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Core Concept

2-layer neural networks.
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Theorem

Assume E[||x||2] < Bz1, E[||x||3] < Baa. Foranye,é € (0,1), ifm < e and

m = (1 (PO/}’(%a %7 %7Ba17 B:Elalog(r))) ) T = (POly (ma %7 %7 %—7 Ba27Ba:17 \/F)) )
then with proper hyper-parameter values, we have with probability > 1 — o, there
exists t € [T'] with

Prlsign(fz« (x)) # y] < Lo (faw) < OPT4r Bp.s, . 5., T TBa1Bz11/27 + €
|t shows how neural network converge to almost best solution given learned gradient features.

Definition (Simplified Gradient Vector)

For any w € R?, b € R, a Simplified Gradient Vector is defined as
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Three Gaussian data clusters. With Random init weight vectors. Activation under one neuron.

One step gradient update
IS good for feature
learning under mixture of
Gaussians:

Gradient Feature

G(W, b) = E(x,y)wp[yXH[WTX — b]]

Definition (Gradient Feature)

For a unit vector D € R? with ||[D|| =1, and ay € (0,1). Let w € R, b € R be
random variables drawn from some distribution YW, 5. A Gradient Feature set
with parameters p, vy, Ba is defined as:

| (G(w,0), D) |

SP,%BG (Wv B) - = {(Dv 5)

G(W,b)”z Z Bg, S =

Definition (Gradient Feature Induced Networks)

The Gradient Feature Induced Networks are defined as:

Fdm,Bp,S = {f(a,W,b) € Fdm | voe ml, .., (Wz’a

Definition (Optimal Approximation via Gradient Features)

The Optimal Approximation network and loss using gradient feature induced
networks Fg , B, s are defined as:

- Learning Framework

Weight after one gradient step. Updated activation pattern.

OPTd,r,BF,S = Lp(f)

* :=argmin L
f g fefd,r,BF,S ’D(f), fE]:d,’P,BF,S

 After the first step, both layers continue to learn with the same learning rate, but second layer
weights grow while the first layer weights stay in a neighborhood.

Applications and Implications

Apply to four case studies by our Gradient Feature Learning Framework directly:

(1) mixtures of Gaussians, (2) parity functions, (3) linear data, (4) multiple-index models.

Beyond the Kernel Regime:

e There exists a data distribution in the parity learning that (1) any fixed feature methods (including
NTK) needs exponentially large size to learn successful; (2) Gradient Feature only needs
polynomially large model, runtime, and sample complexity to learn successful.

e There exists a data distribution in the mixtures of Gaussians that (1) any fixed feature methods
(including NTK) needs Q(d”*2) features and Q(d*2) samples to learn successful; (2) Gradient
Feature only needs Q(log d) neurons and Q((log d)*2) samples to learn successful.

Lottery Ticket Hypothesis (LTH):

e Show the existence of the winning lottery subnetwork.
e Show subnetwork can learn to similar loss in similar runtime as the whole network (novel).

Implicit Regularization / Simplicity Bias:

e Networks first learn simpler functions and then more sophisticated ones.

Learning over Different Data Distributions:

e Data-dependent non-vacuous guarantees to measure the “complexity” of the problem. For
easier problems, this quantity is smaller, give a better error bound to derive guarantees.

New Perspectives about Roadmaps Forward:

e Our framework: the strong representation power of NN is the key to successful learning.

e T[raditional ones: strong representation power leads to vacuous generalization bounds.

e Traditional analysis typically first reasons about the optimal based on the whole function class
then analyzes how NN learns proper features and reaches the optimal. In contrast, our
framework defines feature family first, and then reasons about the optimal based on it.




