login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a000104 -id:a000104
     Sort: relevance | references | number | modified | created      Format: long | short | data
Erroneous version of A000104.
+20
0
1, 1, 1, 2, 5, 12, 35, 107, 363, 1248, 4271
OFFSET
0,4
LINKS
R. C. Read, Contributions to the cell growth problem, Canad. J. Math., 14 (1962), 1-20.
KEYWORD
dead
STATUS
approved
Erroneous version of A000104.
+20
0
1, 1, 2, 5, 12, 25, 107, 363, 1248, 4460
OFFSET
1,3
LINKS
Lucia Moura and Ivan Stojmenovic, Backtracking and Isomorph-Free Generation of Polyhexes, Table 2.2 on p. 55 of Handbook of Applied Algorithms (2008).
KEYWORD
dead
AUTHOR
Washington Bomfim, Aug 06 2012
STATUS
approved
Number of free polyominoes (or square animals) with n cells.
(Formerly M1425 N0561)
+10
198
1, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 13079255, 50107909, 192622052, 742624232, 2870671950, 11123060678, 43191857688, 168047007728, 654999700403, 2557227044764, 9999088822075, 39153010938487, 153511100594603
OFFSET
0,4
COMMENTS
For n>0, a(n) + A030228(n) = A000988(n) because the number of free polyominoes plus the number of polyominoes lacking bilateral symmetry equals the number of one-sided polyominoes. - Graeme McRae, Jan 05 2006
The possible symmetry groups of a (nonempty) polyomino are the 10 subgroups of the dihedral group D_8 of order 8: D_8, 1, Z_2 (five times), Z_4, (Z_2)^2 (twice). - Benoit Jubin, Dec 30 2008
Names for first few polyominoes: monomino, domino, tromino, tetromino, pentomino, hexomino, heptomino, octomino, enneomino, decomino, hendecomino, dodecomino, ...
Limit_{n->oo} a(n)^(1/n) = mu with 3.98 < mu < 4.64 (quoted by Castiglione et al., with a reference to Barequet et al., 2006, for the lower bound). The upper bound is due to Klarner and Rivest, 1973. By Madras, 1999, it is now known that this limit, also known as Klarner's constant, is equal to the limit growth rate lim_{n->oo} a(n+1)/a(n).
Polyominoes are worth exploring in the elementary school classroom. Students in grade 2 can reproduce the first 6 terms. Grade 3 students can explore area and perimeter. Grade 4 students can talk about polyomino symmetries.
The pentominoes should be singled out for special attention: 1) they offer a nice, manageable set that a teacher can commercially acquire without too much expense. 2) There are also deeply strategic games and perplexing puzzles that are great for all students. 3) A fraction of students will become engaged because of the beautiful solutions.
Conjecture: Almost all polyominoes are holey. In other words, A000104(n)/a(n) tends to 0 for increasing n. - John Mason, Dec 11 2021 (This is true, a consequence of Madras's 1999 pattern theorem. - Johann Peters, Jan 06 2024)
REFERENCES
S. W. Golomb, Polyominoes, Appendix D, p. 152; Princeton Univ. Pr. NJ 1994
J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 229.
D. A. Klarner, The Mathematical Gardner, p. 252 Wadsworth Int. CA 1981
W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
George E. Martin, Polyominoes - A Guide to Puzzles and Problems in Tiling, The Mathematical Association of America, 1996
Ed Pegg, Jr., Polyform puzzles, in Tribute to a Mathemagician, Peters, 2005, pp. 119-125.
R. C. Read, Some applications of computers in graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, pp. 417-444.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
John Mason, Table of n, a(n) for n = 0..50 (terms 0..45,47 from Toshihiro Shirakawa)
Z. Abel, E. Demaine, M. Demaine, H. Matsui and G. Rote, Common Developments of Several Different Orthogonal Boxes.
G. Barequet, M. Moffie, A. Ribo and G. Rote, Counting polyominoes on twisted cylinders, Integers 6 (2006), A22, 37 pp. (electronic).
G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
Juris Čerņenoks and Andrejs Cibulis, Tetrads and their Counting, Baltic J. Modern Computing, Vol. 6 (2018), No. 2, 96-106.
A. Clarke, Polyominoes
A. R. Conway and A. J. Guttmann, On two-dimensional percolation, J. Phys. A: Math. Gen. 28(1995) 891-904.
I. Jensen, Enumerations of lattice animals and trees, arXiv:cond-mat/0007239 [cond-mat.stat-mech], 2000.
I. Jensen and A. J. Guttmann, Statistics of lattice animals (polyominoes) and polygons, Journal of Physics A: Mathematical and General, vol. 33, pp. L257-L263, 2000.
M. Keller, Counting polyforms.
D. A. Klarner and R. L. Rivest, A procedure for improving the upper bound for the number of n-ominoes, Canadian J. of Mathematics, 25 (1973), 585-602.
N. Madras, A pattern theorem for lattice clusters, arXiv:math/9902161 [math.PR], 1999; Annals of Combinatorics, 3 (1999), 357-384.
S. Mertens, Lattice animals: a fast enumeration algorithm and new perimeter polynomials, J. Statistical Physics, vol. 58, no. 5/6, pp. 1095-1108, Mar. 1990.
Stephan Mertens and Markus E. Lautenbacher, Counting lattice animals: A parallel attack J. Stat. Phys., vol. 66, no. 1/2, pp. 669-678, 1992.
W. R. Muller, K. Szymanski, J. V. Knop, and N. Trinajstic, On the number of square-cell configurations, Theor. Chim. Acta 86 (1993) 269-278
Joseph Myers, Polyomino tiling
Tomás Oliveira e Silva, Animal enumerations on the {4,4} Euclidean tiling [The enumeration to order 28]
T. R. Parkin, L. J. Lander, and D. R. Parkin, Polyomino Enumeration Results, presented at SIAM Fall Meeting, 1967, and accompanying letter from T. J. Lander (annotated scanned copy)
Anuj Pathania, Scalable Task Schedulers for Many-Core Architectures, Ph.D. Thesis, Karlsruher Instituts für Technologie (Germany, 2018).
Henri Picciotto, Polyomino Lessons
Jaime Rangel-Mondragón, Polyominoes and Related Families, The Mathematica Journal, Volume 9, Issue 3.
D. H. Redelmeier, Counting polyominoes: yet another attack, Discrete Math., 36 (1981), 191-203.
D. H. Redelmeier, Table 3 of Counting polyominoes...
Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
Eric Weisstein's World of Mathematics, Polyomino
Wikipedia, Polyomino
D. Xu, T. Horiyama, T. Shirakawa and R. Uehara, Common Developments of Three Incongruent Boxes of Area 30, in Proc. 12th Annual Conference, TAMC 2015, Singapore, May 18-20, 2015, LNCS Vol. 9076, pp. 236-247.
L. Zucca, Pentominoes
FORMULA
a(n) = A000104(n) + A001419(n). - R. J. Mathar, Jun 15 2014
a(n) = A006749(n) + A006746(n) + A006748(n) + A006747(n) + A056877(n) + A056878(n) + A144553(n) + A142886(n). - Andrew Howroyd, Dec 04 2018
a(n) = A259087(n) + A259088(n). - R. J. Mathar, May 22 2019
a(n) = (4*A006746(n) + 4*A006748(n) + 4*A006747(n) + 6*A056877(n) + 6*A056878(n) + 6*A144553(n) + 7*A142886(n) + A001168(n))/8. - John Mason, Nov 14 2021
EXAMPLE
a(0) = 1 as there is 1 empty polyomino with #cells = 0. - Fred Lunnon, Jun 24 2020
MATHEMATICA
(* In this program by Jaime Rangel-Mondragón, polyominoes are represented as a list of Gaussian integers. *)
polyominoQ[p_List] := And @@ ((IntegerQ[Re[#]] && IntegerQ[Im[#]])& /@ p);
rot[p_?polyominoQ] := I*p;
ref[p_?polyominoQ] := (# - 2 Re[#])& /@ p;
cyclic[p_] := Module[{i = p, ans = {p}}, While[(i = rot[i]) != p, AppendTo[ans, i]]; ans];
dihedral[p_?polyominoQ] := Flatten[{#, ref[#]}& /@ cyclic[p], 1];
canonical[p_?polyominoQ] := Union[(# - (Min[Re[p]] + Min[Im[p]]*I))& /@ p];
allPieces[p_] := Union[canonical /@ dihedral[p]];
polyominoes[1] = {{0}};
polyominoes[n_] := polyominoes[n] = Module[{f, fig, ans = {}}, fig = ((f = #1; ({f, #1 + 1, f, #1 + I, f, #1 - 1, f, #1 - I}&) /@ f)&) /@ polyominoes[n - 1]; fig = Partition[Flatten[fig], n]; f = Select[Union[canonical /@ fig], Length[#1] == n &]; While[f != {}, ans = {ans, First[f]}; f = Complement[f, allPieces[First[f]]]]; Partition[Flatten[ans], n]];
a[n_] := a[n] = Length[ polyominoes[n]];
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, Mar 24 2015, after Jaime Rangel-Mondragón *)
CROSSREFS
Sequences classifying polyominoes by symmetry group: A006746, A006747, A006748, A006749, A056877, A056878, A142886, A144553, A144554.
Cf. A001168 (not reduced by D_8 symmetry), A000104 (no holes), A054359, A054360, A001419, A000988, A030228 (chiral polyominoes).
See A006765 for another version.
Cf. also A000577, A000228, A103465, A210996 (bisection).
Excluding a(0), 8th and 9th row of A366766.
KEYWORD
nonn,hard,nice,core
EXTENSIONS
Extended to n=28 by Tomás Oliveira e Silva
Link updated by William Rex Marshall, Dec 16 2009
Edited by Gill Barequet, May 24 2011
Misspelling "polyominos" corrected by Don Knuth, May 03 2016
a(29)-a(45), a(47) from Toshihiro Shirakawa
a(46) calculated using values from A001168 (I. Jensen), A006748/A056877/A056878/A144553/A142886 (Robert A. Russell) and A006746/A006747 (John Mason), Nov 14 2021
STATUS
approved
Number of asymmetric polyominoes with n cells.
(Formerly M3906)
+10
26
0, 0, 0, 1, 5, 20, 84, 316, 1196, 4461, 16750, 62878, 237394, 899265, 3422111, 13069026, 50091095, 192583152, 742560511, 2870523142, 11122817672, 43191285751, 168046076423, 654997492842, 2557223459805, 9999080270766, 39152997087077, 153511067364760
OFFSET
1,5
COMMENTS
This sequence counts polyominoes whose symmetry group has order 1.
REFERENCES
A. R. Conway and A. J. Guttmann, On two-dimensional percolation, J. Phys. A: Math. Gen. 28(1995) 891-904.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
John Mason, Table of n, a(n) for n = 1..50 (This version corrects erroneous values from a(44) onwards in previous version.)
Tomás Oliveira e Silva, Enumeration of polyominoes
T. R. Parkin, L. J. Lander, and D. R. Parkin, Polyomino Enumeration Results, presented at SIAM Fall Meeting, 1967, and accompanying letter from T. J. Lander (annotated scanned copy). See page 21.
D. H. Redelmeier, Counting polyominoes: yet another attack, Discrete Math., 36 (1981), 191-203.
D. H. Redelmeier, Table 3 of Counting polyominoes...
FORMULA
a(n) + A259090(n) = A000105(n). - R. J. Mathar, Sep 29 2021
CROSSREFS
Sequences classifying polyominoes by symmetry group: A000105, A006746, A006747, A006748, A006749, A056877, A056878, A142886, A144553, A144554.
KEYWORD
nonn,nice
EXTENSIONS
Extended to n=28 by Tomás Oliveira e Silva.
STATUS
approved
Number of n-celled polyominoes with holes.
(Formerly M4226 N1767)
+10
16
0, 0, 0, 0, 0, 0, 1, 6, 37, 195, 979, 4663, 21474, 96496, 425449, 1849252, 7946380, 33840946, 143060339, 601165888, 2513617990, 10466220315, 43425174374, 179630865835, 741123699012, 3050860717372, 12534339432498, 51408312232300, 210526591157926, 860989703302456
OFFSET
1,8
COMMENTS
From John Mason, Sep 06 2022: (Start)
Conjecture: Almost all polyominoes are holey. In other words, a(n)/A000105(n) tends to 1 for increasing n.
The number of holes in a polyomino is given by the formula (based on a generalization of Pick's Theorem): H = n + 1 - i - s / 2, where:
n is the size (area) of the polyomino;
i is the number of completely internal vertices; i.e., the number of vertices that are surrounded by 4 squares;
s is the number of vertices on a single border; i.e., vertices that are the corners of 1, 2 or 3 squares, but excluding those that touch only 2 squares that are diagonally adjacent. (End)
REFERENCES
S. W. Golomb, Polyominoes. Scribner's, NY, 1965; second edition ( Polyominoes: Puzzles, Packings, Problems and Patterns) Princeton Univ. Press, 1994.
Joseph S. Madachy, "Pentominoes - Some Solved and Unsolved Problems", J. Rec. Math., 2 (1969), 181-188.
George E. Martin, Polyominoes - A Guide to Puzzles and Problems in Tiling, The Mathematical Association of America, 1996
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. R. Muller, K. Szymanski, J. V. Knop, and N. Trinajstic, On the number of square-cell configurations, Theor. Chim. Acta 86 (1993) 269-278.
Joseph Myers, Polyomino tiling
T. R. Parkin, L. J. Lander, and D. R. Parkin, Polyomino Enumeration Results, presented at SIAM Fall Meeting, 1967, and accompanying letter from T. J. Lander (annotated scanned copy).
R. C. Read, Contributions to the cell growth problem, Canad. J. Math., 14 (1962), 1-20.
Eric Weisstein's World of Mathematics, Polyomino.
FORMULA
a(n) >= A057418(n). - R. J. Mathar, Jun 15 2014
a(n) = A000105(n) - A000104(n). - Jean-François Alcover, Jan 04 2020, after R. J. Mathar in A000105.
MATHEMATICA
A[s_] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import[ "https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {_, _}][[All, 2]]];
A000104 = A@104;
A000105 = A@105;
a[n_] := A000105[[n + 1]] - A000104[[n + 1]];
a /@ Range[40] (* Jean-François Alcover, Jan 04 2020, updated Apr 21 2024 after John Mason's b-file *)
CROSSREFS
KEYWORD
nonn,hard
EXTENSIONS
More terms from Joseph Myers, May 05 2002
More terms from Joseph Myers, Nov 04 2003
a(24)-a(26) from Joseph Myers, Nov 17 2010
More terms from John Mason, Oct 10 2022
STATUS
approved
Number of polyominoes consisting of 7 regular unit n-gons.
+10
12
24, 108, 551, 333, 558, 1605, 4418, 8350, 17507, 13512, 17775, 30467, 55264, 83252, 134422, 112514, 135175, 195122, 294091, 397852, 566007, 495773, 568602, 751172, 1031920, 1307384, 1729686, 1557663, 1737915, 2169846, 2808616, 3413064
OFFSET
3,1
LINKS
Matthias Koch and Sascha Kurz, Enumeration of generalized polyominoes, arXiv:math.CO/0605144
S. Kurz, k-polyominoes.
EXAMPLE
a(3)=24 because there are 24 polyiamonds consisting of 7 triangles and a(4)=108 because there are 108 polyominoes consisting of 7 squares.
KEYWORD
nonn
AUTHOR
Sascha Kurz, Feb 07 2005
EXTENSIONS
More terms from Sascha Kurz, Jun 09 2006
STATUS
approved
Number of free polyominoes that form a continuous path of edge joined cells spanning an n X n square in both dimensions.
+10
10
1, 2, 24, 1051, 238048, 195284973, 577169894573, 6200686124225191
OFFSET
1,2
COMMENTS
This idea originated from the water retention model for mathematical surfaces and is identical to the concept of a "lake". A lake is body of water that has dimensions of (n-2) X (n-2) when the square size is n X n. All other bodies of water are "ponds".
Iwan Jensen with his transfer matrix algorithm provided the number of symmetrically redundant solutions. Walter Trump enumerated the symmetrically unique solutions.
LINKS
R. Parkin, L. J. Lander, and D. R. Parkin, Polyomino Enumeration Results, presented at SIAM Fall Meeting, 1967, and accompanying letter from T. J. Lander (annotated scanned copy) page 9 (incorrect at n=15).
EXAMPLE
The cells with value 1 show the smallest possible lake in this 4 X 4 square:
1 1 1 1
0 0 0 1
0 0 0 1
0 0 0 1
a(3)=24 = 6+7+7+3+1: There fit 6 5-ominoes in a 3x3 square, 7 6-ominoes in a 3x3 square, 7 7-ominoes in a 3x3 square, 3 8-ominoes in a 3x3 square, a 1 9-omino in a 3x3 square. - R. J. Mathar, Jun 07 2020
CROSSREFS
Cf. A054247 (all unique water retention patterns). Diagonal of A268371.
Cf. A259088.
KEYWORD
nonn,more
AUTHOR
Craig Knecht, Jan 31 2016
EXTENSIONS
a(6) corrected. Craig Knecht, May 25 2020
STATUS
approved
Number of polyominoes consisting of 8 regular unit n-gons.
+10
8
66, 369, 2812, 1448, 2876, 10102, 34838, 73675, 181127, 131801, 185297, 352375, 725869, 1180526, 2104485, 1694978, 2123088, 3291481, 5402087, 7739008, 11832175, 10079003, 11917261, 16624712, 24389611, 32317393, 45260884
OFFSET
3,1
LINKS
Matthias Koch and Sascha Kurz, Enumeration of generalized polyominoes, preprint, arXiv:math/0605144 [math.CO], 2006.
EXAMPLE
a(3)=66 because there are 66 polyiamonds consisting of 8 triangles and a(4)=369 because there are 369 polyominoes consisting of 8 squares.
KEYWORD
nonn
AUTHOR
Sascha Kurz, Jun 09 2006
STATUS
approved
Number of polyominoes consisting of 10 regular unit n-gons.
+10
8
448, 4655, 76092, 30490, 80075, 430302, 2285047, 6078768, 20376032, 13303523, 21208739, 49734303, 131517548, 249598727, 540742895, 404616118, 549711709, 983715865, 1910489463, 3070327312
OFFSET
3,1
LINKS
Matthias Koch and Sascha Kurz, Enumeration of generalized polyominoes, preprint arXiv:math/0605144 [math.CO], 2006.
EXAMPLE
a(3)=448 because there are 448 polyiamonds consisting of 10 triangles;
a(4)=4655 because there are 4655 polyominoes consisting of 10 squares.
KEYWORD
nonn
AUTHOR
Sascha Kurz, Jun 09 2006
STATUS
approved
Number of polyiamonds with n cells, without holes.
+10
7
1, 1, 1, 3, 4, 12, 24, 66, 159, 444, 1161, 3226, 8785, 24453, 67716, 189309, 528922, 1484738, 4172185, 11756354, 33174451, 93795220, 265565628, 753060469, 2138206966, 6078931114, 17302380313, 49302121747, 140627400927, 401510058179
OFFSET
1,4
COMMENTS
If holes are allowed, we get A000577.
LINKS
Greg Huber, Craig Knecht, Walter Trump, and Robert M. Ziff, Riddles of the sphinx tilings, arXiv:2304.14388 [cond-mat.stat-mech], 2023.
Elena V. Konstantinova and Maxim V. Vidyuk, Discriminating tests of information and topological indices. Animals and trees, J. Chem. Inf. Comput. Sci. 43 (2003), 1860-1871.
Hai Pham-Van, Linh Tran-Phan-Thuy, Cuong Tran-Manh, Bich Do-Danh, and Hoang Luc-Huy, Two-Dimensional Clusters of Colloidal Particles Induced by Emulsion Droplet Evaporation, Nanomaterials (2020) Vol. 10, 156.
CROSSREFS
Equals A000577(n)-A070764(n). Cf. A000104, A018190.
KEYWORD
hard,nonn
AUTHOR
Joseph Myers, May 05 2002
EXTENSIONS
More terms from Joseph Myers, Nov 11 2003
a(29) and a(30) from Joseph Myers, Nov 21 2010
STATUS
approved

Search completed in 0.094 seconds