login
Search: a029556 -id:a029556
     Sort: relevance | references | number | modified | created      Format: long | short | data
Quasi-Carmichael numbers.
+10
17
35, 77, 143, 165, 187, 209, 221, 231, 247, 273, 299, 323, 357, 391, 399, 437, 493, 527, 561, 589, 598, 713, 715, 899, 935, 943, 989, 1015, 1073, 1105, 1147, 1189, 1247, 1271, 1295, 1333, 1517, 1537, 1547, 1591, 1595, 1705, 1729, 1739, 1763, 1829, 1885, 1886, 1927
OFFSET
1,1
COMMENTS
Quasi-Carmichael numbers are squarefree composites n with the property that for every prime factor p of n, p+b divides n+b positively with b being any integer besides 0.
If b is negative, then it is always larger than 0 minus the square root of the corresponding Quasi-Carmichael number. But if b is positive, how large can it be in relation to its corresponding Quasi-Carmichael number? Conjecture: It is always smaller than the square root of the corresponding Quasi-Carmichael number.
Are 1885 and 1886 the only two consecutive integers such that both numbers are Quasi-Carmichael numbers?
From Robert G. Wilson v, Dec 05 2015: (Start)
The conjecture that b < sqrt(n) is false. Look at n = 87061 = 13*37*181, 87365 = 5*101*173, and 96473 = 13*41*181. Their b values are 299, 331, and 351, while the corresponding sqrt(n) values are 295, 295, and 310, respectively.
For b to result in (n+b)/(p+b) > 0 with n = P_1*p_2*...*p_i and P_1 < p_2 < ... < p_i, -p_1 < b < |(n-p_i^2)/p_i|. (n+b)/(p+b) >= b+1. Solve for b.
Less than 0.5% are even (A262252). Of course they are == 2 (mod 4).
Least k-almost prime quasi-Carmichael number with k>1: 35, 165, 6545, 179998, 7509579, ..., .
(End)
LINKS
Tim Johannes Ohrtmann, Table of n, a(n) for n = 1..16869
EXAMPLE
a(1) = 35 because this is the first squarefree composite number n such that at least one integer b except 0 exists such that for every prime factor p of n applies that p+b divides n+b (-3): 35 = 5*7 and 2, 4 both divide 32.
MATHEMATICA
fQ[n_] := Block[{c = -1, fi = FactorInteger@ n, k, lmt, p}, If[Times @@ (Last@# & /@ fi) == 1 < Plus @@ (Last@# & /@ fi), p = First@# & /@ fi; k = -fi[[1, 1]] + 1; lmt = Abs[(n - fi[[-1, 1]]^2)/fi[[-1, 1]]]; While[k < lmt, If[ Union[ IntegerQ@# & /@ ((n + k)/(p + k))] == {True}, c++; If[c > 0, Goto [fini]]]; k++]]; Label[fini]; c > 0]; Select[ Range@ 2000, fQ] (* Robert G. Wilson v, Dec 05 2015 *)
PROG
(PARI) for(n=2, 1000000, if(!isprime(n), if(issquarefree(n), f=factor(n); k=0; for(b=-(f[1, 1]-1), n, c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, if(!b==0, k++))); if(k>0, print1(n, ", ")))))
CROSSREFS
Subsequences: A002997 (Carmichael numbers), A006972 (Lucas-Carmichael numbers), A029553 (-10), A029554 (-9), A029555 (-8), A029556 (-7), A029557 (-6), A029558 (-5), A029559 (-4), A029560 (-3), A029561 (-2), A029562 (+2), A029563 (+3), A029564 (+4), A029565 (+5), A029566 (+6), A029567 (+7), A029568 (+8), A029569 (+9), A029570 (+10), A029590 (Least quasi-Carmichael number of order n), A029591 (Least quasi-Carmichael number of order -n), A257751 (1 base), A257752 (2 bases), A257753 (3 bases), A257754 (4 bases), A257755 (5 bases), A257756 (6 bases), A257757 (7 bases), A258842 (8 bases), A257758 (first occurrences), A259282 (at least one negative base), A259283 (at least one positive base), A257759 (at least one negative base and at least one positive base).
KEYWORD
nonn
AUTHOR
EXTENSIONS
All terms less than 1000000 checked by Robert G. Wilson v, Dec 13 2015
STATUS
approved

Search completed in 0.005 seconds