
opusfile
0.12-12-gb23e611

Generated by Doxygen 1.9.1

i

1 Main Page 1

1.1 Introduction . 1

1.2 Organization . 1

1.3 Overview . 2

2 Module Index 3

2.1 Modules . 3

3 Data Structure Index 5

3.1 Data Structures . 5

4 Module Documentation 7

4.1 Error Codes . 7

4.1.1 Detailed Description . 8

4.1.2 Macro Definition Documentation . 8

4.1.2.1 OP_EBADPACKET . 8

4.2 Header Information . 8

4.2.1 Detailed Description . 10

4.2.2 Function Documentation . 10

4.2.2.1 opus_head_parse() . 10

4.2.2.2 opus_granule_sample() . 11

4.2.2.3 opus_tags_parse() . 11

4.2.2.4 opus_tags_copy() . 12

4.2.2.5 opus_tags_init() . 12

4.2.2.6 opus_tags_add() . 13

4.2.2.7 opus_tags_add_comment() . 13

4.2.2.8 opus_tags_set_binary_suffix() . 14

4.2.2.9 opus_tags_query() . 14

4.2.2.10 opus_tags_query_count() . 15

4.2.2.11 opus_tags_get_binary_suffix() . 15

4.2.2.12 opus_tags_get_album_gain() . 16

4.2.2.13 opus_tags_get_track_gain() . 16

4.2.2.14 opus_tags_clear() . 17

4.2.2.15 opus_tagcompare() . 17

4.2.2.16 opus_tagncompare() . 18

4.2.2.17 opus_picture_tag_parse() . 18

4.2.2.18 opus_picture_tag_init() . 19

4.2.2.19 opus_picture_tag_clear() . 19

4.3 URL Reading Options . 20

4.3.1 Detailed Description . 20

4.3.2 Macro Definition Documentation . 20

4.3.2.1 OP_SSL_SKIP_CERTIFICATE_CHECK . 21

4.3.2.2 OP_HTTP_PROXY_HOST . 21

Generated by Doxygen

ii

4.3.2.3 OP_HTTP_PROXY_PORT . 21

4.3.2.4 OP_HTTP_PROXY_USER . 22

4.3.2.5 OP_HTTP_PROXY_PASS . 22

4.3.2.6 OP_GET_SERVER_INFO . 22

4.3.3 Function Documentation . 23

4.3.3.1 opus_server_info_init() . 23

4.3.3.2 opus_server_info_clear() . 23

4.4 Abstract Stream Reading Interface . 23

4.4.1 Detailed Description . 24

4.4.2 Typedef Documentation . 24

4.4.2.1 op_read_func . 24

4.4.2.2 op_seek_func . 25

4.4.2.3 op_tell_func . 25

4.4.2.4 op_close_func . 25

4.4.3 Function Documentation . 26

4.4.3.1 op_fopen() . 26

4.4.3.2 op_fdopen() . 26

4.4.3.3 op_freopen() . 27

4.4.3.4 op_mem_stream_create() . 27

4.4.3.5 op_url_stream_vcreate() . 28

4.4.3.6 op_url_stream_create() . 29

4.5 Opening and Closing . 29

4.5.1 Detailed Description . 30

4.5.2 Function Documentation . 30

4.5.2.1 op_test() . 30

4.5.2.2 op_open_file() . 31

4.5.2.3 op_open_memory() . 31

4.5.2.4 op_vopen_url() . 32

4.5.2.5 op_open_url() . 32

4.5.2.6 op_open_callbacks() . 33

4.5.2.7 op_test_file() . 34

4.5.2.8 op_test_memory() . 35

4.5.2.9 op_vtest_url() . 35

4.5.2.10 op_test_url() . 36

4.5.2.11 op_test_callbacks() . 37

4.5.2.12 op_test_open() . 37

4.5.2.13 op_free() . 38

4.6 Stream Information . 38

4.6.1 Detailed Description . 39

4.6.2 Function Documentation . 39

4.6.2.1 op_seekable() . 39

4.6.2.2 op_link_count() . 40

Generated by Doxygen

iii

4.6.2.3 op_serialno() . 40

4.6.2.4 op_channel_count() . 41

4.6.2.5 op_raw_total() . 41

4.6.2.6 op_pcm_total() . 42

4.6.2.7 op_head() . 43

4.6.2.8 op_tags() . 43

4.6.2.9 op_current_link() . 44

4.6.2.10 op_bitrate() . 44

4.6.2.11 op_bitrate_instant() . 45

4.6.2.12 op_raw_tell() . 46

4.6.2.13 op_pcm_tell() . 46

4.7 Seeking . 47

4.7.1 Detailed Description . 47

4.7.2 Function Documentation . 47

4.7.2.1 op_raw_seek() . 47

4.7.2.2 op_pcm_seek() . 48

4.8 Decoding . 49

4.8.1 Detailed Description . 50

4.8.2 Macro Definition Documentation . 50

4.8.2.1 OP_HEADER_GAIN . 50

4.8.3 Typedef Documentation . 50

4.8.3.1 op_decode_cb_func . 50

4.8.4 Function Documentation . 51

4.8.4.1 op_set_decode_callback() . 51

4.8.4.2 op_set_gain_offset() . 52

4.8.4.3 op_set_dither_enabled() . 52

4.8.4.4 op_read() . 53

4.8.4.5 op_read_float() . 54

4.8.4.6 op_read_stereo() . 55

4.8.4.7 op_read_float_stereo() . 57

5 Data Structure Documentation 59

5.1 OpusFileCallbacks Struct Reference . 59

5.1.1 Detailed Description . 59

5.1.2 Field Documentation . 59

5.1.2.1 read . 60

5.1.2.2 seek . 60

5.1.2.3 tell . 60

5.1.2.4 close . 60

5.2 OpusHead Struct Reference . 60

5.2.1 Detailed Description . 61

5.2.2 Field Documentation . 61

Generated by Doxygen

iv

5.2.2.1 version . 61

5.2.2.2 input_sample_rate . 61

5.2.2.3 output_gain . 62

5.2.2.4 mapping_family . 62

5.2.2.5 coupled_count . 62

5.2.2.6 mapping . 62

5.3 OpusPictureTag Struct Reference . 62

5.3.1 Detailed Description . 63

5.3.2 Field Documentation . 63

5.3.2.1 type . 63

5.3.2.2 mime_type . 64

5.3.2.3 format . 64

5.4 OpusServerInfo Struct Reference . 65

5.4.1 Detailed Description . 65

5.4.2 Field Documentation . 65

5.4.2.1 name . 65

5.4.2.2 description . 66

5.4.2.3 genre . 66

5.4.2.4 url . 66

5.4.2.5 server . 66

5.4.2.6 content_type . 66

5.4.2.7 bitrate_kbps . 66

5.4.2.8 is_public . 67

5.4.2.9 is_ssl . 67

5.5 OpusTags Struct Reference . 67

5.5.1 Detailed Description . 67

5.5.2 Field Documentation . 68

5.5.2.1 vendor . 68

Index 69

Generated by Doxygen

Chapter 1

Main Page

1.1 Introduction

This is the documentation for the libopusfile C API.

The libopusfile package provides a convenient high-level API for decoding and basic manipulation of all Ogg
Opus audio streams. libopusfile is implemented as a layer on top of Xiph.Org's reference libogg and
libopus libraries.

libopusfile provides several sets of built-in routines for file/stream access, and may also use custom stream
I/O routines provided by the embedded environment. There are built-in I/O routines provided for ANSI-compliant
stdio (FILE ∗), memory buffers, and URLs (including <file:> URLs, plus optionally <http:> and <https:>
URLs).

1.2 Organization

The main API is divided into several sections:

• Opening and Closing

• Stream Information

• Decoding

• Seeking

Several additional sections are not tied to the main API.

• Abstract Stream Reading Interface

• Header Information

• Error Codes

Generated by Doxygen

https://www.xiph.org/ogg/doc/libogg/reference.html
https://opus-codec.org/docs/opus_api-1.3.1/
https://opus-codec.org/docs/opus_api-1.3.1/

2 Main Page

1.3 Overview

The libopusfile API always decodes files to 48 kHz. The original sample rate is not preserved by the lossy
compression, though it is stored in the header to allow you to resample to it after decoding (the libopusfile API
does not currently provide a resampler, but the the Speex resampler is a good choice if you need one). In
general, if you are playing back the audio, you should leave it at 48 kHz, provided your audio hardware supports it.
When decoding to a file, it may be worth resampling back to the original sample rate, so as not to surprise users
who might not expect the sample rate to change after encoding to Opus and decoding.

Opus files can contain anywhere from 1 to 255 channels of audio. The channel mappings for up to 8 channels are
the same as the Vorbis mappings. A special stereo API can convert everything to 2 channels, making it
simple to support multichannel files in an application which only has stereo output. Although the libopusfile
ABI provides support for the theoretical maximum number of channels, the current implementation does not support
files with more than 8 channels, as they do not have well-defined channel mappings.

Like all Ogg files, Opus files may be "chained". That is, multiple Opus files may be combined into a single, longer
file just by concatenating the original files. This is commonly done in internet radio streaming, as it allows the title
and artist to be updated each time the song changes, since each link in the chain includes its own set of metadata.

libopusfile fully supports chained files. It will decode the first Opus stream found in each link of a chained file
(ignoring any other streams that might be concurrently multiplexed with it, such as a video stream).

The channel count can also change between links. If your application is not prepared to deal with this, it can use the
stereo API to ensure the audio from all links will always get decoded into a common format. Since libopusfile
always decodes to 48 kHz, you do not have to worry about the sample rate changing between links (as was possible
with Vorbis). This makes application support for chained files with libopusfile very easy.

Generated by Doxygen

https://www.speex.org/docs/manual/speex-manual/node7.html#SECTION00760000000000000000
https://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-810004.3.9

Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

Error Codes . 7
Header Information . 8
URL Reading Options . 20
Abstract Stream Reading Interface . 23
Opening and Closing . 29
Stream Information . 38
Seeking . 47
Decoding . 49

Generated by Doxygen

4 Module Index

Generated by Doxygen

Chapter 3

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

OpusFileCallbacks
The callbacks used to access non-FILE stream resources 59

OpusHead
Ogg Opus bitstream information . 60

OpusPictureTag
The contents of a METADATA_BLOCK_PICTURE tag . 62

OpusServerInfo
HTTP/Shoutcast/Icecast server information associated with a URL 65

OpusTags
The metadata from an Ogg Opus stream . 67

Generated by Doxygen

6 Data Structure Index

Generated by Doxygen

Chapter 4

Module Documentation

4.1 Error Codes

List of possible error codes

Many of the functions in this library return a negative error code when a function fails.

This list provides a brief explanation of the common errors. See each individual function for more details on what a
specific error code means in that context.

• #define OP_FALSE (-1)

A request did not succeed.

• #define OP_EOF (-2)

Currently not used externally.

• #define OP_HOLE (-3)

There was a hole in the page sequence numbers (e.g., a page was corrupt or missing).

• #define OP_EREAD (-128)

An underlying read, seek, or tell operation failed when it should have succeeded.

• #define OP_EFAULT (-129)

A NULL pointer was passed where one was unexpected, or an internal memory allocation failed, or an internal library
error was encountered.

• #define OP_EIMPL (-130)

The stream used a feature that is not implemented, such as an unsupported channel family.

• #define OP_EINVAL (-131)

One or more parameters to a function were invalid.

• #define OP_ENOTFORMAT (-132)

A purported Ogg Opus stream did not begin with an Ogg page, a purported header packet did not start with one of
the required strings, "OpusHead" or "OpusTags", or a link in a chained file was encountered that did not contain any
logical Opus streams.

• #define OP_EBADHEADER (-133)

A required header packet was not properly formatted, contained illegal values, or was missing altogether.

• #define OP_EVERSION (-134)

The ID header contained an unrecognized version number.

• #define OP_ENOTAUDIO (-135)

Currently not used at all.

• #define OP_EBADPACKET (-136)

Generated by Doxygen

8 Module Documentation

An audio packet failed to decode properly.

• #define OP_EBADLINK (-137)

We failed to find data we had seen before, or the bitstream structure was sufficiently malformed that seeking to the
target destination was impossible.

• #define OP_ENOSEEK (-138)

An operation that requires seeking was requested on an unseekable stream.

• #define OP_EBADTIMESTAMP (-139)

The first or last granule position of a link failed basic validity checks.

4.1.1 Detailed Description

4.1.2 Macro Definition Documentation

4.1.2.1 OP_EBADPACKET

#define OP_EBADPACKET (-136)

An audio packet failed to decode properly.

This is usually caused by a multistream Ogg packet where the durations of the individual Opus packets contained
in it are not all the same.

4.2 Header Information

Data Structures

• struct OpusHead

Ogg Opus bitstream information.

• struct OpusTags

The metadata from an Ogg Opus stream.

• struct OpusPictureTag

The contents of a METADATA_BLOCK_PICTURE tag.

Macros

• #define OPUS_CHANNEL_COUNT_MAX (255)

The maximum number of channels in an Ogg Opus stream.

Generated by Doxygen

4.2 Header Information 9

Functions for manipulating header data

These functions manipulate the OpusHead and OpusTags structures, which describe the audio parameters and
tag-value metadata, respectively.

These can be used to query the headers returned by libopusfile, or to parse Opus headers from sources
other than an Ogg Opus stream, provided they use the same format.

• OP_WARN_UNUSED_RESULT int opus_head_parse (OpusHead ∗_head, const unsigned char ∗_data,
size_t _len) OP_ARG_NONNULL(2)

Parses the contents of the ID header packet of an Ogg Opus stream.

• ogg_int64_t opus_granule_sample (const OpusHead ∗_head, ogg_int64_t _gp) OP_ARG_NONNULL(1)

Converts a granule position to a sample offset for a given Ogg Opus stream.

• OP_WARN_UNUSED_RESULT int opus_tags_parse (OpusTags ∗_tags, const unsigned char ∗_data, size←↩

_t _len) OP_ARG_NONNULL(2)

Parses the contents of the 'comment' header packet of an Ogg Opus stream.

• int opus_tags_copy (OpusTags ∗_dst, const OpusTags ∗_src) OP_ARG_NONNULL(1)

Performs a deep copy of an OpusTags structure.

• void opus_tags_init (OpusTags ∗_tags) OP_ARG_NONNULL(1)

Initializes an OpusTags structure.

• int opus_tags_add (OpusTags ∗_tags, const char ∗_tag, const char ∗_value) OP_ARG_NONNULL(1) OP←↩

_ARG_NONNULL(2) OP_ARG_NONNULL(3)

Add a (tag, value) pair to an initialized OpusTags structure.

• int opus_tags_add_comment (OpusTags ∗_tags, const char ∗_comment) OP_ARG_NONNULL(1) OP_←↩

ARG_NONNULL(2)

Add a comment to an initialized OpusTags structure.

• int opus_tags_set_binary_suffix (OpusTags ∗_tags, const unsigned char ∗_data, int _len) OP_ARG_←↩

NONNULL(1)

Replace the binary suffix data at the end of the packet (if any).

• const char ∗ opus_tags_query (const OpusTags ∗_tags, const char ∗_tag, int _count) OP_ARG_←↩

NONNULL(1) OP_ARG_NONNULL(2)

Look up a comment value by its tag.

• int opus_tags_query_count (const OpusTags ∗_tags, const char ∗_tag) OP_ARG_NONNULL(1) OP_ARG←↩

_NONNULL(2)

Look up the number of instances of a tag.

• const unsigned char ∗ opus_tags_get_binary_suffix (const OpusTags ∗_tags, int ∗_len) OP_ARG_←↩

NONNULL(1) OP_ARG_NONNULL(2)

Retrieve the binary suffix data at the end of the packet (if any).

• int opus_tags_get_album_gain (const OpusTags ∗_tags, int ∗_gain_q8) OP_ARG_NONNULL(1) OP_ARG←↩

_NONNULL(2)

Get the album gain from an R128_ALBUM_GAIN tag, if one was specified.

• int opus_tags_get_track_gain (const OpusTags ∗_tags, int ∗_gain_q8) OP_ARG_NONNULL(1) OP_ARG←↩

_NONNULL(2)

Get the track gain from an R128_TRACK_GAIN tag, if one was specified.

• void opus_tags_clear (OpusTags ∗_tags) OP_ARG_NONNULL(1)

Clears the OpusTags structure.

• int opus_tagcompare (const char ∗_tag_name, const char ∗_comment)

Check if _comment is an instance of a _tag_name tag.

• int opus_tagncompare (const char ∗_tag_name, int _tag_len, const char ∗_comment)

Check if _comment is an instance of a _tag_name tag.

• OP_WARN_UNUSED_RESULT int opus_picture_tag_parse (OpusPictureTag ∗_pic, const char ∗_tag) OP←↩

_ARG_NONNULL(1) OP_ARG_NONNULL(2)

Generated by Doxygen

10 Module Documentation

Parse a single METADATA_BLOCK_PICTURE tag.

• void opus_picture_tag_init (OpusPictureTag ∗_pic) OP_ARG_NONNULL(1)

Initializes an OpusPictureTag structure.

• void opus_picture_tag_clear (OpusPictureTag ∗_pic) OP_ARG_NONNULL(1)

Clears the OpusPictureTag structure.

Picture tag image formats

• #define OP_PIC_FORMAT_UNKNOWN (-1)

The MIME type was not recognized, or the image data did not match the declared MIME type.

• #define OP_PIC_FORMAT_URL (0)

The MIME type indicates the image data is really a URL.

• #define OP_PIC_FORMAT_JPEG (1)

The image is a JPEG.

• #define OP_PIC_FORMAT_PNG (2)

The image is a PNG.

• #define OP_PIC_FORMAT_GIF (3)

The image is a GIF.

4.2.1 Detailed Description

4.2.2 Function Documentation

4.2.2.1 opus_head_parse()

OP_WARN_UNUSED_RESULT int opus_head_parse (

OpusHead ∗ _head,

const unsigned char ∗ _data,

size_t _len)

Parses the contents of the ID header packet of an Ogg Opus stream.

Parameters

out _head Returns the contents of the parsed packet. The contents of this structure are untouched on
error. This may be NULL to merely test the header for validity.

in _data The contents of the ID header packet.

_len The number of bytes of data in the ID header packet.

Returns

0 on success or a negative value on error.

Generated by Doxygen

4.2 Header Information 11

Return values

OP_ENOTFORMAT If the data does not start with the "OpusHead" string.

OP_EVERSION If the version field signaled a version this library does not know how to parse.

OP_EIMPL If the channel mapping family was 255, which general purpose players should not
attempt to play.

OP_EBADHEADER If the contents of the packet otherwise violate the Ogg Opus specification:

• Insufficient data,

• Too much data for the known minor versions,

• An unrecognized channel mapping family,

• Zero channels or too many channels,

• Zero coded streams,

• Too many coupled streams, or

• An invalid channel mapping index.

4.2.2.2 opus_granule_sample()

ogg_int64_t opus_granule_sample (

const OpusHead ∗ _head,

ogg_int64_t _gp)

Converts a granule position to a sample offset for a given Ogg Opus stream.

The sample offset is simply _gp-_head->pre_skip. Granule position values smaller than OpusHead::pre_skip
correspond to audio that should never be played, and thus have no associated sample offset. This function returns
-1 for such values. This function also correctly handles extremely large granule positions, which may have wrapped
around to a negative number when stored in a signed ogg_int64_t value.

Parameters

_head The OpusHead information from the ID header of the stream.

_gp The granule position to convert.

Returns

The sample offset associated with the given granule position (counting at a 48 kHz sampling rate), or the
special value -1 on error (i.e., the granule position was smaller than the pre-skip amount).

4.2.2.3 opus_tags_parse()

OP_WARN_UNUSED_RESULT int opus_tags_parse (

OpusTags ∗ _tags,

Generated by Doxygen

12 Module Documentation

const unsigned char ∗ _data,

size_t _len)

Parses the contents of the 'comment' header packet of an Ogg Opus stream.

Parameters

out _tags An uninitialized OpusTags structure. This returns the contents of the parsed packet. The
contents of this structure are untouched on error. This may be NULL to merely test the
header for validity.

in _data The contents of the 'comment' header packet.

_len The number of bytes of data in the 'info' header packet.

Return values

0 Success.
OP_ENOTFORMAT If the data does not start with the "OpusTags" string.

OP_EBADHEADER If the contents of the packet otherwise violate the Ogg Opus specification.

OP_EFAULT If there wasn't enough memory to store the tags.

4.2.2.4 opus_tags_copy()

int opus_tags_copy (

OpusTags ∗ _dst,

const OpusTags ∗ _src)

Performs a deep copy of an OpusTags structure.

Parameters

_dst The OpusTags structure to copy into. If this function fails, the contents of this structure remain untouched.

_src The OpusTags structure to copy from.

Return values

0 Success.
OP_EFAULT If there wasn't enough memory to copy the tags.

4.2.2.5 opus_tags_init()

void opus_tags_init (

OpusTags ∗ _tags)

Initializes an OpusTags structure.

This should be called on a freshly allocated OpusTags structure before attempting to use it.

Generated by Doxygen

4.2 Header Information 13

Parameters

_tags The OpusTags structure to initialize.

4.2.2.6 opus_tags_add()

int opus_tags_add (

OpusTags ∗ _tags,

const char ∗ _tag,

const char ∗ _value)

Add a (tag, value) pair to an initialized OpusTags structure.

Note

Neither opus_tags_add() nor opus_tags_add_comment() support values containing embedded NULs, al-
though the bitstream format does support them. To add such tags, you will need to manipulate the OpusTags
structure directly.

Parameters

_tags The OpusTags structure to add the (tag, value) pair to.

_tag A NUL-terminated, case-insensitive, ASCII string containing the tag to add (without an '=' character).

_value A NUL-terminated UTF-8 containing the corresponding value.

Returns

0 on success, or a negative value on failure.

Return values

OP_EFAULT An internal memory allocation failed.

4.2.2.7 opus_tags_add_comment()

int opus_tags_add_comment (

OpusTags ∗ _tags,

const char ∗ _comment)

Add a comment to an initialized OpusTags structure.

Note

Neither opus_tags_add_comment() nor opus_tags_add() support comments containing embedded NULs, al-
though the bitstream format does support them. To add such tags, you will need to manipulate the OpusTags
structure directly.

Generated by Doxygen

14 Module Documentation

Parameters

_tags The OpusTags structure to add the comment to.

_comment A NUL-terminated UTF-8 string containing the comment in "TAG=value" form.

Returns

0 on success, or a negative value on failure.

Return values

OP_EFAULT An internal memory allocation failed.

4.2.2.8 opus_tags_set_binary_suffix()

int opus_tags_set_binary_suffix (

OpusTags ∗ _tags,

const unsigned char ∗ _data,

int _len)

Replace the binary suffix data at the end of the packet (if any).

Parameters

_tags An initialized OpusTags structure.

_data A buffer of binary data to append after the encoded user comments. The least significant bit of the first
byte of this data must be set (to ensure the data is preserved by other editors).

_len The number of bytes of binary data to append. This may be zero to remove any existing binary suffix
data.

Returns

0 on success, or a negative value on error.

Return values

OP_EINVAL _len was negative, or _len was positive but _data was NULL or the least significant bit of the
first byte was not set.

OP_EFAULT An internal memory allocation failed.

4.2.2.9 opus_tags_query()

const char∗ opus_tags_query (

const OpusTags ∗ _tags,

Generated by Doxygen

4.2 Header Information 15

const char ∗ _tag,

int _count)

Look up a comment value by its tag.

Parameters

_tags An initialized OpusTags structure.

_tag The tag to look up.

_count The instance of the tag. The same tag can appear multiple times, each with a distinct value, so an
index is required to retrieve them all. The order in which these values appear is significant and should
be preserved. Use opus_tags_query_count() to get the legal range for the _count parameter.

Returns

A pointer to the queried tag's value. This points directly to data in the OpusTags structure. It should not be
modified or freed by the application, and modifications to the structure may invalidate the pointer.

Return values

NULL If no matching tag is found.

4.2.2.10 opus_tags_query_count()

int opus_tags_query_count (

const OpusTags ∗ _tags,

const char ∗ _tag)

Look up the number of instances of a tag.

Call this first when querying for a specific tag and then iterate over the number of instances with separate calls to
opus_tags_query() to retrieve all the values for that tag in order.

Parameters

_tags An initialized OpusTags structure.

_tag The tag to look up.

Returns

The number of instances of this particular tag.

4.2.2.11 opus_tags_get_binary_suffix()

const unsigned char∗ opus_tags_get_binary_suffix (

const OpusTags ∗ _tags,

int ∗ _len)

Generated by Doxygen

16 Module Documentation

Retrieve the binary suffix data at the end of the packet (if any).

Parameters

_tags An initialized OpusTags structure.

out _len Returns the number of bytes of binary suffix data returned.

Returns

A pointer to the binary suffix data, or NULL if none was present.

4.2.2.12 opus_tags_get_album_gain()

int opus_tags_get_album_gain (

const OpusTags ∗ _tags,

int ∗ _gain_q8)

Get the album gain from an R128_ALBUM_GAIN tag, if one was specified.

This searches for the first R128_ALBUM_GAIN tag with a valid signed, 16-bit decimal integer value and returns
the value. This routine is exposed merely for convenience for applications which wish to do something special with
the album gain (i.e., display it). If you simply wish to apply the album gain instead of the header gain, you can use
op_set_gain_offset() with an OP_ALBUM_GAIN type and no offset.

Parameters

_tags An initialized OpusTags structure.

out _gain_q8 The album gain, in 1/256ths of a dB. This will lie in the range [-32768,32767], and should
be applied in addition to the header gain. On error, no value is returned, and the previous
contents remain unchanged.

Returns

0 on success, or a negative value on error.

Return values

OP_FALSE There was no album gain available in the given tags.

4.2.2.13 opus_tags_get_track_gain()

int opus_tags_get_track_gain (

const OpusTags ∗ _tags,

int ∗ _gain_q8)

Generated by Doxygen

4.2 Header Information 17

Get the track gain from an R128_TRACK_GAIN tag, if one was specified.

This searches for the first R128_TRACK_GAIN tag with a valid signed, 16-bit decimal integer value and returns
the value. This routine is exposed merely for convenience for applications which wish to do something special with
the track gain (i.e., display it). If you simply wish to apply the track gain instead of the header gain, you can use
op_set_gain_offset() with an OP_TRACK_GAIN type and no offset.

Parameters

_tags An initialized OpusTags structure.

out _gain_q8 The track gain, in 1/256ths of a dB. This will lie in the range [-32768,32767], and should
be applied in addition to the header gain. On error, no value is returned, and the previous
contents remain unchanged.

Returns

0 on success, or a negative value on error.

Return values

OP_FALSE There was no track gain available in the given tags.

4.2.2.14 opus_tags_clear()

void opus_tags_clear (

OpusTags ∗ _tags)

Clears the OpusTags structure.

This should be called on an OpusTags structure after it is no longer needed. It will free all memory used by the
structure members.

Parameters

_tags The OpusTags structure to clear.

4.2.2.15 opus_tagcompare()

int opus_tagcompare (

const char ∗ _tag_name,

const char ∗ _comment)

Check if _comment is an instance of a _tag_name tag.

See also

opus_tagncompare

Generated by Doxygen

18 Module Documentation

Parameters

_tag_name A NUL-terminated, case-insensitive, ASCII string containing the name of the tag to check for
(without the terminating '=' character).

_comment The comment string to check.

Returns

An integer less than, equal to, or greater than zero if _comment is found respectively, to be less than, to match,
or be greater than a "tag=value" string whose tag matches _tag_name.

4.2.2.16 opus_tagncompare()

int opus_tagncompare (

const char ∗ _tag_name,

int _tag_len,

const char ∗ _comment)

Check if _comment is an instance of a _tag_name tag.

This version is slightly more efficient than opus_tagcompare() if the length of the tag name is already known (e.g.,
because it is a constant).

See also

opus_tagcompare

Parameters

_tag_name A case-insensitive ASCII string containing the name of the tag to check for (without the
terminating '=' character).

_tag_len The number of characters in the tag name. This must be non-negative.

_comment The comment string to check.

Returns

An integer less than, equal to, or greater than zero if _comment is found respectively, to be less than, to match,
or be greater than a "tag=value" string whose tag matches the first _tag_len characters of _tag_name.

4.2.2.17 opus_picture_tag_parse()

OP_WARN_UNUSED_RESULT int opus_picture_tag_parse (

OpusPictureTag ∗ _pic,

const char ∗ _tag)

Generated by Doxygen

4.2 Header Information 19

Parse a single METADATA_BLOCK_PICTURE tag.

This decodes the BASE64-encoded content of the tag and returns a structure with the MIME type, description,
image parameters (if known), and the compressed image data. If the MIME type indicates the presence of an image
format we recognize (JPEG, PNG, or GIF) and the actual image data contains the magic signature associated with
that format, then the OpusPictureTag::format field will be set to the corresponding format. This is provided as a
convenience to avoid requiring applications to parse the MIME type and/or do their own format detection for the
commonly used formats. In this case, we also attempt to extract the image parameters directly from the image data
(overriding any that were present in the tag, which the specification says applications are not meant to rely on). The
application must still provide its own support for actually decoding the image data and, if applicable, retrieving that
data from URLs.

Parameters

out _pic Returns the parsed picture data. No sanitation is done on the type, MIME type, or description
fields, so these might return invalid values. The contents of this structure are left unmodified on
failure.

_tag The METADATA_BLOCK_PICTURE tag contents. The leading
"METADATA_BLOCK_PICTURE=" portion is optional, to allow the function to be used on either
directly on the values in OpusTags::user_comments or on the return value of
opus_tags_query().

Returns

0 on success or a negative value on error.

Return values

OP_ENOTFORMAT The METADATA_BLOCK_PICTURE contents were not valid.
OP_EFAULT There was not enough memory to store the picture tag contents.

4.2.2.18 opus_picture_tag_init()

void opus_picture_tag_init (

OpusPictureTag ∗ _pic)

Initializes an OpusPictureTag structure.

This should be called on a freshly allocated OpusPictureTag structure before attempting to use it.

Parameters

_pic The OpusPictureTag structure to initialize.

4.2.2.19 opus_picture_tag_clear()

void opus_picture_tag_clear (

Generated by Doxygen

20 Module Documentation

OpusPictureTag ∗ _pic)

Clears the OpusPictureTag structure.

This should be called on an OpusPictureTag structure after it is no longer needed. It will free all memory used by
the structure members.

Parameters

_pic The OpusPictureTag structure to clear.

4.3 URL Reading Options

Data Structures

• struct OpusServerInfo

HTTP/Shoutcast/Icecast server information associated with a URL.

URL reading options

Options for op_url_stream_create() and associated functions.

These allow you to provide proxy configuration parameters, skip SSL certificate checks, etc. Options are processed
in order, and if the same option is passed multiple times, only the value specified by the last occurrence has an
effect (unless otherwise specified). They may be expanded in the future.

• void opus_server_info_init (OpusServerInfo ∗_info) OP_ARG_NONNULL(1)

Initializes an OpusServerInfo structure.

• void opus_server_info_clear (OpusServerInfo ∗_info) OP_ARG_NONNULL(1)

Clears the OpusServerInfo structure.

• #define OP_SSL_SKIP_CERTIFICATE_CHECK(_b)

Skip the certificate check when connecting via TLS/SSL (https).

• #define OP_HTTP_PROXY_HOST(_host)

Proxy connections through the given host.

• #define OP_HTTP_PROXY_PORT(_port)

Use the given port when proxying connections.

• #define OP_HTTP_PROXY_USER(_user)

Use the given user name for authentication when proxying connections.

• #define OP_HTTP_PROXY_PASS(_pass)

Use the given password for authentication when proxying connections.

• #define OP_GET_SERVER_INFO(_info)

Parse information about the streaming server (if any) and return it.

4.3.1 Detailed Description

4.3.2 Macro Definition Documentation

Generated by Doxygen

4.3 URL Reading Options 21

4.3.2.1 OP_SSL_SKIP_CERTIFICATE_CHECK

#define OP_SSL_SKIP_CERTIFICATE_CHECK(

_b)

Skip the certificate check when connecting via TLS/SSL (https).

Parameters

←↩

_←↩

b

opus_int32: Whether or not to skip the certificate check. The check will be skipped if _b is non-zero,
and will not be skipped if _b is zero.

4.3.2.2 OP_HTTP_PROXY_HOST

#define OP_HTTP_PROXY_HOST(

_host)

Proxy connections through the given host.

If no port is specified via OP_HTTP_PROXY_PORT, the port number defaults to 8080 (http-alt). All proxy parame-
ters are ignored for non-http and non-https URLs.

Parameters

_host const char ∗: The proxy server hostname. This may be NULL to disable the use of a proxy server.

4.3.2.3 OP_HTTP_PROXY_PORT

#define OP_HTTP_PROXY_PORT(

_port)

Use the given port when proxying connections.

This option only has an effect if OP_HTTP_PROXY_HOST is specified with a non-NULL _host. If this option is
not provided, the proxy port number defaults to 8080 (http-alt). All proxy parameters are ignored for non-http and
non-https URLs.

Parameters

_port opus_int32: The proxy server port. This must be in the range 0...65535 (inclusive), or the URL
function this is passed to will fail.

Generated by Doxygen

22 Module Documentation

4.3.2.4 OP_HTTP_PROXY_USER

#define OP_HTTP_PROXY_USER(

_user)

Use the given user name for authentication when proxying connections.

All proxy parameters are ignored for non-http and non-https URLs.

Parameters

_user const char ∗: The proxy server user name. This may be NULL to disable proxy authentication. A
non-NULL value only has an effect if OP_HTTP_PROXY_HOST and OP_HTTP_PROXY_PASS are
also specified with non-NULL arguments.

4.3.2.5 OP_HTTP_PROXY_PASS

#define OP_HTTP_PROXY_PASS(

_pass)

Use the given password for authentication when proxying connections.

All proxy parameters are ignored for non-http and non-https URLs.

Parameters

_pass const char ∗: The proxy server password. This may be NULL to disable proxy authentication. A
non-NULL value only has an effect if OP_HTTP_PROXY_HOST and OP_HTTP_PROXY_USER are
also specified with non-NULL arguments.

4.3.2.6 OP_GET_SERVER_INFO

#define OP_GET_SERVER_INFO(

_info)

Parse information about the streaming server (if any) and return it.

Very little validation is done. In particular, OpusServerInfo::url may not be a valid URL, OpusServerInfo::bitrate_kbps
may not really be in kbps, and OpusServerInfo::content_type may not be a valid MIME type. The character set of
the string fields is not specified anywhere, and should not be assumed to be valid UTF-8.

Parameters

_info OpusServerInfo ∗: Returns information about the server. If there is any error opening the stream, the
contents of this structure remain unmodified. On success, fills in the structure with the server
information that was available, if any. After a successful return, the contents of this structure should be
freed by calling opus_server_info_clear().

Generated by Doxygen

4.4 Abstract Stream Reading Interface 23

4.3.3 Function Documentation

4.3.3.1 opus_server_info_init()

void opus_server_info_init (

OpusServerInfo ∗ _info)

Initializes an OpusServerInfo structure.

All fields are set as if the corresponding header was not available.

Parameters

_info The OpusServerInfo structure to initialize.

Note

If you use this function, you must link against libopusurl.

4.3.3.2 opus_server_info_clear()

void opus_server_info_clear (

OpusServerInfo ∗ _info)

Clears the OpusServerInfo structure.

This should be called on an OpusServerInfo structure after it is no longer needed. It will free all memory used by
the structure members.

Parameters

_info The OpusServerInfo structure to clear.

Note

If you use this function, you must link against libopusurl.

4.4 Abstract Stream Reading Interface

Data Structures

• struct OpusFileCallbacks

The callbacks used to access non-FILE stream resources.

Generated by Doxygen

24 Module Documentation

Functions for reading from streams

These functions define the interface used to read from and seek in a stream of data.

A stream does not need to implement seeking, but the decoder will not be able to seek if it does not do so. These
functions also include some convenience routines for working with standard FILE pointers, complete streams
stored in a single block of memory, or URLs.

• typedef int(∗ op_read_func) (void ∗_stream, unsigned char ∗_ptr, int _nbytes)

Reads up to _nbytes bytes of data from _stream.

• typedef int(∗ op_seek_func) (void ∗_stream, opus_int64 _offset, int _whence)

Sets the position indicator for _stream.

• typedef opus_int64(∗ op_tell_func) (void ∗_stream)

Obtains the current value of the position indicator for _stream.

• typedef int(∗ op_close_func) (void ∗_stream)

Closes the underlying stream.

• OP_WARN_UNUSED_RESULT void ∗ op_fopen (OpusFileCallbacks ∗_cb, const char ∗_path, const char
∗_mode) OP_ARG_NONNULL(1) OP_ARG_NONNULL(2) OP_ARG_NONNULL(3)

Opens a stream with fopen() and fills in a set of callbacks that can be used to access it.

• OP_WARN_UNUSED_RESULT void ∗ op_fdopen (OpusFileCallbacks ∗_cb, int _fd, const char ∗_mode)
OP_ARG_NONNULL(1) OP_ARG_NONNULL(3)

Opens a stream with fdopen() and fills in a set of callbacks that can be used to access it.

• OP_WARN_UNUSED_RESULT void ∗ op_freopen (OpusFileCallbacks ∗_cb, const char ∗_path, const char
∗_mode, void ∗_stream) OP_ARG_NONNULL(1) OP_ARG_NONNULL(2) OP_ARG_NONNULL(3) OP_←↩

ARG_NONNULL(4)

Opens a stream with freopen() and fills in a set of callbacks that can be used to access it.

• OP_WARN_UNUSED_RESULT void ∗ op_mem_stream_create (OpusFileCallbacks ∗_cb, const unsigned
char ∗_data, size_t _size) OP_ARG_NONNULL(1)

Creates a stream that reads from the given block of memory.

• OP_WARN_UNUSED_RESULT void ∗ op_url_stream_vcreate (OpusFileCallbacks ∗_cb, const char ∗_url,
va_list _ap) OP_ARG_NONNULL(1) OP_ARG_NONNULL(2)

Creates a stream that reads from the given URL.

• OP_WARN_UNUSED_RESULT void ∗ op_url_stream_create (OpusFileCallbacks ∗_cb, const char ∗_url,...)
OP_ARG_NONNULL(1) OP_ARG_NONNULL(2)

Creates a stream that reads from the given URL.

4.4.1 Detailed Description

4.4.2 Typedef Documentation

4.4.2.1 op_read_func

typedef int(∗ op_read_func) (void ∗_stream, unsigned char ∗_ptr, int _nbytes)

Reads up to _nbytes bytes of data from _stream.

Generated by Doxygen

4.4 Abstract Stream Reading Interface 25

Parameters

_stream The stream to read from.
out _ptr The buffer to store the data in.

_nbytes The maximum number of bytes to read. This function may return fewer, though it will not
return zero unless it reaches end-of-file.

Returns

The number of bytes successfully read, or a negative value on error.

4.4.2.2 op_seek_func

typedef int(∗ op_seek_func) (void ∗_stream, opus_int64 _offset, int _whence)

Sets the position indicator for _stream.

The new position, measured in bytes, is obtained by adding _offset bytes to the position specified by _whence.
If _whence is set to SEEK_SET, SEEK_CUR, or SEEK_END, the offset is relative to the start of the stream, the
current position indicator, or end-of-file, respectively.

Return values

0 Success.
-1 Seeking is not supported or an error occurred. errno need not be set.

4.4.2.3 op_tell_func

typedef opus_int64(∗ op_tell_func) (void ∗_stream)

Obtains the current value of the position indicator for _stream.

Returns

The current position indicator.

4.4.2.4 op_close_func

typedef int(∗ op_close_func) (void ∗_stream)

Closes the underlying stream.

Generated by Doxygen

26 Module Documentation

Return values

0 Success.
EOF An error occurred. errno need not be set.

4.4.3 Function Documentation

4.4.3.1 op_fopen()

OP_WARN_UNUSED_RESULT void∗ op_fopen (

OpusFileCallbacks ∗ _cb,

const char ∗ _path,

const char ∗ _mode)

Opens a stream with fopen() and fills in a set of callbacks that can be used to access it.

This is useful to avoid writing your own portable 64-bit seeking wrappers, and also avoids cross-module linking
issues on Windows, where a FILE ∗ must be accessed by routines defined in the same module that opened it.

Parameters

out _cb The callbacks to use for this file. If there is an error opening the file, nothing will be filled in
here.

_path The path to the file to open. On Windows, this string must be UTF-8 (to allow access to files
whose names cannot be represented in the current MBCS code page). All other systems
use the native character encoding.

_mode The mode to open the file in.

Returns

A stream handle to use with the callbacks, or NULL on error.

4.4.3.2 op_fdopen()

OP_WARN_UNUSED_RESULT void∗ op_fdopen (

OpusFileCallbacks ∗ _cb,

int _fd,

const char ∗ _mode)

Opens a stream with fdopen() and fills in a set of callbacks that can be used to access it.

This is useful to avoid writing your own portable 64-bit seeking wrappers, and also avoids cross-module linking
issues on Windows, where a FILE ∗ must be accessed by routines defined in the same module that opened it.

Generated by Doxygen

4.4 Abstract Stream Reading Interface 27

Parameters

out _cb The callbacks to use for this file. If there is an error opening the file, nothing will be filled in here.

_fd The file descriptor to open.

_mode The mode to open the file in.

Returns

A stream handle to use with the callbacks, or NULL on error.

4.4.3.3 op_freopen()

OP_WARN_UNUSED_RESULT void∗ op_freopen (

OpusFileCallbacks ∗ _cb,

const char ∗ _path,

const char ∗ _mode,

void ∗ _stream)

Opens a stream with freopen() and fills in a set of callbacks that can be used to access it.

This is useful to avoid writing your own portable 64-bit seeking wrappers, and also avoids cross-module linking
issues on Windows, where a FILE ∗ must be accessed by routines defined in the same module that opened it.

Parameters

out _cb The callbacks to use for this file. If there is an error opening the file, nothing will be filled in
here.

_path The path to the file to open. On Windows, this string must be UTF-8 (to allow access to
files whose names cannot be represented in the current MBCS code page). All other
systems use the native character encoding.

_mode The mode to open the file in.

_stream A stream previously returned by op_fopen(), op_fdopen(), or op_freopen().

Returns

A stream handle to use with the callbacks, or NULL on error.

4.4.3.4 op_mem_stream_create()

OP_WARN_UNUSED_RESULT void∗ op_mem_stream_create (

OpusFileCallbacks ∗ _cb,

const unsigned char ∗ _data,

size_t _size)

Creates a stream that reads from the given block of memory.

This block of memory must contain the complete stream to decode. This is useful for caching small streams (e.g.,
sound effects) in RAM.

Generated by Doxygen

28 Module Documentation

Parameters

out _cb The callbacks to use for this stream. If there is an error creating the stream, nothing will be
filled in here.

_data The block of memory to read from.

_size The size of the block of memory.

Returns

A stream handle to use with the callbacks, or NULL on error.

4.4.3.5 op_url_stream_vcreate()

OP_WARN_UNUSED_RESULT void∗ op_url_stream_vcreate (

OpusFileCallbacks ∗ _cb,

const char ∗ _url,

va_list _ap)

Creates a stream that reads from the given URL.

This function behaves identically to op_url_stream_create(), except that it takes a va_list instead of a variable
number of arguments. It does not call the va_end macro, and because it invokes the va_arg macro, the value of
_ap is undefined after the call.

Note

If you use this function, you must link against libopusurl.

Parameters

out _cb The callbacks to use for this stream. If there is an error creating the stream, nothing will be
filled in here.

_url The URL to read from. Currently only the <file:>, <http:>, and <https:> schemes are
supported. Both <http:> and <https:> may be disabled at compile time, in which case
opening such URLs will always fail. Currently this only supports URIs. IRIs should be
converted to UTF-8 and URL-escaped, with internationalized domain names encoded in
punycode, before passing them to this function.

in,out _ap A list of the optional flags to use. This is a variable-length list of options terminated with
NULL.

Returns

A stream handle to use with the callbacks, or NULL on error.

Generated by Doxygen

4.5 Opening and Closing 29

4.4.3.6 op_url_stream_create()

OP_WARN_UNUSED_RESULT void∗ op_url_stream_create (

OpusFileCallbacks ∗ _cb,

const char ∗ _url,

...)

Creates a stream that reads from the given URL.

Note

If you use this function, you must link against libopusurl.

Parameters

out _cb The callbacks to use for this stream. If there is an error creating the stream, nothing will be
filled in here.

_url The URL to read from. Currently only the <file:>, <http:>, and <https:> schemes are
supported. Both <http:> and <https:> may be disabled at compile time, in which case
opening such URLs will always fail. Currently this only supports URIs. IRIs should be converted
to UTF-8 and URL-escaped, with internationalized domain names encoded in punycode, before
passing them to this function.

... The optional flags to use. This is a variable-length list of options terminated with NULL.

Returns

A stream handle to use with the callbacks, or NULL on error.

4.5 Opening and Closing

Functions for opening and closing streams

These functions allow you to test a stream to see if it is Opus, open it, and close it.

Several flavors are provided for each of the built-in stream types, plus a more general version which takes a set of
application-provided callbacks.

• int op_test (OpusHead ∗_head, const unsigned char ∗_initial_data, size_t _initial_bytes)

Test to see if this is an Opus stream.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_open_file (const char ∗_path, int ∗_error) OP_ARG_←↩

NONNULL(1)

Open a stream from the given file path.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_open_memory (const unsigned char ∗_data, size_t _←↩

size, int ∗_error)

Open a stream from a memory buffer.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_vopen_url (const char ∗_url, int ∗_error, va_list _ap)
OP_ARG_NONNULL(1)

Open a stream from a URL.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_open_url (const char ∗_url, int ∗_error,...) OP_ARG_←↩

NONNULL(1)

Generated by Doxygen

30 Module Documentation

Open a stream from a URL.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_open_callbacks (void ∗_stream, const OpusFileCallbacks
∗_cb, const unsigned char ∗_initial_data, size_t _initial_bytes, int ∗_error) OP_ARG_NONNULL(2)

Open a stream using the given set of callbacks to access it.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_test_file (const char ∗_path, int ∗_error) OP_ARG_←↩

NONNULL(1)

Partially open a stream from the given file path.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_test_memory (const unsigned char ∗_data, size_t _size,
int ∗_error)

Partially open a stream from a memory buffer.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_vtest_url (const char ∗_url, int ∗_error, va_list _ap) OP←↩

_ARG_NONNULL(1)

Partially open a stream from a URL.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_test_url (const char ∗_url, int ∗_error,...) OP_ARG_←↩

NONNULL(1)

Partially open a stream from a URL.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_test_callbacks (void ∗_stream, const OpusFileCallbacks
∗_cb, const unsigned char ∗_initial_data, size_t _initial_bytes, int ∗_error) OP_ARG_NONNULL(2)

Partially open a stream using the given set of callbacks to access it.

• int op_test_open (OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Finish opening a stream partially opened with op_test_callbacks() or one of the associated convenience functions.

• void op_free (OggOpusFile ∗_of)

Release all memory used by an OggOpusFile.

4.5.1 Detailed Description

4.5.2 Function Documentation

4.5.2.1 op_test()

int op_test (

OpusHead ∗ _head,

const unsigned char ∗ _initial_data,

size_t _initial_bytes)

Test to see if this is an Opus stream.

For good results, you will need at least 57 bytes (for a pure Opus-only stream). Something like 512 bytes will give
more reliable results for multiplexed streams. This function is meant to be a quick-rejection filter. Its purpose is not
to guarantee that a stream is a valid Opus stream, but to ensure that it looks enough like Opus that it isn't going to
be recognized as some other format (except possibly an Opus stream that is also multiplexed with other codecs,
such as video).

Parameters

out _head The parsed ID header contents. You may pass NULL if you do not need this
information. If the function fails, the contents of this structure remain untouched.

_initial_data An initial buffer of data from the start of the stream.
_initial_bytes The number of bytes in _initial_data.

Generated by Doxygen

4.5 Opening and Closing 31

Returns

0 if the data appears to be Opus, or a negative value on error.

Return values

OP_FALSE There was not enough data to tell if this was an Opus stream or not.

OP_EFAULT An internal memory allocation failed.

OP_EIMPL The stream used a feature that is not implemented, such as an unsupported channel family.

OP_ENOTFORMAT If the data did not contain a recognizable ID header for an Opus stream.

OP_EVERSION If the version field signaled a version this library does not know how to parse.

OP_EBADHEADER The ID header was not properly formatted or contained illegal values.

4.5.2.2 op_open_file()

OP_WARN_UNUSED_RESULT OggOpusFile∗ op_open_file (

const char ∗ _path,

int ∗ _error)

Open a stream from the given file path.

Parameters

_path The path to the file to open.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if you don't want the
failure code. The failure code will be OP_EFAULT if the file could not be opened, or one of
the other failure codes from op_open_callbacks() otherwise.

Returns

A freshly opened OggOpusFile, or NULL on error.

4.5.2.3 op_open_memory()

OP_WARN_UNUSED_RESULT OggOpusFile∗ op_open_memory (

const unsigned char ∗ _data,

size_t _size,

int ∗ _error)

Open a stream from a memory buffer.

Parameters

_data The memory buffer to open.

_size The number of bytes in the buffer.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if you don't want the
failure code. See op_open_callbacks() for a full list of failure codes.

Generated by Doxygen

32 Module Documentation

Returns

A freshly opened OggOpusFile, or NULL on error.

4.5.2.4 op_vopen_url()

OP_WARN_UNUSED_RESULT OggOpusFile∗ op_vopen_url (

const char ∗ _url,

int ∗ _error,

va_list _ap)

Open a stream from a URL.

This function behaves identically to op_open_url(), except that it takes a va_list instead of a variable number of
arguments. It does not call the va_end macro, and because it invokes the va_arg macro, the value of _ap is
undefined after the call.

Note

If you use this function, you must link against libopusurl.

Parameters

_url The URL to open. Currently only the <file:>, <http:>, and <https:> schemes are
supported. Both <http:> and <https:> may be disabled at compile time, in which case
opening such URLs will always fail. Currently this only supports URIs. IRIs should be
converted to UTF-8 and URL-escaped, with internationalized domain names encoded in
punycode, before passing them to this function.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if you don't
want the failure code. See op_open_callbacks() for a full list of failure codes.

in,out _ap A list of the optional flags to use. This is a variable-length list of options terminated with
NULL.

Returns

A freshly opened OggOpusFile, or NULL on error.

4.5.2.5 op_open_url()

OP_WARN_UNUSED_RESULT OggOpusFile∗ op_open_url (

const char ∗ _url,

int ∗ _error,

...)

Open a stream from a URL.

Note

If you use this function, you must link against libopusurl.

Generated by Doxygen

4.5 Opening and Closing 33

Parameters

_url The URL to open. Currently only the <file:>, <http:>, and <https:> schemes are
supported. Both <http:> and <https:> may be disabled at compile time, in which case
opening such URLs will always fail. Currently this only supports URIs. IRIs should be
converted to UTF-8 and URL-escaped, with internationalized domain names encoded in
punycode, before passing them to this function.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if you don't want the
failure code. See op_open_callbacks() for a full list of failure codes.

... The optional flags to use. This is a variable-length list of options terminated with NULL.

Returns

A freshly opened OggOpusFile, or NULL on error.

4.5.2.6 op_open_callbacks()

OP_WARN_UNUSED_RESULT OggOpusFile∗ op_open_callbacks (

void ∗ _stream,

const OpusFileCallbacks ∗ _cb,

const unsigned char ∗ _initial_data,

size_t _initial_bytes,

int ∗ _error)

Open a stream using the given set of callbacks to access it.

Parameters

_stream The stream to read from (e.g., a FILE ∗). This value will be passed verbatim as the
first argument to all of the callbacks.

_cb The callbacks with which to access the stream. read() must be implemented. seek()
and tell() may be NULL, or may always return -1 to indicate a stream is unseekable,
but if seek() is implemented and succeeds on a particular stream, then tell() must
also. close() may be NULL, but if it is not, it will be called when the OggOpusFile is
destroyed by op_free(). It will not be called if op_open_callbacks() fails with an error.

_initial_data An initial buffer of data from the start of the stream. Applications can read some
number of bytes from the start of the stream to help identify this as an Opus stream,
and then provide them here to allow the stream to be opened, even if it is unseekable.

_initial_bytes The number of bytes in _initial_data. If the stream is seekable, its current position (as
reported by tell() at the start of this function) must be equal to _initial_bytes.
Otherwise, seeking to absolute positions will generate inconsistent results.

Generated by Doxygen

34 Module Documentation

Parameters

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if you don't
want the failure code. The failure code will be one of

OP_EREAD An underlying read, seek, or tell operation failed when it should have
succeeded, or we failed to find data in the stream we had seen before.

OP_EFAULT There was a memory allocation failure, or an internal library error.

OP_EIMPL The stream used a feature that is not implemented, such as an
unsupported channel family.

OP_EINVAL seek() was implemented and succeeded on this source, but tell() did
not, or the starting position indicator was not equal to _initial_bytes.

OP_ENOTFORMAT The stream contained a link that did not have any logical Opus
streams in it.

OP_EBADHEADER A required header packet was not properly formatted, contained
illegal values, or was missing altogether.

OP_EVERSION An ID header contained an unrecognized version number.

OP_EBADLINK We failed to find data we had seen before after seeking.

OP_EBADTIMESTAMP The first or last timestamp in a link failed basic validity
checks.

Returns

A freshly opened OggOpusFile, or NULL on error. libopusfile does not take ownership of the stream
if the call fails. The calling application is responsible for closing the stream if this call returns an error.

4.5.2.7 op_test_file()

OP_WARN_UNUSED_RESULT OggOpusFile∗ op_test_file (

const char ∗ _path,

int ∗ _error)

Partially open a stream from the given file path.

See also

op_test_callbacks

Parameters

_path The path to the file to open.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if you don't want the
failure code. The failure code will be OP_EFAULT if the file could not be opened, or one of
the other failure codes from op_open_callbacks() otherwise.

Generated by Doxygen

4.5 Opening and Closing 35

Returns

A partially opened OggOpusFile, or NULL on error.

4.5.2.8 op_test_memory()

OP_WARN_UNUSED_RESULT OggOpusFile∗ op_test_memory (

const unsigned char ∗ _data,

size_t _size,

int ∗ _error)

Partially open a stream from a memory buffer.

See also

op_test_callbacks

Parameters

_data The memory buffer to open.

_size The number of bytes in the buffer.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if you don't want the
failure code. See op_open_callbacks() for a full list of failure codes.

Returns

A partially opened OggOpusFile, or NULL on error.

4.5.2.9 op_vtest_url()

OP_WARN_UNUSED_RESULT OggOpusFile∗ op_vtest_url (

const char ∗ _url,

int ∗ _error,

va_list _ap)

Partially open a stream from a URL.

This function behaves identically to op_test_url(), except that it takes a va_list instead of a variable number of
arguments. It does not call the va_end macro, and because it invokes the va_arg macro, the value of _ap is
undefined after the call.

Note

If you use this function, you must link against libopusurl.

See also

op_test_url

op_test_callbacks

Generated by Doxygen

36 Module Documentation

Parameters

_url The URL to open. Currently only the <file:>, <http:>, and <https:> schemes are
supported. Both <http:> and <https:> may be disabled at compile time, in which case
opening such URLs will always fail. Currently this only supports URIs. IRIs should be
converted to UTF-8 and URL-escaped, with internationalized domain names encoded in
punycode, before passing them to this function.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if you don't
want the failure code. See op_open_callbacks() for a full list of failure codes.

in,out _ap A list of the optional flags to use. This is a variable-length list of options terminated with
NULL.

Returns

A partially opened OggOpusFile, or NULL on error.

4.5.2.10 op_test_url()

OP_WARN_UNUSED_RESULT OggOpusFile∗ op_test_url (

const char ∗ _url,

int ∗ _error,

...)

Partially open a stream from a URL.

Note

If you use this function, you must link against libopusurl.

See also

op_test_callbacks

Parameters

_url The URL to open. Currently only the <file:>, <http:>, and <https:> schemes are
supported. Both <http:> and <https:> may be disabled at compile time, in which case
opening such URLs will always fail. Currently this only supports URIs. IRIs should be
converted to UTF-8 and URL-escaped, with internationalized domain names encoded in
punycode, before passing them to this function.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if you don't want the
failure code. See op_open_callbacks() for a full list of failure codes.

... The optional flags to use. This is a variable-length list of options terminated with NULL.

Returns

A partially opened OggOpusFile, or NULL on error.

Generated by Doxygen

4.5 Opening and Closing 37

4.5.2.11 op_test_callbacks()

OP_WARN_UNUSED_RESULT OggOpusFile∗ op_test_callbacks (

void ∗ _stream,

const OpusFileCallbacks ∗ _cb,

const unsigned char ∗ _initial_data,

size_t _initial_bytes,

int ∗ _error)

Partially open a stream using the given set of callbacks to access it.

This tests for Opusness and loads the headers for the first link. It does not seek (although it tests for seeka-
bility). You can query a partially open stream for the few pieces of basic information returned by op_serialno(),
op_channel_count(), op_head(), and op_tags() (but only for the first link). You may also determine if it is seekable
via a call to op_seekable(). You cannot read audio from the stream, seek, get the size or duration, get information
from links other than the first one, or even get the total number of links until you finish opening the stream with
op_test_open(). If you do not need to do any of these things, you can dispose of it with op_free() instead.

This function is provided mostly to simplify porting existing code that used libvorbisfile. For new code, you
are likely better off using op_test() instead, which is less resource-intensive, requires less data to succeed, and
imposes a hard limit on the amount of data it examines (important for unseekable streams, where all such data
must be buffered until you are sure of the stream type).

Parameters

_stream The stream to read from (e.g., a FILE ∗). This value will be passed verbatim as the
first argument to all of the callbacks.

_cb The callbacks with which to access the stream. read() must be implemented. seek()
and tell() may be NULL, or may always return -1 to indicate a stream is unseekable,
but if seek() is implemented and succeeds on a particular stream, then tell() must
also. close() may be NULL, but if it is not, it will be called when the OggOpusFile is
destroyed by op_free(). It will not be called if op_open_callbacks() fails with an error.

_initial_data An initial buffer of data from the start of the stream. Applications can read some
number of bytes from the start of the stream to help identify this as an Opus stream,
and then provide them here to allow the stream to be tested more thoroughly, even if it
is unseekable.

_initial_bytes The number of bytes in _initial_data. If the stream is seekable, its current position (as
reported by tell() at the start of this function) must be equal to _initial_bytes.
Otherwise, seeking to absolute positions will generate inconsistent results.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if you don't
want the failure code. See op_open_callbacks() for a full list of failure codes.

Returns

A partially opened OggOpusFile, or NULL on error. libopusfile does not take ownership of the stream
if the call fails. The calling application is responsible for closing the stream if this call returns an error.

4.5.2.12 op_test_open()

int op_test_open (

OggOpusFile ∗ _of)

Finish opening a stream partially opened with op_test_callbacks() or one of the associated convenience functions.

If this function fails, you are still responsible for freeing the OggOpusFile with op_free().

Generated by Doxygen

38 Module Documentation

Parameters

←↩

_←↩

of

The OggOpusFile to finish opening.

Returns

0 on success, or a negative value on error.

Return values

OP_EREAD An underlying read, seek, or tell operation failed when it should have succeeded.

OP_EFAULT There was a memory allocation failure, or an internal library error.

OP_EIMPL The stream used a feature that is not implemented, such as an unsupported channel
family.

OP_EINVAL The stream was not partially opened with op_test_callbacks() or one of the
associated convenience functions.

OP_ENOTFORMAT The stream contained a link that did not have any logical Opus streams in it.

OP_EBADHEADER A required header packet was not properly formatted, contained illegal values, or
was missing altogether.

OP_EVERSION An ID header contained an unrecognized version number.

OP_EBADLINK We failed to find data we had seen before after seeking.

OP_EBADTIMESTAMP The first or last timestamp in a link failed basic validity checks.

4.5.2.13 op_free()

void op_free (

OggOpusFile ∗ _of)

Release all memory used by an OggOpusFile.

Parameters

←↩

_←↩

of

The OggOpusFile to free.

4.6 Stream Information

Functions for obtaining information about streams

These functions allow you to get basic information about a stream, including seekability, the number of links (for
chained streams), plus the size, duration, bitrate, header parameters, and meta information for each link (or, where
available, the stream as a whole).

Generated by Doxygen

4.6 Stream Information 39

Some of these (size, duration) are only available for seekable streams. You can also query the current stream
position, link, and playback time, and instantaneous bitrate during playback.

Some of these functions may be used successfully on the partially open streams returned by op_test_callbacks() or
one of the associated convenience functions. Their documention will indicate so explicitly.

• int op_seekable (const OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Returns whether or not the stream being read is seekable.
• int op_link_count (const OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Returns the number of links in this chained stream.
• opus_uint32 op_serialno (const OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Get the serial number of the given link in a (possibly-chained) Ogg Opus stream.
• int op_channel_count (const OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Get the channel count of the given link in a (possibly-chained) Ogg Opus stream.
• opus_int64 op_raw_total (const OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Get the total (compressed) size of the stream, or of an individual link in a (possibly-chained) Ogg Opus stream,
including all headers and Ogg muxing overhead.

• ogg_int64_t op_pcm_total (const OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Get the total PCM length (number of samples at 48 kHz) of the stream, or of an individual link in a (possibly-chained)
Ogg Opus stream.

• const OpusHead ∗ op_head (const OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Get the ID header information for the given link in a (possibly chained) Ogg Opus stream.
• const OpusTags ∗ op_tags (const OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Get the comment header information for the given link in a (possibly chained) Ogg Opus stream.
• int op_current_link (const OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Retrieve the index of the current link.
• opus_int32 op_bitrate (const OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Computes the bitrate of the stream, or of an individual link in a (possibly-chained) Ogg Opus stream.
• opus_int32 op_bitrate_instant (OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Compute the instantaneous bitrate, measured as the ratio of bits to playable samples decoded since a) the last call
to op_bitrate_instant(), b) the last seek, or c) the start of playback, whichever was most recent.

• opus_int64 op_raw_tell (const OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Obtain the current value of the position indicator for _of.
• ogg_int64_t op_pcm_tell (const OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Obtain the PCM offset of the next sample to be read.

4.6.1 Detailed Description

4.6.2 Function Documentation

4.6.2.1 op_seekable()

int op_seekable (

const OggOpusFile ∗ _of)

Returns whether or not the stream being read is seekable.

This is true if

1. The seek() and tell() callbacks are both non-NULL,

2. The seek() callback was successfully executed at least once, and

3. The tell() callback was successfully able to report the position indicator afterwards.

This function may be called on partially-opened streams.

Generated by Doxygen

40 Module Documentation

Parameters

←↩

_←↩

of

The OggOpusFile whose seekable status is to be returned.

Returns

A non-zero value if seekable, and 0 if unseekable.

4.6.2.2 op_link_count()

int op_link_count (

const OggOpusFile ∗ _of)

Returns the number of links in this chained stream.

This function may be called on partially-opened streams, but it will always return 1. The actual number of links is
not known until the stream is fully opened.

Parameters

←↩

_←↩

of

The OggOpusFile from which to retrieve the link count.

Returns

For fully-open seekable streams, this returns the total number of links in the whole stream, which will be at
least 1. For partially-open or unseekable streams, this always returns 1.

4.6.2.3 op_serialno()

opus_uint32 op_serialno (

const OggOpusFile ∗ _of,

int _li)

Get the serial number of the given link in a (possibly-chained) Ogg Opus stream.

This function may be called on partially-opened streams, but it will always return the serial number of the Opus
stream in the first link.

Parameters

←↩

_←↩

of

The OggOpusFile from which to retrieve the serial number.

←↩

_←↩

li

The index of the link whose serial number should be retrieved. Use a negative number to get the serial
number of the current link. Generated by Doxygen

4.6 Stream Information 41

Returns

The serial number of the given link. If _li is greater than the total number of links, this returns the serial number
of the last link. If the stream is not seekable, this always returns the serial number of the current link.

4.6.2.4 op_channel_count()

int op_channel_count (

const OggOpusFile ∗ _of,

int _li)

Get the channel count of the given link in a (possibly-chained) Ogg Opus stream.

This is equivalent to op_head(_of,_li)->channel_count, but is provided for convenience. This function
may be called on partially-opened streams, but it will always return the channel count of the Opus stream in the first
link.

Parameters

←↩

_←↩

of

The OggOpusFile from which to retrieve the channel count.

←↩

_←↩

li

The index of the link whose channel count should be retrieved. Use a negative number to get the channel
count of the current link.

Returns

The channel count of the given link. If _li is greater than the total number of links, this returns the channel
count of the last link. If the stream is not seekable, this always returns the channel count of the current link.

4.6.2.5 op_raw_total()

opus_int64 op_raw_total (

const OggOpusFile ∗ _of,

int _li)

Get the total (compressed) size of the stream, or of an individual link in a (possibly-chained) Ogg Opus stream,
including all headers and Ogg muxing overhead.

Warning

If the Opus stream (or link) is concurrently multiplexed with other logical streams (e.g., video), this returns the
size of the entire stream (or link), not just the number of bytes in the first logical Opus stream. Returning the
latter would require scanning the entire file.

Generated by Doxygen

42 Module Documentation

Parameters

←↩

_←↩

of

The OggOpusFile from which to retrieve the compressed size.

←↩

_←↩

li

The index of the link whose compressed size should be computed. Use a negative number to get the
compressed size of the entire stream.

Returns

The compressed size of the entire stream if _li is negative, the compressed size of link _li if it is non-negative,
or a negative value on error. The compressed size of the entire stream may be smaller than that of the
underlying stream if trailing garbage was detected in the file.

Return values

OP_EINVAL The stream is not seekable (so we can't know the length), _li wasn't less than the total number
of links in the stream, or the stream was only partially open.

4.6.2.6 op_pcm_total()

ogg_int64_t op_pcm_total (

const OggOpusFile ∗ _of,

int _li)

Get the total PCM length (number of samples at 48 kHz) of the stream, or of an individual link in a (possibly-chained)
Ogg Opus stream.

Users looking for op_time_total() should use op_pcm_total() instead. Because timestamps in Opus are fixed
at 48 kHz, there is no need for a separate function to convert this to seconds (and leaving it out avoids introducing
floating point to the API, for those that wish to avoid it).

Parameters

←↩

_←↩

of

The OggOpusFile from which to retrieve the PCM offset.

←↩

_←↩

li

The index of the link whose PCM length should be computed. Use a negative number to get the PCM
length of the entire stream.

Returns

The PCM length of the entire stream if _li is negative, the PCM length of link _li if it is non-negative, or a
negative value on error.

Generated by Doxygen

4.6 Stream Information 43

Return values

OP_EINVAL The stream is not seekable (so we can't know the length), _li wasn't less than the total number
of links in the stream, or the stream was only partially open.

4.6.2.7 op_head()

const OpusHead∗ op_head (

const OggOpusFile ∗ _of,

int _li)

Get the ID header information for the given link in a (possibly chained) Ogg Opus stream.

This function may be called on partially-opened streams, but it will always return the ID header information of the
Opus stream in the first link.

Parameters

←↩

_←↩

of

The OggOpusFile from which to retrieve the ID header information.

←↩

_←↩

li

The index of the link whose ID header information should be retrieved. Use a negative number to get the
ID header information of the current link. For an unseekable stream, _li is ignored, and the ID header
information for the current link is always returned, if available.

Returns

The contents of the ID header for the given link.

4.6.2.8 op_tags()

const OpusTags∗ op_tags (

const OggOpusFile ∗ _of,

int _li)

Get the comment header information for the given link in a (possibly chained) Ogg Opus stream.

This function may be called on partially-opened streams, but it will always return the tags from the Opus stream in
the first link.

Parameters

←↩

_←↩

of

The OggOpusFile from which to retrieve the comment header information.

←↩

_←↩

li

The index of the link whose comment header information should be retrieved. Use a negative number to
get the comment header information of the current link. For an unseekable stream, _li is ignored, and the
comment header information for the current link is always returned, if available.

Generated by Doxygen

44 Module Documentation

Returns

The contents of the comment header for the given link, or NULL if this is an unseekable stream that encoun-
tered an invalid link.

4.6.2.9 op_current_link()

int op_current_link (

const OggOpusFile ∗ _of)

Retrieve the index of the current link.

This is the link that produced the data most recently read by op_read_float() or its associated functions, or, after a
seek, the link that the seek target landed in. Reading more data may advance the link index (even on the first read
after a seek).

Parameters

←↩

_←↩

of

The OggOpusFile from which to retrieve the current link index.

Returns

The index of the current link on success, or a negative value on failure. For seekable streams, this is a number
between 0 (inclusive) and the value returned by op_link_count() (exclusive). For unseekable streams, this
value starts at 0 and increments by one each time a new link is encountered (even though op_link_count()
always returns 1).

Return values

OP_EINVAL The stream was only partially open.

4.6.2.10 op_bitrate()

opus_int32 op_bitrate (

const OggOpusFile ∗ _of,

int _li)

Computes the bitrate of the stream, or of an individual link in a (possibly-chained) Ogg Opus stream.

The stream must be seekable to compute the bitrate. For unseekable streams, use op_bitrate_instant() to get
periodic estimates.

Generated by Doxygen

4.6 Stream Information 45

Warning

If the Opus stream (or link) is concurrently multiplexed with other logical streams (e.g., video), this uses the size
of the entire stream (or link) to compute the bitrate, not just the number of bytes in the first logical Opus stream.
Returning the latter requires scanning the entire file, but this may be done by decoding the whole file and calling
op_bitrate_instant() once at the end. Install a trivial decoding callback with op_set_decode_callback() if you
wish to skip actual decoding during this process.

Parameters

←↩

_←↩

of

The OggOpusFile from which to retrieve the bitrate.

←↩

_←↩

li

The index of the link whose bitrate should be computed. Use a negative number to get the bitrate of the
whole stream.

Returns

The bitrate on success, or a negative value on error.

Return values

OP_EINVAL The stream was only partially open, the stream was not seekable, or _li was larger than the
number of links.

4.6.2.11 op_bitrate_instant()

opus_int32 op_bitrate_instant (

OggOpusFile ∗ _of)

Compute the instantaneous bitrate, measured as the ratio of bits to playable samples decoded since a) the last call
to op_bitrate_instant(), b) the last seek, or c) the start of playback, whichever was most recent.

This will spike somewhat after a seek or at the start/end of a chain boundary, as pre-skip, pre-roll, and end-trimming
causes samples to be decoded but not played.

Parameters

←↩

_←↩

of

The OggOpusFile from which to retrieve the bitrate.

Returns

The bitrate, in bits per second, or a negative value on error.

Generated by Doxygen

46 Module Documentation

Return values

OP_FALSE No data has been decoded since any of the events described above.

OP_EINVAL The stream was only partially open.

4.6.2.12 op_raw_tell()

opus_int64 op_raw_tell (

const OggOpusFile ∗ _of)

Obtain the current value of the position indicator for _of.

Parameters

←↩

_←↩

of

The OggOpusFile from which to retrieve the position indicator.

Returns

The byte position that is currently being read from.

Return values

OP_EINVAL The stream was only partially open.

4.6.2.13 op_pcm_tell()

ogg_int64_t op_pcm_tell (

const OggOpusFile ∗ _of)

Obtain the PCM offset of the next sample to be read.

If the stream is not properly timestamped, this might not increment by the proper amount between reads, or even
return monotonically increasing values.

Parameters

←↩

_←↩

of

The OggOpusFile from which to retrieve the PCM offset.

Generated by Doxygen

4.7 Seeking 47

Returns

The PCM offset of the next sample to be read.

Return values

OP_EINVAL The stream was only partially open.

4.7 Seeking

Functions for seeking in Opus streams

These functions let you seek in Opus streams, if the underlying stream support it.

Seeking is implemented for all built-in stream I/O routines, though some individual streams may not be seekable
(pipes, live HTTP streams, or HTTP streams from a server that does not support Range requests).

op_raw_seek() is the fastest: it is guaranteed to perform at most one physical seek, but, since the target is a byte
position, makes no guarantee how close to a given time it will come. op_pcm_seek() provides sample-accurate
seeking. The number of physical seeks it requires is still quite small (often 1 or 2, even in highly variable bitrate
streams).

Seeking in Opus requires decoding some pre-roll amount before playback to allow the internal state to converge
(as if recovering from packet loss). This is handled internally by libopusfile, but means there is little extra
overhead for decoding up to the exact position requested (since it must decode some amount of audio anyway). It
also means that decoding after seeking may not return exactly the same values as would be obtained by decoding
the stream straight through. However, such differences are expected to be smaller than the loss introduced by
Opus's lossy compression.

• int op_raw_seek (OggOpusFile ∗_of, opus_int64 _byte_offset) OP_ARG_NONNULL(1)

Seek to a byte offset relative to the compressed data.

• int op_pcm_seek (OggOpusFile ∗_of, ogg_int64_t _pcm_offset) OP_ARG_NONNULL(1)

Seek to the specified PCM offset, such that decoding will begin at exactly the requested position.

4.7.1 Detailed Description

4.7.2 Function Documentation

4.7.2.1 op_raw_seek()

int op_raw_seek (

OggOpusFile ∗ _of,

opus_int64 _byte_offset)

Seek to a byte offset relative to the compressed data.

This also scans packets to update the PCM cursor. It will cross a logical bitstream boundary, but only if it can't get
any packets out of the tail of the link to which it seeks.

Generated by Doxygen

48 Module Documentation

Parameters

_of The OggOpusFile in which to seek.

_byte_offset The byte position to seek to. This must be between 0 and op_raw_total(_of,-1) (inclusive).

Returns

0 on success, or a negative error code on failure.

Return values

OP_EREAD The underlying seek operation failed.

OP_EINVAL The stream was only partially open, or the target was outside the valid range for the stream.

OP_ENOSEEK This stream is not seekable.
OP_EBADLINK Failed to initialize a decoder for a stream for an unknown reason.

4.7.2.2 op_pcm_seek()

int op_pcm_seek (

OggOpusFile ∗ _of,

ogg_int64_t _pcm_offset)

Seek to the specified PCM offset, such that decoding will begin at exactly the requested position.

Parameters

_of The OggOpusFile in which to seek.

_pcm_offset The PCM offset to seek to. This is in samples at 48 kHz relative to the start of the stream.

Returns

0 on success, or a negative value on error.

Return values

OP_EREAD An underlying read or seek operation failed.

OP_EINVAL The stream was only partially open, or the target was outside the valid range for the stream.

OP_ENOSEEK This stream is not seekable.
OP_EBADLINK We failed to find data we had seen before, or the bitstream structure was sufficiently

malformed that seeking to the target destination was impossible.

Generated by Doxygen

4.8 Decoding 49

4.8 Decoding

Functions for decoding audio data

These functions retrieve actual decoded audio data from the stream.

The general functions, op_read() and op_read_float() return 16-bit or floating-point output, both using native endian
ordering. The number of channels returned can change from link to link in a chained stream. There are special
functions, op_read_stereo() and op_read_float_stereo(), which always output two channels, to simplify applications
which do not wish to handle multichannel audio. These downmix multichannel files to two channels, so they can
always return samples in the same format for every link in a chained file.

If the rest of your audio processing chain can handle floating point, the floating-point routines should be preferred,
as they prevent clipping and other issues which might be avoided entirely if, e.g., you scale down the volume at
some other stage. However, if you intend to consume 16-bit samples directly, the conversion in libopusfile
provides noise-shaping dithering and, if compiled against libopus 1.1 or later, soft-clipping prevention.

libopusfile can also be configured at compile time to use the fixed-point libopus API. If so,
libopusfile's floating-point API may also be disabled. In that configuration, nothing in libopusfile
will use any floating-point operations, to simplify support on devices without an adequate FPU.

Warning

HTTPS streams may be be vulnerable to truncation attacks if you do not check the error return code from
op_read_float() or its associated functions. If the remote peer does not close the connection gracefully (with a
TLS "close notify" message), these functions will return OP_EREAD instead of 0 when they reach the end of
the file. If you are reading from an <https:> URL (particularly if seeking is not supported), you should make
sure to check for this error and warn the user appropriately.

• typedef int(∗ op_decode_cb_func) (void ∗_ctx, OpusMSDecoder ∗_decoder, void ∗_pcm, const ogg_packet
∗_op, int _nsamples, int _nchannels, int _format, int _li)

Called to decode an Opus packet.

• void op_set_decode_callback (OggOpusFile ∗_of, op_decode_cb_func _decode_cb, void ∗_ctx) OP_ARG←↩

_NONNULL(1)

Sets the packet decode callback function.

• int op_set_gain_offset (OggOpusFile ∗_of, int _gain_type, opus_int32 _gain_offset_q8) OP_ARG_←↩

NONNULL(1)

Sets the gain to be used for decoded output.

• void op_set_dither_enabled (OggOpusFile ∗_of, int _enabled) OP_ARG_NONNULL(1)

Sets whether or not dithering is enabled for 16-bit decoding.

• OP_WARN_UNUSED_RESULT int op_read (OggOpusFile ∗_of, opus_int16 ∗_pcm, int _buf_size, int ∗_li)
OP_ARG_NONNULL(1)

Reads more samples from the stream.

• OP_WARN_UNUSED_RESULT int op_read_float (OggOpusFile ∗_of, float ∗_pcm, int _buf_size, int ∗_li)
OP_ARG_NONNULL(1)

Reads more samples from the stream.

• OP_WARN_UNUSED_RESULT int op_read_stereo (OggOpusFile ∗_of, opus_int16 ∗_pcm, int _buf_size)
OP_ARG_NONNULL(1)

Reads more samples from the stream and downmixes to stereo, if necessary.

• OP_WARN_UNUSED_RESULT int op_read_float_stereo (OggOpusFile ∗_of, float ∗_pcm, int _buf_size)
OP_ARG_NONNULL(1)

Reads more samples from the stream and downmixes to stereo, if necessary.

• #define OP_DEC_FORMAT_SHORT (7008)

Generated by Doxygen

50 Module Documentation

Indicates that the decoding callback should produce signed 16-bit native-endian output samples.

• #define OP_DEC_FORMAT_FLOAT (7040)

Indicates that the decoding callback should produce 32-bit native-endian float samples.

• #define OP_DEC_USE_DEFAULT (6720)

Indicates that the decoding callback did not decode anything, and that libopusfile should decode normally
instead.

• #define OP_HEADER_GAIN (0)

Gain offset type that indicates that the provided offset is relative to the header gain.

• #define OP_ALBUM_GAIN (3007)

Gain offset type that indicates that the provided offset is relative to the R128_ALBUM_GAIN value (if any), in addition
to the header gain.

• #define OP_TRACK_GAIN (3008)

Gain offset type that indicates that the provided offset is relative to the R128_TRACK_GAIN value (if any), in addition
to the header gain.

• #define OP_ABSOLUTE_GAIN (3009)

Gain offset type that indicates that the provided offset should be used as the gain directly, without applying any the
header or track gains.

4.8.1 Detailed Description

4.8.2 Macro Definition Documentation

4.8.2.1 OP_HEADER_GAIN

#define OP_HEADER_GAIN (0)

Gain offset type that indicates that the provided offset is relative to the header gain.

This is the default.

4.8.3 Typedef Documentation

4.8.3.1 op_decode_cb_func

typedef int(∗ op_decode_cb_func) (void ∗_ctx, OpusMSDecoder ∗_decoder, void ∗_pcm, const ogg_←↩

packet ∗_op, int _nsamples, int _nchannels, int _format, int _li)

Called to decode an Opus packet.

This should invoke the functional equivalent of opus_multistream_decode() or opus_multistream_decode_float(),
except that it returns 0 on success instead of the number of decoded samples (which is known a priori).

Generated by Doxygen

4.8 Decoding 51

Parameters

_ctx The application-provided callback context.

_decoder The decoder to use to decode the packet.

out _pcm The buffer to decode into. This will always have enough room for _nchannels of
_nsamples samples, which should be placed into this buffer interleaved.

_op The packet to decode. This will always have its granule position set to a valid value.

_nsamples The number of samples expected from the packet.

_nchannels The number of channels expected from the packet.

_format The desired sample output format. This is either OP_DEC_FORMAT_SHORT or
OP_DEC_FORMAT_FLOAT.

_li The index of the link from which this packet was decoded.

Returns

A non-negative value on success, or a negative value on error. Any error codes should be the same as
those returned by opus_multistream_decode() or opus_multistream_decode_float(). Success codes are as
follows:

Return values

0 Decoding was successful. The application has filled the buffer with exactly
_nsamples∗_nchannels samples in the requested format.

OP_DEC_USE_DEFAULT No decoding was done. libopusfile should do the decoding by itself instead.

4.8.4 Function Documentation

4.8.4.1 op_set_decode_callback()

void op_set_decode_callback (

OggOpusFile ∗ _of,

op_decode_cb_func _decode_cb,

void ∗ _ctx)

Sets the packet decode callback function.

If set, this is called once for each packet that needs to be decoded. This can be used by advanced applications to do
additional processing on the compressed or uncompressed data. For example, an application might save the final
entropy coder state for debugging and testing purposes, or it might apply additional filters before the downmixing,
dithering, or soft-clipping performed by libopusfile, so long as these filters do not introduce any latency.

A call to this function is no guarantee that the audio will eventually be delivered to the application. libopusfile
may discard some or all of the decoded audio data (i.e., at the beginning or end of a link, or after a seek), however
the callback is still required to provide all of it.

Parameters

_of The OggOpusFile on which to set the decode callback.

_decode_cb The callback function to call. This may be NULL to disable calling the callback.

_ctx The application-provided context pointer to pass to the callback on each call.
Generated by Doxygen

52 Module Documentation

4.8.4.2 op_set_gain_offset()

int op_set_gain_offset (

OggOpusFile ∗ _of,

int _gain_type,

opus_int32 _gain_offset_q8)

Sets the gain to be used for decoded output.

By default, the gain in the header is applied with no additional offset. The total gain (including header gain and/or
track gain, if applicable, and this offset), will be clamped to [-32768,32767]/256 dB. This is more than enough to
saturate or underflow 16-bit PCM.

Note

The new gain will not be applied to any already buffered, decoded output. This means you cannot change it
sample-by-sample, as at best it will be updated packet-by-packet. It is meant for setting a target volume level,
rather than applying smooth fades, etc.

Parameters

_of The OggOpusFile on which to set the gain offset.

_gain_type One of OP_HEADER_GAIN, OP_ALBUM_GAIN, OP_TRACK_GAIN, or
OP_ABSOLUTE_GAIN.

_gain_offset_q8 The gain offset to apply, in 1/256ths of a dB.

Returns

0 on success or a negative value on error.

Return values

OP_EINVAL The _gain_type was unrecognized.

4.8.4.3 op_set_dither_enabled()

void op_set_dither_enabled (

OggOpusFile ∗ _of,

int _enabled)

Sets whether or not dithering is enabled for 16-bit decoding.

By default, when libopusfile is compiled to use floating-point internally, calling op_read() or op_read_stereo()
will first decode to float, and then convert to fixed-point using noise-shaping dithering. This flag can be used to
disable that dithering. When the application uses op_read_float() or op_read_float_stereo(), or when the library has
been compiled to decode directly to fixed point, this flag has no effect.

Generated by Doxygen

4.8 Decoding 53

Parameters

_of The OggOpusFile on which to enable or disable dithering.

_enabled A non-zero value to enable dithering, or 0 to disable it.

4.8.4.4 op_read()

OP_WARN_UNUSED_RESULT int op_read (

OggOpusFile ∗ _of,

opus_int16 ∗ _pcm,

int _buf_size,

int ∗ _li)

Reads more samples from the stream.

Note

Although _buf_size must indicate the total number of values that can be stored in _pcm, the return value is
the number of samples per channel. This is done because

1. The channel count cannot be known a priori (reading more samples might advance us into the next link,
with a different channel count), so _buf_size cannot also be in units of samples per channel,

2. Returning the samples per channel matches the libopus API as closely as we're able,

3. Returning the total number of values instead of samples per channel would mean the caller would need
a division to compute the samples per channel, and might worry about the possibility of getting back
samples for some channels and not others, and

4. This approach is relatively fool-proof: if an application passes too small a value to _buf_size, they will
simply get fewer samples back, and if they assume the return value is the total number of values, then
they will simply read too few (rather than reading too many and going off the end of the buffer).

Parameters

_of The OggOpusFile from which to read.

out _pcm A buffer in which to store the output PCM samples, as signed native-endian 16-bit values
at 48 kHz with a nominal range of [-32768,32767). Multiple channels are
interleaved using the Vorbis channel ordering. This must have room for at
least _buf_size values.

_buf_size The number of values that can be stored in _pcm. It is recommended that this be large
enough for at least 120 ms of data at 48 kHz per channel (5760 values per channel).
Smaller buffers will simply return less data, possibly consuming more memory to buffer
the data internally. libopusfile may return less data than requested. If so, there is
no guarantee that the remaining data in _pcm will be unmodified.

out _li The index of the link this data was decoded from. You may pass NULL if you do not need
this information. If this function fails (returning a negative value), this parameter is left
unset.

Returns

The number of samples read per channel on success, or a negative value on failure. The channel count can
be retrieved on success by calling op_head(_of,∗_li). The number of samples returned may be 0 if

Generated by Doxygen

https://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-810004.3.9

54 Module Documentation

the buffer was too small to store even a single sample for all channels, or if end-of-file was reached. The list
of possible failure codes follows. Most of them can only be returned by unseekable, chained streams that
encounter a new link.

Return values

OP_HOLE There was a hole in the data, and some samples may have been skipped. Call this
function again to continue decoding past the hole.

OP_EREAD An underlying read operation failed. This may signal a truncation attack from an
<https:> source.

OP_EFAULT An internal memory allocation failed.

OP_EIMPL An unseekable stream encountered a new link that used a feature that is not
implemented, such as an unsupported channel family.

OP_EINVAL The stream was only partially open.

OP_ENOTFORMAT An unseekable stream encountered a new link that did not have any logical Opus
streams in it.

OP_EBADHEADER An unseekable stream encountered a new link with a required header packet that
was not properly formatted, contained illegal values, or was missing altogether.

OP_EVERSION An unseekable stream encountered a new link with an ID header that contained an
unrecognized version number.

OP_EBADPACKET Failed to properly decode the next packet.

OP_EBADLINK We failed to find data we had seen before.
OP_EBADTIMESTAMP An unseekable stream encountered a new link with a starting timestamp that failed

basic validity checks.

4.8.4.5 op_read_float()

OP_WARN_UNUSED_RESULT int op_read_float (

OggOpusFile ∗ _of,

float ∗ _pcm,

int _buf_size,

int ∗ _li)

Reads more samples from the stream.

Note

Although _buf_size must indicate the total number of values that can be stored in _pcm, the return value is
the number of samples per channel.

1. The channel count cannot be known a priori (reading more samples might advance us into the next link,
with a different channel count), so _buf_size cannot also be in units of samples per channel,

2. Returning the samples per channel matches the libopus API as closely as we're able,

3. Returning the total number of values instead of samples per channel would mean the caller would need
a division to compute the samples per channel, and might worry about the possibility of getting back
samples for some channels and not others, and

4. This approach is relatively fool-proof: if an application passes too small a value to _buf_size, they will
simply get fewer samples back, and if they assume the return value is the total number of values, then
they will simply read too few (rather than reading too many and going off the end of the buffer).

Generated by Doxygen

4.8 Decoding 55

Parameters

_of The OggOpusFile from which to read.

out _pcm A buffer in which to store the output PCM samples as signed floats at 48 kHz with a
nominal range of [-1.0,1.0]. Multiple channels are interleaved using the Vorbis
channel ordering. This must have room for at least _buf_size floats.

_buf_size The number of floats that can be stored in _pcm. It is recommended that this be large
enough for at least 120 ms of data at 48 kHz per channel (5760 samples per channel).
Smaller buffers will simply return less data, possibly consuming more memory to buffer
the data internally. If less than _buf_size values are returned, libopusfile makes no
guarantee that the remaining data in _pcm will be unmodified.

out _li The index of the link this data was decoded from. You may pass NULL if you do not need
this information. If this function fails (returning a negative value), this parameter is left
unset.

Returns

The number of samples read per channel on success, or a negative value on failure. The channel count can
be retrieved on success by calling op_head(_of,∗_li). The number of samples returned may be 0 if
the buffer was too small to store even a single sample for all channels, or if end-of-file was reached. The list
of possible failure codes follows. Most of them can only be returned by unseekable, chained streams that
encounter a new link.

Return values

OP_HOLE There was a hole in the data, and some samples may have been skipped. Call this
function again to continue decoding past the hole.

OP_EREAD An underlying read operation failed. This may signal a truncation attack from an
<https:> source.

OP_EFAULT An internal memory allocation failed.

OP_EIMPL An unseekable stream encountered a new link that used a feature that is not
implemented, such as an unsupported channel family.

OP_EINVAL The stream was only partially open.

OP_ENOTFORMAT An unseekable stream encountered a new link that did not have any logical Opus
streams in it.

OP_EBADHEADER An unseekable stream encountered a new link with a required header packet that
was not properly formatted, contained illegal values, or was missing altogether.

OP_EVERSION An unseekable stream encountered a new link with an ID header that contained an
unrecognized version number.

OP_EBADPACKET Failed to properly decode the next packet.

OP_EBADLINK We failed to find data we had seen before.
OP_EBADTIMESTAMP An unseekable stream encountered a new link with a starting timestamp that failed

basic validity checks.

4.8.4.6 op_read_stereo()

OP_WARN_UNUSED_RESULT int op_read_stereo (

OggOpusFile ∗ _of,

Generated by Doxygen

https://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-810004.3.9
https://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-810004.3.9

56 Module Documentation

opus_int16 ∗ _pcm,

int _buf_size)

Reads more samples from the stream and downmixes to stereo, if necessary.

This function is intended for simple players that want a uniform output format, even if the channel count changes
between links in a chained stream.

Note

_buf_size indicates the total number of values that can be stored in _pcm, while the return value is the number
of samples per channel, even though the channel count is known, for consistency with op_read().

Parameters

_of The OggOpusFile from which to read.

out _pcm A buffer in which to store the output PCM samples, as signed native-endian 16-bit values
at 48 kHz with a nominal range of [-32768,32767). The left and right channels are
interleaved in the buffer. This must have room for at least _buf_size values.

_buf_size The number of values that can be stored in _pcm. It is recommended that this be large
enough for at least 120 ms of data at 48 kHz per channel (11520 values total). Smaller
buffers will simply return less data, possibly consuming more memory to buffer the data
internally. If less than _buf_size values are returned, libopusfile makes no
guarantee that the remaining data in _pcm will be unmodified.

Returns

The number of samples read per channel on success, or a negative value on failure. The number of samples
returned may be 0 if the buffer was too small to store even a single sample for both channels, or if end-of-file
was reached. The list of possible failure codes follows. Most of them can only be returned by unseekable,
chained streams that encounter a new link.

Return values

OP_HOLE There was a hole in the data, and some samples may have been skipped. Call this
function again to continue decoding past the hole.

OP_EREAD An underlying read operation failed. This may signal a truncation attack from an
<https:> source.

OP_EFAULT An internal memory allocation failed.

OP_EIMPL An unseekable stream encountered a new link that used a feature that is not
implemented, such as an unsupported channel family.

OP_EINVAL The stream was only partially open.

OP_ENOTFORMAT An unseekable stream encountered a new link that did not have any logical Opus
streams in it.

OP_EBADHEADER An unseekable stream encountered a new link with a required header packet that
was not properly formatted, contained illegal values, or was missing altogether.

OP_EVERSION An unseekable stream encountered a new link with an ID header that contained an
unrecognized version number.

OP_EBADPACKET Failed to properly decode the next packet.

OP_EBADLINK We failed to find data we had seen before.
OP_EBADTIMESTAMP An unseekable stream encountered a new link with a starting timestamp that failed

basic validity checks.

Generated by Doxygen

4.8 Decoding 57

4.8.4.7 op_read_float_stereo()

OP_WARN_UNUSED_RESULT int op_read_float_stereo (

OggOpusFile ∗ _of,

float ∗ _pcm,

int _buf_size)

Reads more samples from the stream and downmixes to stereo, if necessary.

This function is intended for simple players that want a uniform output format, even if the channel count changes
between links in a chained stream.

Note

_buf_size indicates the total number of values that can be stored in _pcm, while the return value is the number
of samples per channel, even though the channel count is known, for consistency with op_read_float().

Parameters

_of The OggOpusFile from which to read.

out _pcm A buffer in which to store the output PCM samples, as signed floats at 48 kHz with a
nominal range of [-1.0,1.0]. The left and right channels are interleaved in the buffer.
This must have room for at least _buf_size values.

_buf_size The number of values that can be stored in _pcm. It is recommended that this be large
enough for at least 120 ms of data at 48 kHz per channel (11520 values total). Smaller
buffers will simply return less data, possibly consuming more memory to buffer the data
internally. If less than _buf_size values are returned, libopusfile makes no
guarantee that the remaining data in _pcm will be unmodified.

Returns

The number of samples read per channel on success, or a negative value on failure. The number of samples
returned may be 0 if the buffer was too small to store even a single sample for both channels, or if end-of-file
was reached. The list of possible failure codes follows. Most of them can only be returned by unseekable,
chained streams that encounter a new link.

Return values

OP_HOLE There was a hole in the data, and some samples may have been skipped. Call this
function again to continue decoding past the hole.

OP_EREAD An underlying read operation failed. This may signal a truncation attack from an
<https:> source.

OP_EFAULT An internal memory allocation failed.

OP_EIMPL An unseekable stream encountered a new link that used a feature that is not
implemented, such as an unsupported channel family.

OP_EINVAL The stream was only partially open.

OP_ENOTFORMAT An unseekable stream encountered a new link that that did not have any logical
Opus streams in it.

OP_EBADHEADER An unseekable stream encountered a new link with a required header packet that
was not properly formatted, contained illegal values, or was missing altogether.

Generated by Doxygen

58 Module Documentation

Return values

OP_EVERSION An unseekable stream encountered a new link with an ID header that contained an
unrecognized version number.

OP_EBADPACKET Failed to properly decode the next packet.

OP_EBADLINK We failed to find data we had seen before.
OP_EBADTIMESTAMP An unseekable stream encountered a new link with a starting timestamp that failed

basic validity checks.

Generated by Doxygen

Chapter 5

Data Structure Documentation

5.1 OpusFileCallbacks Struct Reference

The callbacks used to access non-FILE stream resources.

#include <opusfile.h>

Data Fields

• op_read_func read

Used to read data from the stream.

• op_seek_func seek

Used to seek in the stream.

• op_tell_func tell

Used to return the current read position in the stream.

• op_close_func close

Used to close the stream when the decoder is freed.

5.1.1 Detailed Description

The callbacks used to access non-FILE stream resources.

The function prototypes are basically the same as for the stdio functions fread(), fseek(), ftell(), and
fclose(). The differences are that the FILE ∗ arguments have been replaced with a void ∗, which is to be
used as a pointer to whatever internal data these functions might need, that seek and tell take and return 64-bit
offsets, and that seek must return -1 if the stream is unseekable.

5.1.2 Field Documentation

Generated by Doxygen

60 Data Structure Documentation

5.1.2.1 read

op_read_func OpusFileCallbacks::read

Used to read data from the stream.

This must not be NULL.

5.1.2.2 seek

op_seek_func OpusFileCallbacks::seek

Used to seek in the stream.

This may be NULL if seeking is not implemented.

5.1.2.3 tell

op_tell_func OpusFileCallbacks::tell

Used to return the current read position in the stream.

This may be NULL if seeking is not implemented.

5.1.2.4 close

op_close_func OpusFileCallbacks::close

Used to close the stream when the decoder is freed.

This may be NULL to leave the stream open.

The documentation for this struct was generated from the following file:

• opusfile.h

5.2 OpusHead Struct Reference

Ogg Opus bitstream information.

#include <opusfile.h>

Generated by Doxygen

5.2 OpusHead Struct Reference 61

Data Fields

• int version

The Ogg Opus format version, in the range 0...255.
• int channel_count

The number of channels, in the range 1...255.
• unsigned pre_skip

The number of samples that should be discarded from the beginning of the stream.
• opus_uint32 input_sample_rate

The sampling rate of the original input.
• int output_gain

The gain to apply to the decoded output, in dB, as a Q8 value in the range -32768...32767.
• int mapping_family

The channel mapping family, in the range 0...255.
• int stream_count

The number of Opus streams in each Ogg packet, in the range 1...255.
• int coupled_count

The number of coupled Opus streams in each Ogg packet, in the range 0...127.
• unsigned char mapping [OPUS_CHANNEL_COUNT_MAX]

The mapping from coded stream channels to output channels.

5.2.1 Detailed Description

Ogg Opus bitstream information.

This contains the basic playback parameters for a stream, and corresponds to the initial ID header packet of an Ogg
Opus stream.

5.2.2 Field Documentation

5.2.2.1 version

int OpusHead::version

The Ogg Opus format version, in the range 0...255.

The top 4 bits represent a "major" version, and the bottom four bits represent backwards-compatible "minor" revi-
sions. The current specification describes version 1. This library will recognize versions up through 15 as backwards
compatible with the current specification. An earlier draft of the specification described a version 0, but the only dif-
ference between version 1 and version 0 is that version 0 did not specify the semantics for handling the version
field.

5.2.2.2 input_sample_rate

opus_uint32 OpusHead::input_sample_rate

The sampling rate of the original input.

All Opus audio is coded at 48 kHz, and should also be decoded at 48 kHz for playback (unless the target hardware
does not support this sampling rate). However, this field may be used to resample the audio back to the original
sampling rate, for example, when saving the output to a file.

Generated by Doxygen

62 Data Structure Documentation

5.2.2.3 output_gain

int OpusHead::output_gain

The gain to apply to the decoded output, in dB, as a Q8 value in the range -32768...32767.

The libopusfile API will automatically apply this gain to the decoded output before returning it, scaling it by
pow(10,output_gain/(20.0∗256)). You can adjust this behavior with op_set_gain_offset().

5.2.2.4 mapping_family

int OpusHead::mapping_family

The channel mapping family, in the range 0...255.

Channel mapping family 0 covers mono or stereo in a single stream. Channel mapping family 1 covers 1 to 8
channels in one or more streams, using the Vorbis speaker assignments. Channel mapping family 255 covers 1 to
255 channels in one or more streams, but without any defined speaker assignment.

5.2.2.5 coupled_count

int OpusHead::coupled_count

The number of coupled Opus streams in each Ogg packet, in the range 0...127.

This must satisfy 0 <= coupled_count <= stream_count and coupled_count + stream_←↩

count <= 255. The coupled streams appear first, before all uncoupled streams, in an Ogg Opus packet.

5.2.2.6 mapping

unsigned char OpusHead::mapping[OPUS_CHANNEL_COUNT_MAX]

The mapping from coded stream channels to output channels.

Let index=mapping[k] be the value for channel k. If index<2∗coupled_count, then it refers to the left
channel from stream (index/2) if even, and the right channel from stream (index/2) if odd. Otherwise, it
refers to the output of the uncoupled stream (index-coupled_count).

The documentation for this struct was generated from the following file:

• opusfile.h

5.3 OpusPictureTag Struct Reference

The contents of a METADATA_BLOCK_PICTURE tag.

#include <opusfile.h>

Generated by Doxygen

5.3 OpusPictureTag Struct Reference 63

Data Fields

• opus_int32 type

The picture type according to the ID3v2 APIC frame:

• char ∗ mime_type

The MIME type of the picture, in printable ASCII characters 0x20-0x7E.

• char ∗ description

The description of the picture, in UTF-8.

• opus_uint32 width

The width of the picture in pixels.

• opus_uint32 height

The height of the picture in pixels.

• opus_uint32 depth

The color depth of the picture in bits-per-pixel (not bits-per-channel).

• opus_uint32 colors

For indexed-color pictures (e.g., GIF), the number of colors used, or 0 for non-indexed pictures.

• opus_uint32 data_length

The length of the picture data in bytes.

• unsigned char ∗ data

The binary picture data.

• int format

The format of the picture data, if known.

5.3.1 Detailed Description

The contents of a METADATA_BLOCK_PICTURE tag.

5.3.2 Field Documentation

5.3.2.1 type

opus_int32 OpusPictureTag::type

The picture type according to the ID3v2 APIC frame:

1. Other

2. 32x32 pixels 'file icon' (PNG only)

3. Other file icon

4. Cover (front)

5. Cover (back)

6. Leaflet page

7. Media (e.g. label side of CD)

8. Lead artist/lead performer/soloist

Generated by Doxygen

64 Data Structure Documentation

9. Artist/performer

10. Conductor

11. Band/Orchestra

12. Composer

13. Lyricist/text writer

14. Recording Location

15. During recording

16. During performance

17. Movie/video screen capture

18. A bright colored fish

19. Illustration

20. Band/artist logotype

21. Publisher/Studio logotype

Others are reserved and should not be used. There may only be one each of picture type 1 and 2 in a file.

5.3.2.2 mime_type

char∗ OpusPictureTag::mime_type

The MIME type of the picture, in printable ASCII characters 0x20-0x7E.

The MIME type may also be "-->" to signify that the data part is a URL pointing to the picture instead of the
picture data itself. In this case, a terminating NUL is appended to the URL string in data, but data_length is set to
the length of the string excluding that terminating NUL.

5.3.2.3 format

int OpusPictureTag::format

The format of the picture data, if known.

One of

• OP_PIC_FORMAT_UNKNOWN,

• OP_PIC_FORMAT_URL,

• OP_PIC_FORMAT_JPEG,

• OP_PIC_FORMAT_PNG, or

• OP_PIC_FORMAT_GIF.

The documentation for this struct was generated from the following file:

• opusfile.h

Generated by Doxygen

5.4 OpusServerInfo Struct Reference 65

5.4 OpusServerInfo Struct Reference

HTTP/Shoutcast/Icecast server information associated with a URL.

#include <opusfile.h>

Data Fields

• char ∗ name

The name of the server (icy-name/ice-name).

• char ∗ description

A short description of the server (icy-description/ice-description).

• char ∗ genre

The genre the server falls under (icy-genre/ice-genre).

• char ∗ url

The homepage for the server (icy-url/ice-url).

• char ∗ server

The software used by the origin server (Server).

• char ∗ content_type

The media type of the entity sent to the recepient (Content-Type).

• opus_int32 bitrate_kbps

The nominal stream bitrate in kbps (icy-br/ice-bitrate).

• int is_public

Flag indicating whether the server is public (1) or not (0) (icy-pub/ice-public).

• int is_ssl

Flag indicating whether the server is using HTTPS instead of HTTP.

5.4.1 Detailed Description

HTTP/Shoutcast/Icecast server information associated with a URL.

5.4.2 Field Documentation

5.4.2.1 name

char∗ OpusServerInfo::name

The name of the server (icy-name/ice-name).

This is NULL if there was no icy-name or ice-name header.

Generated by Doxygen

66 Data Structure Documentation

5.4.2.2 description

char∗ OpusServerInfo::description

A short description of the server (icy-description/ice-description).

This is NULL if there was no icy-description or ice-description header.

5.4.2.3 genre

char∗ OpusServerInfo::genre

The genre the server falls under (icy-genre/ice-genre).

This is NULL if there was no icy-genre or ice-genre header.

5.4.2.4 url

char∗ OpusServerInfo::url

The homepage for the server (icy-url/ice-url).

This is NULL if there was no icy-url or ice-url header.

5.4.2.5 server

char∗ OpusServerInfo::server

The software used by the origin server (Server).

This is NULL if there was no Server header.

5.4.2.6 content_type

char∗ OpusServerInfo::content_type

The media type of the entity sent to the recepient (Content-Type).

This is NULL if there was no Content-Type header.

5.4.2.7 bitrate_kbps

opus_int32 OpusServerInfo::bitrate_kbps

The nominal stream bitrate in kbps (icy-br/ice-bitrate).

This is -1 if there was no icy-br or ice-bitrate header.

Generated by Doxygen

5.5 OpusTags Struct Reference 67

5.4.2.8 is_public

int OpusServerInfo::is_public

Flag indicating whether the server is public (1) or not (0) (icy-pub/ice-public).

This is -1 if there was no icy-pub or ice-public header.

5.4.2.9 is_ssl

int OpusServerInfo::is_ssl

Flag indicating whether the server is using HTTPS instead of HTTP.

This is 0 unless HTTPS is being used. This may not match the protocol used in the original URL if there were
redirections.

The documentation for this struct was generated from the following file:

• opusfile.h

5.5 OpusTags Struct Reference

The metadata from an Ogg Opus stream.

#include <opusfile.h>

Data Fields

• char ∗∗ user_comments

The array of comment string vectors.
• int ∗ comment_lengths

An array of the corresponding length of each vector, in bytes.
• int comments

The total number of comment streams.
• char ∗ vendor

The null-terminated vendor string.

5.5.1 Detailed Description

The metadata from an Ogg Opus stream.

This structure holds the in-stream metadata corresponding to the 'comment' header packet of an Ogg Opus stream.
The comment header is meant to be used much like someone jotting a quick note on the label of a CD. It should be
a short, to the point text note that can be more than a couple words, but not more than a short paragraph.

The metadata is stored as a series of (tag, value) pairs, in length-encoded string vectors, using the same format
as Vorbis (without the final "framing bit"), Theora, and Speex, except for the packet header. The first occurrence
of the '=' character delimits the tag and value. A particular tag may occur more than once, and order is significant.
The character set encoding for the strings is always UTF-8, but the tag names are limited to ASCII, and treated as
case-insensitive. See the Vorbis comment header specification for details.

In filling in this structure, libopusfile will null-terminate the user_comments strings for safety. However, the bit-
stream format itself treats them as 8-bit clean vectors, possibly containing NUL characters, so the comment_lengths
array should be treated as their authoritative length.

This structure is binary and source-compatible with a vorbis_comment, and pointers to it may be freely cast to
vorbis_comment pointers, and vice versa. It is provided as a separate type to avoid introducing a compile-time
dependency on the libvorbis headers.

Generated by Doxygen

https://www.xiph.org/vorbis/doc/v-comment.html

68 Data Structure Documentation

5.5.2 Field Documentation

5.5.2.1 vendor

char∗ OpusTags::vendor

The null-terminated vendor string.

This identifies the software used to encode the stream.

The documentation for this struct was generated from the following file:

• opusfile.h

Generated by Doxygen

Index

Abstract Stream Reading Interface, 23
op_close_func, 25
op_fdopen, 26
op_fopen, 26
op_freopen, 27
op_mem_stream_create, 27
op_read_func, 24
op_seek_func, 25
op_tell_func, 25
op_url_stream_create, 28
op_url_stream_vcreate, 28

bitrate_kbps
OpusServerInfo, 66

close
OpusFileCallbacks, 60

content_type
OpusServerInfo, 66

coupled_count
OpusHead, 62

Decoding, 49
op_decode_cb_func, 50
OP_HEADER_GAIN, 50
op_read, 53
op_read_float, 54
op_read_float_stereo, 57
op_read_stereo, 55
op_set_decode_callback, 51
op_set_dither_enabled, 52
op_set_gain_offset, 52

description
OpusServerInfo, 65

Error Codes, 7
OP_EBADPACKET, 8

format
OpusPictureTag, 64

genre
OpusServerInfo, 66

Header Information, 8
opus_granule_sample, 11
opus_head_parse, 10
opus_picture_tag_clear, 19
opus_picture_tag_init, 19
opus_picture_tag_parse, 18
opus_tagcompare, 17

opus_tagncompare, 18
opus_tags_add, 13
opus_tags_add_comment, 13
opus_tags_clear, 17
opus_tags_copy, 12
opus_tags_get_album_gain, 16
opus_tags_get_binary_suffix, 15
opus_tags_get_track_gain, 16
opus_tags_init, 12
opus_tags_parse, 11
opus_tags_query, 14
opus_tags_query_count, 15
opus_tags_set_binary_suffix, 14

input_sample_rate
OpusHead, 61

is_public
OpusServerInfo, 66

is_ssl
OpusServerInfo, 67

mapping
OpusHead, 62

mapping_family
OpusHead, 62

mime_type
OpusPictureTag, 64

name
OpusServerInfo, 65

op_bitrate
Stream Information, 44

op_bitrate_instant
Stream Information, 45

op_channel_count
Stream Information, 41

op_close_func
Abstract Stream Reading Interface, 25

op_current_link
Stream Information, 44

op_decode_cb_func
Decoding, 50

OP_EBADPACKET
Error Codes, 8

op_fdopen
Abstract Stream Reading Interface, 26

op_fopen
Abstract Stream Reading Interface, 26

op_free

Generated by Doxygen

70 INDEX

Opening and Closing, 38
op_freopen

Abstract Stream Reading Interface, 27
OP_GET_SERVER_INFO

URL Reading Options, 22
op_head

Stream Information, 43
OP_HEADER_GAIN

Decoding, 50
OP_HTTP_PROXY_HOST

URL Reading Options, 21
OP_HTTP_PROXY_PASS

URL Reading Options, 22
OP_HTTP_PROXY_PORT

URL Reading Options, 21
OP_HTTP_PROXY_USER

URL Reading Options, 21
op_link_count

Stream Information, 40
op_mem_stream_create

Abstract Stream Reading Interface, 27
op_open_callbacks

Opening and Closing, 33
op_open_file

Opening and Closing, 31
op_open_memory

Opening and Closing, 31
op_open_url

Opening and Closing, 32
op_pcm_seek

Seeking, 48
op_pcm_tell

Stream Information, 46
op_pcm_total

Stream Information, 42
op_raw_seek

Seeking, 47
op_raw_tell

Stream Information, 46
op_raw_total

Stream Information, 41
op_read

Decoding, 53
op_read_float

Decoding, 54
op_read_float_stereo

Decoding, 57
op_read_func

Abstract Stream Reading Interface, 24
op_read_stereo

Decoding, 55
op_seek_func

Abstract Stream Reading Interface, 25
op_seekable

Stream Information, 39
op_serialno

Stream Information, 40
op_set_decode_callback

Decoding, 51
op_set_dither_enabled

Decoding, 52
op_set_gain_offset

Decoding, 52
OP_SSL_SKIP_CERTIFICATE_CHECK

URL Reading Options, 20
op_tags

Stream Information, 43
op_tell_func

Abstract Stream Reading Interface, 25
op_test

Opening and Closing, 30
op_test_callbacks

Opening and Closing, 36
op_test_file

Opening and Closing, 34
op_test_memory

Opening and Closing, 35
op_test_open

Opening and Closing, 37
op_test_url

Opening and Closing, 36
op_url_stream_create

Abstract Stream Reading Interface, 28
op_url_stream_vcreate

Abstract Stream Reading Interface, 28
op_vopen_url

Opening and Closing, 32
op_vtest_url

Opening and Closing, 35
Opening and Closing, 29

op_free, 38
op_open_callbacks, 33
op_open_file, 31
op_open_memory, 31
op_open_url, 32
op_test, 30
op_test_callbacks, 36
op_test_file, 34
op_test_memory, 35
op_test_open, 37
op_test_url, 36
op_vopen_url, 32
op_vtest_url, 35

opus_granule_sample
Header Information, 11

opus_head_parse
Header Information, 10

opus_picture_tag_clear
Header Information, 19

opus_picture_tag_init
Header Information, 19

opus_picture_tag_parse
Header Information, 18

opus_server_info_clear
URL Reading Options, 23

opus_server_info_init

Generated by Doxygen

INDEX 71

URL Reading Options, 23
opus_tagcompare

Header Information, 17
opus_tagncompare

Header Information, 18
opus_tags_add

Header Information, 13
opus_tags_add_comment

Header Information, 13
opus_tags_clear

Header Information, 17
opus_tags_copy

Header Information, 12
opus_tags_get_album_gain

Header Information, 16
opus_tags_get_binary_suffix

Header Information, 15
opus_tags_get_track_gain

Header Information, 16
opus_tags_init

Header Information, 12
opus_tags_parse

Header Information, 11
opus_tags_query

Header Information, 14
opus_tags_query_count

Header Information, 15
opus_tags_set_binary_suffix

Header Information, 14
OpusFileCallbacks, 59

close, 60
read, 59
seek, 60
tell, 60

OpusHead, 60
coupled_count, 62
input_sample_rate, 61
mapping, 62
mapping_family, 62
output_gain, 61
version, 61

OpusPictureTag, 62
format, 64
mime_type, 64
type, 63

OpusServerInfo, 65
bitrate_kbps, 66
content_type, 66
description, 65
genre, 66
is_public, 66
is_ssl, 67
name, 65
server, 66
url, 66

OpusTags, 67
vendor, 68

output_gain

OpusHead, 61

read
OpusFileCallbacks, 59

seek
OpusFileCallbacks, 60

Seeking, 47
op_pcm_seek, 48
op_raw_seek, 47

server
OpusServerInfo, 66

Stream Information, 38
op_bitrate, 44
op_bitrate_instant, 45
op_channel_count, 41
op_current_link, 44
op_head, 43
op_link_count, 40
op_pcm_tell, 46
op_pcm_total, 42
op_raw_tell, 46
op_raw_total, 41
op_seekable, 39
op_serialno, 40
op_tags, 43

tell
OpusFileCallbacks, 60

type
OpusPictureTag, 63

url
OpusServerInfo, 66

URL Reading Options, 20
OP_GET_SERVER_INFO, 22
OP_HTTP_PROXY_HOST, 21
OP_HTTP_PROXY_PASS, 22
OP_HTTP_PROXY_PORT, 21
OP_HTTP_PROXY_USER, 21
OP_SSL_SKIP_CERTIFICATE_CHECK, 20
opus_server_info_clear, 23
opus_server_info_init, 23

vendor
OpusTags, 68

version
OpusHead, 61

Generated by Doxygen

	1 Main Page
	1.1 Introduction
	1.2 Organization
	1.3 Overview

	2 Module Index
	2.1 Modules

	3 Data Structure Index
	3.1 Data Structures

	4 Module Documentation
	4.1 Error Codes
	4.1.1 Detailed Description
	4.1.2 Macro Definition Documentation
	4.1.2.1 OP_EBADPACKET

	4.2 Header Information
	4.2.1 Detailed Description
	4.2.2 Function Documentation
	4.2.2.1 opus_head_parse()
	4.2.2.2 opus_granule_sample()
	4.2.2.3 opus_tags_parse()
	4.2.2.4 opus_tags_copy()
	4.2.2.5 opus_tags_init()
	4.2.2.6 opus_tags_add()
	4.2.2.7 opus_tags_add_comment()
	4.2.2.8 opus_tags_set_binary_suffix()
	4.2.2.9 opus_tags_query()
	4.2.2.10 opus_tags_query_count()
	4.2.2.11 opus_tags_get_binary_suffix()
	4.2.2.12 opus_tags_get_album_gain()
	4.2.2.13 opus_tags_get_track_gain()
	4.2.2.14 opus_tags_clear()
	4.2.2.15 opus_tagcompare()
	4.2.2.16 opus_tagncompare()
	4.2.2.17 opus_picture_tag_parse()
	4.2.2.18 opus_picture_tag_init()
	4.2.2.19 opus_picture_tag_clear()

	4.3 URL Reading Options
	4.3.1 Detailed Description
	4.3.2 Macro Definition Documentation
	4.3.2.1 OP_SSL_SKIP_CERTIFICATE_CHECK
	4.3.2.2 OP_HTTP_PROXY_HOST
	4.3.2.3 OP_HTTP_PROXY_PORT
	4.3.2.4 OP_HTTP_PROXY_USER
	4.3.2.5 OP_HTTP_PROXY_PASS
	4.3.2.6 OP_GET_SERVER_INFO

	4.3.3 Function Documentation
	4.3.3.1 opus_server_info_init()
	4.3.3.2 opus_server_info_clear()

	4.4 Abstract Stream Reading Interface
	4.4.1 Detailed Description
	4.4.2 Typedef Documentation
	4.4.2.1 op_read_func
	4.4.2.2 op_seek_func
	4.4.2.3 op_tell_func
	4.4.2.4 op_close_func

	4.4.3 Function Documentation
	4.4.3.1 op_fopen()
	4.4.3.2 op_fdopen()
	4.4.3.3 op_freopen()
	4.4.3.4 op_mem_stream_create()
	4.4.3.5 op_url_stream_vcreate()
	4.4.3.6 op_url_stream_create()

	4.5 Opening and Closing
	4.5.1 Detailed Description
	4.5.2 Function Documentation
	4.5.2.1 op_test()
	4.5.2.2 op_open_file()
	4.5.2.3 op_open_memory()
	4.5.2.4 op_vopen_url()
	4.5.2.5 op_open_url()
	4.5.2.6 op_open_callbacks()
	4.5.2.7 op_test_file()
	4.5.2.8 op_test_memory()
	4.5.2.9 op_vtest_url()
	4.5.2.10 op_test_url()
	4.5.2.11 op_test_callbacks()
	4.5.2.12 op_test_open()
	4.5.2.13 op_free()

	4.6 Stream Information
	4.6.1 Detailed Description
	4.6.2 Function Documentation
	4.6.2.1 op_seekable()
	4.6.2.2 op_link_count()
	4.6.2.3 op_serialno()
	4.6.2.4 op_channel_count()
	4.6.2.5 op_raw_total()
	4.6.2.6 op_pcm_total()
	4.6.2.7 op_head()
	4.6.2.8 op_tags()
	4.6.2.9 op_current_link()
	4.6.2.10 op_bitrate()
	4.6.2.11 op_bitrate_instant()
	4.6.2.12 op_raw_tell()
	4.6.2.13 op_pcm_tell()

	4.7 Seeking
	4.7.1 Detailed Description
	4.7.2 Function Documentation
	4.7.2.1 op_raw_seek()
	4.7.2.2 op_pcm_seek()

	4.8 Decoding
	4.8.1 Detailed Description
	4.8.2 Macro Definition Documentation
	4.8.2.1 OP_HEADER_GAIN

	4.8.3 Typedef Documentation
	4.8.3.1 op_decode_cb_func

	4.8.4 Function Documentation
	4.8.4.1 op_set_decode_callback()
	4.8.4.2 op_set_gain_offset()
	4.8.4.3 op_set_dither_enabled()
	4.8.4.4 op_read()
	4.8.4.5 op_read_float()
	4.8.4.6 op_read_stereo()
	4.8.4.7 op_read_float_stereo()

	5 Data Structure Documentation
	5.1 OpusFileCallbacks Struct Reference
	5.1.1 Detailed Description
	5.1.2 Field Documentation
	5.1.2.1 read
	5.1.2.2 seek
	5.1.2.3 tell
	5.1.2.4 close

	5.2 OpusHead Struct Reference
	5.2.1 Detailed Description
	5.2.2 Field Documentation
	5.2.2.1 version
	5.2.2.2 input_sample_rate
	5.2.2.3 output_gain
	5.2.2.4 mapping_family
	5.2.2.5 coupled_count
	5.2.2.6 mapping

	5.3 OpusPictureTag Struct Reference
	5.3.1 Detailed Description
	5.3.2 Field Documentation
	5.3.2.1 type
	5.3.2.2 mime_type
	5.3.2.3 format

	5.4 OpusServerInfo Struct Reference
	5.4.1 Detailed Description
	5.4.2 Field Documentation
	5.4.2.1 name
	5.4.2.2 description
	5.4.2.3 genre
	5.4.2.4 url
	5.4.2.5 server
	5.4.2.6 content_type
	5.4.2.7 bitrate_kbps
	5.4.2.8 is_public
	5.4.2.9 is_ssl

	5.5 OpusTags Struct Reference
	5.5.1 Detailed Description
	5.5.2 Field Documentation
	5.5.2.1 vendor

	Index

