login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a066404 -id:a066404
     Sort: relevance | references | number | modified | created      Format: long | short | data
From expansion of Belyi function for dodecahedron.
+10
4
0, 1, 739, 349247, 135081772, 46592981880, 14921201253592, 4536057410542618, 1326832753715385794, 376757242809990931884, 104488934104327921610570, 28428461728083557062643114, 7612584440278089046630434316, 2011372004697171339782546237013
OFFSET
0,3
LINKS
N. Magot and A. Zvonkin, Belyi functions for Archimedian solids, Discrete Math., 217 (2000), 249-271.
Index entries for linear recurrences with constant coefficients, signature (684, -157434, 12527460, -77460495, 130689144, 33211924, -130689144, -77460495, -12527460, -157434, -684, -1).
FORMULA
The Belyi function is 1728*z^5*(z^10-11*z^5-1)^5/(z^20+228*z^15+494*z^10-228*z^5+1)^3.
G.f.: x*(1+11*x-x^2)^5 / (1-228*x+494*x^2+228*x^3+x^4)^3. - Colin Barker, Jan 12 2016
PROG
(PARI) concat(0, Vec(x*(1+11*x-x^2)^5/(1-228*x+494*x^2+228*x^3+x^4)^3 + O(x^20))) \\ Colin Barker, Jan 12 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 25 2001
STATUS
approved
From expansion of Belyi function for cube.
+10
4
0, 1, 46, 1347, 32220, 686661, 13579914, 254863751, 4601440184, 80635542921, 1379999420134, 23167187812555, 382770785757588, 6239740764495309, 100556187294037314, 1604514927998181135, 25381661274646261616, 398462715169752739601, 6213273419843077690782
OFFSET
0,3
LINKS
N. Magot and A. Zvonkin, Belyi functions for Archimedian solids, Discrete Math., 217 (2000), 249-271.
FORMULA
The Belyi function is -108*(z^4+1)^4*z^4/(z^8-14*z^4+1)^3.
G.f.: x*(1+x)^4 / (1-14*x+x^2)^3. - Colin Barker, Jan 12 2016
MATHEMATICA
LinearRecurrence[{42, -591, 2828, -591, 42, -1}, {0, 1, 46, 1347, 32220, 686661}, 30] (* Harvey P. Dale, Jul 03 2017 *)
PROG
(PARI) concat(0, Vec(x*(1+x)^4/(1-14*x+x^2)^3 + O(x^20))) \\ Colin Barker, Jan 12 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 25 2001
EXTENSIONS
Corrected by Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
STATUS
approved
From expansion of Belyi function for octahedron.
+10
4
1, -46, 769, -5632, 18688, -44032, 85760, -147968, 234752, -350208, 498432, -683520, 909568, -1180672, 1500928, -1874432, 2305280, -2797568, 3355392, -3982848, 4684032, -5463040, 6323968, -7270912, 8307968, -9439232, 10668800, -12000768, 13439232, -14988288
OFFSET
0,2
LINKS
N. Magot and A. Zvonkin, Belyi functions for Archimedian solids, Discrete Math., 217 (2000), 249-271.
FORMULA
The Belyi function is 1/Belyi function for cube.
From Colin Barker, Jan 12 2016: (Start)
a(n) = 256*(-1)^n*(8*n^3-24*n^2+25*n-9)/3 for n>2.
a(n) = -4*a(n-1)-6*a(n-2)-4*a(n-3)-a(n-4) for n>6.
G.f.: (1-14*x+x^2)^3 / (1+x)^4.
(End)
MATHEMATICA
LinearRecurrence[{-4, -6, -4, -1}, {1, -46, 769, -5632, 18688, -44032, 85760}, 30] (* Harvey P. Dale, Aug 02 2024 *)
PROG
(PARI) Vec((1-14*x+x^2)^3/(1+x)^4 + O(x^30)) \\ Colin Barker, Jan 12 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Dec 25 2001
EXTENSIONS
Corrected by Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
STATUS
approved
Expansion of j in powers of Gamma(5)-modular function Lambda^5.
+10
2
1, 739, 196874, 22478125, 1086128125, 35307387500, 913727546875, 20389341653125, 410010534950000, 7633186177665625, 133911227595521875, 2240979684247156250, 36090410657726350000, 563019001047724506250
OFFSET
-1,2
REFERENCES
W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc., 42 (2005), 137-162; see Eq. (5.3).
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 24.
H. McKean and V. Moll. Elliptic Curves, Camb. Univ. Press, p. 22.
FORMULA
G.f.: (1+228x+494x^2-228x^3+x^4)^3/(x(1-11x-x^2)^5).
EXAMPLE
j = 1/x + 739 + 196874*x + 22478125*x^2 + ... where x=Lambda^5=A078905.
MAPLE
t1:=1+228*z+494*z^2-228*z^3+z^4; t2:=-t1^3/(z*(z^2+11*z-1)^5); # t2 is Duke's g.f.
PROG
(PARI) a(n)=polcoeff((1-228*(x^3-x)+494*x^2+x^4)^3/x/(1-11*x-x^2)^5+x*O(x^n), n)
CROSSREFS
Cf. A078905, A000521. A066404(n)=(-1)^n*a(n-1).
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Dec 12 2002
STATUS
approved

Search completed in 0.005 seconds