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ABSTRACT

Low-complexity Iterative Receiver Design for High Spectral Efficiency

Communication Systems

by

Weijie Yuan

With the rapid development of the modern society, people have an increasing

demand of higher data rate. Due to the limited available bandwidth, how to im-

prove the spectral efficiency becomes a key issue in the next generation wireless

systems. Recent researches show that, compared to the conventional orthogonal

communication systems, the non-orthogonal system can transmit more information

with the same resources by introducing non-orthogonality. The non-orthogonal com-

munication systems can be achieved by using faster-than-Nyqusit (FTN) signaling

to transmit more data symbols in the same time period. On the other hand, by

designing appropriate codebook, the sparse code multiple access (SCMA) system

can support more users while preserving the same resource elements. Utilisation of

these new technologies leads to challenge in receiver design, which becomes severer

in complex channel environments. This thesis studies the receiver design for high

spectral efficiency communication systems. The main contributions are as follows:

1. A hybrid message passing algorithm is proposed for faster-than-

Nyquist, which solves the problem of joint data detection and channel

estimation when the channel coefficients are unknown. To fully exploit

the known ISI imposed by FTN signaling, the interference induced by

FTN signaling and channel fading are intentionally separated.

2. Gaussian message passing and variational inference based estima-

tion algorithms are proposed for faster-than-Nyquist signaling detection

in doubly selective channels. Iterative receivers using mean field and



Bethe approximations based on variational inference framework are pro-

posed. Moreover, a novel Gaussian message passing based FTN signaling

detection algorithm is proposed.

3. An energy minimisation based SCMA decoding algorithm is pro-

posed and convergence analysis of the proposed algorithm is derived.

Following optimisation theory and variational free energy framework, the

posterior distribution of data symbol is derived in closed form. Then, the

convergence property of the proposed algorithm is analysed.

4. A stretched factor graph is designed for MIMO-SCMA system in

order to reduce the receiver complexity. Then, a convergence guaran-

teed message passing algorithm is proposed by convexifying the Bethe

free energy. Finally, cooperative communication methods based on belief

consensus and alternative direction method of multipliers are proposed.

5. A low complexity detection algorithm is proposed for faster-than-

Nyquist SCMA system, which enables joint channel estimation, decoding

and user activity detection in grant-free systems. The combination of

FTN signaling with SCMA to further enhance the spectral efficiency

is first considered. Then, a merging belief propagation and expectation

propagation algorithm is proposed to estimate channel state and perform

SCMA decoding.



Acknowledgements

The accomplishment of my PhD thesis is owed to the contributions and supports of

many people. First of all, I would like to express my deepest thanks to my supervisor

Prof. Xiaojing Huang for his guidance and support throughout my PhD study years

at UTS. I would like to thank Prof. Huang for his encouragement and mentorship

during discussions on doing research and paper writing. I also want to thank my

co-supervisor A/Prof. Andrew Zhang for his wonderful support and valuable advice

for my research. From them, I have learned to be patient and dedicated to the work,

which will undoubtedly influence my life.

I would like to thank Dr. Nan Wu from Beijing Institute of Technology for

his guidance in my early graduate years, from whom I have learned how to think

rigorously and how to solve research problems. I am also grateful to Prof. Yonghui

Li from University of Sydney and A/Prof. Qinghua Guo from the University of

Wollongong for kindly inviting me to visit their groups and conduct collaborative

research works. Collaborating with them has broadened my horizon and improved

my research.

I am greatly thankful to Prof. Franz Hlawatch from Vienna University of Tech-

nology and Dr. Bernard Etzlinger from Johannes Kepler University Linz for their

help during my two-month visit in Austria. And I also thank Prof. Lajos Hanzo

from the University of Southampton, Prof. Bernard Henri Fleury from Aalborg Uni-

versity and Prof. Jingming Kuang form Beijing Institute of Technology for research

discussions and several fruitful works.

I would like to sincerely thank all my colleagues for helpful discussions during

my graduate years, especially Hao, Yijiang, Yifeng, Bin, Qiaolin, Shaoang, Shizhe,
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Chapter 1

Introduction

This chapter first presents the evolution of mobile communications and the key

problems in the future wireless communication systems. Then the technologies of

faster-than-Nyquist (FTN) signaling and sparse code multiple access (SCMA) are

reviewed. Finally, the objectives of this thesis are summarised and the outline is

given.

1.1 Background

Since 1970s, mobile communication technology has evolved rapidly, which pro-

foundly changes the work and lifestyle of human beings and promotes economic

development. In 1978, the Bell Labs designed a cellular mobile communication net-

work using analog technology and frequency division multiple access (FDMA) [1].

This communication network, also known as the first generation mobile communi-

cation system (1G), effectively solved the capacity requirements at that time. After

that, in order to overcome the problem of low call quality in 1G era, the second

generation mobile communication system (2G) based on digital voice communica-

tion was proposed [2]. The new technology employed in 2G is time division multiple

access (TDMA) [3]. With the increasing demand for high-speed data transmission,

the third generation mobile communication system (3G) using code division multi-

ple access (CDMA) technology [4] came into being. Relying on more bandwidth and

high data rate, 3G can provide users with more wireless applications. Nevertheless,

it still has some limitations in mobile multimedia services [5]. The fourth generation

mobile communication system (4G) using orthogonal frequency division multiple



The history of mobile communication over the last four decades suggests that

the research on new mobile communication system will never stop. On one hand,

the rapid development of integrated circuit and chip design has greatly enhanced the

performance of mobile devices, which enables the implementation of many complex

technologies such as low density partial check (LDPC) code [8]. One the other hand,

the demand for higher quality wireless services continues growing [9]. In the last

ten years, the explosive growth of smartphones led to an exponential increase of the

amount of mobile data [10]. At the same time, the applications including Internet

of things, smart home and virtual reality requires more accessed device, higher

coverage, lower transmission delay and smaller communication overhead [11–14].

According to the 5G white paper, by 2020, the next generation mobile networks

should satisfy the following performance indicators: 1)transmission rate increased by

2

1G 
DMA

2G
TDMA

3G
CDMA

4G LTE
OFDMA

1980s, N/A 1990s, 0.5 Mbps 2000s, 63 Mbps 2010s, 300 Mbps

Figure 1.1 : The evolution of mobile communications.

access (OFDMA) [6] and multiple input multiple output (MIMO) [7] can address

the signal coverage problem in 3G. At present, various new mobile Internet-based

services have emerged that greatly improved the informationisation of the society.

In Fig. 1.1 (From ref. [6]), the evolution of mobile communications from 1G to 4G

is illustrated.
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Figure 1.2 : The variation of data rate from 1G to 5G.

10-100 times; 2)capacity enhanced by 1000 times of current network capacity; 3)end-

to-end delay reduced to 1/10 of the current one [15]. Fig. 1.2 shows the variation in

transmission rate as the mobile communication systems evolve. Undoubtedly, the

birth of 5G will further change our lives.

In order to achieve the above objectives, academia and industry have conducted

research from three different points of views. The first one is to use new technology

to further improve the spectral efficiency with limited bandwidth [16–18]. The sec-

ond one is to find new available spectrum resources based on mm-wave and visible

light communications [19–22]. The last one is to increase the system throughput

by using communications between users [23–25]. Higher spectral efficiency can be

achieved by designing new modulation formats and new multiple access systems.

There exist several new modulation methods, e.g., FBMC, FTN signaling and SCM
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that can improve the spectral efficiency [26–30]. By introducing intentional inter

symbol interference (ISI), FTN signaling can transmit more data using the remain-

ing bandwidth in 4G system [31]. For the multiple access technologies, 5G mainly

considers the use of non-orthogonal multiple access (NOMA) to support more users

using the same resources [32, 33]. Existing NOMA technologies include power do-

main NOMA (p-NOMA) [34], interleave division multiple access (IDMA) [35, 36],

multiuser shared access (MUSA) [37], pattern division multiple access (PDMA) [38]

and sparse code multiple access (SCMA) [39,40]. Amongst them, SCMA has received

extensive attention because of its extra shaping gain. Moreover, the environment

will introduce various interferences, such as multi path effect in indoor environment

and time selective fading on high-speed trains. How to tackle these challenges while

realising high spectral efficiency is one of the key goals in 5G. In this thesis, the low

complexity reception methods for FTN signaling and SCMA systems are studied.

1.2 Faster-than-Nyquist Signaling

According to Nqyuist theorem, the maximum symbol rate should be twice the

channel bandwidth. When the symbol rate equals the Nyquist rate, a sample of the

matched filter output only depends on one transmitted symbol impulse. That is to

say the received sample contains all the necessary information for symbol decision

and symbol-by-symbol detection is used to obtain all transmitted information. Al-

though Nyquist criterion ensures ISI-free transmission, it wastes certain spectrum

resources to keep the orthogonality of waveforms [29]. In order to take advantage

of these spare resources, more data symbols can be transmitted in the same time

period, which is the basic principle of FTN signaling. In 1970, the concept of FTN

was first introduced [41]. Then Mazo detailedly analysed FTN signaling and proved

that FTN signaling can transmit 25% more information bits than Nyquist signaling

in additive white Gaussian noise (AWGN) channel, while preserving the bit error
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Figure 1.3 : Comparison of (a) Nyquist signaling and (b) FTN signaling.

rate (BER) performance [28].

Assuming that cn is the transmitted symbol at time n and q(t) is a shaping pulse,

the Nyquist signaling can be expressed as

s(t) =
∑

cnq(t− nT0). (1.1)
n

Considering the same shaping pulse q(t), the FTN signaling model reads,

s(t) =
∑
n

cnq(t− nτT0). (1.2)

It can be seen when τ = 1, (1.2) and (1.1) are identical. In FTN signaling,

setting τ < 1 can transmit more information with the same bandwidth and time

period, therefore τ is named as packing factor. Fig. 1.3 illustrates the Nyquist
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signaling waveform and FTN signaling waveform with τ = 0.8. It can be observed

that in the same time period, FTN signaling can transmit more sinc pulses. It

can be also observed that when sampling with symbol interval τT0, the samples

contain information of other symbols, which means that the interference between

transmitted symbols should be cancelled when detecting FTN signals.

For the signal defined by (1.2), the error probability when performing detection

is determined by the minimum distance of signals [42]. Considering two signals si(t)

and sj(t) given by (1.2), the minimum Euclidean distance d2
min is

d2
min =

(
1

Eb

)∫ ∞
−∞
|si(t)− sj(t)|2dt, i 6= j, (1.3)

where Eb is the signal energy per bit. Assuming the signal transmits through an

AWGN channel, the symbol error rate of optimal detection is given by function

Q(
√

d2
minEb
N0

), where the Q-function is the tail distribution function of the standard

normal distribution, formulated as

Q(x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du. (1.4)

For binary symbol Nyquist signaling, the minimum Euclidean distance of signal

is always 2. The corresponding symbol error rate Q(
√

2minEb
N0

) is referred to as

the matched filter bound [43]. For FTN signaling using sinc pulse, the minimum

distance will not drop immediately for τ < 1. In fact for binary symbol, although

ISI is induced by FTN signaling, when τ is larger than 0.802, d2
min = 2 still holds.

Hence, τ = 0.802 is known as the Mazo limit [28]. When the packing factor is above

the Mazo limit, it is capable of increasing symbol rate while not affecting the BER

performance. Subsequently, research on root raised cosine shaping pulse showed

that with roll-off factor α = 0.3, Mazo limit can be reduced to 0.703, which shows

the data rate can be as 1.43 times high as Nyquist signaling [29]. According to [44],

Mazo limit applies to non-binary transmissions, nonlinear pulses and even nonlinear

modulations.
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Based on these works, it is seen FTN signaling is very attractive in future mobile

communications. However, due to the non-orthogonality of waveform, FTN signaling

introduces severe ISI. It can be seen from the signal model (1.2) that each symbol

is interfered by several neighboring transmitted symbols. Consequently, designing

receivers for FTN signaling in order to recover original transmitted data is very

important. Next, a basic discrete time FTN signaling model is considered. The

transmitted signal s(t) passes through an AWGN channel and is received at the

receiver side. After matched filtering, the received signal r(t) can be expressed as

r(t) =
∞∑

n−∞

cng(t− nτT0) + γ(t), (1.5)

where g(t) is the convolution of shaping filter and matched filter and γ(t) is the

random noise process. After sampling using symbol period τT0, the received sam-

ples {rn} are obtained. The objective of FTN signaling receiver is to recover se-

quence {cn} from the received signal samples {rn}. Since the shaping pulse is non-

orthogonal with repsect to symbol period τT0, the noise samples at the output of the

matched filter have correlations [29]. Usually a post filter is employed to whiten the

noise [45] and then signal detection is performed. Assuming that the discrete time

sequence obtained from g(t) is denoted by {gn}, FTN signaling can be regarded as

the trellis code of {cn} by {gn}. Detection of {cn} is equivalent to decoding of the

noisy trellis coded sequence. Viterbi algorithm [46] can be employed to find the most

likely sequence {cn} by comparing the received signal and the shortest path. Viterbi

algorithm provides the maximum likelihood estimate of transmitted symbol. When

the symbols are with equal probability, the maximum likelihood based receiver is

optimal. However, when the probabilities of symbols are unequal, the maximum a

posteriori estimator should be employed, given by

ĉn = arg max
cn

p(cn|{rn})
p({rn})

. (1.6)

Considering symbol by symbol MAP estimator, Bahl et al. proposed BCJR algorith-
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m for symbol detection [47], which is also based on trellis diagram. By computing

the likelihood probability of {cn}, the transmitted sequence is detected iteratively.

If a large value of τ is chosen, the FTN induced ISI is slight, then using Viterbi

algorithm or BCJR algorithm is effective in symbol detection. However, when ISI

becomes severer, the larger number of trellis states makes the receiver complexity

prohibitively high.

To reduce the complexity of trellis based receivers, three approaches were pro-

posed, i.e., channel shortening [48], reduced search [49] and reduced trellis [50].

Channel shortening aims for equivalising the FTN induced ISI to an ISI channel

with fewer taps in order to reduce the complexity. Reduced search method only

considers searching the optimal path in part of the trellis diagram. For example,

theM -algorithm only considersM paths in the diagram [51]. Reduced trellis method

can reduce the total number of trellis states by reducing the number of states of a

symbol [50]. For FTN signaling, an M -algorithm based BCJR receiver was proposed

in [52] to eliminate the ISI introduced by FTN signaling. Although only M -paths

are considered, the complexity of the receiver in [52] still increases exponentially.

Based on frequency domain equalisation (FDE) method for conventional frequen-

cy selective fading channels, an FDE based minimum mean squared error (MMSE)

algorithm was proposed in [53]. In FDE, time domain signal is transformed to

frequency domain through faster Fourier transform (FFT), then ISI becomes fre-

quency channel coefficients and FTN symbols are detected with linear complexity.

Nevertheless, FDE has to insert cyclic prefix symbols in the transmitted sequence

to convert linear convolution into circular convolution, which decreases the spectral

efficiency. In time domain equalisation, the authors in [54] employed AR process to

model the colored noise and proposed a linear MMSE FTN signaling receiver.

Current research on receiver design for FTN signaling mainly focuses on AWGN
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channel. In practical environments, the channel suffers from multipath effect and

Doppler spread, which lead to frequency and time selective fadings. The interfer-

ence induced by fading channels makes the FTN signaling receiver more complex.

Moreover, when the channel information is unknown, how to achieve good detection

performance of FTN symbols is still under investigation. To this end, this thesis

will study the joint FTN signaling detection and channel estimation over frequency

selective channels and FTN data detection in doubly selective channels.

1.3 Sparse Code Multiple Access

In conventional orthogonal multiple access (OMA) technology, each user will be

assigned to certain orthogonal radio resource elements, such as orthogonal frequency

division multiplexing (OFDM) sub-carriers and MIMO antennas. So the number

of users cannot exceed the total number of orthogonal resource elements. At the

receiver side, the signals corresponding to different users can be obtained through

simple single user detection. When the channel condition of a user is poor, OMA

has to set high priority to transmit this user’s data in order to satisfy fairness.

This results in both the waste of spectrum and the decline of system throughput.

Theoretically, OMA cannot achieve the sum-rate capacity of multiuser systems. To

this end, non-orthogonal resource allocation is proposed in multiple access system,

which is the NOMA technology. By introducing interference between users, one

resource element in NOMA can support more users to transmit information, and the

increment of the information rate makes the improvement of spectral efficiency. The

multiuser capacity in AWGN channel is analyzed in [55], which demonstrated that

NOMA can reach the capacity bound. In multipath fading channels, NOMA achieves

the optimal capacity when the channel information is only known at the receiver

side, while OMA is strictly suboptimal. Moreover, since more users are supported

by NOMA, the requirement of massive connectivity in 5G can be satisfied [32].
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The NOMA technologies can be categorised into power domain methods and

code domain methods [32]. The power domain NOMA (p-NOMA) maximises the

system gain by assigning different power levels to users according to their channel

conditions. This enables us to distinguish different users at the receiver side, then

use successive interference cancellation (SIC) to detect the signals. In code domain

NOMA technologies, the users will be assigned different codewords to achieve mul-

tiplexing. Compared to p-NOMA, code domain NOMA technologies can achieve

spreading gain and higher sum rate [56].

SCMA technology can be regarded as the extension of the low density signature

(LDS) method [39]. Different from LDS technology, SCMA maps bit streams of

different users to SCMA codewords directly, which makes joint codebook and con-

stellation optimisation possible. Fig. 1.4 illustrates the SCMA encoding process of

a 6-user, 4-resource SCMA system. Each user maps its bits to an SCMA codeword

chosen from a predefined SCMA codebook and then multiplexed over 4 resource

elements. Multiuser detection is performed at the receiver side to determine the bit

sequences of users. In SCMA system, a binary vector fk is employed to indicate the

resource elements occupied by user k. The jth element in fk is defined as

fk,j =

 0 xk,j = 0

1 xk,j 6= 0.
(1.7)

By stacking fk, we have the indicator matrix F = [f1, ..., fK ]. In F, the non-zero

entries in the jth row denote the conflicting users over the jth antenna while the

non-zero entries in the kth column indicate the resources occupied by user k. The

indicator matrix corresponding to the SCMA system shown in Fig. 1.4 is given as
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(0,0) (0,0)(1,0) (0,1) (1,1) (1,1)

       3 4 5 6

Figure 1.4 : SCMA encoding process.

follows,

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1111 11

11111 0

0000 10

00000 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (1.8)

It is observed from F that when designing the codebook, the 0 valued positions

of different users’ codewords are different, which efficiently avoid packet collision-

s. Besides, only partial resource elements are assigned to one user, which ensures

one resource element will support a few users and the sparsity property makes the

complexity of SCMA system still controllable [57].

In the overloaded SCMA system, the received signal contains the interference

introduced by other users and this should be taken into account when designing

receivers. For the indicator matrix F in (1.8), a factor graph can be used to show

the relationship between the users and resource elements [58], as shown in Fig. 1.5.

The factor graph contains factor vertices E and variable vertices U , where a variable

vertex represents one user’s transmitted symbols and a factor vertex represents the

function relationship of the source elements and transmitted symbols. If and only if a
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Figure 1.5 : The factor graph representation of SCMA system.

user occupies a resource element, the variable vertex and factor vertex are connected

by an edge. Thanks to the sparsity of SCMA codewords, belief propagation (BP)

can be used on factor graph to derive the MAP estimate of transmitted symbol. On

the factor graph, there are two kinds of messages, namely, the message from variable

vertex x to factor vertex f and the message from factor vertex f to variable vertex

x, denoted by µf→x(x) and µx→f (x), respectively. According to the BP update

rules [58], µf→x(x) and µx→f (x) are given by

µf→x(x) ∝
∫
f(x)

∏
x′∈N (f)\{x}

µx′→f (x
′
)dx

′
, (1.9)

µx→f (x) ∝
∏

f ′∈\{f}

µf ′→x(x), (1.10)

where N (x) and N (f) denote the sets of all factors connected to x and all variables

in the function f , respectively. And the belief (approximate marginal) of variable x

can be expressed as

b(x) ∝
∏

f∈N (x)

µf→x(x). (1.11)

By passing messages on factor graph, the marginal distribution of SCMA symbol is

determined iteratively. From (1.9), it can be observed that the message calculation

requires the integration over all other interfered symbols. Therefore the complex-
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ity of the conventional BP algorithm increases exponentially with the number of

interfered symbols.

To reduce the complexity of conventional BP receiver, several modified BP mes-

sage passing receivers are proposed for SCMA system. In [59], the authors proposed

a shuffled message passing algorithm to accelerate the convergence. [60] presented

a fixed low complexity detector for uplink SCMA system based partial marginali-

sation. In [61], a Monte Carlo Markov Chain (MCMC) based SCMA decoder was

proposed which features low complexity when the codebook size is large. In [62], the

authors compute the messages in log-domain and then the multiplication operations

become simple summations.

In a word, many researches have proposed low complexity receiver designs for

SCMA system. However, there are still a few points that should be addressed.

The first problem is the symbol detection in complex environment. Existing works

consider very simple channel model and assume that the channel state information is

perfectly known, which ignores complex channel conditions in practice. The second

problem is the convergence of BP algorithm. Although, [63] showed that a loopy BP

is still efficient in a factor graph with cycles, the convergence problem may result in

performance loss. The third one is the combination of NOMA and non-orthogonal

waveform. SCMA technology and FTN signaling can improve the spectral efficiency

from different degrees. Naturally, a combination of both technologies is expected

to achieve ever higher spectral efficiency. To tackle above challenges, this thesis

will design low complexity receivers for SCMA systems in complex environments.

Moreover, considering a system combining FTN signaling and SCMA technology,

low complexity and communication overhead detection methods will be developed.

1.4 Thesis Objectives and Organisation

In summary, the main aims of this thesis are as follows:
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i. The channel state information is assumed to be known in existing FTN sig-

naling receivers. When the multipath channel is unknown, how to tackle the

combined ISI induced by fading channels and FTN signaling and then estimate

the channel coefficients is very important. It is highly demanded to design new

reception algorithms that jointly estimate channel taps and detect FTN data

symbols.

ii. The FDE-based receivers can tackle the ISI introduced by FTN signaling.

However, in high mobility environments, due to the time-variant channel, ex-

isting FDE-based algorithms are not available. Therefore, it is necessary to

design novel low complexity FDE-based algorithm to eliminate the interfer-

ences caused by time selectivity and improve the robustness of FTN signaling

in high mobility environments.

iii. Conventional BP receivers for SCMA system may suffers from convergence

problem since BP does not guarantee convergence on loopy graphs. Therefore,

the convergence analysis of SCMA receiver is necessary. Moreover, in complex

environment, severer interference results in a factor graph with more short

cycles. To tackle the problem that BP fails to converge, it is necessary to

design a convergence-guaranteed message passing algorithm for this scenario.

iv. In multiuser system, cooperative detection can be performed by users to

achieve diversity gain. The basic idea to share the measurements among al-

l users is not realistic due to power consuming. Therefore, to develop new

cooperative detection schemes with low cost is necessary.

v. A combination of SCMA and FTN technologies is expected to improve the

spectral efficiency of communication systems at the cost of high complexity

receiver. Moreover, in uplink system, communication overhead at the base

station can be reduced by detecting the users’ activities. Therefore, a novel
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low complexity receiver aiming for detecting active users, decoding and channel

estimation should be designed.

This thesis is organised as follows:

• Chapter 1: Chapter 1 presents the research background of this thesis and

introduces the FTN signaling and SCMA technology. Then the objectives and

organisation of this thesis are given.

• Chapter 2: Instead of mixing the ISI imposed by FTN signaling with the

frequency selective channel together, they are intentionally separated from

each other, which enables us to fully exploit the known structure of the FTN-

induced ISI. Considering that the packing symbol period will lead to correla-

tion of channel taps, discrete Fourier transform (DFT) interpolation is used to

obtain channel taps in FTN scenario. The colored noise due to the sampling

rate in FTN system is approximately modeled by autoregressive (AR) process

to avoid the whitening filtering. Building on this, a Forney style factor graph

is constructed and GMP is employed to update messages on the graph. Con-

sidering that the inner product between FTN symbols and channel coefficients

is infeasible by using BP, it is proposed to perform VMP on an equivalent

soft node instead. Simulation results show that the proposed algorithm can

estimate the channel coefficients and detect data symbols efficiently.

• Chapter 3: This chapter studies the iterative receiver design for FTN signal-

ing over doubly selective channels. The received FTN signaling samples over

doubly selective channel are first modeled. Then the FDE-MMSE algorithm

is extended to doubly selective channel case but shows its inadequacy in this

condition. Next, starting from the variational inference and Gaussian message

passing (GMP) frameworks, two novel receiver structures are proposed. In the



16

variational inference-based receiver design, since mean filed approximation will

lead to the underestimation of variance, Bethe approximation is used to design

the receiver. For the GMP based receiver, by implementing message passing

on Forney-style factor graph, the extrinsic information of data symbols are

efficiently calculated. Moreover, considering that the channel state informa-

tion is not perfectly known, the factor graph is extended and a robust receiver

is developed. Simulation results show both receivers for FTN signaling can

achieve similar performance of Nyquist signaling.

• Chapter 4: In Chapter 4, a low-complexity receiver based on Bayesian inference

is proposed. An uplink SCMA model is first given. Considering the low

density of non-zero elements in the SCMA codewords, the joint distribution

of data symbols is represented as the product of several clique potentials.

Then based on the Bethe approximation, the corresponding variational free

energy (VFE) is derived. By minimising the VFE, the marginal distributions

of symbols are determined. It is shown that the complexity of the proposed

receiver only increases linearly with the number of users. Furthermore, a

belief damping scheme is employed to improve the performance. Moreover,

since the proposed scheme is an iterative one, its convergence is analysed. It is

proved that the variance of symbol marginal is guaranteed to converge. For the

convergence of its mean, the necessary and sufficient conditions are conceived.

Simulation results show that the proposed algorithm approaches the optimal

MAP detector’s performance despite significant reduction of its complexity.

• Chapter 5: In this chapter, low-complexity receiver design for MIMO-SCMA

system over frequency selective channels is studied. Auxiliary variables are

introduced and the factorisation of joint posterior distribution is represent-

ed by a stretched factor graph. Since directly approximating the probability
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mass function of discrete symbols as Gaussian leads to performance loss, ex-

pectation propagation (EP) is employed to update the messages obtained from

channel decoder. Then, using Gaussian approximation of extrinsic informa-

tion, all messages on factor graph can be parameterised into a Gaussian form,

which reduces the computational complexity of message updating significantly.

Moreover, considering the proposed BP-EP receiver may fail to converge in the

MIMO-SCMA scenario due to the loopy factor graph, the Bethe free energy is

convexified and a convergence-guaranteed BP-EP receiver is proposed. Con-

sidering the cooperation between users to improve the detection performance,

two schemes, namely belief consensus-based and alternative direction method

of multipliers (ADMM)-based algorithms are proposed. The simulation re-

sults demonstrate the superior performance of the proposed message passing

receivers for MIMO-SCMA system and also show the great potentials of using

cooperative detection.

• Chapter 6: Chapter 6 considers a combined FTN signaling and SCMA system

that has even higher spectral efficiency. The system model of an uplink FTN-

SCMA system is given first. To tackle the colored noise and ISI induced by

FTN signaling and inter user interference induced by SCMA, a novel receiver

is designed based on AR model and message passing algorithm that jointly

perform channel estimation and detection. Since all messages are represented

in Gaussian closed form, the proposed receiver only scales a linear complexi-

ty. Moreover, considering a grant free system that the receiver should further

detect the active users, a user activity detection, channel estimation and de-

coding algorithm is developed. With the use of EP approximation of discrete

variable indicating user state, a specific factor node is reconstructed, which

enables us to still represent all messages in parametric forms. Simulation re-

sults show that the combined FTN-SCMA system with the proposed receiver
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is capable of increasing the data rate while the BER performance is not af-

fected. Also, in grant free SCMA system, the proposed algorithm is effective

to distinguish between the active/inactive users.

• Chapter 7: Finally, in the last chapter, the main contributions of this thesis

are summarised and some open problems for future work are discussed.
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Chapter 2

Joint Channel Estimation and FTN Signaling

Detection in Frequency Selective Channels

2.1 Introduction

FTN signaling has higher spectral efficiency than Nqyuist signaling, which makes

it attractive in the future communication systems. Nevertheless, the ISI induced by

FTN signaling poses challenges on the receiver design. When the channel expe-

riences frequency selective fadings, multipath effect will lead to severer ISI. The

interference introduced by FTN signaling and fading channels can be combined to

form a composite ISI channel and then the optimal receiver can be designed. How-

ever, there are two problems to do so. On one hand, the channel state information

may be unknown or not perfectly known. In this circumstance, the channel coef-

ficients have to be estimated. Several papers [64–66] studied channel estimation

based on pilot sequence. To obtain accurate CSI, a large number of pilot symbols

have to be sent, which is contrary to the FTN system’s goal of improving spectral

efficiency. On the other hand, in case that the FTN-induced ISI taps are known,

combining known and unknown ISI as a new channel and estimate its coefficients

may lead to certain performance loss. Since the samples at the receiver side contain

information of both data symbols and channel coefficients, a joint channel estima-

tion and decoding algorithm can be developed based on the same received samples.

Joint channel estimation and decoding can not only reduce the number of pilots

but also enhance the accuracy of channel estimation [67–69]. This chapter considers

FTN symbol detection and channel estimation in a frequency selective channel and
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develops a low complexity receiver.

Recently, motivated by the heuristic iterative approaches on probabilistic graph-

ical models, several methods are derived for low-complexity iterative receivers based

on message passing algorithms, e.g., belief propagation (BP) [70], variational mes-

sage passing (VMP) [71], and approximate message passing (AMP) [72]. In [73],

based on factor graph and BP, a frequency-domain iterative message passing re-

ceiver for FTN signaling is proposed in doubly selective channels. The algorithm is

evaluated in both perfect and imperfect channel state information (CSI) scenarios.

Nevertheless, to the author’s best knowledge, joint channel estimation and decoding

has not been investigated for FTN signaling. This chapter deals with low-complexity

receiver design for FTN signaling in frequency selective fading channels. Based on

the Forney-style factor graph, Gaussian message passing (GMP) is employed to up-

date the messages on factor graph. Since the data symbols and channel taps are all

unknown variables, conventional message passing algorithm will be infeasible when

facing the message updating at the product node. To this end, the factor node is

reconstructed, and variational message passing (VMP) is performed. As a result,

all messages on factor graph are parameterised by means and variances and the

complexity of the proposed algorithm is much lower than the MAP receiver.

2.2 Faster-than-Nyquist Signaling Model

Considering a coded FTN signaling system, at the transmitter side, the infor-

mation bit sequence b is encoded to a coded sequence c and mapped to a length-N

data symbol vector x = [x0, ..., xN−1]T . The data symbol block passes through

the shaping filter g(t), yielding transmitted signal s(t) =
∑

i g(t − iτT0)xi, where

0 ≤ τ ≤ 1 is the FTN packing ratio and T0 is the symbol period under the Nyquist

criterion. Obviously a smaller τ can be chosen to achieve higher data rate at the

cost of severer ISI. Note that an FTN symbol is interfered by neighboring symbols
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on both sides and the number of ISI taps is infinite. In practice, a sufficiently large

number LFTN = 2Lf + 1 can be chosen, then s(t) is given as

s(t) =

Lf∑
i=−Lf

g(t− iτT0)xi. (2.1)

The signal is transmitted over a frequency selective fading channel h(t). For

Nyquist signaling, the channel is modeled as Lnyq independent taps h̃ = [h̃Lnyq−1, ..., h̃0]T .

However, for FTN signaling, since the symbol period is packed, the number of chan-

nel taps becomes greater, i.e, L = bLnyq/τe. According to [74], the channel taps

in FTN system can be calculated via interpolation based on the channel taps in

Nyquist counterpart. Here DFT is exploited to obtain the fading channel taps for

FTN signaling. Assuming D ∈ RLnyq×Lnyq and DF ∈ RL×L are the DFT matrices,

the channel tap h = [hL−1, ..., hl, ..., h0]T for FTN signaling is given as

h = DH
F

 Dh̃

0

 . (2.2)

Note that the correlations between different channel taps will result in a nondiagonal

covariance matrix of h, which is given as

Vh = DH
F

 DVnyqD
H 0

0 0

DF ,

where Vnyq is the covariance matrix of h̃.

With the assumption of prefect synchronisation, the received signal can be rep-

resented as

y(t) =
L−1∑
l=0

Lf∑
i=−Lf

hlg(t− (i+ l)τT0)xi + n(t), (2.3)

where n(t) is white Gaussian noise process with power spectral density N0. The

received continuous-time signal y(t) is matched-filtered by g∗(t) and then sampled
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Figure 2.1 : System model for considered FTN signaling system.

with the symbol rate 1
τT0

. At the output of the matched filter, the k-th sample can

be expressed as

rk =
L∑−1
l=0

L∑f

i=−Lf

hlq(kτT0 − (i+ l)τT0)xi + ξ(kτT0)

=
L∑−1
l=0

L∑f

i=−Lf

hlqk−l−ixi + ξk, (2.4)

∫ ∫
where qm−n = g(t−mτT0)g

∗(t−nτT0)dt and ξk = n(t)g∗(t−kτT0)dt. Since g(t)

is not τT0-orthogonal, {ξk} is a colored noise process with autocorrelation function

E[ξmξn] = N0qm−n. (2.5)

With (2.4), the received symbol vector r = [r0, ..., rN−1]T can be written as

r = HQx+ ξ, (2.6)

where x = [x0, ..., xN−1]T and ξ = [ξ0, ..., ξN−1]T are the symbol and noise vector; H
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and Q are the matrices with respect to channel tap and FTN ISI tap as

H =



h0 0

h1 h0

...
. . .

hL−1 hL−2 · · · h0

. . . . . .

0 hL−1 · · · h1 h0


(2.7)

and

Q =



q0 q1 · · · qLf 0

... q0
. . .

q−Lf · · · q0 · · · qLf

q−Lf · · · q0 · · · qLf
. . .

...

0 q−Lf · · · q0


. (2.8)

The autocorrelation matrix of noise vector ξ is given as E[ξξH ] = N0Q.

2.3 Message Passing Receiver Design

In this section, a Gaussian message passing based iterative receiver is proposed

for joint channel estimation and decoding in FTN signaling system.

2.3.1 Output LLR of Channel Decoder

The receiver performs iterative decoding by exchanging log-likelihood ratio (LL-

R) between the channel decoder and equalizer. For decoding, the optimal BP de-

coding algorithm is utilised. Then the output extrinsic LLR of channel decoder can

be represented as

L0(cn,m) = ln
p(cn,m = 0)

p(cn,m = 1)
, (2.9)
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where cn,m denotes the mth code bit in the nth subsequence cn = [cn,1, ..., cn,M ]T

with M being the modulation order.

2.3.2 Autoregressive Model of Colored Noise

Due to the correlations between noise samples, conventional MMSE detection

approaches suffer from high complexity. Some works neglect the impact of colored

noise, which will cause performance loss. To overcome this problem, a P th-order

AR process is employed to approximately model the colored noise [75] , i.e.,

ξk =
P∑
j=1

ajξk−j + wk = aTξk−1 + wk, (2.10)

where a = [a1, ..., aP ]T is the AR parameters and wk is the white noise with zero

mean and variance σ2
w, and ξk−1 = [ξk−1, ..., ξk−P ]T denotes the correlated noise

samples. The autocorrelation parameters a can be obtained from the Yule-Walker

equation as

N0qk =

 N0

∑P
j=1 ajq−j + σ2

w k = 0

N0

∑P
j=1 ajqk−j othertwise.

(2.11)

2.3.3 Factor Graph Representation

Note that the equation (2.4) can be reformulated as

sk = qTxk, (2.12)

rk = hT sk + ξk, (2.13)

where xk = [xk−Lf , ..., xk, ..., xk+Lf ]
T and sk = [sk−L+1, ..., sk]

T . Moreover, xk and sk

follow state transition model as

xk = Gxk−1 + fxk+Lf , (2.14)

sk = G1sk−1 + fT1 sk, (2.15)
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where the G =

 02Lf I2Lf

0 0T2Lf

, f = [0T2Lf , 1]T , G1 =

 0L−1 IL−1

0 0TL−1

 and f1 =

[0TL−1, 1]T . Similarly, (2.10) can be rewritten as

ξk = Aξk−1 + f2wk, (2.16)

ξk = fT2 ξk, (2.17)

with f2 = [0TP−1, 1]T and A =

 0 aT

0P−1 IP−1

 .
According to [76], the linear state space model can be represented by a “block

diagram” factor graph. Based on (2.12)-(2.17), the corresponding Forney-style fac-

tor graph is depicted in Fig. 2.2. On this factor graph, the edges represent variables

while the factor nodes denote the local functions. The equality node can be regarded

as branching points which allow different factors to share the same variables. Fur-

thermore, a multiplier node × is introduced to denote the inner product constraint

δ(r − hT s).

2.3.4 Combined BP-EP-VMP Message Passing

GMP is an efficient parametric message passing algorithm in linear Gaussian

system, where message on factor graph can be characterised either by the mean

vector m and the covariance matrix V or by the weight matrix W = V−1 and the

transformed mean Wm.1 The update rules of GMP have been derived in [76], which

is summarised as follows

=x z

y

- -
?

1It may happen frequently that the covariance matrix of a message does not exist due to

the singular matrix. Under such circumstances, one may use the transformed means and weight

matrices to parameterise the messages [76].
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Figure 2.2 : Factor graph representation for joint channel estimation and decoding

for FTN system. The subgraphs denoted by 1©, 2©, 3© and 4© correspond to the

FTN equalisation, multipath channel equalisation, channel estimation and colored

noise process, respectively.
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−→
Wz =

−→
Wx +

−→
Wy

−→
Wz
−→mz =

−→
Wx
−→mx +

−→
Wy
−→my

←−
Wx =

−→
Wy +

←−
Wz

←−
Wx
←−mx =

−→
Wy
−→my +

←−
Wz
←−mz

+x z

y

- -
?

−→
Vz =

−→
Vx +

−→
Vy

−→mz = −→mx +−→my

←−
Vx =

←−
Vz +

−→
Vy

←−mx =←−mz −−→my

A
x y- -

−→my = A−→mx

−→
Vy = A

−→
Vx AT

←−
Wx = AT ←−Wy A

←−
Wx
←−mx = AT ←−Wy

←−my

The notations −→· denotes the message passing along the arrow direction while ←−·

denotes the message passing opposite the arrow direction.

Following the GMP rules, most messages on the factor graph can be computed.

For ease of exposition, the message updating on the four subgraphs in Fig. 2.2 will

be elaborated separately.



28

� Messages Updating for FTN Equalisation (on Subgraph 1):

Assuming that the parameters
−→
Wxk−1

and
−→
Wxk−1

−→mxk−1
are available, we have

−→
V x̃k−1

= G
(←−
Wx

′′
k−1

+
−→
Wxk−1

)−1

GT , (2.18)

−→
Wx̃k−1

−→mx̃k−1
= G

(−→
Wxk−1

−→mxk−1
+
←−
Wx

′′
k−1

←−mx
′′
k−1

)
, (2.19)

where
←−
Wx

′′
k−1

and
←−
Wx

′′
k−1

←−mx
′′
k−1

are given as

←−
Wx

′′
k−1

=
qqT

Vsk−1

, (2.20)

←−
Wx

′′
k−1

←−mx
′′
k−1

=
qmsk−1

Vsk−1

. (2.21)

In a similar way, the backward mean and covariance matrix ←−mxk and
←−
Vxk are

obtained as

←−
Vxk =

(←−
Wx

′
k

+
←−
Wx

′′
k

)−1

, (2.22)

←−mxk =
←−
Vxk

(←−
Wx

′
k

←−mx
′
k

+
←−
Wx

′′
k

←−mx
′′
k

)
. (2.23)

With (2.18)-(2.23), the outgoing message parameters for xk+Lf are

←−mxk+Lf
= fT

(←−mxk −
−→mx̃k−1

)
, (2.24)

←−
V xk+Lf

= fT
(−→
V x̃k−1

+
←−
Vxk

)
f . (2.25)

As the incoming messages are computed from L0(cn,m), they have discrete dis-

tributions with respect to the constellation points. In order to employ GMP, EP

is used to approximate the incoming messages to be Gaussian [77]. For the kth

symbol, the incoming message can be expressed as

−→µ (xk) =
∑
χi∈A

pk,iδ(xk − χi), (2.26)

where χi is the ith constellation symbol, A is the set of constellation symbols and

pk,i is the probability with respect to χi, which is computed from the LLR L0(cn,m).
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Then the belief of xk is obtained as a probability mass function (PMF). Based on

EP, matching the first two order moments of the belief yields

m̃xk =
1

2π
←−
V xk

∑
χi∈A

χipk,i exp

(
−(χi −←−mxk)

2

←−
V xk

)
, (2.27)

Ṽxk =
1

2π
←−
V xk

∑
χi∈A

|χi|2pk,i exp

(
−(χi −←−mxk)

2

←−
V xk

)
−|mxk |2. (2.28)

Then the Gaussian approximation to the incoming message can be parameterised

as

−→mxk =
−→
V xk

(
m̃xk

Ṽxk
−
←−mxk←−
V xk

)
, (2.29)

−→
V xk =

(
Ṽ −1
xk
−
←−
V −1
xk

)−1

. (2.30)

Consequently, the outgoing messages which are passed to Subgraph 2 read

−→msk =qT
(−→
Wxk +

←−
Wx

′
k

)−1 (−→
Wxk

(−→mx̃k−1
+ f−→mxk+Lf

)
+
←−
Wx

′
k

←−mx
′
k

)
, (2.31)

−→
V sk =qT

(−→
Wxk +

←−
Wx

′
k

)−1

q, (2.32)

where
−→
Wxk =

(−→
V x̃k−1

+ f
−→
V xkf

T
)−1

.

� Messages Updating for Multipath Channel Equalisation (on Subgraph 2):

Similar to (2.24) and (2.25), the backward messages ←−msk and
←−
V sk are given by

←−msk = fT1
(←−msk −

−→ms̃k

)
, (2.33)

←−
V sk = fT1

(−→
V s̃k +

←−
Vsk

)
f1, (2.34)

where the parameters with respect to sk and s̃k have similar form as in (2.18)-(2.23).

According to GMP rules, the messages −→ms
′′
k

and
−→
Vs

′′
k

can be expressed as

−→ms
′′
k

=
−→
Vs

′′
k

(−→
Wsk
−→msk +

←−
Ws

′
k

←−ms
′
k

)
, (2.35)

−→
Vs

′′
k

=
(−→
Wsk +

←−
Ws

′
k

)−1

, (2.36)

which are involved in the message computations in Subgraph 3.
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� Messages Updating for Colored Noise Estimation (on Subgraph 4):

It is noted that the correlation between colored noise samples does not affect the

first-order moment. The means of messages with respect to ξk on Subgraph 4 are

−→mξk = ←−mξk = E[ξk] = 0, ∀k. Therefore only the variances (covariance matrices) of

messages need to be calculated. The variance
−→
V ξk can be obtained as

−→
V ξk = fT2

−→
Vξ

′
k
f2 =

[−→
Vξ

′
k

]
P,P

, (2.37)

where
−→
Vξ

′
k

is given by

−→
Vξ

′
k

=

((−→
V ξ̃k

+ σ2
wf2f

T
2

)−1

+ AT←−Wξ̃k+1
A

)−1

. (2.38)

� Messages Updating for Channel Estimation (on Subgraph 3):

To deal with the inner product of channel vector h and symbol vector sk, the

messages corresponding to the multiplier node are first considered. With −→ms
′′
k
,
−→
Vs

′′
k

and
−→
V ξk computed on Subgraphs 2 and 4, using BP rule, the message from × to hk

reads

←−µ (hk) ∝
∫
δ(r

′

k − hTk sk)
←−µ (s

′′

k)
−→µ (r

′

k) ds
′′

k dr
′

k

∝
∫

exp
(
−(s

′′

k −
−→ms

′′
k
)H
−→
V−1

s
′′
k

(s
′′

k −
−→ms

′′
k
)
)

exp

(
−(rk − hTk s

′′

k)
2

−→
V ξk

)
ds
′′

k

∝exp

−hHk

−→ms
′′
k

−→mH
s
′′
k−→

V ξk+hHk
−→
Vs

′′
k
hk

hk+2hHk

−→ms
′′
k
rk

−→
V ξk+hHk

−→
Vs

′′
k
hk

 . (2.39)

Note that it is difficult to formulate (2.39) to Gaussian. To this end, VMP [78] is

used on the multiplier node to derive Gaussian messages. According to VMP update

rules, the message ←−µ hk follows

←−µ (hk) ∝exp

(∫
ln δ(r

′

k−hTk s
′′

k)b(s
′′

k)b(r
′

k) ds
′′

k dr
′

k

)
, (2.40)

where b(s
′′

k) and b(r
′

k) are the beliefs of sk and r
′

k.
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Figure 2.3 : The equivalent “soft node” for multiplier node. The factor fk denotes

the probability density function of rk conditioned on sk, hk and ξk, which can be

expressed as fk ∝ exp −(rk − hk
T s

′′
k)

2/V�ξk

( )
.

Obviously, the logarithm of delta function involved in the integration (2.40) is

pathological. To solve this problem, the multiplier node can be grouped with the

noisy measurement to form a “soft” factor node fk [79], as illustrated in Fig. 2.3.

Then the message is obtained as

←μ−(hk) ∝exp −
( ∫

(rk − hk
T s

′′
k)

2

→
V
−

ξk

exp
(
−(s

′′
k−ms

′′
k
)HV−

′′
1

sk
(s

′′
k−ms

′′
k
)
)
ds

′′
k

)

∝exp

(
−hk

H
Vs

′′
k
+ms

′′
k s
mH

′′
k

V ξk

ms
′′
k
rk

V ξk

)
−→ hk + 2hk

H −→ . (2.41)

Since ←μ−(s
′′
k) and →μ− (s

′′
k) have been obtained in Gaussian form, ms

′′
k
and Vs

′′
k
are

computed as

ms
′′
k
= Vs

′′
k

( →m−′′
−→

V
− 1

sk
s
′′
k
+ V
←−−

′′
1

sk
m←−s

′′
k

)
, (2.42)

Vs
′′
k
=
(→
V
− −1

s
′′
k

+ V
←−−

′′
1

sk

)−1
. (2.43)

By noting that the incoming messages to the soft node are beliefs, (2.42) and (2.43)

can be regarded as the posterior mean and variance of sk. Then μ←−(hk) is calculated
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as Gaussian with mean vector and covariance matrix

←−
Vhk =

−→
V ξk

(
Vs
′′
k

+ ms
′′
k
mH

s
′′
k

)−1

, (2.44)

←−mhk =
(
Vs
′′
k

+ ms
′′
k
mH

s
′′
k

)−1

ms
′′
k
rk. (2.45)

Likewise,
←−
Vs

′′
k

and ←−ms
′′
k

can be obtained as

←−
Vs

′′
k

=
−→
V ξk

(
Vhk + mhkm

H
hk

)−1
, (2.46)

←−ms
′′
k

=
(
Vhk + mhkm

H
hk

)−1
mhkrk, (2.47)

with mhk and Vhk computed in a similar way in (2.42) and (2.43).

2.3.5 Computation of Extrinsic LLR

The equalizer calculates the extrinsic LLR based on the soft information ←−mxk

and
←−
V xk .

Le(cn,m) = ln
p(cn,m = 0|r)

p(cn,m = 1|r)
− L0(cn,m)

= ln

∑
di,m=0 p(r|cn = di)p(cn = di)∑
di,m=0 p(r|cn = di)p(cn = di)

− L0(cn,m), (2.48)

where di is the coded bit sequence corresponding to the constellation symbol χi. A

concise representation of Le(cn,m) has been derived in [80], which reads

Le(cn,m)=ln

∑
χi∈A0

m

exp

(
− (χi−←−mxk

)2

←−
Vxk

) ∏
m′ 6=m

p(cn,m′ =si,m′ )

∑
χi∈A1

m

exp

(
− (χi−←−mxk

)2

←−
Vxk

) ∏
m
′ 6=m

p(cn,m′ =si,m′ )

, (2.49)

where A0
m and A1

m denote the subset of A whose label in position m has the value 0

or 1. Then the LLRs {Le(cn,m)} are fed to the channel decoder. After decoding, the

decoder outputs the extrinsic LLR and turns to the next iteration of equalisation.

The details of the proposed BP-EP-VMP algorithm are summarised in Algorithm 1.
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2.3.6 Complexity Analysis

The complexity of the proposed algorithm is dominated by the matrix inversion

operations in (2.18), (2.22), (2.36), (2.38), (2.43) and (2.44). For a non-sparse

K ×K matrix, the complexity for calculating its inverse is O(K3). Here O denotes

the order of time complexity. Taking (2.18) as an example, the total computational

complexity isO(NL3
FTN) for a length-N symbol block. Then the total computational

complexity of the proposed algorithm is O(N(L3
FTN +L3 + P 3)), where LFTN is the

length of FTN-induced ISI considered at the receiver, L is the channel length and

P is the order of AR model used to approximate the colored noise.

2.4 Simulation Results

In the simulations, a 5/7-rate LDPC code is considered with variable and check

node degree distributions being v(X) = 0.0005 + 0.2852X + 0.2857X2 + 0.4286X3,

c(X) = 0.0017X9 + 0.9983X10 [81]. The encoded bits are interleaved and mapped

to a sequence of QPSK symbols. The number of transmitted symbols is N = 2048.

The sequence of symbols passes through a root raised-cosine shaping filter with a

roll-off factor α = 0.4. The carrier frequency f0 = 2GHz and the symbol period

T = 0.2µs. The frequency selective fading channel for Nyquist signaling is assumed

to have L = 20 taps and the coefficients {h̃l} are independently generated according

to the distribution h̃l ∼ N (0, ql). Then the channel taps for FTN signaling can be

obtained by interpolation using DFT matrices. The normalised power delay profile is

ql = exp(−0.05l)∑
ql

. The number of iterations is set to I = 10 and the maximum number

of BP decoding iterations is 50. The number of ISI taps due to FTN considered

by the receiver is LFTN = 11, unless otherwise specified. All simulation results are

averaged over 1000 independent Monte Carlo trails.

The impact of packing factor τ is first evaluated. As shown in Fig. 2.4(a), BER

performance versus the signal-to-noise ratio (SNR) of the proposed BP-EP-VMP
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Figure 2.4 : BER performance of the proposed algorithm for FTN system with

different packing factor τ . The roll-off factor α = 0.4 and α = 0.05, respectively.
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algorithm with various τ are plotted. The performance of Nyquist signaling over

the same channel is also included as a benchmark. It is observed that the proposed

FTN receiver can attain the BER performance of the Nyquist signaling when the

packing factor τ ≥ 0.7. Therefore, up to 40% of transmission rate can be increased

with the same bandwidth by employing FTN signaling. Even for τ = 0.6, the

performance gap is less than 0.2dB, while the transmission rate in this case can

be increased by more than 65%. In Fig. 2.4(b), the BER performance with roll-off

factor α = 0.05 is evaluated. Since smaller α will lead to stronger ISI, it is seen that,

compared with the Nyquist counterpart, the performance gap for τ = 0.6 becomes

about 0.5dB. Nevertheless, it is able to improve transmission rate up to 25% by

employing FTN signaling with τ = 0.8.

The complexity of the proposed algorithm depends on LFTN, i.e., the length of

FTN-induced ISI considered at receiver. In Fig. 2.5(a), BER performances with

different LFTN = {5, 11, 41} are illustrated, where the roll-off factor α = 0.4 and

τ = 0.7. It is seen that, LFTN = 5 suffers from significant performance degradation

due to the underestimation of ISI induced by FTN. The increase of LFTN helps to

improve the BER performance, and the gain becomes marginal when LFTN ≥ 11.

Therefore, the length of ISI induced by FTN signaling can be safely approximated

by LFTN = 11 in this case. Further consider a stronger packing scenario with τ = 0.5

and the BER performance is illustrated in Fig. 2.5(b). It is seen that LFTN = 11

is not long enough to approximate the length of FTN-induced ISI and about 0.3dB

performance loss can be observed compared to the LFTN = 41 case. Therefore, In

practice, BER performance and computational complexity can be compromised by

selecting a proper value of LFTN.

In Fig. 2.6, BER performance of the proposed BP-EP-VMP algorithm is com-

pared with other methods. Since there is no existing work on this topic, two Bayesian

estimators are extended to the FTN signaling over frequency selective channels,
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Figure 2.5 : Impact of LFTN on BER performance. The roll-off factor α = 0.4,

τ = 0.7 and τ = 0.5, respectively.
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Figure 2.6 : BER performance of different algorithms for considered FTN signaling

system, with τ = 0.7, α = 0.4.

namely, the MMSE equalizer [67] and the variational inference (VI) method [69].

The BER performance with perfect channel information is also included as a ref-

erence. The MMSE equalizer can only treat the ISI caused by FTN signaling and

the fading channel as a composite ISI channel, which leads to increased number

of channel coefficients to be estimated. The VI method suffers from performance

degradation due to its assumption that data symbols are conditional independen-

t. The complexities of the MMSE equalizer and the VI method are O(N3) and

O(N(L2
FTN + L2 + P 2)), respectively. It is seen that the proposed BP-EP-VMP

algorithm outperforms the other methods. When BP instead of EP is employed to

update the messages from output of channel decoder to the equalizer, denoted as

“BP-VMP” in In Fig. 2.6, about 0.2dB performance loss can be observed, which

demonstrates the superior performance by employing EP.
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Figure 2.7 : MSE of channel estimation of the proposed algorithm, with τ = 0.7,

α = 0.4.

The mean squared error (MSE) of channel estimation of the proposed BP-EP-

VMP algorithm is evaluated in Fig. 2.7. For comparison, the performances of least

square (LS) channel estimation [65] and the expectation-maximisation (EM)-based

method [68] are also included. The number of channel taps is 14 in τ = 0.7 scenario.

It is seen that the proposed BP-EP-VMP algorithm and the EM-based method

significantly outperform the LS channel estimation that only uses the limited amount

of pilot symbols. Moreover, the proposed BP-EP-VMP algorithm is superior to the

EM-based method in [68], since the latter only provides hard channel estimation

to the equalizer. Simulation results corroborate the benefits of the proposed joint

channel estimation and decoding scheme.
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2.5 Conclusions

In this chapter, a low-complexity FTN receiver is proposed to perform joint

channel estimation and decoding in frequency selective fading channels. The ISI

imposed by FTN signaling and that by the unknown frequency selective channel are

considered separately, which enable us to fully exploit the known structure of the

FTN-induced ISI. Colored noise due to the faster sampling rate of FTN signaling is

approximated by AR process to avoid using whitening filter. A Forney style factor

graph, which consists of four subgraphs, is constructed to represent the FTN sys-

tem. It is shown that using BP on the factor graph directly is infeasible, since the

messages corresponding to the inner product of FTN symbol vector and the channel

coefficient vector cannot be updated efficiently. VMP is performed on an equivalent

“soft node” to tackle this problem. Moreover, EP is employed to efficiently con-

vert the messages corresponding to FTN symbols obtained from channel decoder

to Gaussian distribution. It is shown that, since the proposed hybrid BP-EP-VMP

algorithm enables effective Gaussian message approximation, the complexity only

increases linearly with the block length N . Simulation results show that the superior

performance of the proposed algorithm compared with the existing methods in FTN

system. Compared with the Nyquist counterpart, FTN signaling with the proposed

algorithm is able to increase the transmission rate over 40% in frequency selective

fading channels, with negligible BER performance loss.
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Algorithm 1 The Proposed Hybrid BP-EP-VMP Approach to Joint Channel Es-

timation and Decoding for FTN Signaling over Frequency Selective Channels

1: Initialisation:

The output LLRs of channel decoder are initialised as L0(cm,n) = 0, i.e., −→m0
xk

= 0

and
−→
V 0
xk

= +∞.

The initial estimation of channel coefficients are obtained using 20 pilot symbols

based on least square method.(In each turbo equalisation, pilot symbols are also

used to estimate the channel taps.) Then, the prior of h can be expressed as

p(h) ∝ exp
(

(h−−→m0
h)H
−→
W0

h(h−−→m0
h)
)
,

where −→m0
h is the measured CSI and

−→
W0

h is diagonal with the entries being[−→
W0

h

]
ii

= σ2
hi

. −→m0
xk

= 0,
−→
V 0
xk

, −→m0
h and

−→
W0

h can be regarded as the prior

information.

2: for Iter=1:I do

3: Calculate the messages from subgraph 1 to subgraph 2 according to (2.31)

and (2.32);

4: Calculate the messages on subgraph 2 according to (2.33)-(2.36);

5: Calculate the messages on subgraph 3 according to (2.37) and (2.38);

6: Calculate the messages related to the “multiplier node” using (2.44)-(2.47);

7: Convert the outgoing messages to LLR based on (2.49) and feed them to

channel decoder;

8: Perform BP channel decoding algorithm;

9: Calculate the incoming messages using EP as in (2.29) and (2.30);

10: end for
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Chapter 3

Low Complexity Receiver Design for FTN

Signaling in Doubly Selective Channels

3.1 Introduction

In chapter 2, the iterative receiver design for FTN signaling over frequency selec-

tive fading channels is studied. When the channel state information is known, the

FDE-MMSE based algorithm [53] can detect the data symbols in a low complexity

fashion. However, in high mobility environments, the channel coefficients vary dra-

matically with respect to time and the time selective fading caused by Doppler shift

is unavoidable. This means the receiver should take interferences induced by fre-

quency selectivity as well as time selectivity into account, which is the data detection

problem in doubly selective channels (DSCs). Since the number of channel coeffi-

cients become very large in DSCs, conventional MAP estimation suffers from huge

complexity. To this end, several works studied the low compleixty receiver design

in DSCs based on shortening the number of interferences [82, 83], basis expansion

model [84] and compressive sensing [85, 86]. Although the receiver complexity was

reduced, it still increases exponentially. In [87], the authors proposed a linear MMSE

(LMMSE) based method for slow variant DSCs. Nevertheless, all above researches

focused on Nyquist signaling and the reception of FTN signaling over DSCs has

not been considered. For FTN signaling, the FDE-MMSE algorithm [53] can be

extended to a DSC case, but the complexity is very high due to the inter carrier in-

terference. Therefore, it is of importance to investigate low complexity FDE method

for FTN signaling in DSCs.
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Figure 3.1 : System Model for FTN signaling in DSCs.

This chapter will study the FDE for FTN signaling in DSCs. Firstly, the system

model of FTN signaling in frequency domain is introduced and then the extension of

the conventional FDE-MMSE is presented. Next, the posterior distribution is writ-

ten as the product of potential functions and two algorithms based on mean field

(MF) [88] and Bethe [89] approximations, respectively, are proposed via minimising

the corresponding variational free energy (VFE). In another way, by approximately

considering the interference only from neighboring frequency-domain symbols, it is

able to reformulate the problem of FTN signaling detection in DSCs into a linear

state-space model. Then, Gaussian message passing (GMP) is performed on a vec-

tor form factor graph to design a low complexity FTN receiver. Considering the

imperfect channel information scenario, the channel uncertainty is taken into ac-

count on the factor graph and robust message passing receiver for FTN signaling is

derived. Finally, the effectiveness of both algorithms are verified via Monte Carlo

simulations.

3.2 System Model

The system model is given in Fig. 3.1. A sequence of information bits b which is

coded and mapped to a sequence of phase-shift keying (PSK)/ quadrature amplitude
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modulation (QAM) symbols x = [x0, ..., xN−1]T . After inserting 2M symbols of

cyclic prefix (CP), the symbol vector is passed through a shaping filter q(t) with

symbol interval T0 = τT , where 0 < τ ≤ 1 is the packing ratio of FTN signaling.

Note that τ = 1 corresponds to Nyquist signaling. Obviously, the transmission rate

is increased by 1/τ times in FTN. Then, the signal is transmitted over a DSC with

impulse response at the kth symbol interval [hk,0, ..., hk,L−1].

With the assumption of perfect synchronisation, the received signal after matched

filtering is sampled at time instant kτT . After removing the CP, the kth sample

can be expressed as [53,90]

rk =
L−1∑
l=0

hk,l

M∑
i=−M

qixk−l−i + γk, (3.1)

with

qk−m =

∫
g(t− kτT )g∗(t−mτT )dt, (3.2)

ηk =

∫
n(t)g∗(t− kτT )dt, (3.3)

where n(t) is an additive white Gaussian noise process with zero mean and vari-

ance N0. Since q(t) is non-orthogonal with period τT , the noise ηk is colored with

autocorrelation function given as

E[ηkηm] = N0qk−m. (3.4)

The received signal vector r , [r0, ..., rN−1]T can be rewritten in a matrix form

as [91,92]

r = HQx + η, (3.5)

where H and Q areN×N matrices with the kth row being [0k, hk,0, ..., hk,L−1,0N−k−L]

and [0k, q−M , ..., qM ,0N−k−2M ], respectively; η , [η0, ..., ηN−1]T is the colored noise

vector with autocorrelation matrix E[ηηH ] = N0Q.
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The received signal r can be transformed to its frequency-domain counterpart as

rf = FHQx + ηf , (3.6)

where F is the N × N normalised discrete Fourier transform (DFT) matrix, i.e.,

Fm,n = 1√
N

exp(−2πjmn). Note that Q is a circulant matrix with eigenvalue de-

composition Q = FHΛF, where Λ = diag{λ0, .., λN−1} and λi is the ith eigenvalue

of Q. Then rf can be formulated as

rf = CΛxf + ηf , (3.7)

where xf = Fx = [xf,0, ..., xf,N−1]T , C = FHFH are the frequency-domain symbol

vector and channel matrix, respectively, ηf = Fη is the frequency-domain noise

vector with autocorrelation matrix

E[γfγf
H ] = E[FγγHFH ] = N0FQFH = N0Λ. (3.8)

3.3 FDE-MMSE based Algorithm

The frequency-domain symbol vector xf in (3.7) can be detected using iterative

MMSE equalizer, with weights W given by

W = ΛHCH(CΛΛHCH +N0Λ)−1. (3.9)

And the estimate of frequency domain symbols xf is given by

x̂f = Wrf . (3.10)

Then employing inverse DFT (IDFT) can provide the estimates of data symbols.

The computational complexity of MMSE equalizer mainly depends on the matrix

inversion operation. For frequency selective fading channels, since C is diagonal, the

complexity of matrix inversion becomes O(N) [90]. However, for DSCs considered

in this letter, C is no longer diagonal and the complexity becomes O(N3). A brute
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force solution is to approximate C by its diagonal entries. Accordingly, W becomes

diagonal with the (i, i)th element given by

Wi,i =
Ci,iλi

|Ci,iλi|2 +N0λi
. (3.11)

However, this approximation suffers significant performance loss since interference

between frequency-domain symbols are underestimated.

3.4 Variational Inference-based FDE for FTN Signaling in

DSCs

3.4.1 Probabilistic Model

According to the Bayesian rule, the a posteriori distribution of frequency-domain

symbol vector xf reads

p(xf |rf ) ∝ p(rf |xf )p(xf ), (3.12)

where p(rf |xf ) is the likelihood function expressed as

p(rf |xf ) ∝ exp(−(rf −CΛxf )
H(N0Λ)−1(rf −CΛxf )), (3.13)

p(xf ) is the a priori distribution of xf with mean vector m0
xf

= Fm0
x and covariance

matrix V0
xf

= FV0
xFH , and m0

x = [m0
x0
, ...,m0

xN−1
]T and V0

x = diag{V 0
x0
, ..., V 0

xN−1
}

are the mean vector and covariance matrix of time-domain symbol vector x, which

are calculated based on the extrinsic LLR from output of the channel decoder at the

previous iteration. To simplify the calculations, the approximation [93] is employed,

V0
x ' aI, with a =

∑N−1
i=0 Vx0

i

N
. (3.14)

Consequently, V0
xf

= aI. Since different samples in ηf are independent, (3.12) can

be rewritten as follows,

p(xf |rf ) ∝
∏
i

p(xf,i) exp(−R{dii}|xf,i|2 +R{dix∗f,i})︸ ︷︷ ︸
ϕii(xf,i)

∏
i,j

exp(−R{dijx∗f,ixf,j})︸ ︷︷ ︸
ϕij(xf,i,xf,j)

,

(3.15)
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where dij = CH
:,i(N0Λ)−1C:,j and di =

CH
:,irf

N0λi
. Without loss of generality, let ϕij = ϕji

to simplify the notations hereafter.

3.4.2 Variational Inference Method

The maximum a posteriori probability (MAP) detection of xf,i can be obtained

by marginalising p(xf |rf ) in (3.15), i.e., p(xf,i|rf ) =
∑

xf\xf,i p(xf |rf ), which involves

huge computational complexity. The variational inference method is employed to

approximate p(xf |rf ) by a proper distribution q(xf ) which is easy to be marginalised.

The approximation can be achieved by minimising the variational free energy (VFE)

[94] formulated as

F =

∫
q(xf ) ln

q(xf )

p(xf |rf )
dxf + C0, (3.16)

where C0 is a constant value.

The MF approximation q(xf ) =
∏

i q(xf,i) is first considered, where all variables

in xf are assumed to be conditional independent. Minimising MF VFE yields the

approximate marginal q(xf,i) as (See Appendix. A for details)

q(xf,i) ∝ ϕii(xf,i)
N−1∏

j=0,j 6=i

exp

(∫
lnϕij(xf,i, xf,j)q(xf,j)dxf,j

)
. (3.17)

With the Gaussian assumption q(xf,j) ∝ CN (xf,j,mxf,j , vxf,j), q(xf,i) is char-

acterised by its mean mxf,i and variance vxf,i . Then, the mean and variance for

the output extrinsic information are given by vexf,i = (1/vxf,i − 1/v0
xf,i

)−1, me
xf,i

=

vexf,i(mxf,i/vxf,i −m0
xf,i
/v0

xf,i
), which can be expressed as

me
xf,i

=
di −

∏N−1
j=0,j 6=i dijmxf,j

R{dii}
, (3.18)

vexf,i =
1

R{dii}
, (3.19)

with mxf,j = Eq(xf,j)(xf,j). It is observed from (3.19) that with MF approximation,

the variance of xf,i is irrelevant to the variances of other symbols. In other words,
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the independence assumption in MF approximation leads to the underestimation of

variance, which may result in performance loss.

To improve the performance of MF approximation, the Bethe approximation is

employed which takes into account the conditional dependencies between frequency-

domain symbols. The Bethe approximation is given by

q(xf ) =
∏
i

q(xf,i)
∏
i,j

q(xf,i, xf,j)

q(xf,i)q(xf,j)
. (3.20)

Minimising Bethe VFE yields (See Appendix. B for details)

q(xf,i) ∝ ϕii(xf,i)
N−1∏

j=0,j 6=i

∫
ϕij(xf,i, xf,j)q̃\i(xf,j)dxf,j, (3.21)

where q̃\i(xf,j) = q(xf,j)/
∫
ϕij(xf,i, xf,j)q̃\j(xf,i)dxf,i. Assuming that q̃\i(xf,j) is

available in Gaussian form CN (xf,j, m̃\i,xf,j , ṽ\i,xf,j), the mean and variance for the

extrinsic information can be determined as

me
xf,i

=
di −

∏N−1
j=0,j 6=i dijm̃\i,xf,j

R{dii}+ ṽ\i,xf,j |dij|2
, (3.22)

vexf,i =
1

R{dii}+ ṽ\i,xf,j |dij|2
. (3.23)

The calculated extrinsic information is fed to the channel decoder. After channel

decoding, the decoder outputs extrinsic LLR to equalizer and next iteration starts.

3.4.3 Complexity Reduction

For MF approximation, when calculating the marginals of different frequency-

domain symbols, the messages are computed once per block. Therefore, the de-

tection complexity for the proposed MF approximation method is O(N2) for a N -

length symbol vector. For Bethe approximation, since m̃\i,xf,j and ṽ\i,xf,j have to

be calculated for different symbols, an additional complexity of O(N2) is required.

Consequently, the detection complexity of Bethe approximation is O(2N2). In fact,

q̃\i(xf,j) for different symbols only differ in one term compared with its marginal



48

q(xf,j). a low-complexity scheme is proposed which employs q(xf,j) to approximate

q̃\i(xf,j). As a result, the complexity of the Bethe approximation reduces to O(N2).

this approximation method is referred to as “app-Bethe” which will be evaluated

via simulations.

To further reduce the complexity in practical receivers, only the interferences

from only R frequency-domain symbols are considered, whose indices correspond

to the entries of C:,i with relatively large modulus. Accordingly, the detection

complexity is reduced to O(NR) for both MF approximation and app-Bethe method

and O(2NR) for the standard Bethe approximation, which means the complexity

increases linearly with the block length N .

3.4.4 Simulation Results

An LDPC coded FTN system with coding rate R = 1/2 and block length N =

1000 is considered . Root-raised-cosine pulse shaping with roll-off factor α = 0.5

is employed. The number of CP symbols is 2M = 20. The carrier frequency is

f0 = 2 GHz, symbol duration is T = 0.25µs, and mobile velocity is v = 300 km/hr.

The number of channel taps L = 10 and the channel coefficients vary symbol by

symbol. For each channel realisation, hk,l are independently generated according

to the distribution CN (hk,l, 0, q
l). The power delay profile is ql = exp(−0.1l) and

the averaged channel energy is normalised to 1. The number of iterations between

channel decoding and equalisation is 20.

Bit error rate (BER) performances of the equalizer with the proposed algorithms

and the iterative FDE-MMSE equalizer are illustrated in Fig. 3.2. For comparison

purpose, the performance of a TDE method extended from [54] is also included. The

number of interfering frequency-domain symbols for both MF and Bethe approxi-

mations is set to R = 10. It can be observed that the performance of the proposed

algorithms for FTN signaling attain that of the Nyquist signaling while increas-
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Figure 3.2 : BER performance of different algorithms for FTN signaling (τ = 0.8)

and Nyquist signaling (τ = 1) in DSCs.

ing the transmission rate by 25%. It is seen that, with much lower computational

complexity than MMSE equalizer, the Bethe approximation performs very close to

the FDE-MMSE equalizer and the TDE method1. The MF approximation leads to

performance loss due to the underestimation of variances of detected symbols. The

performance of app-Bethe approximation is between that of MF and Bethe approx-

imations, which achieves a compromise between BER performance and complexity.

BER performance of the proposed MF and Bethe approximations with different

R are evaluated in Fig. 3.3. The packing ratio of FTN signaling τ = 0.8. It is

observed that increasing R improves the performance at the cost of higher complex-

ity. Nevertheless, when R is greater than 10, the improvement becomes marginal.

1The complexity of TDE extended from [54] is O(N((LFTN + p)2 + L2)), where LFTN is the

length of ISI imposed by FTN and p is the order of AR model for colored noise process.
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Figure 3.3 : BER performance of MF and Bethe approximations versus different

values of R for FTN signaling (τ = 0.8) in DSCs.

Therefore, in practical applications, good tradeoff off between BER performance

and computational complexity can be achieved by choosing a proper value of R for

the proposed algorithms.

3.5 Iterative Message Passing Receiver for FTN signaling in

DSCs

3.5.1 Factor Graph Model

Inspired by [83], C is approximated by considering the interference only from

the Q − 1 neighboring frequency-domain symbols. Accordingly, the kth row of C

becomes Ck,: = [0, ..., 0,Ck,k−Q+1, ...,Ck,k, 0, ..., 0] and rf,k is formulated as

rf,k =

Q−1∑
j=0

Ck,k−jλk−jxf,k−j + γf,k. (3.24)
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By defining sk , [λk−Q+1xf,k−Q+1, ..., λkxf,k]
T and ck , [Ck,k−Q−1, ...,Ck,k]

T , the

linear state-space model is given as

sk = Ask−1 + bkxf,k, (3.25)

rf,k = cTk sk + γf,k, (3.26)

where A =

 0TQ−1 IQ−1

0Q

, bk = [0Q−1, λk]
T . Based on (3.25) and (3.26), the

Forney-style factor graph (FFG) for FTN signaling in DSC is illustrated in Fig.

3.4. With Gaussian assumption of the data symbols, all messages on FFG can

be expressed in Gaussian form with means and covariance matrices updated by

Gaussian message passing (GMP). The notation −→· is used to denote the message

passed along the arrow direction on FFG while ←−· the message passed in opposite

direction.

3.5.2 FDE-based Message Passing Receiver

The decoder relies on the parameters update of two messages on the factor graph,

i.e., the mean and covariance matrix of incoming message−→mxf = [−→mxf,0 , ...,
−→mxf,N−1

]T ,

−→
Vxf = diag{

−→
V xf,0 , ...,

−→
V xf,N−1

} and that of the outgoing message←−mxf = [←−mxf,0 , ...,
←−mxf,N−1

]T ,

←−
Vxf = diag{

←−
V xf,0 , ...,

←−
V xf,N−1

} .

• Calculation of the incoming messages:

Following the update rules of GMP, the parameters of incoming message can be

calculated by

−→mxf = F−→mx, (3.27)

−→
Vxf = F

−→
VxFH , (3.28)

where −→mx and
−→
Vx are the mean and covariance matrix of time-domain symbols,

which can be obtained by using the extrinsic log-likelihood ratio (LLR) obtained
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Figure 3.4 : Factor graph of FDE-based receiver for FTN signaling in DSC.

from the output of channel decoder. The calculation in (3.28) is not trivial. To

reduce the complexity, the approximation in [93] is employed

−→
Vx ≈ aI, with a = tr[

−→
Vx]/N. (3.29)

Accordingly,
−→
Vxf = aI.

• Calculation of the outgoing messages:

Assuming the parameters −→ms
′
k−2

and
−→
Vs

′
k−2

are available, we have

−→
Vsk−1

=
−→
Vs

′
k−2

+ b|λk−1|2
−→
V xf,k−1

bT , (3.30)

−→msk−1
= −→ms

′
k−2

+ bλk−1
−→mxf,k−1

. (3.31)

Then the transformed mean and covariance matrix
−→
Ws

′
k−1

−→ms
′
k−1

and
−→
Vs

′
k−1

can

be obtained as
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−→
Vs

′
k−1

= A
(←−
Wṡk−1

+
−→
Wsk−1

)−1

AT , (3.32)

−→
Ws

′
k−1

−→ms
′
k−1

= A
(−→
Wsk−1

−→msk−1
+
←−
Wṡk−1

←−mṡk−1

)
, (3.33)

where
−→
Wsk−1

,
−→
V−1

sk−1
and

←−
Wṡk−1

=
ck−1c

H
k−1

N0λk−1

, (3.34)

←−
Wṡk−1

←−mṡk−1
=

ck−1rf,k−1

N0λk−1

. (3.35)

Similarly, the backward mean and covariance matrix ←−msk and
←−
Vsk can be ex-

pressed as

←−
Vsk =

(←−
Wṡk +

←−
Ws̈k

)−1

, (3.36)

←−msk =
←−
Vsk

(←−
Wṡk
←−mṡk +

←−
Ws̈k
←−ms̈k

)
. (3.37)

Based on (3.32), (3.33), (3.36) and (3.37), we have

←−mxf,k =
bTk

(←−msk −
−→ms

′
k−1

)
λk

, (3.38)

←−
V xf,k =

bTk
(−→
Vs

′
k−1

+
←−
Vsk

)
bk

λ2
k

. (3.39)

Then, the parameters of outgoing message ←−mxf ,
←−
Vxf can be obtained using (3.38)

and (3.39).

By inverse DFT, the extrinsic information of equalizer can be obtained, which

are used to calculate the LLRs fed to the channel decoder. After channel decoding,

the extrinsic LLRs of time-domain symbols are passed to equalizer, which begins

the next iteration.

3.5.3 Imperfect Frequency-Domain Channel Information

In practice, the channel information C may not be perfectly known, in which

case the true channel information C̄ is given as

C̄ = ρC + ∆, (3.40)
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Figure 3.5 : Factor graph modification for imperfect channel information.

where ρ is the coefficient and ∆ is the channel uncertainty. The elements of ∆

are assumed to be independent Gaussian distributed variables with zero means and

variances {φi,j}. Ignoring the channel uncertainty in the above equalisation may

lead to crucial performance loss. To tackle this problem, the channel uncertainty

is taken into account on factor graph and robust message passing receiver for FTN

signaling in DSCs is derived.

Substituting (3.40) into (3.26) yields rf,k = (ρck+ MMMk)T sk + γf,k, where MMMk,

[∆k,k−Q−1, ...,∆k,k]
T . Accordingly, the dashed-line box in Fig. 3.4 can be replaced

by the one illustrated in Fig. 3.5. Note that a multiplier node � is included to

represent the product of two variables. Denote c̄k = [C̄k,k−Q+1, ..., C̄k,k]
T and Φk =

diag{φk,k−Q+1, . . . , φk,k}. According to sum-product algorithm, the message from

multiplier node to ṡk can be calculated as2

←−µ ṡk =

∫
δ(yf,k − c̄Tk ṡk)

←−µ yf,k
←−µ c̄kd yf,k d c̄k

∝
∫
e
− 1
N0λk

(rf,k−c̄Tk ṡk)2

e−(c̄k−ρck)HΦ−1
k (c̄k−ρck)dc̄k,

∝ exp

(
ṡHk

ρ2ckc
H
k

N0λk + Σs

ṡk − 2ṡHk
ρckrf,k

N0λk + Σs

)
, (3.41)

2The multiplier node � can be regarded as a factor node δ(yf,k − c̄Tk ṡk).



55

where Σs = ṡHk Φkṡk. For PSK modulation,3 |xf,k|2 = |xk|2 = 1 satisfies. Then,

after tedious but straightforward manipulations, the message ←−µ ṡk in (3.41) can be

expressed with parameters given by

←−
Wṡk
←−mṡk =

ρckrf,k
N0λk + tr[Φk]

, (3.42)

←−
Wṡk =

ρ2ckc
H
k

N0λk + tr[Φk]
. (3.43)

The parameters of the other messages on factor graph can be derived similarly to

that in Section 3.5.2, which are not given here for brevity.

The complexity of the proposed message passing receiver is compared to state-

of-the-art algorithms in Table 3.1. Since Q can be much smaller than N , the pro-

posed algorithm reduces the complexity of MMSE equalizer significantly. Moreover,

compared to the variational inference method, the complexity incensement of the

proposed algorithm is acceptable.

Table 3.1 : Complexity Analysis

Algorithm Complexity Value

MMSE equalizer O(N3) N is large

Proposed algorithm O(NQ2) Q is small

3.5.4 Simulation Results

In the simulation, a rate-1/2 convolutional code and BPSK modulation are em-

ployed. The number of transmitted symbols is N = 1000. A FTN signaling with

root raised cosine pulse shaping is considered, having a roll-off factor α = 0.5. The

number of CP symbols is 2M = 40.4 The carrier frequency is f0 = 2 GHz, symbol

3For QAM signal, (3.41) is not in Gaussian form and GMP cannot be applied directly.

4The number of CP symbols should be larger than the ISI tap length caused by both FTN

signaling and fading channel.
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Figure 3.6 : BER performance of different algorithms for Nyquist signaling and FTN

signaling.

duration is T = 0.25µs, and mobile velocity v = 300 km/hr. The channel varies

symbol by symbol. The number of channel taps is set to L = 30. For each channel

realisation, the coefficients hk,l are independently generated according to the distri-

bution hk,l ∼ N (0, ql). The power delay profile is ql = exp(−0.1l) and the averaged

channel energy is normalised to 1. For the proposed algorithm, Q = 5 is set, unless

otherwise specified. The number of iterations is I = 20. The parameters of message

from channel decoder are initialised as −→m(0)
x = 0T and

−→
V

(0)
x = IN .

The bit error rate (BER) performance of the proposed algorithm is illustrated

in Fig. 3.6, in which the channel information is assumed to be perfectly known.

For comparison, the performance of MMSE equalizer5, TDE method extended from

5To exploit the prior information in (3.29) obtained from channel decoder, MMSE and the

approximated MMSE equalizer are modified to W = aΛHCH(aCΛΛHCH +N0Λ)−1 and Wi,i =

aCi,iλi/(|aCi,iλi|2 +N0λi), respectively.
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Figure 3.7 : BER performance of the proposed robust algorithm with channel infor-

mation uncertainty. The parameter ρ = 0.99.

[54] and the variational inference method in [95] are also plotted. It is observed

that the approximated MMSE equalizer suffers significant performance loss. The

proposed algorithm outperforms the variational inference method by considering

the conditional dependence between frequency-domain symbols. It is also observed

that FTN signaling with τ = 0.6 can transmit 66% above the Nyquist rate, with only

0.4dB performance loss. The proposed algorithm with imperfect channel information

is evaluated in Fig. 3.7. The variance of the elements of ∆ are set to φij = 0.003

and φij = 0.01, respectively,6ρ = 0.99. The performance of Nyquist signaling with

α = 0.2 is plotted as a benchmark. It is seen that FTN signaling outperforms

the Nyquist counterpart given the same spectral efficiency. Significant performance

degradation can be observed at high Eb/N0 if the uncertainty of channel information

6The variances are evaluated coarsely based on channel estimation with 10 and 30 pilot symbols,

respectively, in time-invariant channel at SNR=10 dB.
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is not taken into account, while the proposed robust algorithm performs very close

to the one with perfect channel information. Moreover, compared to the MMSE and

variational inference method, the proposed message passing receiver is more robust

to channel uncertainty.

3.6 Conclusions

This Chapter proposes two FDE based iterative receivers for FTN signaling in

DSCs. By minimising the constrained VFE corresponding to MF and Bethe ap-

proximations, extrinsic information from the frequency-domain equalizer is derived

in a Gaussian form. By using Gaussian message passing, iterative symbol detec-

tion is performed on a reformulated vector-form factor graph. To further reduce

the complexity, the number of interfering frequency-domain symbols is restricted.

Accordingly, the complexity of the proposed algorithms increases linearly with the

block length N . Simulation results show that the proposed algorithms for FTN

signaling in DSCs attain the performance of Nyquist signaling while increasing the

transmission rate by 25%. By considering the conditional dependencies of pairwise

symbols, the Bethe approximation outperforms the MF method, and it performs

very close to the FDE-MMSE equalizer and the extended TDE method in DSCs

with much lower computational complexity. Moreover, by taking into account the

channel uncertainty, the proposed message passing receiver is shown to be robust to

the imperfect channel information.
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Chapter 4

Uplink SCMA Multiuser Detector Design and

Convergence Analysis

4.1 Introduction

In Chapter 2 and Chapter 3, the receiver designs for FTN signaling are inves-

tigated and it is shown that the spectral efficiency can be improved by using non-

orthogonal waveform. In this chapter, a low complexity receiver for uplink SCMA

system will be developed.

With the aid of appropriate sparse codebook design, SCMA achieves an improved

performance. However, due to the non-orthogonal resource allocation of the SCMA

system, the optimal maximum a posteriori (MAP) detectors impose a high complex-

ity. By exploiting the sparsity of the codewords, several factor graph and message

passing algorithm (MPA) [58] based receivers have been developed [59, 62, 96, 97].

Nevertheless, the rank-deficient SCMA system results in a factor graph having short

cycles, for which the message passing algorithm may not be able to converge. There-

fore, it is important to investigate the convergence of iterative SCMA receivers.

Hence, a low-complexity receiver based on Bayesian inference [98] is proposed in

this chapter. The system model of uplink SCMA system is first presented. Then

instead of conventional probabilistic factorisation, the joint posterior distribution of

data symbols is formulated as the product of several clique potentials, which can help

to reduce the number of short cycles. By minimising the Bethe approximation [99]

based VFE, the closed forms of marginal distributions of symbols are determined.

It can be seen that the complexity of the proposed receiver only increases linearly
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Figure 4.1 : Block diagram of the SCMA system.

with the number of users. Moreover, since the proposed scheme is an iterative one,

the convergence behavior of the proposed algorithm is analysed. It is proved that

the variance of symbol belief can always converge, while for the mean, the necessary

and sufficient conditions to guarantee its convergence are given.

4.2 System Model

J

An SCMA system is considered which supports K users multiplexed onto J or-

thogonal resources is considered, as shown in Fig. 4.1. In orthogonal multiple access

(OMA), K ≤ J is satisfied to ensure that each user is allocated to an orthogonal

resource. By contrast, in the SCMA system, the number of users is larger than

the number of resource blocks, which leads to a rank-deficient system. The ratio

λ = K > 1 is referred to as the normalised user-load. For each user, the bits bk are

mapped to a J-component SCMA codeword xk. The mapping function for the kth

user is xk = φ(bk), φ : B
log2 M → χ, where χ ∈ C

K and |χ| = M . The SCMA code-

word of the kth user is selected from a predefined codebook. Let xk = [xk,1, ..., xk,J ]

be the transmitted symbols of user k. Given the sparsity of SCMA codewords, there

are only D < J nonzero entries in xk.

The spread signal of user k is then transmitted through the corresponding chan-
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nel hk = [hk,1, ..., hk,J ]T . Assuming perfect synchronisation between the base station

and users, the received signal is expressed as

y =
K∑
k=1

diag(hk)xk + n, (4.1)

where n is the Gaussian noise having a power spectral density of N0.

4.3 Proposed Low-Complexity Receiver

Generally, utilising message passing algorithm (MPA) based receiver can provide

the optimal maximum a posteriori (MAP) estimate. Nevertheless, MPA has expo-

nential complexity which limits its implementation in practice. In this section, a

low-complexity receiver for SCMA system is proposed based on the variational free

energy framework.

4.3.1 The Proposed Algorithm

Under the Gaussian assumption of n, the likelihood function of the received sig-

nals y conditioned on the user’s transmitted symbols xk can be derived, formulating

as

p(y|x) ∝ exp

(
− 1

N0

‖y −
K∑
k=1

diag(hk)xk‖2

)
. (4.2)

According to the classic Bayesian theorem, the a posteriori distribution can be

expressed as

p(x|y) ∝ p(x)p(y|x), (4.3)

where p(x) is the joint a priori distribution of all users’ source symbols, which is

expressed as

p(x) ∝
K∏
k=1

N (xk; m
0
xk
,V0

x,k). (4.4)
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In (4.4), m0
xk

= [m0
xk,1

, ...,m0
xk,J

]T and V0
x,k = diag([v0

xk,1
, ..., v0

xk,J
]) are calculated

based on the extrinsic information gleaned from the channel decoder.

Since the SCMA source symbols and received signal samples are independent,

(4.3) is factorised as

p(x|y) ∝
J∏
j=1

∏
k

φjk
∏
(i,k)

φji,k, (4.5)

where

φjk = p(xk,j) exp

(
−
h2
k,jx

2
k,j − 2hk,jyjxk,j

N0

)
, (4.6)

φji,k = φjk,i = exp

(
−

2h2
k,jxi,jxk,j

N0

)
, (4.7)

are referred to as the self-potential and pairwise potential derived in [100], respective-

ly. Usually, the goal is to find the estimate of every data symbol, i.e. x̂k,j, which is

equivalent to obtain the a posteriori probability p(xk,j|y). Direct marginalisation of

p(x|y) imposes a high complexity. Motivated by the energy minimisation framework,

an appropriate trail distribution b(x) is needed that can be readily marginalised to

approximate p(x|y).

The variational free energy is defined as [101]

F = FH +

∫
b(x) ln

b(x)

p(x|y)
dx, (4.8)

where FH = − lnZ is termed as Helmholtz free energy [101]. In this problem, Z

denotes the normalisation factor of p(x|y). The simplest form for b(x) is the mean-

field (MF) approach [100], which factorises b(x) as bMF(x) =
∏

k,j b
j
k(xk,j), where

bjk(xk,j) is a marginalised trail distribution (‘belief’) over the single variable xk,j.

Accordingly, the free energy can be readily computed and then an MF approximation

for the beliefs bjk(xk,j) is obtained. However, the main problem of the factorised MF

approximation is that it assumes all variables in x to be conditionally independent

of each other, even though actually they are not. This motivates us to find a
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more accurate approximation than the MF approximation. The Bethe method has

been recognised as an efficient tool in probabilistic problems, since it considers the

conditional dependencies amongst the variables as follows:

b(x) =
∏
j

∏
k

bjk(xk,j)
∏
(i,k)

bji,k(xk,j, xi,j)

bjk(xk,j)b
j
i (xi,j)

. (4.9)

Substituting (4.9) into (4.8) yields

F =
∑
j

(∑
(i,k)

∫
bji,k(xk,j, xi,j) ln

bji,k(xk,j, xi,j)

φji,k
dxk,jdxi,j

+ (K − 1)
∑
k

∫
bjk(xk,j) ln

bjk(xk,j)

φjk
dxk,j

)
+ C. (4.10)

The variational free energy is constrained by the normalisation and consistency

constraints of: ∫
bjk(xk,j)dxk,j = 1, (4.11)∫

bji,k(xk,j, xi,j)dxi,j = bjk(xk,j). (4.12)

The classic Lagrangian multipliers λk and λk,i(xk,j) are used for the normalisation

constraint and the consistency constraints. Thus the Lagrangian is constructed as

L =F +
∑
j

(∑
i

λk

(
1−

∫
bjk(xk,j)dxk,j

)
+ (4.13)

∑
(i,k)

∫
λi,k(xk,j)

(∫
bki,k(xk,j, xi,j)dxi,j − b

j
k(xk,j)

)
dxk,j

)
.

According to the calculus of variations, setting δ(L) = 0 gives the beliefs bji,k(xk,j, xi,j)

and bjk(xk,j) at stationary points, which yield

bki,k(xk,j, xi,j) =Cφji,kb
j
i (xi,j)b

j
k(xk,j) exp [−λk,i(xk,j)− λi,k(xi,j)] , (4.14)

bjk(xk,j) =Cφjk exp

∑
(i,k)

λi,k(xk,j)

 . (4.15)

By substituting (4.15) into (4.14), bji,k(xk,j, xi,j) can be expressed as

bji,k(xk,j, xi,j) ∝ φjkφ
j
iφ

j
i,k exp

 ∑
(k,l),l 6=i

λk,l(xk,j) +
∑

(i,m),m6=k

λi,k(xi,j)

 .
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For simplicity, the following shorthand is introduced

bji\k(xi,j) ∝ φji exp

 ∑
(i,m),m6=k

λi,m(xi,j)

 . (4.16)

After integrating bji,k(xk,j, xi,j) over xi,j and comparing it to (4.15), finally λk,i(xk,j)

is given as

λk,i(xk,j) = ln

(∫
φji,kb

j
i\k(xi,j)dxi,j

)
. (4.17)

Without loss of generality, the mean and variance of bji\k(xi,j) are denoted by mj
i\k

and vji\k. Then λk,i(xk,j) is expressed as a quadratic polynomial

λk,i(xk,j) =
h4
k,jv

j
i\k

N2
0

x2
k,j − 2

h2
k,jm

j
i\k

N0

xk,j + C

= −βjk,ix
2
k,j + 2γjk,ixk,j + C. (4.18)

Based on (4.15) and (4.18), the mean and variance of the approximate marginal

bjk(xk,j) can be calculated as

mxk,j = vxk,j

m0
xk,j

v0
xk,j

+
2hk,jyj
N0

+
∑
(i,k)

γjk,i

 , (4.19)

vxk,j =

 1

v0
xk,j

+
h2
k,j

N0

+
∑
(i,k)

βkk,i

−1

. (4.20)

Since the terms 1
v0
xk,j

+
h2
k,j

N0
and

m0
xk,j

v0
xk,j

+
2hk,jyj
N0

do not change during the iterations,

ρjk and %jk are used to denote those two terms for simplicity. A damping scheme is

further considered, which is expected to improve the performance in a high density

connected network [102]. Denoting the belief obtained at the lth iteration as bjk(l),

the damped belief is computed as

b̃jk(l) = (bjk(l))
α(bjk(l − 1))(1−α), (4.21)

where 0 < α < 1 is the damping factor. That is to say the updating of the belief is

based on a combination of the new belief and the old one. The mean and variance
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of the damped belief are given as

m̃xk,j(l) = ṽxk,j(l)

(
αmxk,j(l)

vxk,j(l)
+

(1− α)mxk,j(l − 1)

vxk,j(l − 1)

)
, (4.22)

ṽxk,j(l) =

(
α

vxk,j(l)
+

1− α
vxk,j(l − 1)

)−1

. (4.23)

Given the mean and variance of b̃jk(xk,j), the log likelihood ratios (LLRs) Lak fed

to the channel decoder can be calculated. Note that updating mxk,j and vxk,j relies

on other variables, hence the extrinsic information corresponding to different data

symbols is updated iteratively. After decoding, the output LLRs Lek are converted

to p(xk,j) and the next turbo iteration starts. The details of the proposed algorithm

is summarised in Algorithm 2.

Algorithm 2 Energy Minimisation Based Turbo Detector for SCMA System

1: Initialisation:

2: The initial a priori distribution of user’s source symbol is set as Gaussian dis-

tribution with zero mean and infinite variance;

3: for iter=1:NIter (number of iterations) do

4: For all users ∀k

5: Determine βjk,i and γjk,i according to (4.18);

6: Compute bji\k(xi,j) and bjk(xk,j) according to (4.16) and (4.19), (4.20);

7: Update the mean and variance of the damped belief according to (4.22), (4.23);

8: Calculate LLR Lak based on b̃jk(xk,j) and feed them to the channel decoder;

9: Perform standard BP channel decoding;

10: Calculate m0
xk,j

and v0
xk,j

based on the output extrinsic information from the

channel decoder ;

11: end for
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4.3.2 Computational Complexity

Note that the complexity of the proposed algorithm is dominated by the integra-

tion in (4.17). For the symbol xk,j of user k, there are a total of (D− 1) interfering

symbols. Note that with the beliefs being Gaussian, when obtaining the marginal of

symbol xk,j, only simple addition and multiplication calculations are involved. As a

result, a complexity on the order of O[(D − 1)]) is imposed and the complexity of

the proposed algorithm is then O[J(D− 1)]. The original MPA receiver requires an

optimal MAP detector, having a complexity order of O(|χ|D). The Max-log based

SCMA detector of [62] still has a complexity order of |χ|D, although the number of

operations has been significantly reduced. By contrast, the complexity of the pro-

posed algorithm only increases linearly with the number of users. Compared to the

method of [97], the proposed algorithm has the same complexity order. In summary,

the different algorithms’ complexities summarised in Table I.

Table 4.1 : Complexity Comparison

Algorithm Name Computational Complexity

Conventional MPA O(K|χ|D)

Max-log based MPA O(K|χ|D)

Modified MPA [97] O[K|χ|(D − 1)]

The proposed algorithm O[K|χ|(D − 1)]

4.4 Convergence Analysis

The convergence is a key issue for an iterative algorithm. In this section, the

realistic conditions that guaranteed the convergence of the proposed energy minimi-

sation based receiver are derived.
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According to (4.16), at the lth iteration, mj
i\k and vji\k are updated based on the

parameters determined in the previous iteration, following

vji\k(l) =

ρji +
∑

(i,m),m6=k

βji,m(l − 1)

−1

, (4.24)

mj
i\k(l) = vji\k(l)

%ji +
∑

(i,m),m6=k

γji,m(l − 1)

 . (4.25)

Proposition 1:

The variance ṽxk,j of the belief is guaranteed to converge, satisfying

ṽxk,j(l) ≤ ṽxk,j(l − 1).

Proof:

See Appendix C. �

Next let’s analyse the convergence of m̃xk,j , which is equivalent to proving that

the difference between mxk,j obtained in two consecutive iterations becomes smaller

as l becomes larger, yielding,

|m̃xk,j(l + 1)− m̃xk,j(l)| ≤ |m̃xk,j(l)− m̃xk,j(l − 1)|. (4.26)

Provided that the number of iterations is large enough, the parameters, vxk,j and

vji\k are assumed to converge to v∗ and v̄∗ for all k, respectively. According to (4.23),

ṽxk,j also converges to v∗. Thus (4.19) and (4.22) can be rewritten as

mxk,j(l) = v∗

%jk +
∑
(i,k)

γjk,i(l)

 , (4.27)

m̃xk,j(l) = αmxk,j(l) + (1− α)mxk,j(l − 1). (4.28)
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Then

m̃xk,j(l + 1)− m̃xk,j(l) = α(mxk,j(l + 1)−mxk,j(l)) + (1− α)(mxk,j(l)−mxk,j(l − 1))

= v∗
∑
(i,k)

[
α
(
γjk,i(l + 1)− γjk,i(l)

)
+ (1− α)

(
γjk,i(l)− γ

j
k,i(l − 1)

) ]
,

(4.29)

which implies that the convergence of mxk,j is related to that of γjk,i.

Substituting mj
i\k from (4.25) into (4.18) yields

γji,m(l) = −b

%ji +
∑

(i,m),m6=k

γji,m(l − 1)

 , (4.30)

with b =
h2
k,j ṽ

∗

N0
. Similar to (C.2) in Appendix C, the following inequality is obtained

γji,m(l + 1)− γji,m(l) = b
∑

(i,m),m6=k

[
γji,m(l − 1)− γji,m(l)

]
. (4.31)

Again, by stacking all γ having the index j as a vector, the following equation is

given

γj(l + 1)− γj(l) = bA
[
γj(l)− γj(l − 1)

]
. (4.32)

Proposition 2:

The mean mxk,j of the symbol belief is guaranteed to converge, if and only if the

spectral radius of A satisfies ρ(A) < 1
b
.

Proof:

See Appendix D. �

4.5 Simulation Results

A pair of SCMA systems are considered using parameters of: a) K = 6 and

J = 4, λ = 150%, where the corresponding codebook is defined in [103]; b) K = 12
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and J = 6, λ = 200%, where the corresponding codebook is defined in [104]. A

rate-5/7 LDPC code is employed and a flat-fading Rayleigh channel associated with

perfect channel state information (CSI) is used. The number of iterations between

the channel decoder and the multiuser detector is set to NIter = 10.

The bit error rate (BER) performance of the proposed algorithm is compared to

that of the state-of-the-art methods in Fig. 4.2 and Fig. 4.3. The damping factor of

the proposed algorithm is α = 0.3.1 It can be seen from both figures that the pro-

posed algorithm matches the performance of the MPA receiver, but the complexity

of the conventional MPA receiver increases exponentially with the number of users.

The variational inference method has a low complexity as a benefit of the mean-field

approximation. Nevertheless, due to ignoring the conditional dependencies amongst

data symbols, the variational inference method leads to a significant performance

loss. When λ = 150%, the modified MPA method of [97] has a similar performance

to that of the proposed algorithm. However, when λ = 200%, the modified MPA [97]

experiences performance loss. This is because the factor graph has more cycles due

to the more severe interference, which will result in convergence problems for the

modified MPA.

To evaluate the convergence of the proposed algorithm, in Fig. 4.4, its BER per-

formance for a single user versus the number of iterations at different values of Eb/N0

is depicted. An SCMA system associated with λ = 150% is considered. It can be

observed that increasing the number of iterations improves the performance of the

proposed algorithm. Moreover, at Eb/N0 = 3 dB, the performance improvement be-

comes marginal, as the number of iterations increases. When Eb/N0 becomes higher,

more iterations are required to guarantee convergence. The extrinsic information

transfer (EXIT) chart is additionally invoked to reveal the mutual information (MI)

1There are several methods proposed to find the optimal damping factor under different criteria.

Here the value in [102] is used.
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Figure 4.2 : BER performance of different algorithms. (λ = 150%)

convergence property between the channel decoder and the proposed SCMA detec-

tor, which is shown in Fig. 4.5. IA,dec and to IE,dec are used to denote the MI between

the transmitted bits and the LLRs fed to the channel decoder and the MI between

the bits and the extrinsic LLRs output by the channel decoder, respectively. Similar

definitions of IA,det and IE,det are used for the SCMA detector. It can be seen from

Fig. 4.5 that at Eb/N0 = 4dB, an open tunnel is attained and both curves reach the

(1,1) point of perfect convergence to a vanishingly low BER. Hence, it shows that

the proposed algorithm is expected to converge.

4.6 Conclusions

In this chapter, an energy minimisation based low-complexity iterative receiver is

proposed for SCMA systems. By factorising the joint distribution into the product

of several potentials, the Bethe approximation is used to derive the marginals of
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Figure 4.3 : BER performance of different algorithms. (λ = 200%)

data symbols. The complexity of the proposed algorithm only increases linearly

with the number of users, instead of the exponential complexity of the optimal

MAP detector. The convergence of the proposed algorithm is further analysed

and its convergence conditions are derived. The simulation results for two SCMA

systems with normalised user-load λ = 150% and λ = 200%, respectively, show that

the performance of the low-complexity energy minimisation based algorithm closely

approaches the performance of the conventional MPA scheme and outperforms both

the modified MPA and the variational inference methods.
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Chapter 5

Downlink MIMO-SCMA Receiver Design:

Convergent Message Passing and Cooperative

Detection

5.1 Introduction

In Chapter 4, a low complexity receiver is designed for uplink SCMA system.

This Chapter will focus on receiver design problem of downlink SCMA problem.

Considering spatial diversity, SCMA can be combined with the multiple-input multiple-

output (MIMO) systems to further improve the spectral efficiency. Different from

the orthogonal multiple access, the optimal detection for MIMO-SCMA system suf-

fers from very high computational complexity [105]. In [106], Gaussian distribu-

tion is utilised to approximate data symbols and two low-complexity MPA-based

detectors were proposed for MIMO-NOMA system. In wideband communications,

channel becomes frequency selective and signal suffers from inter-symbol interference

(ISI) [100,102]. In [107] and [108], low-complexity receivers based on MPA were pro-

posed for MIMO systems over frequency selective channels. It is well known that the

belief propagation (BP) method gives the exact marginal when the factor graph is

loop free [94]. However, for MIMO-SCMA system over frequency selective channels,

due to the loops of factor graph representations, BP may fail to converge or easily

converge to local minima. This phenomenon can be interpreted from the perspec-

tive of variational free energy [101]. The BP rules can be derived from minimising

constrained Bethe free energy. Unfortunately, when the factor graph contains loop-

s, Bethe free energy is no longer convex and the resultant MPA is not guaranteed
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to converge. So far there have been no investigations on the convergent MPA in

receiver design problem.

Moreover, for multiuser systems, diversity gain can be achieved by sharing nec-

essary information between users. The users can share its received signal samples

between each other directly. However, this kind of mechanism is not realistic due to

two reasons: 1) transmitting measurements to a possibly distant user is quite power

consuming; 2) a multi-hop routing scheme is required to ensure all measurements are

collected, which may not be practical. On the contrary, the distributed processing

scheme based on cooperation between users in a network is more attractive since it

only requires local computations and communications with neighboring users. The

distributed cooperative processing method has been widely used in localisation and

target tracking problems [109,110]. For communications, only a few papers consid-

ered the strategies for base station or receiver cooperation but did not apply them

to MPA-based receivers in fading channels [111–113].

This chapter aims for designing a convergent version of MPA to be used in factor

graph with short cycles and developing cooperative detection schemes in a network

with inter-user links. The MIMO-SCMA system with frequency selective fading

channels is first introduced. Then to reduce the complexity of the MPA receiver

based on factor graph, auxiliary variables are introduced and the factorisation of

the joint posterior distribution is represented by a stretched factor graph. Moreover,

considering the proposed BP-EP receiver may fail to converge in the MIMO-SCMA

scenario due to the loopy factor graph, the Bethe free energy is convexifid and a

convergence-guaranteed BP-EP receiver is proposed. Based on the observation that

global messages on factor graph can be expressed as the product of several local

messages calculated at each user, it is able to perform the cooperative detection in a

distributed way. A belief consensus-based scheme is proposed. As all messages are

Gaussian distributed, only their means and variances are exchanged between users.
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Then considering that the inter-user links are noisy in practice and the convergence

speed of belief consensus method will become rather slow, an alternative direction

method of multipliers (ADMM)-based algorithm [114] is proposed which aims at

minimising the Kullback-Leibler divergence [115] between the global message and

the product of local messages.

5.2 Problem Formulation

5.2.1 System Model

A K-user downlink MIMO-SCMA system is considered, where each user is e-

quipped with a single antenna and the base station is equipped with J transmit

antennas. The SCMA encoder is a mapping function that maps every log2M coded

bits to an J-dimensional SCMA codeword. Let xnk = [xnk,1, ..., x
n
k,J ]T be the transmit-

ted codeword of user k at time instant n. Then the codewords can be multiplexed

over J transmit antennas at the base station. The block diagram of the considered

system is illustrated in Fig. 5.1.

Let’s denote the transmitted symbol at the jth antenna and time instant n by

snj , then snj is given by

snj =
K∑
k=1

xnk,j. (5.1)

The signal from base station transmits over frequency selective fading channels

with L taps and is received at different users. With the assumption of perfect

synchronisation between the base station and users, the received signal at user k

and time instant n can be further written as

ynk =
J∑
j=1

L−1∑
l=0

hlj,ks
n−l
j + ωnk , (5.2)

where hlj,k is the lth tap coefficient of the multipath channel between the jth antenna

and kth user, and ωnk is additive white Gaussian noise (AWGN) at time instant n
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Figure 5.1 : System model for downlink MIMO-SCMA.

with power spectral density N0.

5.2.2 Probabilistic Model

Assuming that N codewords are transmitted, Xk and yk are denoted as trans-

mitted SCMA codewords and received signal samples of the kth user, and X as

the transmitted symbols of all users. Assuming perfect channel state information,

each user can perform the optimal maximum a posteriori (MAP) detection based

on measurement yk, which can be expressed as

X̂k = arg max
Xk

p(Xk|yk)

= arg max
Xk

∫
p(X|yk)dX\Xk. (5.3)

Following Bayesian rules, p(X|yk) reads

p(X|yk) ∝ p(X)p(yk|X), (5.4)

where p(X) is the joint a priori distribution and p(yk|X) is the joint likelihood func-

tion. Since all transmitted symbols are assumed independent, p(X) =
∏

j,k,n p(x
n
k,j),
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where p(xnk,j) is calculated based on the log likelihood ratios (LLRs) of coded bits

from the output of channel decoder.

The computational complexity of the optimal MAP receiver in (5.3) increases

exponentially with the product of the number of users, the number of antennas and

the channel length. In the following, low-complexity message passing receivers are

developed for MIMO-SCMA system.

5.3 Low-Complexity BP-EP Receiver based on Stretched

Factor Graph

5.3.1 Factor Graph Representation

A factor graph is a bipartite graph representing the factorisation of a function,

which enables efficient computations of marginals. Since the noise samples at dif-

ferent time instants are uncorrelated, the joint likelihood function p(yk|X) can be

factorised as

p(yk|X) ∝
∏
n

exp

−
∣∣∣ynk −∑J

j=1

∑L−1
l=0 h

l
j,k

∑K
k=1 x

n−l
k,j

∣∣∣2
2N0


︸ ︷︷ ︸

fkn

. (5.5)

Consequently, the joint a posteriori distribution can be rewritten as

p(X|yk) ∝
∏
n

∏
j,k

p(xnk,j) exp

−
∣∣∣ynk −∑J

j=1

∑L−1
l=0 h

l
j,k

∑K
k=1 x

n−l
k,j

∣∣∣2
2N0

 , (5.6)

and can be represented by a factor graph, as depicted in Fig. 5.2, where the short-

hand notation fnk denotes the local likelihood function corresponding to received

sample ynk . Squares and circles are used to denote factor vertices and variable ver-

tices. A variable vertex x is connected to a factor vertex f via an edge if and only

if x is a variable of the function f .
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Figure 5.2 : Factor graph representation of the factorisation in (5.6). For ease of

exposition, only the variable vertices connected to the factor node fnk are plotted.

5.3.2 Stretched Factor Graph and Low-Complexity BP-EP Receiver

The message passing update rules on factor graph has been derived in (1.9) -

(1.11). Note that in Fig. 5.2, JKL variables in total are connected to a factor n-

ode. Following (1.9), when calculating the message µfnk→xnk,j(x
n
k,j), multi-dimensional

integration of fnk over (JKL − 1) variables have to be performed. Therefore, the

complexity of the BP receiver based on the factor graph in Fig. 5.2 is O(N(JKL)2),

which is huge in MIMO-SCMA systems. To tackle this problem, auxiliary variables

are introduced to reduce the number of messages that have to be updated, thereby

reducing the complexity of receiver significantly. Let rnk,j =
∑L−1

l=0 h
l
k,js

n−l
j , and the

likelihood function in (5.5) can be rewritten as

p(yk|X) ∝
∏
n

(
exp

(
−
|ynk −

∑
j r

n
j,k|2

2N0

)
n
k

∏
j

φnj

)
, (5.7)

where ψnk = δ(rnk,j −
∑L−1

l=0 h
l
k,js

n−l
j ) and φnj = δ(snj −

∑K
k=1 x

n
k,j) denote the equality

constraints. Based on the above factorisation, it is able to stretch multiple variables
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Figure 5.3 : Stretched factor graph representation of the considered MIMO-SCMA

system.

and construct a novel factor graph as illustrated in Fig. 5.3, which is named as

‘stretched factor graph’.

Based on the rules in (1.9) and (1.10), the messages on factor graph can be

updated as follows.

• Incoming Message µxnk,j→φnj (xnk,j) (EP updating):

The message µxnk,j→φnj (xnk,j) can be regarded as the prior distribution p(xnk,j) of

symbols, which is expressed as

p(xnk,j) =
M∑
i=1

piδ(x
n
k,j − χi), (5.8)
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where χi is the ith constellation point, pi can be calculated based on the LLRs of

bits from the output of channel decoder. Generally, p(xnk,j) can be approximated

as Gaussian distribution by directly matching the first and second order moments.

However, this will lead to performance loss. To solve this problem, EP is employed

which matches the moments of belief instead of the prior distribution [116]. Since

information from detector is also exploited, a hybrid BP-EP receiver is expected to

improve the performance. Assuming that the message µφnj→xnk,j(x
n
k,j) can be repre-

sented by Gaussian distribution G(mφnj→xnk,j , vφnj→xnk,j), the mean and variance of the

belief of xnk,j can be expressed as

mxnk,j
=

1

2πvφnj→xnk,j
·
M∑
i=1

χipi exp

(
−

(mφnj→xnk,j − χi)
2

vφnj→xnk,j

)
, (5.9)

vxnk,j =
1

2πvf→xnk,j
·
M∑
i=1

|χi|2pi exp

(
−

(mφnj→xnk,j − χi)
2

vφnj→xnk,j

)

− |mxnk,j
|2. (5.10)

Consequently, the Gaussian approximation of message µxnk,j→φnj (xnk,j) is given as

mxnk,j→φ
n
j

= vxnk,j→φnj

(
mxnk,j

vxnk,j
−
mφnj→xnk,j

vφnj→xnk,j

)
, (5.11)

vxnk,j→φnj =
vxnk,jvφnj→xnk,j
vφnj→xnk,j − vxnk,j

. (5.12)

• Messages related to φnj and n
k,j (BP updating):

After collecting the messages µxnk,j→φnj (xnk,j), ∀k, and assuming that µsnj→φnj (snj ) ∝

G(msnj→φnj , vsnj→φnj ) is obtained, the message µφnj→xnk,j(x
n
k,j) is updated according to

(1.9), i.e.,

µφnj→xnk,j(x
n
k,j) ∝

∫
δ(snj −

K∑
k=1

xnk,j)
∏
k
′ 6=k

µxn
k
′
,j
→φnj (xn

k
′
,j

)µsnj→φnj (snj )dsnj dxn
k′ ,j

∝ G(mφnj→xnk,j , vφnj→xnk,j), (5.13)
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with the mean and variance given as follows,

mφnj→xnk,j = msnj→φnj −
∑
k′ 6=k

mxn
k
′
,j
→φnj , (5.14)

vφnj→xnk,j = vsnj→φnj +
∑
k′ 6=k

vxn
k
′
,j
→φnj . (5.15)

The message from φnj to snj can also be expressed as Gaussian distribution with

mean and variance as

mφnj→snj =
∑
k

mxnk,j→φ
n
j
, (5.16)

vφnj→snj =
∑
k 6=k

vxnk,j→φnj . (5.17)

Similarly, the means and variances of the messages µψnk,j→s
n−l
j

(xnk,j) and µψnk,j→rnk,j

are obtained as

mψnk,j→s
n−l
j

=
1

hlk,j

mrnk,j→ψ
n
k,j
−

L−1∑
l′=0,l′ 6=l

hl
′

k,jmsn−l
′

j →ψnk,j

 , (5.18)

vψnk,j→s
n−l
j

=
vrnk,j→ψnk,j +

∑L−1

l′=0,l′ 6=l |h
l
′

k,j|2vsn−l′j →ψnk,j

|hlk,j|2
, (5.19)

mψnk,j→r
n
k,j

=
L−1∑
l=0

hlk,jmsn−lj →ψnk,j
, (5.20)

vψnk,j→rnk,j =
L−1∑
l=0

hlk,jvsn−lj →ψnk,j
, (5.21)

where msnj→ψnk,j and vsnj→ψnk,j are given as

msnj→ψnk,j = vsnj→ψnk,j

(
mφnj→snj

vφnj→snj
+

L−1∑
l=1

mψn+l
k,j →s

n
j

vψn+l
k,j →s

n
j

)
, (5.22)

vsnj→ψnk,j =

(
v−1
φnj→snj

+
L−1∑
l=1

v−1

ψn+l
k,j →s

n
j

)−1

. (5.23)

• Messages related to rnk,j (BP updating):
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Finally, the message µfnk→rnk,j(r
n
k,j) is calculated. As the message µψnk,j→rnk,j is

known, the outgoing message from fnk to rnk,j can be calculated as

µfnk→rnk,j(r
n
k,j) ∝

∫
exp

(
−
|ynk −

∑
j r

n
k,j|2

2N0

)∏
j′ 6=j

µrn
k,j
′→fnk (rn

k,j′
)drn

k,j′
, (5.24)

which is in Gaussian form with parameters

mfnk→r
n
k,j

= ynk −
∑
j′ 6=j

mrn
k,j
′→fnk , (5.25)

vfnk→rnk,j = N0 +
∑
j′ 6=j

vrn
k,j
′→fnk . (5.26)

Remark that by introducing the auxiliary variables, the modified factor graph

based on (5.7) is able to reduce the number of integrated messages to (J+K+L−1),

which is much lower than JKL−1, especially when the number of users and antennas

is large.

5.3.3 Algorithm Summary

From the expressions in Section III.B, updating the messages relies on other

variables. Therefore, the messages on the factor graph are updated iteratively.

At the first iteration, since no information about the transmitted data symbols is

given, the messages µgnk,j→xnk,j(x
n
k,j), ∀k, j, n are initialised as zero mean Gaussian

distribution. Then in each iteration, the mean and variance values of all messages

are updated according to the rules derived as in (5.11)-(5.26). After determining the

message µφnj→xnk,j(x
n
k,j), the detector calculates the extrinsic information of bits and

feeds them to the channel decoder. After decoding, the channel decoder updates

the LLRs of bits and starts the next iteration. The details of the proposed stretched

factor graph-base BP-EP receiver is summarised in Algorithm 3.
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Algorithm 3 Stretched Factor Graph-based BP-EP Receiver for MIMO-SCMA

System over Frequency Selective Channels

1: Initialisation:

2: The incoming messages are initialised as zero mean Gaussian distribution with

zero mean and infinite variance;

3: for iter=1:NIter do

4: Compute the means and variances of downward messages according to (5.16),

(5.17) and (5.20)-(5.23);

5: Compute the message from factor vertex fnk to variable vertex rnk,j according

to (5.25)-(5.26);

6: Compute the means and variances of upward messages according to (5.14),

(5.15) and (5.18), (5.19);

7: Convert the outgoing messages to LLR and feed them to the channel decoder;

8: Perform standard BP channel decoding;

9: Calculate the incoming messages using EP as in (5.11) and (5.12);

10: end for

5.4 Convergence-guaranteed BP-EP Receiver

The main drawback of the above algorithm based on standard BP is that it

does not guarantee convergence in loopy graphs, e.g., the factor graph illustrated

in Fig. 5.3. Several papers have investigated this issue, e.g., tree reweighted BP

and dampening message method. In this section, how to obtain belief propagation

message updating rules based on the variational free energy framework [94] is first

introduced. Then an iterative message passing receiver with guaranteed convergence

is proposed by convexifying the Bethe free energy.
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5.4.1 Variational Free Energy and Belief Propagation

Consider a joint distribution p(x) of random variables x = [x1, ..., xi, ...] that can

be factorised into the product of several non-negative functions as

p(x) =
∏
a

fa(xa), (5.27)

where a is the index of function fa with arguments xa and xa , (xi|i ∈ N (a)).

The factorisation in (5.27) can be represented by a factor graph. Calculating the

marginal distribution p(xi) =
∑

x\xi p(x) requires the summation over the states of

all variables except xi. The variational method is an efficient way to find approxi-

mate solutions for the marginals.

Let b(x) be a positive function approximating p(x), then the variational free

energy is defined as the Kullback-Leibler divergence between b(x) and p(x) [115],

i.e.,

F = D[b(x)|p(x)] =

∫
b(x) ln

b(x)

p(x)
dx

=

∫
b(x) ln b(x)dx︸ ︷︷ ︸
−H(b)

−
∫
b(x) ln p(x)dx, (5.28)

where H(b) is the entropy of b(x). The goal is to find b(x) which minimises the

variational free energy. To keep consistency with the form of p(x), the Bethe ap-

proximation [117] is employed, given by

b(x) =

∏
a ba(xa)∏

i bi(xi)
|N (i)|−1

. (5.29)

In (5.29), ba(xa) is the joint belief of variables xa and bi(xi) is the approximate

marginal of xi.

Substituting (5.29) into (5.28), the Bethe free energy is obtained as

FB =−
∑
a

∫
ba(xa) ln fa(xa)dxa +

∑
a

∫
ba(xa) ln ba(xa)dxa

+
∑
i

(1− |N (i)|)
∫
bi(xi) ln bi(xi)dxi. (5.30)
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Considering the normalisation constraint and marginalisation constraint, the corre-

sponding Lagrangian is constructed as

LB ,FB +
∑
i

βi

(∫
bi(xi)dxi − 1

)
+
∑
a

βa

(∫
ba(xa)dxa − 1

)
+
∑
i

∑
fa∈N (i)

∫
βai(xi)

(
bi(xi)−

∫
ba(xa)dxa\xi

)
dxi. (5.31)

Setting the partial derivatives of LB with respect to βi, βa and βai to zero result

in the normalisation constraint and marginalisation constraint. Setting ∇ba(xa) = 0

gives

ln ba(xa) = ln fa(xa) +
∑
i∈N (a)

βai(xi) + βa − 1. (5.32)

Similarly, setting ∇bi(xi) = 0 can obtain

(|N (i)| − 1) ln bi(xi) = 1− βi +
∑

fa∈N (i)

βai(xi). (5.33)

Taking exponential function on both sides of (5.32) and (5.33) and setting

exp (βai(xi)) =
∏

f
a
′∈N (i)\fa µfa′→i(xi) yield

ba(xa) ∝ fa(xa)
∏

i∈N (a)

∏
f
a
′∈N (i)\fa

µf
a
′→i(xi), (5.34)

bi(xi) ∝
∏

fa∈N (i)

µfa→i(xi). (5.35)

According to the marginalisation constraint, integrating all variables in ba(xa) except

xi gives

bi(xi) ∝
∫
ba(xa)dxa\xi

∝
∫
fa(xa)

∏
i′∈N (a)\i

∏
f
a
′∈N (i′ )\fa

µf
a
′→i′ (xi′ )dxi′

∏
f
a
′∈N (i)\fa

µf
a
′→i(xi). (5.36)

By comparing (5.36) with (5.35), the message µfa→xi(xi) is expressed as

µfa→xi(xi) ∝
∫
fa(xa)

∏
i′∈N (a)\i

∏
f
a
′∈N (i′ )\fa

µf
a
′→x

i
′ (xi′ )dxa\xi, (5.37)
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which is the same as the message updating rule in (1.9). Define

µxi→fa(xi) =
bi(xi)

µfa→xi(xi)
∝

∏
f
a
′∈N (i)\fa

µf
a
′→xi(xi), (5.38)

which is the rule in (1.10).

5.4.2 Convergence-guaranteed BP-EP Receiver

In previous subsection, it is shown that the message updating rules of the stan-

dard BP can be derived by minimising the constrained Bethe free energy. However,

in general, the Bethe free energy is non-convex and has several local minima. As a

result, BP is not guaranteed to converge.

Using the definitionHi(b) = −
∫
bi(xi) ln bi(xi)dxi andHa(b) = −

∫
ba(xa) ln ba(xa)dxa,

the entropy H(b) is rewritten as H(b) =
∑

i (1−N (i))Hi(b) +
∑

aHa(b). As shown

by Yedidia [94], the Bethe approximation for entropy can be generalised by linearly

combining Hi(b) and Ha(b) as

H̃(b) =
∑
i

ciHi(b) +
∑
a

caHa(b), (5.39)

where the counting numbers ci and ca satisfy ci = 1 −
∑

fa∈N (i) ca. Obviously,

ca = 1 corresponds to the Bethe approximation. Consequently, the constrained

optimisation problem in (5.31) can be revised as

min −
∑
a

∫
ba(xa) ln fa(xa)dxa −

∑
a

caHa(b)−
∑
i

ciHi(b)

s.t bi(xi) =

∫
ba(xa)dxa\xi,

∫
ba(xa)dxa = 1,

∫
bi(xi)dxi = 1. (5.40)

Based on (5.40), a Lagrangian is constructed and corresponding message updat-

ing rules are derived. Similarly, the notations in (1.9) and (1.10) are used to denote
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the messages, which are given as

µfa→xi(xi) = (µ̃fa→xi(xi))
γai (µ̃xi→fa(xi))

γia−1 , (5.41)

µxi→fa(xi) = (µ̃fa→xi(xi))
γai−1 (µ̃xi→fa(xi))

γia , (5.42)

where γai = |N (i)|ca/(|N (i)|ca + ci + |N (i)| − 1) and γia = |N (i)|/(|N (i)|ca + ci + |N (i)| − 1).

The messages µ̃fa→xi(xi) and µ̃xi→fa(xi) are given as

µ̃fa→xi(xi) ∝
∫
f

1
ca
a (xa)

∏
i′∈N (a)\i

µxi′→fa(xi′ )dxa\xi, (5.43)

µ̃xi→fa(xi) ∝
∏

f
a
′∈N (i)\fa

µf
a
′→i(xi). (5.44)

The detailed derivation of messages (5.41) and (5.42) is given in Appendix. E. Note

that in (5.41)-(5.44), if ca = 1 and ci = 1 − |N (i)|, the message updating rules

become the standard BP.

Based on the general form of Bethe free energy, it is possible to find appropriate

counting numbers to form a convex free energy. The prominent tree reweighted

BP approximates the free energy as the combination of several entropy terms over

spanning trees [118]. Then the edge appearance probability is used as counting

number ca to convexify the free energy. Nevertheless, only a few convex free energies

can be represented using spanning trees. To this end, a more general condition is

considered, as stated in the following proposition.

Proposition 3:

The modified Bethe free energy is convergence-guaranteed if there exist non-

negative counting numbers cia, cii and caa satisfying

ca = caa +
∑
i∈N (a)

cia, (5.45)

ci = cii −
∑

fa∈N (i)

cia. (5.46)



88

Proof:

Substituting (5.45) and (5.46) into (5.30) yields

FB =−
∑
a

∫
ba(xa) ln fa(xa)dxa −

∑
a

caaHa(b)

−
∑
i

ciiHi(b)−
∑

i,fa∈N (i)

cia(Ha(b)−Hb(b)). (5.47)

For the first term on the right hand side of (5.47), the second order partial derivatives

with respect to ba(xa) equals 0. Therefore the convexity of FB is dominated by the

convexity of

Fconv =−
∑
a

caaHa(b)−
∑
i

ciiHi(b)−
∑

i,fa∈N (i)

cia(Ha(b)−Hi(b)). (5.48)

Since ∂2Hi(b)
∂bi(xi)2 = − 1

bi(xi)
and ∂2Ha(b)

∂ba(xa)2 = − 1
ba(xa)

hold, Fconv is convex if and only if

caa ≥ 0, cii ≥ 0 and −
∑

i,fa∈N (i) cia(Ha(b)−Hi(b)) is convex.

To analyse the convexity of Ha(b) − Hi(b), the idea from [119] is used that

bi(xi) =
∫
ba(xa)dxa\xi = ba(xi). Then Fai = Hi(b)−Ha(b) can be written as

Fai =

∫
ba(xa) ln ba(xa)dxa −

∫
ba(xi) ln bi(xi)dxi. (5.49)

The second order partial derivatives of Fai with respect to ba(xa) and bi(xi) are

expressed as

∂2Fai
∂ba(xa)2

=
1

ba(xa)
, (5.50)

∂2Fai
∂bi(xi)2

= − ba(xi)

(bi(xi))2
, (5.51)

∂2Fai
∂ba(xa)∂bi(xi)

=
∂2Fai

∂bi(xi)∂ba(xa)
= − 1

bi(xi)
. (5.52)

Convexity of Fai is satisfied if the Hessian matrix with components (5.50)-(5.52) is
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positive semidefinite. For any beliefs b̃ = [b̃a(xa), b̃i(xi)],

∫
b̃


∂2Fai

∂ba(xa)2
∂2Fai

∂ba(xa)∂bi(xi)

∂2Fai
∂bi(xi)∂ba(xa)

∂2Fai
∂bi(xi)2

 b̃Tdxa

=

∫ (
(b̃a(xa))

2

ba(xa)
− 2b̃a(xa)b̃i(xi)

b̃i(xi)
+
b̃a(xi)(b̃i(xi))

2

(bi(xi))2

)
dxa

=

∫
b̃a(xa)

(
(b̃a(xa))

ba(xa)
− b̃i(xi)

bi(xi)

)2

dxa ≥ 0, (5.53)

which indicates that Fai is convex. Therefore, under the conditions (5.45) and (5.46),

the modified Bethe free energy is convergence-guaranteed. �

From the above equations, various counting numbers can be chosen to obtain dif-

ferent approximate free energy. Since the goal is deriving a convergence-guaranteed

version of BP algorithm, the modified free energy should be close to the Bethe free

energy. Denoting the counting numbers of Bethe approximation as da = 1 and

di = 1− |N (i)|, minimising the l2 norm ‖c− d‖2 can be formulated as a quadratic

program as

min
cii,caa,cia

∑
a

caa +
∑
i∈N (a)

cia − 1

2

(5.54)

s.t ci = 1−
∑

fa∈N (i)

ca, (5.45), (5.46).

The above optimisation problem can be easily solved using standard solvers and

therefore will not be elaborated here.

It is well known that for real numbers a and b, (ea)b = eab. Therefore, if µ̃fa→xi(xi)

is obtained in Gaussian, (µ̃fa→xi(xi))
γai is still Gaussian with the same mean and

variance divided by γai. Then similar to Section 5.3.2, Gaussian messages can be

derived based on modified message passing rules with ci and ca. The details of

the proposed convergence-guaranteed message passing algorithm is summarised in

Algorithm 4.
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Algorithm 4 Convergence-guaranteed BP-EP Receiver for MIMO-SCMA System

over Frequency Selective Channels

1: Initialisation:

2: The incoming messages are initialised as Gaussian distribution with zero mean

and infinite variance;

3: Calculate the counting numbers by solving (5.54);

4: for iter=1:NIter do

5: Compute the auxiliary messages from factor vertices to variable vertices ac-

cording to (5.43);

6: Compute the auxiliary messages from variable vertices to factor vertices ac-

cording to (5.44);

7: Compute the messages µfa→xi and µxi→fa using (5.42) and (5.41);

8: Convert the outgoing messages to LLR and feed them to the channel decoder;

9: Perform standard BP channel decoding;

10: Calculate the incoming messages using expectation propagation as in (5.11)

and (5.12);

11: end for

5.4.3 Complexity

The complexities of proposed BP-EP receiver based on original and stretched

factor graphs have already been analysed in Section III. B. The complexity of pro-

posed convergence-guaranteed BP-EP receiver is also dominated by the number of

messages to be integrated. As the number of integrated messages does not change,

the complexity required for message passing is still O(N(J + K + L − 1)2). Note

that in (5.54), a quadratic programming should be solved to determine the counting

number, which improves the number of operations. Nevertheless, since (5.54) can

be done off-line before perform detection, the complexity of proposed convergence-
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guaranteed BP-EP receiver is O(N(J +K+L− 1)2). In Table I, the computational

complexities of different receivers are compared.

Table 5.1 : Computational Complexities of Different Receivers

Receivers Computational Complexity

MPA O(N · 2JKL−1)

BP-EP (Original Factor Graph) O(N(JKL− 1)2)

BP-EP (Stretched Factor Graph) O(N(J +K + L− 1)2)

Convergence-guaranteed BP-EP O(N(J +K + L− 1)2)

5.5 Distributed Cooperative Detection

The MIMO-SCMA system in cooperative network is further considered where

users are allowed to communicate with each other. Since the transmitted symbols

snj from base station are received by all the users, cooperative detection can be

performed to exploit the diversity gain.

Thanks to the factor graph framework, it is possible to represent the relationship

of snj and measurements observed at different users graphically, as illustrated in

Fig. 5.4. Note that for each user, the stretched factor graph proposed in Section 5.3 is

adopted and the convergence-guaranteed BP-EP algorithm proposed in Section 5.4

is employed. Denoting µk(s
n
j ) as the message to variable vertex snj based on the

measurement of user k, then

µk(s
n
j ) =

L−1∏
l=0

µψn+l
k →snj

(snj ). (5.55)

Having the messages µk(s
n
j ), ∀k, the message µsnj→φnj (snj ) and the extrinsic informa-

tion corresponding to data symbol xnk,j are calculated. Obviously, if the measure-
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Figure 5.4 : Factor graph representation for cooperative detection.

ments are collected by a central unit, it is easy to obtain µsnj→φnj (snj ) as the product

of µk(s
n
j ), ∀k. However, transmitting measurements to a possibly distant central

unit leads to huge power consumption. On the contrary, using distributed method

only requires local communications with neighboring users. By exchanging packets

between neighboring users, all users can fully exploit the information related to snj .

In what follows, two distributed cooperative detection methods for the considered

MIMO-SCMA system are devised.

5.5.1 Belief Consensus-Based Method

Let Sk denotes the neighboring set of user k, i.e., every user in Sk can commu-

nicate with user k. The goal is to determine µsnj→φnj (snj ) (‘global message’) at each

user with only local processing and communications. The belief consensus method

is efficient to compute the product of several local functions over the same variable

distributively.
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With its local message µk(s
n
j ) based on measurement yk, user k updates its local

belief ρp+1
k (snj ) according to standard belief consensus recursion, i.e.,

ρp+1
k (snj ) = ρpk(s

n
j )
∏
i∈Sk

(
ρpi (s

n
j )

ρpk(s
n
j )

)η
, (5.56)

where the superscript p denotes the index of consensus iterations and η is the update

rate. At the first iteration, the local belief is initialised as ρ0
k(s

n
j ) = µk(s

n
j ). In the

standard belief consensus, all users share the a constant updating rate η, which

may cause performance loss. The metropolis weight [120] can be used to solve this

problem as

ρp+1
k (snj ) = ρpk(s

n
j )ηkk

∏
i∈Sk

ρpi (s
n
j )ηki , (5.57)

with the update rate

ηik = ηki =


1/max(|Sk|, |Si|), for i 6= k

1−
∑

i′∈Sk ηi′k, for i = k.

(5.58)

With the assumption of Gaussian messages, users are able to exchange parame-

ters of the messages instead of the distribution. In this case, (5.57) can be rewritten

as

θp+1
k = ηkkθ

p
k +

∑
i∈Sk

ηkiθ
p
i , (5.59)

where θpk = [mp
k→snj

/vpk→snj
, 1/vpk→snj ]T represents the parameters to be exchanged.

Consequently, users only broadcast θpk to neighboring users.1 For a connected graph

that each user has at least one neighbor, after running several consensus iterations,

all users reach consensus on the global message, i.e., ρ
Np
k (snj ) = µsnj→φnj (snj )1/K ,

1It may happen that in a consensus iteration, the link between two users, e.g., user i and k

fails. In this case, an additional variable θ̄ik is used to store the parameter received in previous

iteration. Then θ̄ik can be used to continue consensus updating.



94

∀k [110]. However, when exchanging packets between users, inter-user links may

suffer from additive noise, which causes the variance of θk growing unbounded. To

tackle this problem, a vanishing parameter is introduced and (5.59) is replaced by

θp+1
k = θpk + αp

∑
i∈Sk

ηki (θ
p
i + ωpki − θ

p
k) , (5.60)

where ωki is the additive noise on link i → k and αp is the vanishing parameter.

However, since αp decreases monotonically as the increase of p, the convergence

speed of (5.60) will be rather slow.

5.5.2 Bregeman ADMM-Based Method

To reach the consensus, the product of all local beliefs should be as close as pos-

sible to the global message. Motivated by this, the distributed processing problem

can be reformulated as the minimisation of the Kullback-Leibler divergence with the

constraint ρk(s
n
j ) = ρi(s

n
j ):

min
ρ

D[µsnj→φnj (snj )|
∏
k

ρk(s
n
j )] (5.61)

s.t ρk(s
n
j ) = ρi(s

n
j ), ∀ k, i ∈ Sk.

Considering that ρk(s
n
j ) can be characterised by θk, the objective functional can be

minimised subject to θk = θi. For decoupling purpose, a set of additional variables

πki are defined for each inter-user link, through which the optimisation problem can

be rewritten as

min
θ

D[µsnj→φnj (snj )|
∏
k

ρk(s
n
j )] (5.62)

s.t θk = πk, θi = πk, ∀k, i ∈ Sk.

The optimisation problem in (5.62) subject to equality constraints can be solved

by ADMM. In each iteration, ADMM updates variables in a block coordinate fashion
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by solving the augmented Lagrangian of (5.62), which is defined as

L(θ,π,λ) = D[µsnj→φnj (snj )|
∏
k

ρk(s
n
j )] +

∑
k

∑
i∈Sk

(
λTkk(θk − πk) + λTki(θi − πk)

)
+
c

2

∑
k

∑
i∈Sk

(
‖θk − πk‖2

2 + ‖θi − πk‖2
2

)
, (5.63)

where c > 0 denotes the penalty coefficient and λ is the associated Lagrangian

multipliers. The quadratic penalty term may result in a high complexity when

solving (5.63). To this end, the quadratic penalty term is replaced by Bregman

divergence to generalise ADMM. Let ε be a continuously differentiable and strictly

convex function, namely, Bregman function. The Bregman divergence is defined as

Bε(x, y) = ε(x)− ε(y)− 〈x− y,∇ε(y)〉, (5.64)

where ∇ε(y) is the gradient of ε and 〈·〉 denotes the inner product.

Based on Bregeman divergence, the following augmented Lagrangian is given,

LBreg(θ,π,λ) =D[µsnj→φnj (snj )|
∏
k

ρk(s
n
j )] +

∑
k

∑
i∈Sk

(
λTki(θk − πk) + λTik(πk − θi)

)
+ c
∑
k

∑
i∈Sk

Bε(θi,πk). (5.65)

Following the Bregman ADMM, LB is minimised with respect to one set of variables

given the others. At the (p + 1)th iteration, the updates for Bregman ADMM can

be described as

θp+1 = arg min
θ
LBreg(θ,πp,λp), (5.66)

πp+1 = arg min
π
LBreg(θp+1,π,λp), (5.67)

λp+1
ki = λpki + c(θp+1

i − πp+1
ki ). (5.68)

Actually, a series of ε can be chosen to form different Bregman divergences. For

efficient computations, an appropriate Bregman function is to be given. In this case,

since the messages are in Gaussian form, the log partition function is employed as
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Bregman function. Consequently, the Bregman divergence between two variables is

equivalent to the Kullback-Leibler divergence between two Gaussian distributions

characterised by these two variables, i.e., Bε(a,b) = D[f(x|a)|f(x|b)]. Then (5.66)-

(5.68) can be analytically derived as

θp+1
k =

θ0
k +

∑
i∈Sk∪k (λpki + cπpi )

1 + c(|Sk|+ 1)
, (5.69)

πp+1
k =

∑
i∈Sk∪k

(
cθp+1

i − λpki
)

c(|Sk|+ 1)
, (5.70)

λp+1
ki = λpki + c(θp+1

k − πp+1
i ). (5.71)

By exchanging θpk and πpk in the network, all users can obtain the message µsnj→φnj (snj )

in a distributed fashion. As the penalty parameter c will affect the convergence

speed, c are assumed to be different for different users which is varying in each

iteration [121], given as

cp+1
k =



cpk · (1 + τ) if‖εtk‖2 > κ‖ιtk‖2

cpk · (1 + τ)−1 if‖ιtk‖2 > κ‖εtk‖2

cpk otherwise,

(5.72)

where ‖εtk‖2 and ‖ιtk‖2 are the primal and dual residuals, defined as ‖εtk‖2 = ‖θpk −

θ̄pk‖2, ‖ιtk‖2 = ‖θ̄k
p − θ̄p−1

i ‖2, θ̄k
p

= 1
|Sk|
∑

i∈Sk θ
p
i . Typical values of κ and τ are

suggested as constant κ = 10 and τ = 1.

Propostion 4:

Following Bregman ADMM updates rules, all local parameters can reach con-

sensus on the global parameter.

Proof:

Note that for all k, the second order partial derivative of the functional D[µsnj→φnj (snj )|
∏

k ρk(s
n
j )]

satisfies
∂2D[µsnj→φnj (snj )|

∏
k ρk(s

n
j )]

∂ρk(snj )2
=

1

ρk(snj )
> 0,
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which shows the optimisation objective is convex. Moreover, since ε is strictly

convex, the Bregman penalty term is also convex. This implies that the optimisation

problem to be solved is convex and the convergence is guaranteed. �

After several iterations, the local belief ρ
Np
k (snj ), ∀k characterised by θNck is guar-

anteed to converge to the global message µsnj→φnj (snj ). Compared to belief consensus-

based method, it can be seen the Bregman ADMM-based algorithm requires to

transmit an additional variable, which doubles the communication overhead.

If the inter-user links suffer from the additive noise, the updates (5.69) and (5.71)

can be interpreted as stochastic gradient updates, whose variances have been proved

to be bounded values [122].

5.5.3 Algorithm Summary

For the distributed cooperative detection, it is assumed that each user has ob-

tained the message µk→snj (snj ),∀k, j, n based on its local measurements, and the goal

is to obtain the product of all users’ messages distributively. To start with the

distributed algorithm, the local belief ρ0
k(s

n
j ) is initialised as µk→snj (snj ). Then ac-

cording to belief consensus-based method and Bregman ADMM-based method, all

users update its local belief to reach agreement on the global message. Also, with the

advantage of Gaussian distribution, only few parameters are exchanged in coopera-

tive detection. For both schemes, the complexity is O(N), which linearly increases

with the number of users, making them attractive in practical applications. The

proposed distributed cooperative detection methods are summarised in Algorithm

5.

5.6 Simulation Results

The performance of the proposed receivers is evaluated by Monte Carlo simula-

tions and compared with several state-of-the-art methods. A MIMO-SCMA system
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Algorithm 5 Belief Consensus and Bregman ADMM-based Methods for Distribut-

ed Cooperative Detection

1: Each user computes message µk→snj (snj ),∀k, j, n based on its local measurements.

2:Enter cooperative detection

3: Initialise ρ0
k(s

n
j ) as µk→snj (snj )

4: for p=1:Np do

5: Each user broadcasts the parameters θpk (Belief Consensus) or θpk,π
p
k,∀k

(Bregman ADMM ) to its neighboring users;

6: Each user update its local parameters using (5.59) (Belief Consensus) or

(5.69)- (5.71) (Bregman ADMM ) ;

7: end for

8: Calculate the message µsnj→φnj (snj ) at all receivers;

9:Exit cooperative detection

10: Computes other messages on factor graph with µsnj→φnj (snj ).

with J = 4 antennas, K = 6 users, D = 2 nonzero entries in each codeword and

M = 4 is considered. Therefore, the overloading factor is % = 150%. The SCMA

codebook is designed according to [39] with the indicator matrix F defined as

F =



1 0 1 0 1 0

1 1 0 0 0 1

0 1 1 1 0 0

0 0 0 1 1 1


. (5.73)

A 5/7-rate LDPC code is employed with variable and check node degree distri-

butions being v(X) = 0.0005 + 0.2852X + 0.2857X2 + 0.4286X3 and c(X) =

0.0017X9 + 0.9983X10. Quadrature phase shifting key (QPSK) is utilised as the

mother modulation scheme. The channel is frequency selective with L = 10 taps, and
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Figure 5.5 : BER performance of different algorithms for MIMO-SCMA system.

each tap is independently generated according to the distribution hlk,j ∼ N (0, ql),

∀k, j. The normalised power delay profile is ql = exp(−0.1l)∑
ql

. The maximum number of

iterations is NIter = 10. The simulation results are averaged from 1000 independent

Monte Carlo trails.

In Fig. 5.5, the bit error rate (BER) performance of the proposed stretched fac-

tor graph-based BP-EP algorithm (denoted as ‘Stretch-BP-EP’) in Section III.B is

plotted. For comparison, the performance of the MPA receiver [123], Gaussian ap-

proximated BP (denoted as ‘GaussAppro-BP’) algorithm and a combined MMSE-

PM-MPA algorithm are also included2. A K = 4 scenario in which information

2Gaussian approximated BP is also based on the proposed stretched factor graph. However,

the extrinsic information of data symbols are approximated by Gaussian directly, instead of ap-

proximating the belief as that in EP. The combined MMSE-PM-MPA receiver first performs the
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of different users is transmitted using different antennas is also considered as the

performance bound (the coding and modulation scheme are assumed to be identi-

cal to SCMA). It is observed from Fig. 5.5 that MMSE-PM-MPA method suffers

from significant performance loss. This is because that MMSE detector can only

output hard information for the PM-MPA-based SCMA detector. The proposed

Stretch-BP-EP algorithm slightly outperforms GaussAppro-BP and performs close

to the MPA receiver. However, compared to MPA receiver with exponential com-

plexity with respect to the number of interfered numbers, using EP and Gaussian

approximation, the complexity of the proposed algorithm is reduced significantly.

Moreover, the proposed SCMA system has similar performance compared with the

K = 4 scenario, while the former is able to support 50% more users.

BER performance of the Stretch-BP-EP method and the proposed convergence-

guaranteed BP-EP (denoted as ‘Conv-BP-EP’) algorithm are compared in Fig. 5.6

at different values of Eb/N0. It is seen that performance of both algorithms improve

as the number of iteration increases. After several iterations, the performance gain

of both methods become marginal. By comparing Fig. 5.6(a) with Fig. 5.6(b), it

can be observed that Conv-BP-EP algorithm converges faster than the Stretch-BP-

EP method. This results can be explained by the fact that Stretch-BP-EP algorithm

may converge to the local minima of variational free energy while Conv-BP-EP is

guaranteed to converge to the global minimum, which demonstrates the superiority

of the proposed Conv-BP-EP method.

In the following, the performance of the proposed distributed cooperative detec-

tion schemes is evaluated. Six users are uniformly distributed on a 20× 20m2 unit

square. Two users can communicate and exchange information if and only if their

distance is less than d = 10m. The channels between users are modeled as AWGN

MMSE-based MIMO equalisation and then use PM-MPA [60] for SCMA decoding.
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(a) Stretched factor graph-based BP-EP algorithm (Stretch-BP-EP)
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(b) Convergence-guaranteed BP-EP algorithm (Conv-BP-EP)

Figure 5.6 : Impact of the number of iterations on BER performance of Stretch-BP-

EP and Conv-BP-EP algorithms.
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and set to be the same for all links. The vanishing parameter for belief consensus is

set to a typical value αp = 1
p
.

In Fig. 5.7, performance of the proposed two distributed cooperative detection

schemes with perfect inter-user links are evaluated. As a benchmark, the BER per-

formance of a centralised scheme is also plotted3. Two values of the number of

consensus iterations are considered, i.e. p = 5 and p = 10. For comparison, the

averaged BER performance of all users based on their local measurements as in Fig.

5.6(b) is also included. It is observed that, by performing cooperative detection,

BER performance can be significantly improved, which reveals that diversity gain

can be achieved by exchanging information between neighboring users. By com-

paring the belief consensus-based method and the Bregman ADMM-based method,

it can be seen that, with perfect inter-user links assumption, both methods deliver

similar BER performance at p = 5 and p = 10. Moreover, after 10 iterations, both

methods attain the performance of centralised processing.

Since the maximum communication range of inter-user link is critical to the

power consumption of users, the BER performance of Bregman ADMM-based algo-

rithm is compared with different communication ranges d = 2m, d = 6m, d = 10m,

d = 14m and d = 20m. Obviously, increasing d will result in more neighboring users

and higher probability of being a fully connected network. As shown in Fig. 5.8,

BER performance improves as d increases. However, the performance gain becomes

smaller when d is large enough. Considering that the power consumption will in-

crease exponentially as d increases, the power cost and BER performance can be

compromised in practice.

The performance of the proposed distributed cooperative detection algorithms

3Remark that only the measurements from connected users are collected at a central unit for

fair comparison.
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Figure 5.7 : BER performance of the proposed distributed cooperative detection

schemes with p = 5 and p = 10.

are further evaluated in the condition of noisy inter-user links. In Fig. 5.9, the BER

performance of the proposed distributed algorithms versus Eb/N0 is plotted, where

the SNR corresponding to the inter-user links are set to be 10dB. The number of

consensus iterations is p = 10. It is seen that due to the noisy inter-user links,

the performance of both distributed schemes at p = 10 cannot attain that of the

centralised scheme. It is also observed that the Bregman ADMM-based method

outperforms the belief consensus-based algorithm. To further analyse the conver-

gence properties of the two distributed schemes, in Fig. 5.10, the mean squared

error (MSE) of local parameters θk versus the number of consensus iterations is

illustrated. The MSE is defined as
∑K

k=1 ‖θk − θ̄‖2
2 where θ̄ =

∑
k θk
K

. Three SNR

scenarios of the inter-user links are considered, i.e., SNR = {5, 10, 20}dB. As ex-
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Figure 5.8 : Impact of communication range on the BER performance of Bregman

ADMM-based method.

pected, larger SNR leads to smaller uncertainty and the MSE performance is better.

Due to the vanishing factor αp = 1
p
, belief consensus-based algorithm converges s-

lower than the Bregman ADMM-based method. Note that the MSE performance

gap between them becomes even larger at higher SNR. This is due to the fact that

belief consensus algorithm uses the same vanishing factor at high SNR while Breg-

man ADMM-based method benefits from small noise variance. Therefore, Bregman

ADMM is more efficient in noisy inter-user link networks.

5.7 Conclusions

In this chapter, a graph-based low-complexity message passing receiver for MIMO-

SCMA system over frequency selective channels is proposed. Since the direct factori-

sation of the joint posterior distribution leads to huge complexity in message updat-
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Figure 5.9 : BER performance of the proposed distributed cooperative detection

schemes with noisy inter-user links.

ing, auxiliary variables are introduced and a stretched factor graph is constructed.

EP is employed to approximate the messages of data symbols to Gaussian distri-

bution and a hybrid BP-EP receiver is proposed.Considering the poor convergence

property of the standard BP on loopy factor graph, appropriate counting number-

s are used to convexify the Bethe free energy and convergence-guaranteed BP-EP

receiver is derived.A cooperative network is further considered and two distributed

cooperative detection schemes, i.e., belief consensus-based algorithm and Bregman

ADMM-based method, are proposed. The proposed iterative receivers are evaluated

by Monte Carlo simulations and compared with the other schemes. It is shown that

the proposed Stretch-BP-EP receiver performed close to the MMSE-based receiver

with much lower complexity. The proposed Conv-BP-EP receiver outperforms the
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Figure 5.10 : MSE of parameters versus the number of consensus iterations.

Stretch-BP-EP by improving the convergence property. Compared with the orthog-

onal multiple access counterpart, MIMO-SCMA system with the proposed receivers

is shown to be able to support 50% more users over frequency selective fading chan-

nels, with negligible BER performance loss. In cooperative networks, it is verified

that BER performance can be further improved by exploiting the diversity gain

using the proposed two distributed cooperative detection schemes. Moreover, com-

pared with the belief consensus-based algorithm, Bregman ADMM-based method is

shown to be more attractive in practical noisy inter-user links.
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Chapter 6

Iterative Receiver Design for FTN Signaling -

SCMA System

6.1 Introduction

In the above 4 chapters, the receiver design problems for FTN signaling and

SCMA system are investigated. Naturally, it is expected to achieve even higher

spectral efficiency by using a combined uplink FTN-SCMA system that the data

symbols corresponding to a user are further packed using FTN signaling. Neverthe-

less, the detection of data symbols for an FTN-SCMA system is challenging due to

the interferences imposed by non-orthogonal waveforms and non-orthogonal multiple

access.

In this chapter, the low complexity joint channel estimation and decoding algo-

rithm based on factor graph and message passing algorithm is studied for an uplink

FTN-SCMA systems. To tackle the colored noise induced by FTN signaling, the

auto regressive (AR) process is employed to model the noise. Then the joint dis-

tribution of data symbols, channel taps and noise samples can be factorised into

several local functions and represented by a factor graph. Even with factor graph,

conventional MPA is still intractable to be implemented due to exponential order

of complexity. To this end, expectation propagation (EP) method is used which

restricts the message from channel decoder as Gaussian distribution. Compared to

direct approximation via moment matching, EP method aims to minimise a specified

relative entropy between the true marginal and the trail distribution [124]. In EP,

the extrinsic information to channel decoder is also considered in the approximation,
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which can enhance the BER performance. However since the modulus of channel

coefficient does not equal to 1, the Gaussian form of messages is unavailable. To

tackle this problem, commencing from the variational framework, a modified factor

node is reformed, then variational message passing can be employed. Correspond-

ingly, only means and variances needs to be updated iteratively and the complexity

order of the proposed receiver for FTN-SCMA systems only scales linearly with the

number of users.

Moreover, it has been shown even in busy hours, only a small percentage of users

in wireless networks are active [125]. In current OMA uplink scenarios, a request-

grant procedure is used that the base station (BS) schedule the uplink transmission

after receiving the request from users [126]. This procedure leads to a large com-

munication overhead, especially for the massive connectivity scenario with a huge

number of devices. Therefore the uplink grant-free transmission scheme is highly

expected to significantly reduce both communication overhead and transmission la-

tency [32]. In grant-free transmission, the active users directly send signals to the BS

without grants. In order to decode information bits from users that are accessed si-

multaneously, BS has to detect user activity based on the received signal. Motivated

by the sparsity of active users, compressive sensing (CS) based multiuser detection

method was proposed in [127]. Considering channel estimation, a two stage algorith-

m which detects user activity using CS first and then perform channel estimation

and detection was proposed in [128]. An AMP-expectation maximisation (EM) was

proposed in [129] which solves the active user detection and channel estimation prob-

lem jointly. In [130] and [131], the authors used the precision parameter of channel

coefficient variable to describe the user activity and constructed a factor graph to

perform joint detection and channel estimation. Different from [130] and [131], in

this chapter, a binary variable is used to represent the active/inactive users. By

formulating corresponding factor graph, a modified message passing algorithm is
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Figure 6.1 : Transmitter side of the considered FTN-SCMA system.

proposed to iteratively calculate the distribution of active users. In addition, to

further lower the receiver complexity, EP is used to approximate the binary variable

by Gaussian. Accordingly, the proposed receiver still experience low complexity.

6.2 System Model

An uplink SCMA system with K users and J resource elements is considered

in this chapter. For brevity the codeword of user k at time instant n is denoted

as xnk = [xnk1, ..., x
n
kJ ]T . After SCMA encoding, the SCMA codewords are passed

through a shaping filter q(t) with symbol period T = τT0, where T0 is the symbol

interval of the Nyquist signaling and τ is the FTN packing factor. The modulated

signal corresponding to user k over the jth resource elements is formulated as

skj(t) =
∑
n

xnkjq(t− nτT0). (6.1)

In Nyquist signaling, τ = 1 guarantees inter symbol interference (ISI) free trans-

mission. In FTN signaling, choosing 0 < τ < 1 can transmit more data symbols

in the same time period at the cost of introducing intentional ISI. Then the signal

corresponding to user k transmit through channel hk = [hk1, ..., hkJ ]T . The block

diagram of the transmit side is shown in Fig. 6.1.

Assuming perfect synchronisation between the users and the base station, the
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received signal at the base station can be expressed as,

y(t) =
K∑
k=1

hk � sj(t) + n(t), (6.2)

where sj(t) = [s1j(t), ..., sKj(t)]
T is the modulated signals of all users transmits over

the jth resource and nt is the additive white Gaussian noise with power spectral

density N0. As shown by Fig. 6.2, the received signal is filtered by a matched filter

q∗(−t). Without loss of generality, let g(t) = q(t)∗ q ∗ (−t). Then the signal is given

by

r(t) =
K∑
k=1

hk �
∑
n

xnkjg(t− nτT0) + ω(t). (6.3)

After sampling with rate 1/τT0, the samples at the nth time slot is expressed as

rn =
K∑
k=1

hk � s̃nk + ωn, (6.4)

where the jth entry in s̃nk is given as1

s̃nkj =
L∑

i=−L

gix
n−i
kj , (6.5)

1In theory, the number of ISI taps induced by FTN is infinite. However in practice, it is possible

to choose sufficiently large number of taps, i.e. 2L+ 1 taps.
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and gn−i =
∫
q(t − nτT0)q∗(t − iτT0)dt. In (6.4), ωn denotes noise samples with

respect to all resource elements at time n, formulating as ωn =
∫

n(t)q∗(t− nτT0).

Since the signal rate is above the Nyquist rate, the autocorrelation function of noise

sample ωnj ,∀ j is

E[ωnj ω
m
j ] = N0gn−m, (6.6)

which indicates in FTN system, the noise at the receiver side is colored noise. To

avoid the whitening process that increase the receiver complexity, in the following

section, wan autoregressive model aided factor graph approach will be proposed to

overcome the colored noise and perform channel estimation and decoding.

6.3 Joint Channel Estimation and Decoding Algorithm for

FTN-SCMA Systems

6.3.1 Approximation of Colored Noise

In the same way as shown in Chapter 2, the colored noise is approximated by an

P -order AR model as

ωnj =
P∑
p=1

apω
n−p
j + δnj . (6.7)

6.3.2 Probabilistic Model and Factor Graph Representation

Assuming that each user transmits total N SCMA codewords and N samples

are received at the base stationthe goal is to determine the a posteriori distribution

(marinal) of transmitted symbol xnkj based on all observations at the base station r.

Then such marginal is transformed into extrinsic log likelihood ratio (LLR) and fed

to the channel decoder. The marginal of xnkj is given by

p(xnkj|r) ∝
∫

h,ω,X\xnkj

p(X,h,ω|r), (6.8)
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where X, h and n denote all transmitted symbol, channel taps and colored noise

samples. Instead of direct marginalisation, here the joint distribution p(X,h,ω|r)

is factorised and factor graph approach is employed to solve the problem in a low

complexity way.

According to Bayesian theorem, p(X,h,ω|r) is factorised as

p(X,h,ω|r) ∝ p(X)p(h)p(ω)p(r|X,h,ω). (6.9)

Since the transmitted symbols and channel coefficients are independent from each

other, p(X)p(h) reads

p(X)p(h) =
∏
k,j

[
p(hkj)

∏
n

p(xnkj)

]
, (6.10)

where p(xnkj) is obtained from the output LLR of channel decoder. The prior distri-

bution p(ω) can be factorised based on the AR model as

p(ω) ∝
∏
j

∏
n

exp(−
ωnj −

∑P
p=1 apω

n−p
j

2σ2
δ

)︸ ︷︷ ︸
ψnj

, (6.11)

Conditioned on ωnj , the observation rnj at different time n are independent. As

shown in [132], using auxiliary variable can help to reduce the computation load.

Therefore p(r|X,h,ω) is factorised as

p(r|X,h,ω) ∝ (6.12)∏
j,n

δ(rnj −
K∑
k=1

[
hkj s̃

n
kj

]
− ωnj )︸ ︷︷ ︸

fnj

· δ(s̃nkj −
L∑

i=−L

gix
n−i
kj )︸ ︷︷ ︸

φnkj

.

Based on the factorisation (6.10)-(6.12), the joint distribution p(X,h,ω|r) can

be represented by a factor graph, as shown in Fig. 6.3, on which message passing

algorithm is executed to determine the unknown variables.
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6.3.3 Message Passing Receiver Design

In this section, the derivations of messages on factor graph of Fig. 6.3 are

considered. In the decoding part, the channel decoder and the equalizer exchange

extrinsic information iteratively. In the channel decoder, optimal BCJR decoding

[47] is utilised. After decoding, the output LLR is

La(cn,m) =
p(cn,m = 0)

p(cn,m = 1)
, (6.13)

where the subscripts n and m denotes the nth coded bit and the mth constellation

point, respectively. Then the LLRs are transformed to the prior distribution of

p(xnkj) =
∑M

i=1 piδ(x
n
kj−χi), where χi is the constellation point in SCMA encoder and

pi is the associated probability. Although the discrete distribution p(xnkj) can be used

as the incoming message in MPA receiver, the complexity will increases exponentially

with the number of interfered symbols. Here a Kullback-Leibler divergence based

method, also known as expectation propagation (EP) is utilised to approximate the

incoming message by Gaussian. EP aims for finding a Gaussian distribution that

minimises the Kullback-Leibler divergence, i.e.

bG(xnkj) = arg min
bG

∫
bG(xnkj) ln

bG(xnkj)

b(xnkj)
dxnkj, (6.14)

where bG belongs to the family of Gaussian distributions and b(xnkj) is the marginal

of variable xnkj. The minimisation in (6.14) is equivalent to match the moments

of b(xnkj). Assuming the outgoing message has mean and variance me
xnkj

and vexnkj

it is easy to obtain the mean and variance of bG(xnkj) as mxnkj
and vxnkj . Then the

Gaussian approximation of p(xnkj) is determined with the mean and variance

v0
xnkj

=

(
1

vxnkj
− 1

vexnkj

)−1

, (6.15)

m0
xnkj

= v0
xnkj

(
mxnkj

vxnkj
−
me
xnkj

vexnkj

)
. (6.16)
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Having m0
xnkj

and v0
xnkj

, the message in the equalisation part can be calculated.

Again, assuming that the message µs̃nkj→φnk,j = µfnj →s̃nkj has been obtained as

µs̃nkj→φnk,j = G(ms̃nkj→φ
n
k,j
, vs̃nkj→φnk,j), (6.17)

then the message µφnk,j→x
n+l
kj

can be written in Gaussian with

mφnk,j→x
n+l
kj

= ms̃nkj→φ
n
k,j
−

L∑
i=−L,i6=l

gimxn+i
kj →φ

n
k,j
, (6.18)

vφnk,j→x
n+l
kj

= vs̃nkj→φnk,j +
L∑

i=−L,i6=l

g2
i vxn+i

kj →φ
n
k,j
. (6.19)

Usually, calculating µxnkj→φnk,j to different factor nodes φn+l
k,j |Ll=−L requires to calculate

the product of messages for 2L + 1 times. Motivated by the fact that µxnkj→φnk,j ·

µφnk,j→xnkj = bG(xnkj), the objective message can be calculated in a linear complexity

way as µxnkj→φnk,j = bG(xnkj)/µφnk,j→xnkj with

vxnkj→φnk,j =

(
1

vxnkj
− 1

vφnk,j→xnkj

)−1

, (6.20)

mxnkj→φ
n
k,j

= vxnkj→φnk,j

(
mxnkj

vxnkj
−
mφnk,j→x

n
kj

vφnk,j→xnkj

)
. (6.21)

After obtaining all messages µφn+l
k,j →x

n
kj
|Ll=−L, the mean and variance of the extrinsic

message to the channel decoder are given by

vexnkj =

(
L∑

l=−L

1/vφn+l
k,j →x

n
kj

)−1

, (6.22)

me
xnkj

= vexnkj

(
L∑

l=−L

mφn+l
k,j →x

n
kj

vφn+l
k,j →x

n
kj

)
. (6.23)

Based on me
xnkj

and vexnkj , the extrinsic LLRs are calculated and fed to the channel

decoder to determine the data bits of users b̂k.

Next, let us consider the message updatings in the colored noise part. Since

the non-orthogonality of FTN signaling does not affect the first order moment of
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noise samples, the mean of noise sample E[ωnj ] = 0 holds. According to (6.11), the

variance vψnj→ωnj is expressed as

vψnj→ωnj = σ2
δ +

P∑
p=1

(ap)2vωn−pj →ψnj
. (6.24)

It should be noted that the colored noise is a causal system that the sample at time

n only depends previous noise samples. Therefore the message from ωnj to fnj is

identical with µψnj→ωnj , i.e. vωnj tofnj = vψnj→ωnj .

For the channel estimation part, the message µhkj→fnj is readily determined ac-

cording to SPA rules as

µhkj→fnj = p(hkj)
∏
n′ 6=n

µ
fn
′

j →hkj
. (6.25)

p(hkj) is usually coarsely evaluated by using a sequence of pilot symbols, which

can be modeled as a Gaussian distributed variable with mean m0
hkj

and variance

v0
hkj

. Provided that µ
fn
′

j →hkj
has also been obtained in Gaussian form as µ

fn
′

j →hkj
=

(m
fn
′

j →hkj
, v
fn
′

j →hkj
), µhkj→fnj has mean and variance as

mhkj→fnj = vhkj→fnj

m0
hkj

v0
hkj

+
∑
n′ 6=n

m
fn
′

j →hkj

v
fn
′

j →hkj

 , (6.26)

vhkj→fnj =

 1

v0
hkj

+
∑
n′ 6=n

1

v
fn
′

j →hkj

−1

. (6.27)

The belief b(hkj) is obtained by adding the terms with index n
′
= n into (6.26) and

(6.27). And the maximum a posteriori (MAP)estimator can be user to determine the

estimate of channel coefficient by ĥkj = arg maxhkj b(hkj). Since b(hkj) is Gaussian

distribution, the MAP estimate ĥkj is the mean of b(hkj)

In the above, messages have been derived in Gaussian closed form in four parts

of the factor graph. However, they are based on the fact that the messages from fnj

to its connected variable vertices are Gaussian distributions. In what follows, the
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messages related to vertex fnj will be computed. The message µfnj →s̃nkj is expressed

as

µfnj →s̃nkj ∝
∫
δ(rnj −

K∑
k=1

[hkj s̃
n
kj]− ωnj )µωnj→fnj

∏
k

µhkj→fnj

∏
k′ 6=k

µs̃n
k
′
j
→fnj dhkjdω

n
j ds̃n

k′j

∝
∫

exp

(
−
|rnj −

∑K
k=1[hkj s̃

n
kj]|2

vωnj→fnj

)∏
k

µhkj→fnj

∏
k′ 6=k

µs̃n
k
′
j
→fnj dhkjds̃

n
k′j

∝
∫

exp

(
−
|rnj −

∑K
k=1[mhkj→fnj s̃

n
kj]|2

vωnj→fnj +
∑k

k=1 |s̃nkj|2vhkj→fnj

) ∏
k′ 6=k

µs̃n
k
′
j
→fnj ds̃n

k′j
. (6.28)

From (6.28), it is seen when calculating message µfnj →s̃nkj , the variable s̃nkj appears

in both numerator and denominator of the exponent term, which makes the con-

ventional MPA unavailable. Here variational message passing (VMP) in [78] is used

where the message from factor vertex f to variable vertex x is formulated as

µf→x(x) ∝ exp

∫ ln f(x)
∏

x′∈S(f)\{x}

µx′→f (x
′
)dx

′

 . (6.29)

Consequently, the message (6.28) can be obtained in Gaussian form with mean

mfnj →s̃nkj =
(rnj −

∑K
k′=1,k 6=kmh

k
′
j
→fnj ms̃n

k
′
j
→fnj )mhkj→fnj

|mhkj→fnj |2 + vhkj→fnj
, (6.30)

and variance

vfnj →s̃nkj =
vωnj→fnj

|mhkj→fnj |2 + vhkj→fnj
. (6.31)

The message µfnj →hkj can be calculated by VMP likewise, whose mean and variance

are

mfnj →hkj =
(rnj −

∑K
k′=1,k 6=kmh

k
′
j
→fnj ms̃n

k
′
j
→fnj )ms̃nkj→f

n
j

|ms̃nkj→f
n
j
|2 + vs̃nkj→fnj

, (6.32)

vfnj →hkj =
vωnj→fnj

|ms̃nkj→f
n
j
|2 + vs̃nkj→fnj

. (6.33)

6.3.4 Algorithm Summary

Using appropriate approximations, all messages on the factor graph are repre-

sented in parametric forms, which reduce the computational complexity of the con-

ventional MPA receiver significantly. Compared to some existing advanced MPA
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receiver, due to the introduction of auxiliary variable and modified message updat-

ing rules, the computational complexity increases only linearly with the number of

users and resource elements. The details of the proposed receiver for joint channel

estimation and decoding in FTN-SCMA system are organised in Algorithm 6.

Algorithm 6 Joint Channel Estimation and Decoding Algorithm for FTN-SCMA

System

1: Initialisation:

2: At the first turbo iteration, initialise all undetermined messages as Gaussian

distribution with zero mean and unit variance;

3: Using pilot sequence to coarsely estimate the mean m0
hkj

and variance v0
hkj

of

channel coefficient.

4: for iter=1:Niter do

5: Compute the means and variances of messages in equalisation part according

to (6.18)-(6.21);

6: Compute the message from factor vertex fnj to variable vertices xnkj and hkj

according to (6.30)-(6.33);

7: Compute the variance vψnj→ωnj according to (6.24);

8: Compute the message from hkj to factor vertex fnj via (6.26) and (6.27);

9: Compute the mean and variance of message to channel decoder according to

(6.22) and (6.23);

10: Convert the outgoing messages to LLR and feed them to the channel decoder;

11: Perform BCJR decoding;

12: Convert the extrinsic LLRs to Gaussian messages using (6.15) and (6.16);

13: end for

14: Determine the estimate of channel coefficient by MAP estimator.
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6.4 User Activity Detection in Grant-free FTN-SCMA Sys-

tems

In Grant-free system, the user do not need grant before sending signals to the

base station. In existing works, a precision parameter is used as a hyper-prior to

capture the channel sparsity. However, this makes the factor graph contains more

short loops and increase the receiver complexity. In this section, an algorithm for

FTN-SCMA system that determines the user activity directly while perform channel

estimation and decoding will be proposed.

Let us use a binary variable ξk = {0, 1} to denote the user activity, i.e. ξk = 1

indicates the user k is active and vice versa. Then the nth sample at the jth resource

element is expressed by

rnj =
K∑
k=1

hkjξks̃
n
kj + ωnj . (6.34)

The prior distribution of ξk is a Bernoulli distribution given by

p0(ξk) = pξk1 (1− p1)1−ξk , (6.35)

where p1 is the prior knowledge of user activity based on existing data.

6.4.1 Probability based Active User Detection Algorithm

To determine the activity of user k, the probability of it being active γk should be

calculated based on the receiver samples. To this end, the factor graph structure 6.4

is modified by including ξk. Since only function f is affected, only the corresponding

parts of the factor graph are illustrated, as shown in Fig. 6.4. Here an auxiliary

variable ξkj is used on the edge connected vertices hkj.
2 Then it is possible to

formulate the message passing algorithm to calculate the probability of ξkj = 1,

namely γkj.

2Alternatively, the variable ξ can be put on the edge connected s̃nkj and fnj or the edge connected

hkj and fnj . However, these two means will increases N times variables.
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Figure 6.4 : Modified factor graph structure including user activity.

Based on Fig. 6.4, the message from fj
n

j
to hkj is obtained with mean mfn→hkj

and variance vfn
j →hkj

according to (6.32) and (6.33). Hence the intrinsic message for

ξkjhkj is obtained with mean and variance

m→− ξkjhkj
= →v− ξkjhkj

∑
n

mfn
j →hkj

vfn
j hkj

, (6.36)

→v− ξkjhkj
=

(∑ 1

v
j
n→hkj

)−→1

. (6.37)
n f

The distribution of ξkj is obtained by integrating hkj over the joint distribution,

formulating as

p(ξkj) ∝
∫

exp

(
−(ξkjhkj −−→mξkjhkj

)2

→v− ξkjhkj

)
exp

(
−(hkj −m0

hkj
)2

vh
0
kj

)
dhkj(

m(ξkjm
0
hkj

−−→
ξkjhkj

)2

v
∝ exp −

2
kjvh

0
kj
+−→

ξkjhkj

)
. (6.38)

ξ

Then the probability γkj is updated as

γkj =
p(ξkj = 1)

p(ξkj = 0) + p(ξkj = 1)

=
1

1 +
p(ξkj=0)

p(ξkj=1)

. (6.39)
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After obtaining the probability of ξkj = 1, it is readily to obtain the probability γk

as

γk =

∏
j γkjp1∏

j γkjp1 +
∏

j(1− γkj)(1− p1)
. (6.40)

To determine the value of ξk, a threshold β is set according to empirical evidence.

Then we say the user k is active if γk ≥ β and vice versa.

The extrinsic message from hkj to fnj is still obtained by µhkj→fnj = µpkj→hkj
∏

n′ 6=n µfn
′

j →hkj
.

Specifically when calculating µpkj→hkj , ξkj and hkj are combined together as a new

variable,

µpkj→hkj ∝

γkje−
(hkj−m

0
hkj

)2

v0
hkj + (1− γkj)e

−
[m0
hkj

]2

v0
hkj

 . (6.41)

Obviously, µpkj→hkj is a Gaussian mixture distribution (GMD) and µhkj→fnj is aslo

a GMD. In conjunction with the message passing receiver in Section III, µhkj→fnj is

approximated to Gaussian by determining its mean and variance by

mhkj→fnj = Eµhkj→fnj [hkj], (6.42)

vhkj→fnj = Eµhkj→fnj [h2
kj]−m2

hkj→fnj
. (6.43)

In the following table, the algorithm for user activity detection based on message

passing algorithm is described. To sum up, it is seen that the extension from the

proposed algorithm in Section III is readily and only small modification is required.

However, since ξkj has to be calculated separately, the receiver complexity increases.

Also, the derivation of messages is not intuitive from the perspective of probabilistic

factorisation. In the following subsection, another active user detection method with

reduced complexity will be proposed.

6.4.2 Message Passing based Active User Detection Algorithm

To achieve a concise form of message passing receiver under the factor graph

framework, ξk is added as a new variable vertex on the factor graph. According to
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Algorithm 7 User Activity Detection Algorithm I

1: Run Algorithm 6;

2: Calculate the intrinsic message to hkj according to (6.36) and (6.37);

3: Determine the probability γkj by (6.39);

4: Calculate γk according to (6.40) and decide ξk;

5: Approximate the message µhkj→fnj to Gaussian and continue running algorithm

1.

(6.34), a dirac Delta function δ(s̄nkj − ξks̃nkj) is used to represent the multiplication

relationship of s̄nkj = ξks̃
n
kj. Accordingly, the joint likelihood function (6.12) is revised

as

p(r|X,h,ω, ξ) ∝
∏
j,n

δ(rnj −
K∑
k=1

[
hkj s̄

n
kj

]
− ωnj )︸ ︷︷ ︸

fnj

(6.44)

· δ(s̄nkj − ξks̃nkj) · δ(s̃nkj −
L∑

i=−L

gix
n−i
kj )︸ ︷︷ ︸

φnkj

,

and the factor graph is modified as shown in Fig. 6.5. Since ξk is a binary variable,

which follows a discrete distribution. Then in message updating, when the messages

from different product verteices to ξk are Gaussian, the message µξk→×nkj follows

a Gaussian mixture distribution, which makes it unavailable to derive Gaussian

messages. To tackle this problem, the message from ξk to the product vertex ×nkj is

approximated by Gaussian via expectation propagation.

Following SPA rules, the belief of ξk is b(ξk) = µξk→pξkp(ξk). Assuming µξk→pξk is

Gaussian with mean mξk→pξk and variance vξk→pξk , the mean and variance of b(ξk)
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Figure 6.5 : Modified factor graph structure. The product node ×n
kj represents the

constraint δ(s̄nkj − ξks̃
n
kj).

is

mξk =
p1 exp(−

1−
v

2mξk→pξk

ξk→pξk

)

p1

[
exp(−1−

v

2mξk→pξk

ξk→pξk

)− 1

]
+ 1

, (6.45)

vξk = mξk −mξ
2
k
. (6.46)

An obvious observation is that in (6.45) the absolute value of the exponent term

dominates the value of mξk , and vξk becomes smaller when ξk is approaching 0

or 1. That is to say after running several iterations, the belief of ξk becomes more

‘concentrated’. Having mξk and vξk , the Gaussian approximation of message μξk→×n
kj

is easily determined as

μξk→×n
kj
∼ G
(
mξkvξk −m×n

kj→ξkv×n
kj→ξk

vξk − v×n
kj→ξk

,
vξkv×n

kj→ξk

vξk − v×n
kj→ξk

)
. (6.47)

For the product vertex, as μξk→×n
kj

and μs̃nkj→×n
kj

= μφn
kj→s̃nkj

are available , the
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mean and variance of message µs̄nkj→fnj are given as

ms̄nkj→f
n
j

= mξk→×nkjmφnkj→s̃
n
kj
, (6.48)

ms̄nkj→f
n
j

= vξk→×nkjm
2
φnkj→s̃

n
kj

+ (m2
ξk→×nkj

+ vξk→×nkj)vφnkj→s̃nkj . (6.49)

The detailed derivations of (6.48) and (6.49) are given in the Appendix F. The

message µs̄nkj→×nkj , conversely, is same as the message calculated in (6.30) and (6.31).

Next the messages from ×nkj to s̃nkj and ξk are calculated. Again, a similar problem

as in section occurs that even µs̃nkj→×nkj is Gaussian, it is not possible to formulate

Gaussian form messages for ξk. To overcome this challenge, the message µms̄n
kj
→×nkj

and the constraint are grouped as a new soft node. Then, the joint distribution

p(ms̃nkj
, ξk) is formulated as

p(ms̃nkj
, ξk) ∝ exp

(
−

(ms̄nkj→×
n
kj
− ξks̃nkj)2

vs̄nkj→×nkj

)
µξk→×nkjµs̃nkj→×nkj . (6.50)

According the variational inference framework, b(ξk)b(s̃
n
kj) is used to approximate

(6.50). The Kullback Leibler divergence is given as

KLD(ξk, s̃
n
kj) =

∫
b(ξk)b(s̃

n
kj) ln

b(ξk)b(s̃
n
kj)

p(s̃nkj, ξk)
dξkds̃

n
kj

=−
∫
b(ξk)

[∫
ln p(s̃nkj, ξk)b(s̃

n
kj)ds̃

n
kj

]
dξk

+

∫
b(ξk) ln b(ξk)dξk + C, (6.51)

where C denotes a constant. To minimise the KLD, it is easily seen

b(ξk) = exp

(∫
ln p(s̃nkj, ξk)b(s̃

n
kj)

)
. (6.52)

Substituting (6.50) into (6.52) yields

b(ξk)

µξk→×nkj
∝ exp

(
−ξ2

k

m2
s̃nkj

+ vs̃nkj

vs̄nkj→×nkj
+ 2ξk

ms̄nkj→×
n
kj
ms̃nkj

vs̄nkj→×nkj

)
, (6.53)

where vs̃nkj = (v−1
s̃nkj→×

n
kj

+v−1
×nkj→s̃

n
kj

)−1 andms̃nkj
= vs̃nkj(ms̃nkj→×

n
kj
v−1
s̃nkj→×

n
kj

+m×nkj→s̃nkjv
−1
×nkj→s̃

n
kj

).
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Therefore the message µ×nkj→ξk is determined in Gaussian with mean and variance

m×nkj→ξk =
ms̄nkj→×

n
kj
ms̃nkj

m2
s̃nkj

+ vs̃nkj
, (6.54)

v×nkj→ξk =
vs̄nkj→×nkj
m2
s̃nkj

+ vs̃nkj
. (6.55)

Similarly, the Gaussian message µ×kjn→s̃nkj is obtained as

µ×kjn→s̃nkj ∝ G

(
mξk→×nkjmξk

m2
ξk

+ vξk
,
vξk→×nkj
m2
ξk

+ vξk

)
, (6.56)

where mξk and vξk are the mean and variance of b(ξk). Having µ×nkj→ξk in Gaussian

form, the mean and variance of Gaussian message µξk→pξk can be calculated by

straightforward manipulations. The value of ξk is given by the MAP estimate of

b(ξk), which is shown in (6.45). Again, a threshold β is set and comparing it with

mξk gives the decision whether user k is active or inactive. The detailed of the

proposed user activity detection algorithm II is summarised in Algorithm. 8.

Algorithm 8 User Activity Detection Algorithm II

1: Run Algorithm 6;

2: Approximate the message from ξk to the product vertex to Gaussian by EP

according to (6.45) and (6.47);

3: Calculate the mean ms̄nkj→f
n
j

and variance vs̄nkj→fnj using (6.48) and (6.49);

4: Determine the messages from the product vertex to ξk and s̃nkj using (6.54)-

(6.56);

5: Calculate the message µξk→pξk and estimate ξk using (6.45);

6: Continue running Algorithm 1.

6.5 Simulation Results

In this section, the performance of the proposed algorithm is evaluated via sim-

ulations. An SCMA system with J = 4 resource elements that supports K = 6
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users is considered. The codebook is defined according to [103] with size M = 4 and

indicator matrix F as

F =



1 1 0 0 1 0

1 1 1 0 0 0

0 1 0 1 0 1

0 0 1 0 1 1


. (6.57)

Each user transmits a sequence of data bits, which is coded using a rate-5/7 low

density parity code (LDPC) and then mapped to a sequence of SCMA codewords.

The number of transmitted symbols corresponding to each user is N = 2048. The

transmitted symbols pass through root raised cosine shaping filters with roll-off

factor α = 0.5 and packing factor τ = 0.8.3 The number of interfered symbols is

assumed to be L = 10 on both sides. The channel is set to be Rayleigh fading whose

impulse response is generated according to Jake’s model. The coarse estimate of

channel coefficients is obtained by using 5 pilots symbols. The maximum number

of iterations between the detector and the channel decoder is Niter = 10. All results

are averaged from 1000 independent Monte Carlo trails.

In Fig. 6.6, the proposed algorithm is compared with the MPA-Gauss, and

MMSE-MPA methods in terms of bit error ratio (BER). As reference, the per-

formance of conventional MPA receiver under maximum a posteriori criterion is

illustrated. The ’MPA-Gauss’ method refers to the method that directly approxi-

mates the prior distribution of p(xnkj) by Gaussian distribution. The ’MMSE-MPA’

method is a combination of MMSE equalizer to eliminate the effect of channel fad-

ing and ISI and SCMA decoder to decode the SCMA codewords. It is observed

3It is assumed the same shaping filter is employed for different resource elements at the trans-

mitter side.



127

6 6.5 7 7.5 8
Eb/N0 (dB)

10 6

10 5

10 4

10 3

10 2

10 1

BE
R

The Proposed Algorithm
MMSE-MPA
Conventional MPA
MPA-Gauss
Orthogonal System

Figure 6.6 : BER performance of different algorithms for FTN-SCMA system.

the proposed algorithm outperforms all three algorithms and has almost the same

performance as the conventional MPA receiver. The ’MMSE-MPA’ method suffers

from significant performance loss due to the error propagation. Moreover, using

MMSE equalizer impose a cubic order of complexity, which is prohibitively high

in practical applications. Compared to ’MPA-Gauss’ method, since EP further

use the extrinsic information fed to the channel decoder, the proposed algorithm

achieves performance gain. Moreover, the performance based on an OMA system

using Nyquist signaling is plotted. It is observed that the performance loss of the

proposed algorithm is as small as 0.2dB. Meanwhile, 50%more user are supported

and 25% higher data rate is achieved. That is to say, using the same resources, total

87.5% more information can be transmitted via the considered FTN-SCMA system

with negligible performance loss.
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Figure 6.7 : BER performance of the proposed algorithm with different τ .
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Figure 6.8 : BER performance of the proposed algorithm with different L.
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Fig. 6.7 depicts the BER versus Eb/N0 of the proposed algorithm parameterised

by different packing factor τ , where τ = 1 corresponds to the Nyquist signaling case.

It is seen that the proposed iterative receiver for FTN-SCMA system is capable of

achieving similar performance of the Nyquist signaling case when τ ≥ 0.8. Moreover,

as the packing ratio becomes smaller, severer interference is introduced and the

performance gap between the FTN signaling and Nyquist signaling becomes larger.

Actually, another reason maybe in (6.5) the number of interfered symbols L is not

enough to describe the ISI induced by FTN. In Fig. 6.8, the BER curves with various

values of L are illustrated while the packing ratio τ is fixed as 0.7. It is observed

when L increases to 20, the performance gap between the FTN signaling case and

Nyquist one becomes negligible, which means using a smaller packing ratio is still

possible at the cost of more complex receiver. This implies the transmission rate

and the receiver complexity can be compromised. Nevertheless, due to the existence

of Mazo limit, the packing factor can not be decreased boundlessly.

The BER performance of the proposed algorithm versus the number of iterations

is illustrated in Fig. 6.9 to see the convergence behavior. It can be seen with differ-

ent values of Eb/N0, the proposed algorithm can converge after several iterations.

Moreover, it is noted that with higher value of Eb/N0, the proposed algorithm re-

quires more iterations to guarantee the convergence. In Fig. 6.10, the normalised

mean squared error (NMSE) of the estimated channel coefficients versus Eb/N0 is

illustrated. The NMSE is defined as

NMSEh =

∑K
k=1 ‖hk − ĥk‖2∑K

k=1 ‖hk‖2
, (6.58)

where ĥk is the channel estimate obtained in Section III. The NMSEs of the least

square channel estimation method using 5 and all pilot symbols are depicted for

reference. From Fig. 6.10, it is seen that the proposed algorithm is efficient in

channel estimation, which can attain the performance of the LS algorithm based
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Figure 6.9 : BER performance of the proposed algorithm versus the number of

iterations.
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Figure 6.10 : NMSEs of different algorithms versus Eb/N0.

on all pilot symbols. Compared to the coarse estimate with only 5 pilot symbols,

the proposed algorithm has significantly improved the channel estimation result.

Moreover, the performance of an advanced joint channel estimation and decoding

algorithm based on expectation maximisation (EM) is included here. Since EM will

discard uncertainties of variables in the iterative process, it suffers from performance

loss.

Next, the performance of the proposed two active user detection algorithms is

evaluated in a grant-free system. In Fig. 6.11, the BER performance of the proposed

algorithm versus Eb/N0 is illustrated, where the probability that user is active is

p1 = 0.3. For comparison, the performances of the proposed algorithm in Section

III with known active users (denoted by ’MPA-Known’), the algorithm that regards

all users as active users (denoted by ’Approx-known’) and the two-stage CS-MPA
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Figure 6.11 : BER performance of the proposed active user detection algorithms

and existing method.

algorithm [133] that uses compressive sensing for active user detection first and

then performs MPA multiuser detector. It can be observed that ’Approx-known’

that assumes all users to be active suffers from significant performance degradation.

Due to that the two stage method only provides hard decision of active users to the

equalisation part, it also experiences considerable performance loss. Compared to

the optimal case that all users’ activties are known, the proposed algorithms designed

under factor graph framework can achieve near optimal performance. Since the user

activity detection algorithm II has lower complexity than algorithm I, it is more

attractive in practical grant-free systems.

Fig. 6.12 depicts the NMSE of channel estimate based on the joint channel

estimation, decoding and active user detection algorithm parameterised by the oc-
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Figure 6.12 : NMSE of channel estimate with different active probability p1.

currence probability of active users p1. It is seen that the performance degrades

as p1 becomes larger. This can be explained by the fact that a larger p1 leads to

more active users in FTN-SCMA systems and both inter-user and inter-symbol in-

terferences become severer. Also, the performance of MPA-Known algorithm with

different p1 is illustrated as performance bound. It can be observed when p1 is small,

the proposed joint estimation algorithm is capable of attaining the bound. When

p1 increases, although a small performance gap emerges, the proposed algorithm is

still efficient in channel estimation.

6.6 Conclusions

In this chapter, an uplink SCMA system that utilises FTN signaling to further

increase the spectral efficiency is considered. Using AR model, the correlated noise
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samples are approximated by an AR process. Then based on the factorisation of the

joint posterior distribution, a factor graph based hybrid message passing receiver

is proposed for estimating channel coefficients and FTN data symbols. Moreover,

considering a grant-free transmission scheme, the factor graph model is extended

and two novel user activity detection methods are proposed. Consequently, the

proposed receiver can deal with joint channel estimation, decoding and active user

identification problem in FTN-SCMA systems. Simulation results show that the

combined FTN-SCMA systme with the proposed receiver increases the data rate by

more than 80% than the orthogonal communications systems.
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Chapter 7

Conclusions

7.1 Summary of Contributions

In this thesis, the receiver design for high spectral efficiency communication sys-

tem is studied. The iterative receivers for FTN signaling and SCMA system over

complex channels are designed respectively. After combination of the two technolo-

gies, the spectral efficiency is further improved. This thesis has achieved innovative

research results as summarised below:

1. An iterative receiver based on hybrid BP-EP-VMP algorithm is

proposed for FTN signaling over unknown frequency selective channels,

which solves the joint FTN symbol detection and channel estimation

problem. By separating the ISI caused by FTN signaling and fading channels, the

known structure of ISI induced by FTN signaling is fully exploited. A P-order AR

process is used to model the colored noise so that the whitening filtering is no longer

required. EP algorithm is utilised to approximate the output discrete distribution

from channel decoder to a Gaussian distribution and VMP is used to tackle the

message updatings at the product node. Then all messages on factor graph can be

represented in Gaussian forms.

The above results have been organised and presented in [J-11].

2. Gaussian message passing based and variational inference based

FDE algorithms are proposed to solve the FTN symbol detection prob-

lem over doubly selective channels. Firstly, a mean field approximation based

variational inference receiver is proposed. To solve the variance underestimation
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problem caused by MF approximation, Bethe approximation based receiver is devel-

oped. Then, based on the state space model of the received signal, the Forney-style

factor graph is given and GMP based receiver is proposed. Finally considering the

case that the channel state information is uncertain, a robust receiver is proposed

by extending the factor graph.

The above results have been organised and presented in [J-2], [J-10] and [C-3].

3. An energy minimisation based receiver is designed for uplink SC-

MA system and its convergence behavior is analysed. The joint posterior

distribution of SCMA symbols is factorised as the product of several clique potential-

s. Then, based on variational free energy framework, a symbol detection algorithm

is proposed by minimising the corresponding free energy. Next, the convergence of

the proposed algorithm is analysed. It is shown that the variance is guaranteed to

convergence while the conditions that make the mean converge are derived.

The above results have been organised and presented in [J-5].

4. A convergence guaranteed message passing algorithm is proposed

for downlink MIMO-SCMA system and two cooperative detection schemes

are proposed for the considered multiuser system. Considering the MIMO-

SCMA system, multi-user interference and ISI make the receiver very complex. For

this reason, a stretched factor graph structure is designed to reduce the receiver

complexity. Then, considering that BP message passing algorithm may not con-

verge on a loopy factor graph, a convergence guaranteed message passing algorithm

is designed by convexifying the Bethe free energy. To solve the cooperative detec-

tion problem in a network with noisy inter-user links, two schemes, namely, belief

consensus based and ADMM based methods, are proposed.

The above results have been organised and presented in [J-3] and [C-2]

5. A joint channel estimation and data detection method is developed
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for a combined FTN-SCMA system. Extended receiver structure that

solves active user detection jointly is proposed for grant-free systems.

Firstly, an iterative receiver based on factor graph and BP is proposed for FTN-

SCMA system combining non-orthogonal waveform and non-orthogonal multiple

access. Then, considering that in the grant-free system that the base station needs

to detect the user’s activity according to the received signal, a factor graph approach

based on weighted probability is proposed. Furthermore, a unified message passing

receiver is proposed that simultaneously solves the problem of active user detection,

channel estimation and decoding.

The above results have been organised and presented in [J-8].

7.2 Future Work

With the rapid development of communication technologies, the following three

research directions may be the focus of the future work:

1. Symbol detection in nonlinear channels. In communication systems,

due to the use of high power amplifier, the nonlinearity is unavoidable. Although the

digital pre-distortion technique can tackle the nonlinear distortion at the transmitter

side, it is difficult to apply to practical mobile communication systems. For this

reason, it is of significant importance to study the detection algorithm for a nonlinear

high spectral efficiency system, for example, the FTN signaling transmitted through

a nonlinear channel. Since the FTN signaling introduces ISI, the combination with

channel’s nonlinearity will result in a large memory nonlinear channel. Existing

nonlinear channel model focuses on Volterra model. However, Volterra model has

multiple orders, which makes the detection of FTN symbols difficult. The particle

filtering method can deal with the symbol detection problem in nonlinear channels.

However, the complexity is prohibitively high. Therefore, it is necessary to design

low complexity receiver. One possible method is to use channel shortening, which
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uses a post filter to shorten the channel memory depth while achieving near optimal

BER performance. Nonetheless, for mobile devices, it is difficult to perform post

filtering. Another way is to approximate the nonlinear channel by a linear one

and then greatly reduce the complexity with negligible performance loss. How to

linearise nonlinear channels is worthy of further investigation.

2. Asynchronous networks. This thesis assumes the transmitter and the

receiver are fully synchronised. However, the synchronisation problem is always a

key issue in wireless communications. For high spectral efficiency communication

systems, due to intentional induced interferences, the carrier frequency offset and

phase have greater impact. To this end, how to deal with carrier frequency offset

and phase noise needs to be studied. The use of pilot sequences to track the offset

and phase can be still considered, but this kind of methods degrades the spectral

efficiency significantly. Therefore, it is natural to explore a joint data detection and

synchronisation algorithm under one framework.

3. Active user detection in a dynamic environment. Chapter 5 in this

thesis introduced active user detection method in grant-free system based on factor

graph and message passing algorithm. In practice, the states of mobile users are

usually time varying. An inactive user may become active in the next time slot. How

to decide which users are active at the base station to achieve grant-free transmission

in a dynamic environment is of significant importance. In general, we can formulate

the state transition model based on empirical data to describe the activities of users

at different time slots. Nevertheless, this will lead to a large number of unknown

variables and result in a factor graph with many short cycles, which makes the

receiver design challenging. How to find a more effective model to represent the

dynamic states of users and design low complexity receivers for this system needs

further study.
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Appendix A

Minimizing Constrained Mean Field Free Energy

Substituting the mean field approximation q(xf ) =
∏

i q(xf,i) into (3.16) and taking

into account the normalization constraint
∫
q(xf,i)dxf,i = 1, the MF VFE can be

written as

FMF =−
∫
q(xf ) ln p(xf |rf )dxf +

∑
i

∫
q(xf,i) ln q(xf,i)dxf,i. (A.1)

Letting µi(xf,i) be a Lagrangian multiplier associated to the normalization con-

straint, the Lagrangian is given as

LMF = FMF +
∑
i

µi(xf,i)

(
1−

∫
q(xf,i)dxf,i

)
. (A.2)

Setting the partial derivative of Lagrangian ∇µiLMF to zero gives the normalization

constraint. Computing the partial derivative of Lagrangian with respect to q(xf,i)

and setting it to zero, the approximate marginal is obtained as shown in (3.17).
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Appendix B

Minimizing Constrained Bethe Free Energy

Substituting Bethe approximation (3.20) into (3.16) and taking into account the

normalization constraint, the corresponding Bethe VFE can be written as

FB =−
∫
q(xf ) ln p(xf |rf )dxf +

∑
i

∫
q(xf,i) ln q(xf,i)dxf,i

+
∑
i,j,j 6=i

∫
q(xf,i, xf,j) ln q(xf,i, xf,j)dxf,idxf,j

−
∑
i,j,j 6=i

∫
q(xf,i, xf,j) ln q(xf,i)q(xf,j)dxf,idxf,j

=
∑
i,j,j 6=i

∫
q(xf,i, xf,j) ln

q(xf,i, xf,j)

ϕij(xf,i, xf,j)
dxf,idxf,j

+ (N − 1)
∑
i

q(xf,i) (ln q(xf,i)− lnϕii(xf,i)) . (B.1)

The minimization of Bethe VFE is subject to normalization constraint
∫
q(xf,i)dxf,i =

1 and marginalization constraint
∫
q(xf,i, xf,j)dxf,j = q(xf,i). Letting the associated

Lagrangian multipliers being µi(xf,i) and µij(xf,i), the Lagrangian of Bethe approx-

imation is given as

LB = FB +
∑
i,j,j 6=i

µij(xf,i)

(
q(xf,i)−

∫
q(xf,i, xf,j)dxf,j

)
+
∑
i

µi(xf,i)

(
1−

∫
q(xf,i)dxf,i

)
. (B.2)

Setting ∇µi(xf,i)LB = 0 and ∇µij(xf,i)LB = 0 results in the normalization and

marginalization constraints. Setting the partial derivatives∇q(xf,i)LB and∇q(xf,i,xf,j)LB
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to zero yields

ln q(xf,i) = µi(xf,i) + lnϕii(xf,i) +
∑
j,j 6=i

µij(xf,i), (B.3)

ln q(xf,i, xf,j) = ϕij(xf,i, xf,j) + ln q(xf,i)q(xf,j)− µij(xf,i)− µji(xf,j). (B.4)

Substituting (B.3) into (B.4) and taking exponential function on both sides, yields

q(xf,i, xf,j) = C1ϕii(xf,i)ϕjj(xf,j)ϕij(xf,i, xf,j)
∏

k,k 6=i,k 6=j

exp(µik(xf,i)) exp(µjk(xf,j))

(B.5)

where C1 is a constant. Integrating xf,j from above equation and comparing it with

(B.3) yield

exp(µij(xf,i)) ∝
∫
ϕij(xf,i, xf,j)

∏
k,k 6=i
k 6=j

exp(µjk(xf,j))dxf,j.

Letting q̃\i(xf,j) =
∏

k,k 6=i,k 6=j exp(µjk(xf,j)) and substituting it into (B.3), the ap-

proximate marginal is obtained as shown in (3.21).
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Appendix C

Proof of Proposition 1

According to (4.18) and (4.24), the update equation of βkj,i(l) is rewritten as

βjK,i(l) = −a

ρJi +
∑

(i,m),m6=k

βji,m(l − 1)

−1

, (C.1)

with a = h4
k,j/N

2
0 . Note that if βji,k ≤ 0, the following inequality can be derived

βjk,i(l + 1)− βjk,i(l) =
a
∑

(i,m),m6=k
[
βji,m(l)− βji,m(l − 1)

](
ρji +

∑
(i,m),m6=k β

j
i,m(l − 1)

)(
ρji +

∑
(i,m),m6=k β

j
i,m(l)

)
≥ a

(ρji )
2

∑
(i,m),m6=k

[
βji,m(l)− βji,m(l − 1)

]
. (C.2)

By stacking all β values with respect to the resource index j to form βj, the above

inequality can be expressed in a vectorial form as

βj(l + 1)− βj(l) ≥ a

(ρji )
2
A
[
βj(l)− βj(1− 1)

]
≥ al

(ρji )
2l

Al
[
βj(1)− βj(0)

]
, (C.3)

where A is an adjacent matrix with Aik = 1 if and only if user i and k are interfering

with each other. Since the symbols are initialized with vxk,j(0) =∞, which indicates

that vxk,j(1) ≤ vxk,j(0), therefore βjk,i(1) ≥ βjk,i(0) holds and βj(l + 1) − βj(l) ≥ 0

is obtained, which shows that the parameter βjk,i(l+ 1) is monotonically increasing.

According to (4.20), vxk,j(l + 1) < vxk,j(l), which proves that vxk,j is guaranteed to

converge.

Considering the belief damping, to prove ṽxk,j(l + 1) < ṽxk,j(l) is equivalent to

prove

α

vxk,j(l)
+

1− α
vxk,j(l + 1)

≥ α

vxk,j(l − 1)
+

1− α
vxk,j(l)

. (C.4)
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Obviously, with the conclusion drawn above, α
vxk,j (l)

≥ α
vxk,j (l−1)

and 1−α
vxk,j (l+1)

≥
1−α

vxk,j (l)
always hold. Therefore the variance of damped belief is also guaranteed to

converge.
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Appendix D

Proof of Proposition 2

• Necessary Condition: Based on (4.32), γj(l + 1)− γj(l) can be expressed as

γj(l + 1)− γj(l) = blAl
[
γj(1)− γj(0)

]
. (D.1)

Deriving the limits of both sides of (D.1) yields

lim
l→∞

[
γj(l + 1)− γj(l)

]
= lim

l→∞
(bA)l

[
γj(1)− γj(0)

]
. (D.2)

If m̃xk,j converges, we have

lim
l→∞

[
α
(
γj(l + 1)− γj(l)

)
+ (1− α)

(
γj(l)− γj(l − 1)

)]
= lim

l→∞

[
α(bA)l + (1− α)(bA)l−1

]
·
[
γj(1)− γj(0)

]
= 0 (D.3)

which in turn requires liml→∞(bA)l = 0. Assuming that λ and ν are the eigenvalue

and eigenvector of A, then

ν lim
l→∞

(bA)l = lim
l→∞

[
(bA)lν

]
= lim

l→∞

[
(bλ)lν

]
= ν lim

l→∞
(bλ)l. (D.4)

Since ν 6= 0, liml→∞(bλ)l = 0 must be satisfied. Therefore |λ| < 1
b

holds for any

eigenvalue of the matrix A. Consequently, ρ(A) < 1
b
.

• Sufficient Condition: According to the matrix theorem of [134], ‖γj(l+1)−γj(l)‖

can be written as

‖γj(l + 1)− γj(l)‖ = ‖bA
[
γj(l)− γj(l − 1)

]
‖

≤ b · ρ(A)‖γj(l)− γj(l − 1)‖. (D.5)



145

If ρ(A) < 1
b
, then ‖γj(l+ 1)−γj(l)‖ < ‖γj(l)−γj(l− 1)‖ holds and therefore m̃xk,j

is convergent.
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Appendix E

Derivation of Messages (5.41) and (5.42)

Solving the optimization problem (5.40) yields the corresponding beliefs as

ba(xa) ∝ fa(xa)
1
ca

∏
i∈N (a)

exp(
βai(xi)

ca
) (E.1)

bi(xi) ∝
∏

fa∈N (i)

exp(−βai(xi)
ci

). (E.2)

For clarity, the following definitions are made: τi = (1 − ci)/|N (i)|, µxi→fa(xi) =

exp(βai(xi)
ca

) and µfa→xi(xi) = bτii (xi) exp(−βai(xi)). Then the following equations are

obtained

exp(βai(xi)) = µcaxi→fa(xi) (E.3)

exp(−βai(xi)) = µfa→xi(xi) · b
−τi
i (xi). (E.4)

Substituting (E.3) and (E.4) into (E.1) and (E.2) yields,

ba(xa) ∝ fa(xa)
1
ca

∏
i∈N (a)

µxi→fa(xi) (E.5)

b
ci+τi|N (i)|
i (xi) ∝

∏
fa∈N (i)

µfa→xi(xi). (E.6)

Define two auxiliary messages as

µ̃fa→xi(xi) ∝
∫
f

1
ca
a (xa)

∏
i′∈N (a)\i

µx
i
′→fa(xi′ )dxi′ (E.7)

µ̃xi→fa(xi) ∝
∏

f
a
′∈N (i)\fa

µf
a
′→i(xi). (E.8)
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From (E.5)-(E.8), we have

bi(xi) = µ̃xi→fa(xi)µfa→xi(xi)

=

∫
ba(xa)dxa\xi

= µ̃fa→xi(xi)µxi→fa(xi). (E.9)

Comparing (E.9) to µcaxi→fa(xi)µfa→xi(xi) = bτii (xi) gives

µcaxi→fa(xi)µfa→xi(xi) = µ̃τixi→fa(xi)µ
τi
fa→xi(xi) (E.10)

and then

µxi→fa(xi) = µ̃
τi
ca
xi→fa(xi)µ

τi−1

ca
fa→xi(xi). (E.11)

Based on (E.9) and (E.11), we have

µ
ca−τi+1

ca
fa→xi (xi) = µ̃fa→xi(xi)µ̃

τi−ca
ca

xi→fa(xi) (E.12)

µfa→xi(xi) = µ̃
τi−ca
ca−τi+1

xi→fa (xi)µ̃
ca

ca−τi+1

fa→xi (xi). (E.13)

Finally, substituting (E.13) into (E.11) yields

µxi→fa(xi) = µ̃
1

ca−τi+1

xi→fa (xi)µ̃
τi−1

ca−τi+1

fa→xi (xi). (E.14)

With the definition of τi, it is easy to see messages (E.13) and (E.14) are the same

as (5.41) and (5.42).
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Appendix F

Derivations of (6.48) and (6.49)

For the product vertex ×nkj, the message µs̄nkj→fnj can be regarded as the distribution

of s̄nkj = ξks̃
n
kj with random variables ξk and s̃nkj following distributions µξk→×nkj and

µs̃nkj→×nkj . Since µξk→×nkj and µs̃nkj→×nkj are both Gaussian distribution, the density of

s̄nkj is calculated as

f(s̄nkj) =

∫
f(s̃nkj)f(ξk)δ(s̄

n
kj − s̃nkjξk)ds̃nkjdξk

=

∫
1

|ξk|
f

(
s̄nkj
ξk

)
f(ξk)dξk

∝
∫

1

|ξk|
exp

−(
s̄nkj
ξk
−ms̃nkj→×

n
kj

)2

vs̃nkj→×nkj
−

(ξk −mξk→×nkj)
2

vξk→×nkj

 dξk. (F.1)

However, the above integral does not have a analytical expression. The goal is to

derive a Gaussian message, that is to determine the mean and variance of µs̄nkj→fnj

based on incoming messages.

It is well known for two independent random variables x and y, based on Mellin

Transform [135], the nth-order moment of xy satisfies

E[(xy)n] = E(xn)E(yn). (F.2)

Thus the first two order moments of µs̄nkj→fnj are given as

E[s̄nkj] = E[s̃nkj]E[ξk] = mξk→×nkjmφnkj→s̃
n
kj
, (F.3)

E[(s̄nkj)
2] = E[(s̃nkj)

2]E[ξ2
k] (F.4)

= (m2
ξk→×nkj

+ vξk→×nkj)(m
2
φnkj→s̃

n
kj

+ vφnkj→s̃nkj),

and the variance vs̄nkj→fnj = E[(s̄nkj)
2]−E2[s̄nkj], which are given as (6.48) and (6.49).
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[77] J. Céspedes, P. M. Olmos, M. Sánchez-Fernández, and F. Perez-Cruz, “Expec-

tation propagation detection for high-order high-dimensional MIMO systems,”

IEEE Trans. Commun., vol. 62, no. 8, pp. 2840–2849, 2014.

[78] J. M. Winn and C. M. Bishop, “Variational message passing,” J. Machine

Learn. Res., pp. 661–694, 2005.



158

[79] J. Dauwels, A. Eckford, S. Korl, and H.-A. Loeliger, “Expectation maximiza-

tion as message passing-part I: Principles and Gaussian messages,” arXiv

preprint arXiv:0910.2832, 2009.

[80] Q. Guo and D. D. Huang, “A concise representation for the soft-in soft-out

LMMSE detector.” IEEE Commun. Lett., vol. 15, no. 5, pp. 566–568, 2011.

[81] J. Xu, L. Chen, I. Djurdjevic, S. Lin, and K. Abdel-Ghaffar, “Construction of

regular and irregular LDPC codes: Geometry decomposition and masking,”

IEEE Trans. Inf. Theory, vol. 53, no. 1, pp. 121–134, 2007.

[82] P. Schniter, “Low-complexity equalization of OFDM in doubly selective chan-

nels,” IEEE Tran. Signal Process., vol. 52, no. 4, pp. 1002–1011, 2004.

[83] X. Huang and H.-C. Wu, “Robust and efficient intercarrier interference miti-

gation for OFDM systems in time-varying fading channels,” IEEE Trans. Veh.

Technol., vol. 56, no. 5, pp. 2517–2528, 2007.

[84] T. Hrycak, S. Das, G. Matz, and H. G. Feichtinger, “Low complexity equaliza-

tion for doubly selective channels modeled by a basis expansion,” IEEE Tran.

Signal Process., vol. 58, no. 11, pp. 5706–5719, 2010.

[85] P. Cheng, Z. Chen, Y. Rui, Y. J. Guo, L. Gui, M. Tao, and Q. Zhang, “Channel

estimation for OFDM systems over doubly selective channels: A distributed

compressive sensing based approach,” IEEE Trans. Commun., vol. 61, no. 10,

pp. 4173–4185, 2013.

[86] G. Taubock, F. Hlawatsch, D. Eiwen, and H. Rauhut, “Compressive estima-

tion of doubly selective channels in multicarrier systems: Leakage effects and

sparsity-enhancing processing,” IEEE J. Sel. Topics Signal Process., vol. 4,

no. 2, pp. 255–271, April 2010.



159

[87] Q. Guo, L. Ping, and D. Huang, “A low-complexity iterative channel esti-

mation and detection technique for doubly selective channels,” IEEE Trans.

Wireless Commun., vol. 8, no. 8, 2009.

[88] M. Opper and D. Saad, Advanced mean field methods: Theory and practice.

MIT press, 2001.

[89] S. Katsura and M. Takizawa, “Bethe lattice and the Bethe approximation,”

Progress of Theoretical Physics, vol. 51, no. 1, pp. 82–98, 1974.

[90] S. Sugiura and L. Hanzo, “Frequency-domain-equalization-aided iterative de-

tection of faster-than-Nyquist signaling,” IEEE Trans. Veh. Technol., vol. 64,

no. 5, pp. 2122–2128, May 2015.

[91] G. Colavolpe and A. Barbieri, “On MAP symbol detection for ISI channels

using the Ungerboeck observation model,” IEEE Commun. Lett., vol. 9, no. 8,

pp. 720–722, 2005.

[92] F. Rusek, G. Colavolpe, and C. E. W. Sundberg, “40 years with the Unger-

boeck model: A look at its potentialities [lecture notes],” IEEE Signal Process.

Mag., vol. 32, no. 3, pp. 156–161, 2015.

[93] Q. Guo and D. Huang, “EM-based joint channel estimation and detection for

frequency selective channels using Gaussian message passing,” IEEE Trans.

Signal Process., vol. 59, no. 8, pp. 4030–4035, 2011.

[94] Yedidia, Jonathan S and Freeman, William T and Weiss, Yair, “Constructing

free-energy approximations and generalized belief propagation algorithms,”

IEEE Trans. Inf. Theory, vol. 51, no. 7, pp. 2282–2312, 2005.

[95] J. Zhou, J. Qin, and Y.-C. Wu, “Variational inference-based joint interfer-

ence mitigation and OFDM equalization under high mobility,” IEEE Signal

Process. Lett., vol. 22, no. 11, pp. 1970–1974, Nov 2015.



160

[96] J. Dai, K. Niu, C. Dong, and J. Lin, “Improved message passing algorithms

for sparse code multiple access,” IEEE Trans. Veh. Technol., vol. 66, no. 11,

pp. 9986–9999, Nov 2017.

[97] X. Meng, Y. Wu, Y. Chen, and M. Cheng, “Low complexity receiver for u-

plink SCMA system via expectation propagation,” in Proc. IEEE Wireless

Commun. Networking Conf., 2017, pp. 1–5.

[98] G. E. Box and G. C. Tiao, Bayesian inference in statistical analysis. John

Wiley & Sons, 2011.

[99] F. Ricci-Tersenghi, “The Bethe approximation for solving the inverse Ising

problem: a comparison with other inference methods,” J. Statis. Mechan.:

Theory, Experiment, vol. 2012, no. 08, pp. 1–23, Aug 2012.

[100] W. Yuan, N. Wu, H. Wang, and J. Kuang, “Variational inference-based

frequency-domain equalization for faster-than-nyquist signaling in doubly se-

lective channels,” IEEE Signal Process. Lett., vol. 23, no. 9, pp. 1270–1274,

Sept 2016.

[101] K. Friston, J. Mattout, N. Trujillo-Barreto, J. Ashburner, and W. Penny,

“Variational free energy and the Laplace approximation,” Neuroimage, vol. 34,

no. 1, pp. 220–234, 2007.

[102] P. Som, T. Datta, N. Srinidhi, A. Chockalingam, and B. S. Rajan, “Low-

complexity detection in large-dimension MIMO-ISI channels using graphical

models,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 8, pp. 1497–1511,

Aug 2011.

[103] S. Zhang, K. Xiao, B. Xiao, Z. Chen, B. Xia, D. Chen, and S. Ma, “A capacity-

based codebook design method for sparse code multiple access systems,” in

Proc. 8th Int. Conf. Wireless Commun. Signal Process., 2016, pp. 1–5.



161

[104] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, “SCMA codebook

design,” in Proc. IEEE 80th Veh. Technol. Conf, 2014, pp. 1–5.

[105] S. Tang, L. Hao, and Z. Ma, “Low complexity joint MPA detection for down-

link MIMO-SCMA,” in Proc. IEEE Global Commun. Conf., Dec 2016, pp.

1–4.

[106] L. Liu, C. Yuen, Y. L. Guan, Y. Li, and C. Huang, “Gaussian message passing

iterative detection for MIMO-NOMA systems with massive access,” arXiv

preprint arXiv:1607.00800, 2016.

[107] T. Wo, J. C. Fricke, and P. A. Hoeher, “A graph-based iterative gaussian

detector for frequency-selective MIMO channels,” in Proc. IEEE Inf. Theory

Workshop, 2006, pp. 581–585.

[108] W. Haselmayr, B. Etzlinger, and A. Springer, “Factor-graph-based soft-input

soft-output detection for frequency-selective MIMO channels,” IEEE Com-

mun. Lett., vol. 16, no. 10, pp. 1624–1627, 2012.

[109] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless

networks,” Proc. IEEE, vol. 97, no. 2, pp. 427–450, 2009.

[110] F. Meyer, O. Hlinka, H. Wymeersch, E. Riegler, and F. Hlawatsch, “Distribut-

ed localization and tracking of mobile networks including noncooperative ob-

jects,” IEEE Trans. Signal Inf. Process. Net., vol. 2, no. 1, pp. 57–71, 2016.

[111] H. Zhu, A. Cano, and G. B. Giannakis, “Distributed consensus-based demodu-

lation: algorithms and error analysis,” IEEE Trans. Wireless Commun., vol. 9,

no. 6, pp. 2044–2054, 2010.

[112] B. L. Ng, J. S. Evans, S. V. Hanly, and D. Aktas, “Distributed downlink beam-

forming with cooperative base stations,” IEEE Trans. Inf. Theory, vol. 54,

no. 12, pp. 5491–5499, 2008.



162

[113] Z. Ding, M. Peng, and H. V. Poor, “Cooperative non-orthogonal multiple

access in 5G systems,” IEEE Commun. Lett., vol. 19, no. 8, pp. 1462–1465,

2015.

[114] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed opti-

mization and statistical learning via the alternating direction method of mul-

tipliers,” Foundations and Trends R© in Machine Learning, vol. 3, no. 1, pp.

1–122, 2011.

[115] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals

Math. Stat., vol. 22, no. 1, pp. 79–86, 1951.

[116] N. Wu, W. Yuan, Q. Guo, and J. Kuang, “A hybrid BP-EP-VMP approach

to joint channel estimation and decoding for FTN signaling over frequency

selective fading channels,” IEEE Access, vol. 5, pp. 6849–6858, 2017.

[117] J. S. Yedidia, W. T. Freeman, Y. Weiss et al., “Generalized belief propaga-

tion,” in Proc. NIPS, vol. 13, 2000, pp. 689–695.

[118] V. Kolmogorov, “Convergent tree-reweighted message passing for energy min-

imization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp.

1568–1583, 2006.

[119] T. Heskes, “Convexity arguments for efficient minimization of the Bethe and

Kikuchi free energies.” J. Artif. Intell. Res.(JAIR), vol. 26, pp. 153–190, 2006.

[120] L. Xiao, S. Boyd, and S. Lall, “Distributed average consensus with time-

varying metropolis weights,” Automatica, 2006.

[121] C. Song, S. Yoon, and V. Pavlovic, “Fast ADMM algorithm for distributed

optimization with adaptive penalty,” arXiv preprint arXiv:1506.08928, 2015.



163

[122] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:

numerical methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[123] R. Hoshyar, F. P. Wathan, and R. Tafazolli, “Novel low-density signature

for synchronous CDMA systems over AWGN channel,” IEEE Trans. Signal

Process., vol. 56, no. 4, pp. 1616–1626, 2008.

[124] T. P. Minka, “Expectation propagation for approximate bayesian inference,”

in Proc. Conf. Uncertainty Artif. Intell., 2001, pp. 362–369.

[125] G. Szabo, D. Orincsay, B. P. Gero, S. Gyori, and T. Borsos, “Traffic analysis of

mobile broadband networks,” in Proc. 3rd Int. Conf. Wireless Internet, 2007,

p. 18.

[126] J. Zhang, L. Lu, Y. Sun, Y. Chen, J. Liang, J. Liu, H. Yang, S. Xing, Y. Wu,

J. Ma et al., “PoC of SCMA-based uplink grant-free transmission in UCNC

for 5G,” IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1353–1362, 2017.

[127] B. Shim and B. Song, “Multiuser detection via compressive sensing,” IEEE

Commun. Lett., vol. 16, no. 7, pp. 972–974, 2012.

[128] B. Wang, L. Dai, Y. Yuan, and Z. Wang, “Compressive sensing based multi-

user detection for uplink grant-free non-orthogonal multiple access,” in Proc.

IEEE 82nd Veh. Technol. Conf., 2015, pp. 1–5.

[129] C. Wei, H. Liu, Z. Zhang, J. Dang, and L. Wu, “Approximate message passing-

based joint user activity and data detection for NOMA,” IEEE Commun. Lett.,

vol. 21, no. 3, pp. 640–643, 2017.

[130] Y. Zhang, Q. Guo, Z. Wang, J. Xi, and N. Wu, “Block sparse bayesian learn-

ing based joint user activity detection and channel estimation for grant-free

NOMA systems,” IEEE Trans. Veh. Technol., pp. 1–1, 2018.



164

[131] F. Wei and W. Chen, “Message passing receiver design for uplink grant-free

SCMA,” in Proc. 2017 IEEE Globecom Workshops (GC Wkshps), Dec 2017,

pp. 1–6.

[132] W. Yuan, N. Wu, Q. Guo, Y. Li, C. Xing, and J. Kuang, “Iterative receiver-

s for downlink MIMO-SCMA: Message passing and distributed cooperative

detection,” IEEE Trans. Wireless Commun., vol. 17, no. 5, pp. 3444–3458,

2018.

[133] B. Wang, L. Dai, Y. Zhang, T. Mir, and J. Li, “Dynamic compressive sensing-

based multi-user detection for uplink grant-free NOMA,” IEEE Commun. Let-

t., vol. 20, no. 11, pp. 2320–2323, 2016.

[134] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University Press,

2012.

[135] A. M. Mathai, A handbook of generalized special functions for statistical and

physical sciences. Oxford University Press, USA, 1993.


	Title Page
	Statement of Originality
	Abstract
	Acknowledgements
	List of Publications
	Contents
	List of Figures
	Abbreviation
	Nomenclature and Notation
	1 Introduction
	1.1 Background
	1.2 Faster-than-Nyquist Signaling
	1.3 Sparse Code Multiple Access
	1.4 Thesis Objectives and Organisation

	2 Joint Channel Estimation and FTN Signaling Detection in Frequency Selective Channels
	2.1 Introduction
	2.2 Faster-than-Nyquist Signaling Model
	2.3 Message Passing Receiver Design
	2.3.1 Output LLR of Channel Decoder
	2.3.2 Autoregressive Model of Colored Noise
	2.3.3 Factor Graph Representation
	2.3.4 Combined BP-EP-VMP Message Passing
	2.3.5 Computation of Extrinsic LLR
	2.3.6 Complexity Analysis

	2.4 Simulation Results
	2.5 Conclusions

	3 Low Complexity Receiver Design for FTN Signaling in Doubly Selective Channels
	3.1 Introduction
	3.2 System Model
	3.3 FDE-MMSE based Algorithm
	3.4 Variational Inference-based FDE for FTN Signaling in DSCs
	3.4.1 Probabilistic Model
	3.4.2 Variational Inference Method
	3.4.3 Complexity Reduction
	3.4.4 Simulation Results

	3.5 Iterative Message Passing Receiver for FTN signaling in DSCs
	3.5.1 Factor Graph Model
	3.5.2 FDE-based Message Passing Receiver
	3.5.3 Imperfect Frequency-Domain Channel Information
	3.5.4 Simulation Results

	3.6 Conclusions

	4 Uplink SCMA Multiuser Detector Design and Convergence Analysis
	4.1 Introduction
	4.2 System Model
	4.3 Proposed Low-Complexity Receiver
	4.3.1 The Proposed Algorithm
	4.3.2 Computational Complexity

	4.4 Convergence Analysis
	4.5 Simulation Results
	4.6 Conclusions

	5 Downlink MIMO-SCMA Receiver Design: Convergent Message Passing and Cooperative Detection
	5.1 Introduction
	5.2 Problem Formulation
	5.2.1 System Model
	5.2.2 Probabilistic Model

	5.3 Low-Complexity BP-EP Receiver based on Stretched Factor Graph
	5.3.1 Factor Graph Representation
	5.3.2 Stretched Factor Graph and Low-Complexity BP-EP Receiver
	5.3.3 Algorithm Summary

	5.4 Convergence-guaranteed BP-EP Receiver
	5.4.1 Variational Free Energy and Belief Propagation
	5.4.2 Convergence-guaranteed BP-EP Receiver
	5.4.3 Complexity

	5.5 Distributed Cooperative Detection
	5.5.1 Belief Consensus-Based Method
	5.5.2 Bregeman ADMM-Based Method
	5.5.3 Algorithm Summary

	5.6 Simulation Results
	5.7 Conclusions

	6 Iterative Receiver Design for FTN Signaling - SCMA System
	6.1 Introduction
	6.2 System Model
	6.3 Joint Channel Estimation and Decoding Algorithm for FTN-SCMA Systems
	6.3.1 Approximation of Colored Noise
	6.3.2 Probabilistic Model and Factor Graph Representation
	6.3.3 Message Passing Receiver Design
	6.3.4 Algorithm Summary

	6.4 User Activity Detection in Grant-free FTN-SCMA Systems
	6.4.1 Probability based Active User Detection Algorithm
	6.4.2 Message Passing based Active User Detection Algorithm

	6.5 Simulation Results
	6.6 Conclusions

	7 Conclusions
	7.1 Summary of Contributions
	7.2 Future Work

	Appendices
	A Minimizing Constrained Mean Field Free Energy
	B Minimizing Constrained Bethe Free Energy
	C Proof of Proposition 1
	D Proof of Proposition 2
	E Derivation of Messages (5.41) and (5.42)
	F Derivations of (6.48) and (6.49)

	Bibliography



