login
Search: a065341 -id:a065341
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of prime factors (without multiplicity) in Mersenne composites A065341.
+20
13
2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 4, 5, 2, 4, 3, 4, 5, 3, 2, 2, 3, 6, 2, 4, 4, 6, 2, 5, 3, 4, 2, 2, 3, 2, 3, 2, 5, 3, 4, 4, 3, 5, 2, 3, 3, 6, 5, 2, 2, 5, 3, 9, 4, 3, 5, 2, 8, 4, 4, 3, 5, 2, 4, 6, 3, 4, 2, 7, 3, 4, 4, 2, 5, 4, 5, 3, 5, 4, 3, 6, 4, 3, 4, 3, 4, 4
OFFSET
1,1
COMMENTS
Currently the smallest prime exponent p for which 2^p-1 is incompletely factored is p = 1213. - Gord Palameta, Aug 06 2018
LINKS
S. S. Wagstaff, Jr., Main Tables from the Cunningham Project: cofactor of M1213 is C297.
FORMULA
a(n) = A001221(A065341(n)). - Michel Marcus, Aug 07 2018
MATHEMATICA
k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; AppendTo[k, d]], {n, 1, 40}]; k
(PrimeNu /@ Select[2^Prime[Range[40]] - 1, ! PrimeQ[#] &]) (* Jean-François Alcover, Aug 13 2014 *)
PROG
(PARI) forprime(p=1, 1e3, if(!ispseudoprime(2^p-1), print1(omega(2^p-1), ", "))) \\ Felix Fröhlich, Aug 12 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 09 2007
EXTENSIONS
a(29)-a(46) from Felix Fröhlich, Aug 12 2014
a(47)-a(100) from Gord Palameta, Aug 07 2018
STATUS
approved
Mersenne composites (A065341) with exactly 3 prime factors.
+20
9
536870911, 8796093022207, 140737488355327, 9007199254740991, 2361183241434822606847, 9444732965739290427391, 604462909807314587353087
OFFSET
1,1
LINKS
FORMULA
a(n) = 2^A344515(n) - 1. - Amiram Eldar, May 23 2021
MATHEMATICA
k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 3, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 09 2007
STATUS
approved
Mersenne composites (A065341) with exactly 2 prime factors.
+20
7
2047, 8388607, 137438953471, 2199023255551, 576460752303423487, 147573952589676412927, 9671406556917033397649407, 158456325028528675187087900671, 2535301200456458802993406410751
OFFSET
1,1
LINKS
Wikipedia, Semiprime.
FORMULA
a(n) = 2^A135978(n) - 1. - Amiram Eldar, May 23 2021
MAPLE
A135976 := proc(n) local i;
i := 2^(ithprime(n))-1:
if (nops(numtheory[factorset](i)) = 2) then
RETURN (i)
fi: end: [ seq(A135976(n), n=1..26) ]; # Jani Melik, Feb 09 2011
MATHEMATICA
k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 2, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k
PROG
(PARI) forprime(p=1, 1e2, if(bigomega(2^p-1)==2, print1(2^p-1, ", "))) \\ Felix Fröhlich, Aug 12 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 09 2007
STATUS
approved
a(n) is the largest proper divisor of the Mersenne composite A065341(n).
+20
3
89, 178481, 2304167, 616318177, 164511353, 20408568497, 59862819377, 1416003655831, 3203431780337, 761838257287, 10334355636337793, 21514198099633918969, 224958284260258499201, 57912614113275649087721
OFFSET
1,1
COMMENTS
Note that not all the largest divisors are primes.
Which divisors are prime? - see A145099. - Artur Jasinski, Oct 04 2008
LINKS
MATHEMATICA
a = {}; Do[m = 2^Prime[n] - 1; If[PrimeQ[m], null, AppendTo[a, Divisors[m][[ -2]]]], {n, 1, 40}]; a
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 01 2008
EXTENSIONS
Name clarified by Amiram Eldar, Mar 12 2020
STATUS
approved
Number of prime factors (with multiplicity) of Mersenne composites (A065341).
+20
2
2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 4, 5, 2, 4, 3, 4, 5, 3, 2, 2, 3, 6, 2, 4, 4, 6, 2, 5, 3, 4, 2, 2, 3, 2, 3, 2, 5, 3, 4, 4, 3, 5, 2, 3, 3, 6, 5, 2, 2, 5, 3, 9, 4, 3, 5, 2, 8, 4, 4, 3, 5, 2, 4, 6, 3, 4, 2, 7, 3, 4, 4, 2, 5, 4, 5, 3, 5, 4
OFFSET
1,1
COMMENTS
If the conjecture that all Mersenne composites are squarefree is true, then this sequence is identical to A135975. - Felix Fröhlich, Aug 24 2014
LINKS
FORMULA
a(n) = A001222(A065341(n)). - Michel Marcus, Aug 24 2014
MATHEMATICA
a = {}; Do[If[PrimeQ[n] && !PrimeQ[2^n - 1], w = 2^n - 1; c = FactorInteger[w]; d = Length[c]; b = 0; Do[b = b + c[[k]][[2]], {k, 1, d}]; AppendTo[a, b]], {n, 2, 150}]; a
PrimeOmega/@Select[2^Prime[Range[100]]-1, !PrimeQ[#]&] (* Harvey P. Dale, Nov 01 2016 *)
PROG
(PARI) forprime(p=2, 1e3, if(!ispseudoprime(2^p-1), print1(bigomega(2^p-1), ", "))) \\ Felix Fröhlich, Aug 24 2014
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Artur Jasinski, Dec 11 2007
EXTENSIONS
More terms from Michel Marcus, Nov 04 2013
Definition adjusted by Felix Fröhlich, Aug 24 2014
More terms from Felix Fröhlich, Aug 24 2014
STATUS
approved
Mersenne composites A065341 with 4 or more prime factors.
+20
1
10384593717069655257060992658440191, 2854495385411919762116571938898990272765493247, 182687704666362864775460604089535377456991567871
OFFSET
1,1
LINKS
MAPLE
A135386 := proc(n) local i;
i := 2^(ithprime(n))-1:
if (nops(numtheory[factorset](i)) > 3) then
RETURN (i)
fi: end: seq(A135386(n), n=1..37); # Jani Melik, Feb 09 2011
MATHEMATICA
k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d >3, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Artur Jasinski, Dec 09 2007
STATUS
approved
Super-Poulet numbers: Poulet numbers whose divisors d all satisfy d|2^d-2.
+10
19
341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489, 88357, 90751
OFFSET
1,1
COMMENTS
Every semiprime in A001567 is in this sequence (see Sierpiński). a(61) = 294409 is the first term having more than two prime factors. See A178997 for super-Poulet numbers having more than two prime factors. - T. D. Noe, Jan 11 2011
Composite numbers n such that 2^d == 2 (mod n) for every d|n. - Thomas Ordowski, Sep 04 2016
Composite numbers n such that 2^p == 2 (mod n) for every prime p|n. - Thomas Ordowski, Sep 06 2016
Composite numbers n = p(1)^e(1)*p(2)^e(2)*...*p(k)^e(k) such that 2^gcd(p(1)-1,p(2)-1,...,p(k)-1) == 1 (mod n). - Thomas Ordowski, Sep 12 2016
Nonsquarefree terms are divisible by the square of a Wieferich prime (see A001220). These include 1194649, 12327121, 5654273717, 26092328809, 129816911251. - Robert Israel, Sep 13 2016
Composite numbers n such that 2^A258409(n) == 1 (mod n). - Thomas Ordowski, Sep 15 2016
REFERENCES
W. Sierpiński, Elementary Theory of Numbers, Warszawa, 1964, p. 231.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Eric Weisstein's World of Mathematics, Super-Poulet Numbers
MAPLE
filter:= = proc(n)
not isprime(n) and andmap(p -> 2&^p mod n = 2, numtheory:-factorset(n))
end proc:
select(filter, [seq(i, i=3..10^5, 2)]); # Robert Israel, Sep 13 2016
MATHEMATICA
Select[Range[1, 110000, 2], !PrimeQ[#] && Union[PowerMod[2, Rest[Divisors[#]], #]] == {2} & ]
PROG
(PARI) is(n)=if(isprime(n), return(0)); fordiv(n, d, if(Mod(2, d)^d!=2, return(0))); n>1 \\ Charles R Greathouse IV, Aug 27 2016
CROSSREFS
A214305 is a subsequence.
A065341 is a subsequence. - Thomas Ordowski, Nov 20 2016
KEYWORD
nonn
STATUS
approved
Primes p such that 2^p-1 has exactly 2 prime factors.
+10
7
11, 23, 37, 41, 59, 67, 83, 97, 101, 103, 109, 131, 137, 139, 149, 167, 197, 199, 227, 241, 269, 271, 281, 293, 347, 373, 379, 421, 457, 487, 523, 727, 809, 881, 971, 983, 997, 1061, 1063
OFFSET
1,1
COMMENTS
a(40)>=1277. - Amiram Eldar, Sep 29 2018
MATHEMATICA
k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 2, AppendTo[k, Prime[n]]]], {n, 1, 40}]; k
KEYWORD
nonn,more
AUTHOR
Artur Jasinski, Dec 09 2007
EXTENSIONS
a(17)-a(37) from Arkadiusz Wesolowski, Jan 26 2012
a(38)-a(39) from Amiram Eldar, Sep 29 2018
STATUS
approved
Indices n such that 2^prime(n)-1 has exactly 2 distinct prime factors.
+10
4
5, 9, 12, 13, 17, 19, 23, 25, 26, 27, 29, 32, 33, 34, 35, 39, 45, 46, 49, 53, 57, 58, 60, 62, 69, 74, 75, 82, 88, 93, 99, 129, 140, 152, 164, 166, 168, 178, 179
OFFSET
1,1
COMMENTS
a(40)>=206. - Amiram Eldar, Sep 29 2018
FORMULA
Equals {k: A001221(A001348(k)) = 2}. a(n) = A049084(A135978(n)). - R. J. Mathar, May 03 2008
MATHEMATICA
k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 2, AppendTo[k, n]]], {n, 1, 40}]; k
Select[Range[40], PrimeNu[2^Prime[#]-1]==2&] (* Harvey P. Dale, Jul 07 2013 *)
KEYWORD
nonn,more
AUTHOR
Artur Jasinski, Dec 09 2007
EXTENSIONS
Edited by R. J. Mathar, May 03 2008
a(17)-a(34) from Donovan Johnson, Jun 14 2009
a(35)-a(39) from Amiram Eldar, Sep 29 2018
STATUS
approved
Second prime factor, if it exists, of Mersenne numbers.
+10
3
89, 178481, 1103, 616318177, 164511353, 9719, 4513, 69431, 3203431780337, 761838257287, 48544121, 2298041, 202029703, 57912614113275649087721, 13842607235828485645766393, 341117531003194129, 3976656429941438590393
OFFSET
1,1
EXAMPLE
The 5th Mersenne number 2^11 - 1 = 23*89 and 89 is the second prime divisor.
The 9th Mersenne number 2^23 - 1 = 47*178481 and 178481 is the second prime divisor.
Notice 23, 89 congruent to 1 mod 11 and 47, 178481 congruent to 1 mod 23.
PROG
(PARI) mersenne(b, n, d) = { c=0; forprime(x=2, n, c++; y = b^x-1; f=factor(y); v=component(f, 1); ln = length(v); if(ln>=d, print1(v[d]", ")); ) }
KEYWORD
nonn
AUTHOR
Cino Hilliard, Dec 06 2003
STATUS
approved

Search completed in 0.015 seconds