can require hospitalization 
and surgery or may even result in fatalities [1].

Numerous studies have demonstrated that nema-
todes release excretory-secretory (ES) products into the 
host milieu that serve various purposes for the parasite 
[4] and play key roles in host-parasite interactions. The 
recent discovery of extracellular vesicles (EVs) in nema-
tode ES products and their analysis revealed marked 
variability in their size, content, and function, adding 
another layer of complexity to the host-parasite interac-
tion [5]. Extracellular vesicles are phospholipid bilayer 
membrane-bound spherical particles classified based on 
their origin and biogenesis. Most research has focused 
on the cargo of exosomes (30–100 nm) and microvesicles 
(100–1000 nm) [6]. Initially, considered to be a carrier of 
waste products [7], EVs are now recognized for their cru-
cial role in intercellular communication by transporting 
diverse functional molecules such as proteins, lipids, and 
nucleic acids (mRNAs, microRNAs, and other noncod-
ing RNAs). Parasite-derived EVs have gained importance 
as immune modulators but have also been speculated to 
play a role in parasite-parasite communication [8].

In recent years, parasitic nematodes such as Ascaris 
suum [9], Anisakis pegreffii [10], Haemonchus contortus 
[11], Teladorsagia circumcincta [12], Heligmosomoides 
polygyrus [13], Nippostrongylus brasiliensis [14], Tri-
churis muris [13], and Brugia malayi [15] have been 
shown to release EV-like vesicles when cultured in vitro. 
These studies also indicate that EV proteins are immu-
noreactive, participate in host-parasite interactions and 
immunomodulation, support parasite survival, contrib-
ute to pathogenesis, and that EVs can also transfer poten-
tial virulence factors [8].

Although existing knowledge underscores the impor-
tance of EVs in these processes, sex-specific divergence 
in EV cargo composition among parasitic helminths has 
largely remained an unexplored territory. However, the 
proteomic analysis of Brugia malayi EVs revealed that 
EVs from female worms had a more diverse proteome 
than EVs from male Brugia worms. Notably, functional 
proteins with immunomodulatory roles were more abun-
dant in the female EVs [15] suggesting that the ability of 
the parasite to manipulate the host immune response 
may be parasite sex dependent. These distinct charac-
teristics or sex-specific effects on the host might pro-
vide a better understanding of the mechanism by which 
the parasites can thrive and endure in their host’s hos-
tile environment. With regard to Parascaris spp., the 

excretory-secretory proteins of the larval stage were 
studied [16] with a focus on identifying immunoreac-
tive ES proteins, but Parascaris EVs and their contents 
remain uninvestigated. In the present study, we isolated 
and analyzed the proteins from extracellular vesicles 
released into the culture medium by the adult male and 
female Parascaris spp.

Methods
Collection of adult Parascaris spp and their invitro 
maintenance
Live adult Parascaris univalens [2] were collected from 
the small intestine of foals necropsied at the Gluck 
Equine Research Center, University of Kentucky, with 
approval from the university’s Institutional Animal Care 
and Use Committee under protocol no. 2021–3879. 
These adult male and female worms were washed at least 
six times with phosphate-buffered saline (PBS) at 37  °C. 
Three replicates, each comprising five adult worms, 
either males or females only, were transferred into T75 
culture flasks containing 50 ml culture media and incu-
bated at 37 °C with 5% CO2. Dulbecco’s Modified Eagle’s 
Medium (DMEM) (Cytiva, USA) supplemented with 
100 µg/ml streptomycin and 100 U/ml penicillin served 
as the culture medium to maintain the viability of the live 
adult worms. The spent culture medium in the flasks at 
24 h was collected and processed for extracellular vesicle 
isolation, separately for each replicate.

Extracellular vesicle isolation
To isolate EVs from the spent culture media collected 
at 24  h, a series of differential centrifugations followed 
by ultracentrifugation steps were performed with slight 
modifications to the protocol previously described by 
[17]. Briefly, lower-speed centrifugation steps were 
sequentially employed to remove eggs (300 × g, 10 min), 
cell debris (2000 × g, 10  min), and large EVs (10,000 × g, 
30  min). Between each step, the supernatant was col-
lected, and the next centrifugation was performed. The 
supernatant obtained after the removal of larger EVs 
was stored at −80  °C. To isolate EVs, the supernatant 
was thawed and centrifuged at 120,000 × g for 90 min in 
25 × 89 mm polyallomer tubes using a SW 32 Ti swinging 
bucket rotor in an Optima MAX ultracentrifuge (Beck-
man Coulter, California, USA). The EV pellet was washed 
once with ice-cold PBS and subjected to a final spin at 
120,000 × g for 90  min. The supernatant was discarded, 
and the EV pellet was resuspended in 500 µL of PBS for 
downstream quantification and proteomics analysis. All 
centrifugation steps were performed at 4  °C, no brakes 
were applied, and the samples were kept on ice through-
out the EV isolation process. The resuspended EVs were 
stored at − 80 °C.
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Nanoparticle tracking analysis and transmission electron 
microscopy
Visualization and characterization of the isolated EVs 
were performed using nanoparticle tracking analysis 
(NTA) and transmission electron microscopy (TEM) of 
the negatively stained EVs. For NTA, aliquots of EVs were 
diluted in particle-free PBS (filtered through a 0.1  μm 
membrane) to obtain measurable concentrations of sus-
pended EVs (30–100 particles per field). A NanoSight 
LM10 Nanoparticle Analysis System (Malvern Instru-
ments, Malvern, UK) equipped with a 60 mW laser oper-
ating at 405 nm was used to acquire and analyze the EVs 
in each field for 60  s. Each diluted EV replicate from 
male and female Parascaris spp. was analyzed thrice. The 
mean size and concentration of the EVs in each sample 
were determined by calculating the averages from the 
histograms generated during the NTA [18].

The services of the Life Science Microscopy Facility at 
Purdue University were used to perform negative stain-
ing of the isolated EVs. Briefly, 1.5 μl of the EV suspen-
sion was deposited onto a copper mesh EM grid and 
washed three times with water. Subsequently, the grid 
was incubated with 1% phosphotungstic acid for 60  s. 
The excess staining solution was blotted off, and the grid 
was imaged under an FEI TECHNAI G2 20 transmission 
electron microscope.

Quantification and silver staining of the extracellular 
vesicle proteins
Parascaris EVs were lysed by resuspending them in 0.2% 
sodium dodecyl sulfate (SDS) [19]. The protein concen-
tration was estimated using a Qubit™ assay (Thermo 
Fisher Scientific, USA). A preliminary analysis of the 
quality and complexity of the Parascaris male- and 
female-derived EV proteins was performed by silver 
staining [20] of two micrograms of EV proteins separated 
by 12% SDS–PAGE [21].

Mass spectrometry of the Parascaris EVs
In preparation for the proteomics analysis, the Paras-
caris adult male and female-derived EVs (individual rep-
licates) were lysed in VK05 Precellys tubes containing 
350 μL of 100 mM HEPES–KOH and 0.5 mm glass beads 
using a Precellys® Evolution homogenizer (Bertin Tech-
nologies, France). Three cycles of 20 s at 6000 rpm with 
a 30-s pause between each cycle were used to disrupt 
the EVs. The protein concentration of the EV lysate was 
estimated using the bicinchoninic acid (BCA) assay kit. 
An appropriate volume of the EV lysate was precipitated 
with cold acetone (−20  °C). The protein pellet obtained 
was resuspended in 8  M urea, reduced, alkylated, and 
digested overnight with trypsin. The resulting peptides 

were desalted using Pierce™ C18 micro spin columns 
(Thermo Fisher Scientific, MO, USA) as per the manufac-
turer’s recommendations. The eluate was dried in a Vacu-
fuge Plus centrifuge concentrator (Eppendorf, Hamburg, 
Germany) and resuspended in 3% acetonitrile and 0.1% 
formic acid for LC‒MS/MS analysis.

The male and female-derived EV lysate samples were 
analyzed by reverse-phase HPLC–ESI–MS/MS using 
a Vanquish Neo UHPLC System (Thermo Fisher Scien-
tific, MO, USA) coupled to an Orbitrap Exploris 480 MS 
(Thermo Fisher Scientific, MO, USA) equipped with a 
Nanospray Flex Ion Source (Thermo Fisher Scientific, 
MO, USA). The purified peptides were separated on a 
15  cm analytical column (75  μm id) packed with 2  μm 
100  Å PepMap C18 medium (Thermo Fisher Scientific, 
MO, USA) with a gradient elution spanning 130  min. 
Mass spectrometry was conducted in data-dependent 
mode, with full scan MS spectra acquired in the 350–
1600 m/z range and MS/MS scans executed using high-
energy C-trap dissociation.

MaxQuant analysis
MaxQuant software version. 2.0.3.0 (http://​www.​maxqu​
ant.​org), with its built-in Andromeda search engine, 
was used to analyze all LC‒MS/MS data. The MS/MS 
spectra were searched against the Parascaris univalens 
(Taxon ID-6257, Assembly: ASM225920v1, Bioproject 
ID: PRJNA386823, sequences: 31,353, release 2023–1) 
sequences in the UniProt database for protein identifi-
cation and relative abundance profiling. The database 
search was performed with a minimum length of six 
amino acids, a precursor mass tolerance of 10 ppm, and 
an MS/MS fragment ion tolerance of 20  ppm. For the 
enzyme specificity of trypsin, up to two missed cleavages 
were allowed. Oxidation of methionine and N-terminal 
acetylation were defined as variable modifications, and 
carbamidomethylation of cysteine was defined as fixed 
modifications for database searches. Peptide quantita-
tion was performed using “unique plus razor peptides.” 
The false discovery rate of peptide and protein identifica-
tion was set at 1%. Proteins labeled as contaminants or 
reverse hits and proteins identified in all three replicates 
with at least 2 MS/MS counts were included for further 
analysis. Proteins containing indistinguishable peptides 
were grouped to satisfy the principles of parsimony. Rela-
tive protein abundances were measured based on the 
normalized spectral abundance factor (NSAF).

Bioinformatics analysis
Protein descriptions for UniProt accession numbers 
and Gene Ontology categories were predicted using the 
software Blast2GO basic version 5.2.5 [22]. Each match 
was manually validated and confirmed using InterPro 

http://www.maxquant.org
http://www.maxquant.org


Page 4 of 12Manikantan et al. Parasites & Vectors          (2024) 17:426 

[23], which detects the presence of conserved protein 
domains. The Exocarta database [24] was searched for 
reported associations with small EVs in mammals based 
on protein names or Blast2GO descriptions. Signal P 
analysis was performed to identify classically secreted 
proteins [25]. Gene Ontology analysis was carried out 
using WEGO [26]. KEGG Orthology (KO) terms were 
assigned to the identified proteins using the online tool 
GhostKOALA [27].

Results
Characterization of EVs released by Parascaris spp.
The NTA results indicated that most EVs exhibited vesi-
cle sizes ranging from 80 to 200  nm, which aligns with 
the typical size characteristics of small EVs (Fig.  1A). 
The average concentration of EVs from adult males was 
1.01 × 1011 ± 2.83 × 1010 particles/ml and had a mean size 
of 200.4 ± 17.4  nm. The EVs from females had a con-
centration of 1.35 × 1011 ± 1.06 × 1010 particles/ml and a 
mean size of 218.2 ± 7.1 nm. Negative staining and TEM 
analysis of EVs revealed a consistent rounded shape with 
diameters ranging from approximately 50 to 200  nm 
(Fig.  1B), corroborating the measurements obtained 
through NTA. Silver staining of EV lysates separated 
by SDS-PAGE showed protein bands in the molecular 
weight range of 15 to 250 kDa. Additionally, differences 
in the protein content of EVs from male and female 
Parascaris were evident among proteins migrating at 
approximately ≤ 25 kDa (Fig. 2). Specifically, the EV lysate 

from female Parascaris spp. contained two predominant 
bands at ~ 24 and 18 kDa, while EVs from male Parascaris 
exhibited a major band at 24 kDa alone and, based on the 
staining intensity, appeared to exist at lower levels.

Proteomic analysis reveals Parascaris EV proteins
LC‒MS/MS proteomic analysis performed on the EVs 
isolated from the spent culture media in which the adult 
female and male Parascaris were maintained identi-
fied 113 proteins, and their identities were established 
through a combination of BLAST and InterPro homol-
ogy searches (Additional file 1: Table S1). For 105 of the 
113 proteins identified, the top hit was an ascarid, with 
85 of them showing similarity to a protein of Toxocara 
canis, a dog ascarid. The InterPro descriptions of the 
identified proteins included proteases, glycosylases, 
hydrolases, C-type lectins, and galectins, among others. 
Enzymes accounted for 32% of these identified proteins. 
Among the 113 identified EV proteins, 20 were among 
the top 100 EV proteins in the Exocarta database (Addi-
tional file 1: Table S1). Signal P analysis revealed that 34 
of the 113 proteins had a signal peptide. Several proteins 
commonly observed in EVs, such as those associated 
with EV biogenesis or vesicle trafficking (e.g., annexin, 
tetraspanin family members, and Rab family members), 
heat shock proteins, and 14-3-3, were also detected in 
Parascaris-derived EVs. Notably, proteins such as HSP70, 
14-3-3, annexin, glutathione-S-transferase, and glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH), which 

Fig. 1  Characteristics of extracellular vesicles released by adult male and female Parascaris spp. EVs isolated from the spent culture medium at 24 h 
of incubation of the worms analyzed by (A) NTA show a predominant size of 200 nm, and (B) TEM shows their spherical shape (blue arrowhead)
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are commonly found in helminth exosomes were identi-
fied in these EVs [9, 10]. Most research on nematode EV 
proteins has focused on their immunomodulatory role. 
Our analysis of the proteome of Parascaris adult EVs 
revealed proteins with putative roles in immunomodula-
tory activity or associations with virulence based on their 
identity to proteins in related parasites (Table  1). These 
include serine proteases, fatty acid-binding proteins, 
galectins, annexins, heat shock proteins, etc.

Sex‑specific EV proteins
Of the 113 extracellular vesicle (EV) proteins identified, 
65 were found to be shared between male and female 
Parascaris spp. Meanwhile, 39 proteins were exclusively 
found in females, with 9 proteins uniquely present in 
males (Fig.  3, Additional file  2: Table  S1). The top ten 
most abundant proteins of the extracellular vesicles of 
male and female Parascaris spp. calculated on the basis 
of the NSAF [28] are presented in Table  2. C-type lec-
tins and enzymes of glycoside hydrolase family 31 were 
the most abundant proteins in both sexes. Notably, some 
C-type lectins showed a marked predominance in female 
EVs.

Gene Ontology terms were assigned to the EV proteins 
identified from the male (62/74) and female (84/104) 
Parascaris spp. A summary of the comparison of male 
and female vesicle protein GO annotations categorized 
according to cellular component, molecular function, 

and biological process is shown in Fig. 4. A high degree of 
similarity in GO term allocation was observed between 
EVs derived from male and female worms. The most 
represented GO terms in the biological process cat-
egory in the female and male EV proteins were “organic 
substance metabolic process” (GO:0071704), “primary 
metabolic process” (GO:0044238), and “nitrogen com-
pound catabolic process” (GO:0006807). Similarly, the 
most represented GO terms within the molecular func-
tion category were “hydrolase activity” (GO:0016787), 
“ion binding” (GO:0043167), and “carbohydrate bind-
ing” (GO:0030246) and in the cellular component cate-
gory, most of the proteins were assigned to “membrane” 
(GO:0016020), “cell part” (GO:0044464) and “extracellu-
lar region” (GO:0005576) (Additional file 3: Table S1).

KEGG pathway analysis using GhostKOALA resulted 
in the annotation of 45.2% (47/104) and 56.8% (42/74) 
EV proteins derived from female and male Parascaris 
spp., respectively. Several pathways related to metabolic, 
genetic, environmental, and cellular processes were 
shared between the male and female Parascaris spp. EV 
proteins. These pathways included starch and sucrose 
metabolism (ko00500), galactose metabolism (ko00052), 
glutathione metabolism (ko00480), as well as pathways 
involved in cellular structures and processes such as 
phagosome formation (ko04145), and lysosome function 
(ko04142) among others. Despite these observed simi-
larities, there were differences in the signal transduction 

Fig. 2  Protein profile of extracellular vesicles released by the male and female Parascaris spp. The EV lysate preparations separated on 12% 
SDS-PAGE and silver stained show heterogeneous composition. Additionally, the EV protein profiles of (A) females (F1, F2, F3) and (B) males (M1, M2, 
M3) are distinct, especially around ≤ 25 kDa
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Table 1  Putative immunomodulatory proteins identified in the extracellular vesicles derived from adult male and female Parascaris 
spp.

* GST Glutathione S Transferase, HSP Heat Shock Protein, MIF Macrophage Inhibitory factor, CTL C-Type Lectin, GAPDH Glyceraldehyde 3-phosphate dehydrogenase, 
FAB Fatty Acid Binding

Parascaris spp. UniProt ID Protein name* Putative function Related nematodes and Reference

A0A914ZVF6 14–3-3 protein suppress production of IL-4, NO, and cell prolif-
eration of the PBMCs

Haemonchus contortus [59]

A0A914ZR58, A0A914ZTY0 Annexin Promotes apoptotic cell engulfment Caenorhabditis elegans [60]

A0A915AP20, A0A915ANV1, A0A915AMH, 
A0A915BT47

Galectin apoptosis of activated T cells, especially Th1 
cells

Toxascaris leonina [61]

A0A915AGS2, A0A915C515, A0A914ZJE2 GST Th2-type polarization and eosinophil recruit-
ment
Essential protein during the invasion, develop-
ment, and survival

Trichinella spiralis [62]

A0A915C3P7 HSP 70 Parasite invasion and pathogenesis Strongyloides stercoralis [63]

A0A915BQX1 MIF decreases the production of TNF-α, IL-1β 
and IL-12

Haemonchus contortus [46]

A0A915AKF4, A0A915AMS5, A0A915ALF1, 
A0A915B3J3, A0A915AHV5, A0A915AMT1, 
A0A915AG65, A0A915BM98, A0A915APJ9, 
A0A915A960, A0A915B0V2

CTL interfere with the mucin and binding to host 
ligands
essential for development and reproduction

Toxocara canis [64]
Haemonchus contortus [65]

A0A914ZT10 GAPDH inhibit complement activation and membrane 
attack complex formation

Haemonchus contortus [38]

A0A915BBF6 FAB proteins interactions with cell surface receptors 
to retrieve lipids

Ascaris suum [66]

A0A915BYM3 Serine Proteases nutrition, invasion, and immune evasion
degradation of mucins within the mucus 
barrier

Trichuris muris [57, 67]

Fig. 3  Venn diagram illustrating the proteins associated with extracellular vesicles (EVs) derived from adult male and female Parascaris spp. 
A selection of the identified proteins are provided (the complete list is available in Additional file 2 Table S1 and S2)
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pathways between male and female Parascaris EV pro-
teins. In females, unique proteins such as RHOA (Ras 
homolog gene family, member A) and selectin were asso-
ciated with the Wnt (ko04310), TGF-Beta (ko04350), 
and TNF (ko04668) signaling pathways. In contrast, in 
males, proteins like KRAS (GTPase KRas) and 14–3-3 
protein were specifically identified and linked to the Ape-
lin (ko04371) and FoxO (ko04068) signaling pathways. 
Among the pathways that are involved in cell growth and 
death, proteins involved in cell cycle, meiosis, apoptosis, 
and senescence were identified in in males, whereas only 
the apoptosis pathway was represented in females, high-
lighting sex-specific variations. A detailed description of 
the KEGG orthologs of the male and female Parascaris 
EV proteins is listed in Additional file 3: Table S2.

Discussion
In this study, we confirmed that adult Parascaris spp. 
secrete EV-like vesicles into the extracellular milieu. 
Proteomic profiling of EVs derived from adult males 
and females established the identity of the protein cargo 
of these vesicles and determined their putative func-
tions. Particle size determination by NTA analysis and 
EM visualization of EVs with diameters ranging from 
50 to 200 nm provided robust evidence that the purified 

vesicles were indeed extracellular vesicles. Most EV pro-
teins showed T. canis protein homologues as their top 
similarity, primarily due to the absence of the Parascaris 
spp. protein data in the NCBI database. Silver staining of 
the EV lysate suggested that adult Parascaris EVs packed 
a heterogeneous mixture of protein and that potential 
differences existed in the protein cargo between the EVs 
of male and female Parascaris spp. Furthermore, prot-
eomic data revealed a notable difference in the complex-
ity of the extracellular vesicle (EV) proteomes of male 
and female Parascaris spp. This pattern of greater pro-
tein complexity in female EVs than in male EVs has also 
been observed in the secretomes and EVs of Brugia [15, 
29]. Female parasites also tend to secrete a greater quan-
tity of EV proteins, and one potential explanation for this 
sex-based disparity in EV cargo could be the origin and 
release location of the EVs. The site of EV generation and 
release may differ between males and females to address 
reproductive needs. These distinct locations could lead 
to variations in the types and quantities of proteins pack-
aged within EVs. The specific factors underlying this dif-
ference in EV cargo between male and female worms 
warrant further investigation.

The abundant EV proteins identified from both male 
and female Parascaris spp. belong to the C-type lectin 

Table 2  Top 10 abundant proteins of the extracellular vesicles derived from adult male and female Parascaris spp

NSAF Normalized spectral abundance factor

Uniprot ID NCBI Blast Description Accession Number InterPro Description InterPro ID NSAF

Adult female-derived EVs

A0A915AMT1 C-type lectin protein KHN72314.1 C-type lectin-like IPR001304 0.0717

A0A915APJ9 C-type lectin protein KHN72313.1 C-type lectin-like IPR001304 0.0667

A0A915AMS5 C-type lectin protein VDM38028.1 C-type lectin-like IPR001304 0.0581

A0A915AGW4 Maltase-glucoamylase KHN72295.1 Glycoside hydrolase family 31 IPR000322 0.0558

A0A915BFK6 actin 2 KHN87379.1 Actin family IPR004000 0.0497

A0A914ZHN3 Maltase-glucoamylase KHN77140.1 Glycoside hydrolase family 31 IPR000322 0.0478

A0A914ZFS2 Sucrase-isomaltase KHN73901.1 Glycoside hydrolase family 31 IPR000322 0.0438

A0A914ZGG9 unnamed protein product VDM37827.1 Glycoside hydrolase family 31 IPR000322 0.0397

A0A915AHV5 C-type lectin protein KHN84361.1 C-type lectin-like IPR001304 0.0361

A0A915ALF1 C-type lectin protein KHN84361.1 C-type lectin-like IPR001304 0.0331

Adult male-derived EVs

A0A915AGW4 Maltase-glucoamylase KHN72295.1 Glycoside hydrolase family 31 IPR000322 0.1014

A0A914ZFS2 Sucrase-isomaltase KHN73901.1 Glycoside hydrolase family 31 IPR000322 0.0737

A0A914ZHN3 Maltase-glucoamylase KHN77140.1 Glycoside hydrolase family 31 IPR000322 0.0625

A0A914ZGG9 unnamed protein product VDM37827.1 Glycoside hydrolase family 31 IPR000322 0.0606

A0A915BFK6 actin 2 KHN87379.1 Actin family IPR004000 0.0536

A0A915C915 unnamed protein product VDK19334.1 Domain of unknown function DUF4440 IPR027843 0.0505

A0A915APJ9 C-type lectin protein KHN72313.1 C-type lectin-like IPR001304 0.0422

A0A915BW41 hypothetical protein KHN85026.1 von Willebrand factor, type A IPR002035 0.0413

A0A915ALF1 C-type lectin protein KHN72314.1 C-type lectin-like IPR001304 0.0367

A0A915CAV2 unnamed protein product VDK19334.1 Domain of unknown function DUF4440 IPR027843 0.0251
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family and glycosidases. Several C-type lectin proteins 
have been identified in helminths and play diverse 
roles, such as binding to host ligands [30], exhibiting 
antibacterial properties [31], influencing reproduc-
tion [32], and interfering with mucin production by 
the host [33, 34]. These functions of the C-type lec-
tin might facilitate the successful establishment of the 
parasite within the gut, promote survival, and evade 
the innate defenses of the host. Certain C-type lectins 
were specifically present in the EVs of female Parasas-
caris spp., while others were relatively abundant com-
pared to male-derived EVs. The greater abundance of 
C-type lectins in female-derived EVs could be attrib-
uted to specific functions related to the female repro-
ductive biology of Parascaris, such as regulating egg 
production or evasion of the host’s immune defenses, 
allowing the parasites to establish and maintain infec-
tion. Further research is needed to fully understand the 

underlying mechanisms and evolutionary advantages of 
these sex-specific protein production patterns.

Maltase-glucoamylase and glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH) were identified in Par-
ascarsis EVs. Canonically, glycolytic enzymes support 
nutritional needs by facilitating the breakdown of com-
plex carbohydrates. However, the release of glycosi-
dases through EVs into the microenvironment of their 
predilection site could possibly suggest diverse roles in 
host-parasite interactions [35–37]. A GAPDH secreted 
by Haemonchus contortus was shown to aid evasion of 
the innate immune response by inhibiting complement 
activation pathways and thus preventing the formation 
of the membrane attack complex [36, 38]. Similarly, by 
degrading intestinal mucin, glycosidases can promote 
the establishment of infection, parasite development 
and prevent worm expulsion [35, 37].

Fig. 4  Gene Ontology (GO) classification of extracellular vesicle (EV) proteins between adult male and adult female Parascaris spp. The differentially 
expressed proteins are categorized into three hierarchical GO terms: biological process, cellular component, and molecular function. The y-axis 
represents the number and percentage of proteins in each respective GO term
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Gut-dwelling adult nematodes live in a microbiota-rich 
environment and may require interactions with these 
communities. The molecular mechanism involved in this 
interaction is unclear, but proteins with potential antimi-
crobial activities, such as antibacterial factor (ASABF), 
C-type lectins, and galectins, have been identified in A. 
suum [39] and liver flukes  [40, 41]. Proteomic analysis 
of Parascaris EV cargo also revealed homologs of these 
C-type lectins, galectins, and ASABF. C-type lectins are 
abundant in the protein cargo of C. elegans EVs, [42] 
and it has been shown that infection of C. elegans with 
the Gram-negative bacterium Serratia marcescens, sig-
nificantly upregulated the expression of genes encoding 
lectins and lysozymes, emphasizing the potential involve-
ment of these proteins in anti-bacterial immune defense 
[31]. Similarly, EV-associated lectins from parasitic nem-
atodes could contribute to the modulation of bacterial 
communities and the local immune response in the host 
gut.

Members of the heat shock protein (HSP) family are 
molecular chaperones that aid in protein folding, matu-
ration, and stability. Large HSPs, such as those in the 
HSP90 and HSP70 families, are expressed both constitu-
tively and in response to stress. Thus, they play roles in 
both development and stress response and assist para-
sites in adapting to rapidly changing environments [43, 
44]. HSP70, a known EV marker, was identified in Par-
ascaris-derived EVs. HSP70 derived from helminths has 
shown promise as a vaccine candidate due to its immu-
nogenic properties [45].

As in several species of nematodes, homologs of mac-
rophage migration inhibitory factor (MIF) were detected 
in Parascaris spp. Immunolocalization studies have dem-
onstrated the presence of MIFs on nematode surfaces 
and in the lining of the gut [46], suggesting that they 
could be part of the EV cargo. Nematode MIFs mimic 
host cytokines, and studies have shown that nematode 
MIFs can affect the migration of immune cells to create 
an anti-inflammatory environment that is favorable for 
parasite survival [47, 48].

Several proteins involved in EV biogenesis and struc-
tural proteins, such as tetraspanins, annexins, small 
GTPase-rab, profilin, and plastin, were identified. The 
presence of a CD36-like class B scavenger receptor that 
belongs to the tetraspanin family is associated with the 
acquisition of host lipids in parasites such as Schistosoma 
mansoni and Opisthorchis viverrini [49, 50], which are 
believed to serve nutritional, developmental, and pos-
sibly immune evasion purposes [51]. Considering the 
presence of this homologous protein in Parascaris EVs, 
it is plausible that it may be involved in improving lipid 
uptake, thus promoting parasite growth. Annexins are 
a group of calcium-dependent phospholipid-binding 

proteins that have been suggested to play roles in various 
critical biological processes. In the metacestode stage of 
Taenia solium infection, annexins help to evade the host 
immune response by inducing eosinophil apoptosis [52].

Generally, tetraspanins are considered molecular mark-
ers of EVs due to their presence on the surface membrane 
of EVs. Trematode EVs are distinguished by a signifi-
cant amount of tetraspanins, but these proteins are less 
commonly identified from nematode-derived EVs. For 
instance, tetraspanins were absent in EVs of A. suum 
[9], B. malayi [15, 53] and T. circumcincta [12], whereas 
nematodes such as Nippostrongylus brasiliensis [14], 
Heligmosomoides polygyrus [54], and Trichuris muris [55] 
were reported to possess one or two tetraspanins in their 
EVs. Similarly, only one protein belonging to the tetras-
panin family (A0A915BTK2_PARUN) was detected in 
Parascaris extracellular vesicles.

The Gene Ontology analysis of Parascaris EV revealed 
a significant representation of catalytic and hydro-
lase activities, which signifies the presence of enzymes 
involved in various metabolic processes. Parasites require 
these enzymes to break down complex molecules into 
simpler forms to aid in nutrient acquisition and energy 
production. These proteases serve multiple crucial func-
tions, including metabolic food processing, inhibiting the 
antibody-dependent cell cytotoxicity (ADCC) response 
through IgG degradation [56] and modulating the host 
immune system by targeting immune cell receptors and 
mucins [57]. The identification of pathways related to 
carbohydrate metabolism pathways underscores that 
Parascaris spp. actively metabolize carbohydrates and 
highlights the importance of these processes in parasite 
survival. Carbohydrate metabolism is vital for energy 
production and the biosynthesis of essential molecules, 
indicating the parasite’s dependence on carbohydrates for 
its biological activities [58].

Conclusions
Overall, this study established the protein composition 
of extracellular vesicles (EVs) released by adult Paras-
caris spp. and discussed the differences in EVs derived 
from male and female Parascaris. The proteins carried by 
Parascaris EVs could play a significant role in the inter-
action between the parasite and its host. The ability of 
these EV proteins to potentially interfere with the host 
immune response indicates an advanced survival mech-
anism employed by the parasites, enabling them to per-
sist within the host for extended periods without being 
expelled. This study not only enhances our understand-
ing of parasite biology but also opens avenues for inves-
tigating parasite EVs and their constituents as potential 
tools for diagnosis and infection control.
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