# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a063748 Showing 1-1 of 1 %I A063748 #12 Mar 18 2017 08:46:23 %S A063748 4,9,8,25,10,49,16,27,0,121,22,169,26,55,32,289,34,361,38,85,30,529, %T A063748 46,133,0,187,52,841,58,961,64,253,0,323,68,1369,74,391,76,1681,82, %U A063748 1849,86,493,70,2209,94,589,0,667,0,2809,106,703,104,697,0,3481,118,3721,122 %N A063748 Greatest x that is a solution to x-phi(x)=n or zero if there is no solution, where phi(x) is Euler's totient function. %C A063748 See A051953 for x-phi(x), the cototient function. Note that a(n)=0 for n in A005278. Also note that n=1 has an infinite number of solutions. If n is prime, then a(n)=n^2. If n is even, then a(n)<=2n. In particular, if n=p+1 for a prime p, then a(n)=2n-2. Also, if n=2^k, then a(n)=2n. If n>9 is odd and composite, then a(n)=pq, with p>q odd primes with p+q=n+1 and p-q minimal. We can take p=A078496((n+1)/2) and q=A078587((n+1)/2). %H A063748 T. D. Noe, Table of n, a(n) for n=2..1000 %F A063748 a(n)=Max{x : A051953(x)=n} if the inverse set is not empty; a(n)=0 if no inverse exists. %e A063748 For n=15, the solutions are x=39 and x=55, so a(15)=55. Note that 55=5*11 and 5+11=n+1. %t A063748 nn=10^4; lim=Floor[Sqrt[nn]]; mx=Table[0,{lim}]; Do[c=n-EulerPhi[n]; If[0 0], k--]; %t A063748 k], {n, 2, 62}] (* _Michael De Vlieger_, Mar 17 2017 *) %Y A063748 Cf. A000010, A051953. %Y A063748 Cf. A063507 (least solution to x-phi(x)=n), A063740 (number of solutions to x-phi(x)=n). %K A063748 nonn %O A063748 2,1 %A A063748 _Labos Elemer_, Aug 13 2001 %E A063748 Corrected and edited by _T. D. Noe_, Oct 30 2006 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE