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ABSTRACT

Low-complexity Iterative Receiver Design for High Spectral Efficiency

Communication Systems

by

Weijie Yuan

With the rapid development of the modern society, people have an increasing

demand of higher data rate. Due to the limited available bandwidth, how to im-

prove the spectral efficiency becomes a key issue in the next generation wireless

systems. Recent researches show that, compared to the conventional orthogonal

communication systems, the non-orthogonal system can transmit more information

with the same resources by introducing non-orthogonality. The non-orthogonal com-

munication systems can be achieved by using faster-than-Nyqusit (FTN) signaling

to transmit more data symbols in the same time period. On the other hand, by

designing appropriate codebook, the sparse code multiple access (SCMA) system

can support more users while preserving the same resource elements. Utilisation of

these new technologies leads to challenge in receiver design, which becomes severer

in complex channel environments. This thesis studies the receiver design for high

spectral efficiency communication systems. The main contributions are as follows:

1. A hybrid message passing algorithm is proposed for faster-than-

Nyquist, which solves the problem of joint data detection and channel

estimation when the channel coefficients are unknown. To fully exploit

the known ISI imposed by FTN signaling, the interference induced by

FTN signaling and channel fading are intentionally separated.

2. Gaussian message passing and variational inference based estima-

tion algorithms are proposed for faster-than-Nyquist signaling detection

in doubly selective channels. Iterative receivers using mean field and



Bethe approximations based on variational inference framework are pro-

posed. Moreover, a novel Gaussian message passing based FTN signaling

detection algorithm is proposed.

3. An energy minimisation based SCMA decoding algorithm is pro-

posed and convergence analysis of the proposed algorithm is derived.

Following optimisation theory and variational free energy framework, the

posterior distribution of data symbol is derived in closed form. Then, the

convergence property of the proposed algorithm is analysed.

4. A stretched factor graph is designed for MIMO-SCMA system in

order to reduce the receiver complexity. Then, a convergence guaran-

teed message passing algorithm is proposed by convexifying the Bethe

free energy. Finally, cooperative communication methods based on belief

consensus and alternative direction method of multipliers are proposed.

5. A low complexity detection algorithm is proposed for faster-than-

Nyquist SCMA system, which enables joint channel estimation, decoding

and user activity detection in grant-free systems. The combination of

FTN signaling with SCMA to further enhance the spectral efficiency

is first considered. Then, a merging belief propagation and expectation

propagation algorithm is proposed to estimate channel state and perform

SCMA decoding.
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