login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a011541 -id:a011541
Displaying 1-10 of 55 results found. page 1 2 3 4 5 6
     Sort: relevance | references | number | modified | created      Format: long | short | data
A230564 Rational rank of the n-th taxicab elliptic curve x^3 + y^3 = A011541(n). +20
1
0, 2, 4, 5, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Guy, 2004: "Andrew Bremner has computed the rational rank of the elliptic curve x^3 + y^3 = Taxicab(n) as equal to 2, 4, 5, 4 for n = 2, 3, 4, 5, respectively."
Abhinav Kumar computed that a(1) = 0 (see the MathOverflow link for details). But Euler and Legendre scooped him (see the next comment).
Noam D. Elkies: "... the fact that x^3+y^3=2 has no [rational] solutions other than x=y=1 is attributed by Dickson to Euler himself: see Dickson's History of the Theory of Numbers (1920) Vol.II, Chapter XXI "Numbers the Sum of Two Rational Cubes", page 572. The reference (footnote 182) is "Algebra, 2, 170, Art. 247; French transl., 2, 1774, pp. 355-60; Opera Omnia, (1), I, 491". In the next page Dickson also refers to work of Legendre that includes this result (footnote 184: "Théorie des nombres, Paris, 1798, 409; ...")." See the MathOverflow link for further comments from Elkies.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, D1.
LINKS
J. Silverman, Taxicabs and sums of two cubes, Amer. Math. Monthly, 100 (1993), 331-340.
FORMULA
a(n) = A060838(A011541(n)).
EXAMPLE
rank(x^3 + y^3 = 2) = 0.
rank(x^3 + y^3 = 1729) = 2.
rank(x^3 + y^3 = 87539319) = 4.
rank(x^3 + y^3 = 6963472309248) = 5.
rank(x^3 + y^3 = 48988659276962496) = 4.
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Jonathan Sondow, Oct 25 2013
STATUS
approved
A132942 Concatenation of first n taxicab numbers A011541. +20
0
2, 21729, 2172987539319, 21729875393196963472309248, 2172987539319696347230924848988659276962496 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
KEYWORD
base,nonn,hard
AUTHOR
Omar E. Pol, Nov 17 2007
STATUS
approved
A134929 Successive digits of taxicab numbers A011541(n). +20
0
2, 1, 7, 2, 9, 8, 7, 5, 3, 9, 3, 1, 9, 6, 9, 6, 3, 4, 7, 2, 3, 0, 9, 2, 4, 8, 4, 8, 9, 8, 8, 6, 5, 9, 2, 7, 6, 9, 6, 2, 4, 9, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
KEYWORD
base,easy,nonn
AUTHOR
Omar E. Pol, Nov 17 2007
STATUS
approved
A273594 Least number k such that abs(A011541(n+1) - A011541(n)*k^3) is a minimum. +20
0
9, 37, 43, 19, 79 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
If b is the sum of two positive cubes in exactly n ways, then b*c^3 is the sum of two positive cubes in at least n ways for all c > 0. So A011541(i)*c^3 is a candidate for unknown Taxi-cab numbers. a(6) = 79 is an interesting example that is related to this case. Additionally, the benefit of this simple fact is the determination of upper bounds for unknown Taxi-cab numbers in relatively easy way.
The inequalities that are given in the comment section of A011541 are:
A011541(7) <= 101^3*A011541(6),
A011541(8) <= 127^3*A011541(7),
A011541(9) <= 139^3*A011541(8).
So a(6) <= 101, a(7) <= 127, a(8) <= 139.
LINKS
EXAMPLE
a(5) = 79 because abs(A011541(6) - A011541(5)*79^3) = abs(24153319581254312065344 - 48988659276962496*79^3) = 0
CROSSREFS
Cf. A011541.
KEYWORD
nonn,hard,more
AUTHOR
Altug Alkan, May 26 2016
STATUS
approved
A003325 Numbers that are the sum of 2 positive cubes. +10
136
2, 9, 16, 28, 35, 54, 65, 72, 91, 126, 128, 133, 152, 189, 217, 224, 243, 250, 280, 341, 344, 351, 370, 407, 432, 468, 513, 520, 539, 559, 576, 637, 686, 728, 730, 737, 756, 793, 854, 855, 945, 1001, 1008, 1024, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1343 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
It is conjectured that this sequence and A052276 have infinitely many numbers in common, although only one example (128) is known. [Any further examples are greater than 5 million. - Charles R Greathouse IV, Apr 12 2020] [Any further example is greater than 10^12. - M. F. Hasler, Jan 10 2021]
A113958 is a subsequence; if m is a term then m+k^3 is a term of A003072 for all k > 0. - Reinhard Zumkeller, Jun 03 2006
From James R. Buddenhagen, Oct 16 2008: (Start)
(i) N and N+1 are both the sum of two positive cubes if N=2*(2*n^2 + 4*n + 1)*(4*n^4 + 16*n^3 + 23*n^2 + 14*n + 4), n=1,2,....
(ii) For n >= 2, let N = 16*n^6 - 12*n^4 + 6*n^2 - 2, so N+1 = 16*n^6 - 12*n^4 + 6*n^2 - 1.
Then the identities 16*n^6 - 12*n^4 + 6*n^2 - 2 = (2*n^2 - n - 1)^3 + (2*n^2 + n - 1)^3 16*n^6 - 12*n^4 + 6*n^2 - 1 = (2*n^2)^3 + (2*n^2 - 1)^3 show that N, N+1 are in the sequence. (End)
If n is a term then n*m^3 (m >= 2) is also a term, e.g., 2m^3, 9m^3, 28m^3, and 35m^3 are all terms of the sequence. "Primitive" terms (not of the form n*m^3 with n = some previous term of the sequence and m >= 2) are 2, 9, 28, 35, 65, 91, 126, etc. - Zak Seidov, Oct 12 2011
This is an infinite sequence in which the first term is prime but thereafter all terms are composite. - Ant King, May 09 2013
By Fermat's Last Theorem (the special case for exponent 3, proved by Euler, is sufficient), this sequence contains no cubes. - Charles R Greathouse IV, Apr 03 2021
REFERENCES
C. G. J. Jacobi, Gesammelte Werke, vol. 6, 1969, Chelsea, NY, p. 354.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
F. Beukers, The Diophantine equation Ax^p+By^q=Cz^r, Duke Math. J. 91 (1998), 61-88.
Kevin A. Broughan, Characterizing the sum of two cubes, J. Integer Seqs., Vol. 6, 2003.
Nils Bruin, On powers as sums of two cubes, in Algorithmic number theory (Leiden, 2000), 169-184, Lecture Notes in Comput. Sci., 1838, Springer, Berlin, 2000.
C. G. J. Jacobi, Gesammelte Werke.
Michael Penn, 1674 is not a perfect cube, 2020 video
Eric Weisstein's World of Mathematics, Cubic Number
MATHEMATICA
nn = 2*20^3; Union[Flatten[Table[x^3 + y^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]] (* T. D. Noe, Oct 12 2011 *)
With[{upto=2000}, Select[Total/@Tuples[Range[Ceiling[Surd[upto, 3]]]^3, 2], #<=upto&]]//Union (* Harvey P. Dale, Jun 11 2016 *)
PROG
(PARI) cubes=sum(n=1, 11, x^(n^3), O(x^1400)); v = select(x->x, Vec(cubes^2), 1); vector(#v, k, v[k]+1) \\ edited by Michel Marcus, May 08 2017
(PARI) isA003325(n) = for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1)) \\ M. F. Hasler, Oct 17 2008, improved upon suggestion of Altug Alkan and Michel Marcus, Feb 16 2016
(PARI) T=thueinit('z^3+1); is(n)=#select(v->min(v[1], v[2])>0, thue(T, n))>0 \\ Charles R Greathouse IV, Nov 29 2014
(PARI) list(lim)=my(v=List()); lim\=1; for(x=1, sqrtnint(lim-1, 3), my(x3=x^3); for(y=1, min(sqrtnint(lim-x3, 3), x), listput(v, x3+y^3))); Set(v) \\ Charles R Greathouse IV, Jan 11 2022
(Haskell)
a003325 n = a003325_list !! (n-1)
a003325_list = filter c2 [1..] where
c2 x = any (== 1) $ map (a010057 . fromInteger) $
takeWhile (> 0) $ map (x -) $ tail a000578_list
-- Reinhard Zumkeller, Mar 24 2012
(Python)
from sympy import integer_nthroot
def aupto(lim):
cubes = [i*i*i for i in range(1, integer_nthroot(lim-1, 3)[0] + 1)]
sum_cubes = sorted([a+b for i, a in enumerate(cubes) for b in cubes[i:]])
return [s for s in sum_cubes if s <= lim]
print(aupto(1343)) # Michael S. Branicky, Feb 09 2021
CROSSREFS
Subsequence of A004999 and hence of A045980; supersequence of A202679.
Cf. A024670 (2 distinct cubes), A003072, A001235, A011541, A003826, A010057, A000578, A027750, A010052, A085323 (n such that a(n+1)=a(n)+1).
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Error in formula line corrected by Zak Seidov, Jul 23 2009
STATUS
approved
A001235 Taxi-cab numbers: sums of 2 cubes in more than 1 way. +10
114
1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597, 439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, 684019, 704977 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
From Wikipedia: "1729 is known as the Hardy-Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding a hospital visit to the Indian mathematician Srinivasa Ramanujan. In Hardy's words: 'I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."'"
A011541 gives another version of "taxicab numbers".
If n is in this sequence, then n*k^3 is also in this sequence for all k > 0. So this sequence is obviously infinite. - Altug Alkan, May 09 2016
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, Section D1.
G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
Ya. I. Perelman, Algebra can be fun, pp. 142-143.
H. W. Richmond, On integers which satisfy the equation t^3 +- x^3 +- y^3 +- z^3, Trans. Camb. Phil. Soc., 22 (1920), 389-403, see p. 402.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165.
LINKS
Shahar Amitai, Table of n, a(n) for n = 1..30000 (terms a(1)-a(4724) from T. D. Noe, terms a(4725)-a(10000) from Zak Seidov).
J. Charles-É, Recreomath, Ramanujan's Number.
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Istanbul Bilgi University, Ramanujan and Hardy's Taxi
Christopher Lane, The First ten Ta(2) and their double distinct cubic sums representations, Find Ramanujan's Taxi Number using JavaScript. [WayBack Machine copy]
J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
Ken Ono and Sarah Trebat-Leder, The 1729 K3 surface, arXiv:1510.00735 [math.NT], 2015.
Eric Weisstein's World of Mathematics, Cubic Number
Eric Weisstein's World of Mathematics, Diophantine Equation 3rd Powers
Eric Weisstein's World of Mathematics, Taxicab Number
D. W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. Integer Sequences, Vol. 2, 1999, #99.1.9.
EXAMPLE
4104 belongs to the sequence as 4104 = 2^3 + 16^3 = 9^3 + 15^3.
MATHEMATICA
Select[Range[750000], Length[PowersRepresentations[#, 2, 3]]>1&] (* Harvey P. Dale, Nov 25 2014, with correction by Zak Seidov, Jul 13 2015 *)
PROG
(PARI) is(n)=my(t); for(k=ceil((n/2)^(1/3)), (n-.4)^(1/3), if(ispower(n-k^3, 3), if(t, return(1), t=1))); 0 \\ Charles R Greathouse IV, Jul 15 2011
(PARI) T=thueinit(x^3+1, 1);
is(n)=my(v=thue(T, n)); sum(i=1, #v, v[i][1]>=0 && v[i][2]>=v[i][1])>1 \\ Charles R Greathouse IV, May 09 2016
CROSSREFS
Subsequence of A003325.
Cf. A007692, A008917, A011541, A018786, A018850 (primitive solutions), A051347 (allows negatives), A343708, A360619.
Solutions in greater numbers of ways:
(>2): A018787 (A003825 for primitive, A023050 for coprime),
(>3): A023051 (A003826 for primitive),
(>4): A051167 (A155057 for primitive).
KEYWORD
nonn,nice
AUTHOR
STATUS
approved
A272885 Cubefree taxi-cab numbers. +10
20
1729, 20683, 40033, 149389, 195841, 327763, 443889, 684019, 704977, 1845649, 2048391, 2418271, 2691451, 3242197, 3375001, 4342914, 4931101, 5318677, 5772403, 5799339, 6058747, 7620661, 8872487, 9443761, 10702783, 10765603, 13623913, 16387189, 16776487, 16983854, 17045567, 18406603 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Taxi-cab numbers (A001235) that are not divisible by any cube > 1.
A080642 belongs to another version that A011541 focuses on.
Cubeful taxi-cab numbers are 4104, 13832, 32832, 39312, 46683, 64232, 65728, 110656, 110808, 134379, 165464, 171288, ...
LINKS
EXAMPLE
195841 is a term because 195841 is a member of A001235 and 195841 = 37*67*79.
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, May 08 2016
STATUS
approved
A160414 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (same as A160410, but a(1) = 1, not 4). +10
19
0, 1, 9, 21, 49, 61, 97, 133, 225, 237, 273, 309, 417, 453, 561, 669, 961, 973, 1009, 1045, 1153, 1189, 1297, 1405, 1729, 1765, 1873, 1981, 2305, 2413, 2737, 3061, 3969, 3981, 4017, 4053, 4161, 4197, 4305, 4413, 4737, 4773, 4881, 4989, 5313, 5421, 5745 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The structure has a fractal behavior similar to the toothpick sequence A139250.
First differences: A161415, where there is an explicit formula for the n-th term.
For the illustration of a(24) = 1729 (the Hardy-Ramanujan number) see the Links section.
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
FORMULA
a(n) = 1 + 4*A219954(n), n >= 1. - M. F. Hasler, Dec 02 2012
a(2^k) = (2^(k+1) - 1)^2. - Omar E. Pol, Jan 05 2013
EXAMPLE
From Omar E. Pol, Sep 24 2015: (Start)
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
1;
9;
21, 49;
61, 97, 133, 225;
237, 273, 309, 417, 453, 561, 669, 961;
...
Right border gives A060867.
This triangle T(n,k) shares with the triangle A256530 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc.
.
Illustration of initial terms, for n = 1..10:
. _ _ _ _ _ _ _ _
. | _ _ | | _ _ |
. | | _|_|_ _ _ _ _ _ _ _ _ _ _|_|_ | |
. | |_| _ _ _ _ _ _ _ _ |_| |
. |_ _| | _|_ _|_ | | _|_ _|_ | |_ _|
. | |_| _ _ |_| |_| _ _ |_| |
. | | | _|_|_ _ _|_|_ | | |
. | _| |_| _ _ _ _ |_| |_ |
. | | |_ _| | _|_|_ | |_ _| | |
. | |_ _| | |_| _ |_| | |_ _| |
. | _ _ | _| |_| |_ | _ _ |
. | | _|_| | |_ _ _| | |_|_ | |
. | |_| _| |_ _| |_ _| |_ |_| |
. | | | |_ _ _ _ _ _ _| | | |
. | _| |_ _| |_ _| |_ _| |_ |
. _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _
. | _| |_ _| |_ _| |_ _| |_ _| |_ |
. | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
. | |_ _| | | |_ _| |
. |_ _ _ _| |_ _ _ _|
.
After 10 generations there are 273 ON cells, so a(10) = 273.
(End)
MAPLE
read("transforms") ; isA000079 := proc(n) if type(n, 'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc:
A048883 := proc(n) 3^wt(n) ; end proc:
A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4*A048883(n-1)-2*n ; else 4*A048883(n-1) ; end if; end proc:
A160414 := proc(n) add( A161415(k), k=1..n) ; end proc: seq(A160414(n), n=0..90) ; # R. J. Mathar, Oct 16 2010
MATHEMATICA
A160414list[nmax_]:=Accumulate[Table[If[n<2, n, 4*3^DigitCount[n-1, 2, 1]-If[IntegerQ[Log2[n]], 2n, 0]], {n, 0, nmax}]]; A160414list[100] (* Paolo Xausa, Sep 01 2023, after R. J. Mathar *)
PROG
(PARI) my(s=-1, t(n)=3^norml2(binary(n-1))-if(n==(1<<valuation(n, 2)), n\2)); vector(99, i, 4*(s+=t(i))+1) \\ Altug Alkan, Sep 25 2015
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, May 20 2009
EXTENSIONS
Edited by N. J. A. Sloane, Jun 15 2009 and Jul 13 2009
More terms from R. J. Mathar, Oct 16 2010
STATUS
approved
A083737 Pseudoprimes to bases 2, 3 and 5. +10
11
1729, 2821, 6601, 8911, 15841, 29341, 41041, 46657, 52633, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 294409, 314821, 334153, 340561, 399001, 410041, 488881, 512461, 530881, 552721, 658801, 670033, 721801, 748657 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
a(n) = n-th positive integer k(>1) such that 2^(k-1) == 1 (mod k), 3^(k-1) == 1 (mod k) and 5^(k-1) == 1 (mod k)
See A153580 for numbers k > 1 such that 2^k-2, 3^k-3 and 5^k-5 are all divisible by k but k is not a Carmichael number (A002997).
Note that a(1)=1729 is the Hardy-Ramanujan number. - Omar E. Pol, Jan 18 2009
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 102 from R. J. Mathar)
EXAMPLE
a(1)=1729 since it is the first number such that 2^(k-1) == 1 (mod k), 3^(k-1) == 1 (mod k) and 5^(k-1) == 1 (mod k).
MATHEMATICA
Select[ Range[838200], !PrimeQ[ # ] && PowerMod[2, # - 1, # ] == 1 && PowerMod[3, 1 - 1, # ] == 1 && PowerMod[5, # - 1, # ] == 1 & ]
PROG
(PARI) is(n)=!isprime(n)&&Mod(2, n)^(n-1)==1&&Mod(3, n)^(n-1)==1&&Mod(5, n)^(n-1)==1 \\ Charles R Greathouse IV, Apr 12 2012
CROSSREFS
Proper subset of A052155. Superset of A230722. Cf. A153580, A002997, A001235, A011541.
KEYWORD
easy,nonn
AUTHOR
Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003
EXTENSIONS
Edited by Robert G. Wilson v, May 06 2003
Edited by N. J. A. Sloane, Jan 14 2009
STATUS
approved
A023051 Numbers that are the sum of two positive cubes in at least four ways (all solutions). +10
9
6963472309248, 12625136269928, 21131226514944, 26059452841000, 55707778473984, 74213505639000, 95773976104625, 101001090159424, 159380205560856, 169049812119552, 174396242861568, 188013752349696 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, D1.
LINKS
Uwe Hollerbach, Taxi, Taxi! [Original link, broken]
Uwe Hollerbach, Taxi, Taxi! [Replacement link to Wayback Machine]
Uwe Hollerbach, Taxi! Taxi! [Cached copy from Wayback Machine, html version of top page only]
D. W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. Integer Sequences, Vol. 2, 1999, #99.1.9.
CROSSREFS
KEYWORD
nonn
AUTHOR
David W. Wilson (revised Oct 15 1997)
EXTENSIONS
b-file extended by Ray Chandler, Jan 19 2009
STATUS
approved
page 1 2 3 4 5 6

Search completed in 0.027 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 21 18:51 EDT 2024. Contains 375353 sequences. (Running on oeis4.)