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Introduction
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Deep Learning

• Remarkable success in applications.
• Advantage over traditional machine learning methods.

Figure 1: Computer Vision, Reinforcement Learning, Natural Language Processing
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Neural Networks
Two-layer network: y ′ = g(x) = aTσ(Wx+b).

Train: gradient descent

θ
(t) = θ

(t−1)−η
(t)

∇θ

(
L(g (t−1))

)
θ denotes W , b and a.
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Neural Networks

• Loss function ℓ(y ,y ′): measure the cost incurred by taking a
decision y ′ and y is true label.

• Evaluate the risk function: L(g) = E(x ,y)[ℓ(y ,g(x))].

• Regularization terms can be added.
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Existing Works

Why neural networks success (overparameterized regime)?

Current theoretical understanding:
• Can be approximated by Neural Tangent Kernel (NTK regime

or lazy learning regime).

• However, practical training not fit in the NTK regime. Also,
NTK cannot explain the network advantage over traditional
fixed feature methods (random features, kernel methods).

• A recent line of work shows neural networks provably enjoy
advantages over fixed feature methods including NTK.

• However, they have not investigated whether input structure is
crucial for feature learning, or have not analyzed how gradient
descent learns effective features, or rely on strong assumptions
(e.g., special networks, Gaussian data, etc).
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Empirical Observation
• Neural networks perform better on data with structures.

• Neural networks performs feature learning (feature learning
regime).

Figure 2: Networks can learn neurons that correspond to different semantic patterns in the inputs. 1

1From paper "Visualizing and Understanding Convolutional Networks".
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Question

Question 1:
How can effective features emerge from inputs in the training
dynamics of gradient descent?

Question 2:
Is feature learning from inputs necessary for superior performance?
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Roadmap

To answer the previous two questions:
Step1: Choose input data distributions with and without structures.

Step2: Show feature learning exist for input with structures. Analyze
convergence of gradient descent with the aid of learned features.

Step3: Show fixed feature methods under the same condition (data
with structures) cannot learn efficiently.

Step4: Show learning input data without structures is much harder for
all methods.
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Problem Setup
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Pattern Counting Problem
Motivation:

• Dictionary learning and sparse coding.

• Images contain label relevant or label irrelevant patterns.

• If the image contains a sufficient number of label relevant
patterns, the image may belong to a certain class.

Figure 3: Systematically cover up different portions of the scene with a gray square and see how the top
feature maps and classifier output changes. (b): for each position of the gray scale, record the activation
in feature map (c): a visualization of this feature map projected down into the input image. (d): a map of
correct class probability. (e): the most probable label as a function of occluder position.
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Pattern Counting Problem
Hidden representation (pattern indicator vector):

• φ̃ ∈ {0,1}D : Hidden vector indicates presence of each pattern.
• D

φ̃
: A distribution of φ̃ .

• M: Unknown dictionary of patterns.

Input:
• Given φ̃ , D

φ̃
and M, generate input x̃ by: x̃ =M φ̃ .

Label:
• A⊆ [D]: subset of size k, corresponding to class relevant

patterns.
• P ⊆ [k], generate label y by:

y =

{
+1, if ∑i∈A φ̃i ∈ P,

−1, otherwise.

• Intuition: y can be any binary function over the number of class
relevant patterns.
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Assumptions on Distribution over Hidden Representation

Input with structures (family of distributions FΞ):
(A0) Equal class probability.
(A1) The patterns in A are correlated with the labels: for any i ∈ A,

γ = E[y φ̃i ]−E[y ]E[φ̃i ]> 0.
(A2) Each pattern outside A is independent of all other patterns and

identically distributed. Let po := Pr[φ̃i = 1]≤ 1/2 denote the
probability they appear.

Input without structures (family of distributions FΞ0):
(A1’) The patterns are independent, and φ̃i is uniform.
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Network

• Two-layer network: g(x) = ∑
2m
i=1 aiσ(⟨wi ,x⟩+bi ).

• σ(z) = min(1,max(z ,0)): the truncated rectified linear unit
(ReLU) activation function.

• Hinge loss and ℓ2 regularization.
• Gaussian initialization and gradient descent.
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Main Results
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Provable Guarantee for Neural Networks

Theorem 1 (Informal)
For any small positive δ and ε , if k =Ω

(
log2 (Dm/(δγ))

)
,

po =Ω(k2/D) and m ≥max{Ω(k12/ε3/2),D}, then with proper
hyper-parameters, for any D ∈ FΞ, with probability at least 1−δ ,
there exists t ∈ [T ] such that Pr[sign(g (t)(x)) ̸= y ]≤ LD(g

(t))≤ ε.

Message:

• For a wide range of the background pattern probability po and the
number of class relevant patterns k, given any input distribution
with structure, neural network can achieve small population risk
with polynomial number of neurons.

• The analysis shows the success comes from feature learning.
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Lower Bound for Fixed Features Models

Fixed features model:

Suppose Ψ is a data-independent feature mapping of dimension N with
bounded features, i.e., Ψ : X → [−1,1]N . For B > 0, the family of
linear models on Ψ with bounded norm B is HB = {h(x̃) : h(x̃) =
⟨Ψ(x̃),w⟩,∥w∥2 ≤ B}.

Theorem 2 (Informal)
With proper k , there exists D ∈ FΞ such that all h ∈ HB have
hinge-loss at least po

(
1−

√
2NB
2k

)
.

Message:

There exists a input distribution with structure such that no fixed feature
method with polynomial features can efficiently learn the task.
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Lower Bound for Learning Without Input Structure

Statistical Query (SQ) model:

• Only receive information through statistical queries (Q,τ). Property
predicate Q of labeled instances and tolerance τ ∈ [0,1]. Receive a
response P̂Q ∈ [PQ − τ,PQ + τ], where PQ = Pr[Q(x ,y) is true].

• The SQ model captures almost all common learning algorithms
including mini-batch SGD.

Theorem 3
For any algorithm in the Statistical Query model with query (Q,τ)
that can learn over FΞ0 to classification error less than 1

2 −
1

(Dk)
3 ,

either the number of queries or 1/τ must be at least 1
2

(D
k

)1/3
.

Message:

Without input structure, polynomial SQ model cannot non-trivially better
than random guessing.
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Proof Sketches
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Existence of A Good Network

Intuition:

Find a "good" two-layer network that can represent the target labeling
function, whose neurons are viewed as ground truth features. Then focus
on analyzing how the network learns such neuron weights.

Lemma 4 (Informal)
For any D ∈ FΞ, here exists a two-layer network g∗(x) with zero
loss. Furthermore, the hidden neurons’ weights in g∗(x) are all
proportional to ∑j∈AMj .
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Feature Emergence in the First Gradient Step

Intuition:

After the first gradient step, the hidden neurons of the trained network
become close to the ground truth features.

Lemma 5 (Informal)
∂

∂wi
LD(g

(0)) =−a
(0)
i ∑

D
j=1MjTj where Tj satisfies:

• if j ∈ A, then Tj ≈ O(γ);
• if j ̸∈ A, then |Tj | ≤ O(εe1) for a small εe1.

Message:

Gradients are updated uniformly in class-relevant pattern directions. Their
updates in class-irrelevant pattern directions are relatively small.
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Proof Ideas of Lemma 5
The gradient of wi is: ∂LD (g)

∂wi
=−aiE(x ,y)∼D {yxσ ′[⟨wi ,x⟩+bi ]}.

Let φ = (φ̃ −E[φ̃ ])/σ̃ , then the component of the gradient on Mj is:

⟨Mj ,
∂LD(g)

∂wi
⟩=−aiE

{
yφjσ

′

[
∑

ℓ∈[D]

φℓqℓ+bi

]}
. (1)

If the set of class relevant patterns A is relatively small, then

I[D] := σ
′

[
∑

ℓ∈[D]

φℓqℓ+bi

]
≈ I−A := σ

′

[
∑
ℓ̸∈A

φℓqℓ+bi

]
. (2)

Thus, component of each class relevant pattern is nearly a constant:

⟨Mj ,
∂LD(g)

∂wi
⟩ ∝ E

{
yφjI[D]

}
≈ E{yφjI−A}= E{yφj}E[I−A]. (3)

Similarly, for background patterns, the component is close to 0.
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Feature Improvement in the Second Gradient Step

Intuition:

After the second gradient step, these neurons get improved to a sufficiently
good level.

Lemma 6 (Informal)
∂

∂wi
LD(g

(1)) =−a
(1)
i ∑

D
j=1MjTj where Tj satisfies:

• if j ∈ A, then Tj ≈ O(γ);
• if j ̸∈ A, then |Tj | ≤ O(εe2) for a small εe2, where εe2 much

smaller than εe1.

Message:

The signal-to-noise ratio improves in this step.
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Experiments
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Simulation: Test Accuracy VS Steps

Setting:

Generate simulated data with or without input structure and labels given
by the parity function.

Figure 4: Test accuracy on simulated data with or without input structure.
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Synthetic Data: Feature Learning in Networks

Setting:

Compute the cosine similarities between the weights wi ’s and visualize
them by Multidimensional Scaling. Dots represent neurons and stars
represent effective features ±∑j∈AMj .

Message:

All neurons converge to the effective features after two steps.
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Real Data: Feature Learning in Networks

Setting:

Two-layer network trained on the subset of MNIST data with label 0/1.

Message:

Similar clustering effect.
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Take Home Message

Question 1:
How can effective features emerge from inputs in the training
dynamics of gradient descent?
Answer
Input structures provably influence effective feature learning.

Question 2:
Is feature learning from inputs necessary for superior performance?
Answer
Feature learning ability of neural networks provably leads to their
success comparing to fixed feature methods.
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Thank you!
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Q&A
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