login

Approved Changes

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Decimal expansion of Integral_{x=0..1} arcsin(x)^2/x dx.
(history; published version)
Revision #28 approved by Joerg Arndt at Sat Nov 02 05:39:12 EDT 2024
NAME

Decimal expansion of Integral_{x=0..1} arcsin(x)^2/x dx.

DATA

6, 5, 8, 4, 7, 2, 3, 2, 5, 6, 9, 9, 6, 3, 4, 1, 3, 6, 4, 8, 7, 0, 9, 8, 8, 9, 7, 1, 6, 6, 0, 0, 5, 2, 7, 5, 9, 0, 5, 5, 8, 1, 7, 5, 6, 2, 4, 9, 0, 4, 1, 8, 5, 7, 2, 6, 2, 7, 9, 5, 3, 5, 1, 2, 0, 5, 1, 7, 0, 8, 7, 9, 6, 6, 7, 6, 6, 8, 2, 2, 7, 7, 6, 3, 3, 3, 8, 6, 3, 7, 0, 6, 3, 1, 2, 9, 9, 9, 4, 5

OFFSET

0,1

REFERENCES

George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 122.

LINKS

Chenli Li, Wenchang Chu, <a href="http://dx.doi.org/10.3390/math10162980">Improper integrals involving powers of Inverse Trigonometric and hyperbolic Functions</a>, Mathematics 10 (16) (2022) 2980

D. Cvijovic, H. M. Srivastava, <a href="https://dx.doi.org/10.1016/j.jmaa.2008.10.017">Evaluations of some classes of the trigonometric moment intgrals</a>, J. Math. Anal. Applic. 351 (2009) 244-256, example set 1.

J. C. Tanner, <a href="http://www.jstor.org/stable/3213813">The Proportion of Quadrilaterals Formed by Random Lines in a Plane</a>, Journal of Applied Probability, Vol. 20, No. 2 (Jun., 1983), pp. 400-404.

J. C. Tanner, <a href="http://www.jstor.org/stable/3213589">Polygons Formed by Random Lines in a Plane: Some Further Results</a>, Journal of Applied Probability, Vol. 20, No. 4 (Dec., 1983), p. 778

FORMULA

Equals 1/8*(Pi^2*log(4) - 7*zeta(3)).

Also equals Sum_{n>=1} 4^(n-1)/(n^3*binomial(2*n, n)).

Also equals 1/2*hypergeometric4F3([1, 1, 1, 1], [3/2, 2, 2], 1).

Also equals Integral_{x=0..Pi/2} x^2*cot(x) dx. - Michel Marcus, Aug 29 2015

EXAMPLE

0.65847232569963413648709889716600527590558175624904185726279535120517...

MATHEMATICA

1/8*(Pi^2*Log[4] - 7*Zeta[3]) // RealDigits[#, 10, 100]& // First

PROG

(PARI) (Pi^2*log(4) - 7*zeta(3))/8 \\ Michel Marcus, Sep 04 2015

CROSSREFS

Cf. A002117 (zeta(3)).

KEYWORD

nonn,cons,easy,changed

AUTHOR

Jean-François Alcover, Apr 29 2013

STATUS

approved

Triangle read by rows: Eulerian numbers T(n,k) = A008292(n,k) reduced mod n+1.
(history; published version)
Revision #10 approved by Joerg Arndt at Sat Nov 02 05:39:07 EDT 2024
NAME

Triangle read by rows: Eulerian numbers T(n,k) = A008292(n,k) reduced mod n+1.

DATA

0, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 7, 1, 7, 4, 7, 1, 7, 1, 1, 3, 0, 2, 4, 4, 2, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 11, 9, 6, 6, 6

OFFSET

0,8

COMMENTS

The row sums are:

{0, 2, 3, 8, 5, 12, 7, 32, 36, 20, 11, 72, 13,...}

LINKS

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerianNumber.html">Eulerian Number</a>

FORMULA

T(n,m) = Eulerian(n+1,m) mod (n+1).

EXAMPLE

Triangle begins:

{0},

{1,1},

{1,1,1},

{1,3,3,1},

{1,1,1,1,1},

{1,3,2,2,3,1},

{1,1,1,1,1,1,1},

{1,7,5,3,3,5,7,1},

{1,7,1,7,4,7,1,7,1},

{1,3,0,2,4,4,2,0,3,1},

{1,1,1,1,1,1,1,1,1,1,1},

{1,3,11,9,6,6,6,6,9,11,3,1},

{1,1,1,1,1,1,1,1,1,1,1,1,1},

...

MATHEMATICA

Flatten[Table[Table[Mod[Eulerian[n+1, m], n+1], {m, 0, n}], {n, 0, 12}]]

CROSSREFS
KEYWORD

nonn,tabl,changed

AUTHOR

Roger L. Bagula, Apr 26 2013

STATUS

approved

Decimal expansion of Pi^3/8.
(history; published version)
Revision #28 approved by Joerg Arndt at Sat Nov 02 04:38:02 EDT 2024
NAME

Decimal expansion of Pi^3/8.

DATA

3, 8, 7, 5, 7, 8, 4, 5, 8, 5, 0, 3, 7, 4, 7, 7, 5, 2, 1, 9, 3, 4, 5, 3, 9, 3, 8, 3, 3, 8, 7, 6, 7, 4, 4, 0, 0, 2, 7, 8, 1, 6, 1, 0, 7, 0, 7, 3, 5, 6, 3, 8, 4, 6, 1, 7, 6, 8, 0, 6, 7, 2, 6, 2, 9, 7, 5, 7, 9, 9, 3, 6, 4, 6, 8, 3, 2, 1, 3, 2, 5, 4, 6, 9, 5, 8, 3, 7, 6, 2, 9, 0, 7, 5, 3, 6, 0, 7, 7, 4

OFFSET

1,1

LINKS

<a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

FORMULA

Equals Integral_{x>0} log(x)^2/(1+x^2) dx.

Equals Integral_{x=0..Pi/2} log(tan(x))^2 dx.

Equals Integral_{x=0..Pi/2} log(sin(x)^3)*log(sin(x))-(3*Pi/2)*log(2)^2 dx.

Equals (27/7) * Sum_{k>=0} binomial(2*k, k)/((2*k+1)^3*16^k);

Equals (27/7) * 4F3([1/2, 1/2, 1/2, 1/2], [3/2, 3/2, 3/2], 1/4), where pFq() is the generalized hypergeometric function.

From Amiram Eldar, Aug 21 2020: (Start)

Equals Integral_{x=0..oo} x^2/cosh(x) dx.

Equals 2 + Integral_{x=0..oo} x^2 * exp(-x) * tanh(x) dx. (End)

From Gleb Koloskov, Jun 15 2021: (Start)

Equals 2*Integral_{x=0..1} log(x)^2/(1+x^2) dx.

Equals 2*Integral_{x=1..oo} log(x)^2/(1+x^2) dx.

Equals 2*(-1)^n*Integral_{x=-1/e..0} W(n,x)*(1-W(n,x))*log(-W(n,x))^2/x/(1-W(n,x)^4) dx, where W=LambertW, for n=0 and n=-1. (End)

EXAMPLE

3.875784585037477521934539383387674400278161070735638461768067262975799364683...

MATHEMATICA

RealDigits[Pi^3/8, 10, 100][[1]]

PROG

(PARI) Pi^3/8 \\ Charles R Greathouse IV, Oct 01 2022

CROSSREFS
KEYWORD

nonn,cons,easy,changed

AUTHOR

Jean-François Alcover, Apr 24 2013

EXTENSIONS

Offset corrected by Rick L. Shepherd, Jan 01 2014

STATUS

approved

Product of remainders of prime(n) mod k, for k = 2,3,4,...,prime(n)-1
(history; published version)
Revision #15 approved by Joerg Arndt at Sat Nov 02 04:25:08 EDT 2024
NAME

Product of remainders of prime(n) mod k, for k = 2,3,4,...,prime(n)-1

DATA

1, 1, 2, 6, 720, 2160, 2419200, 65318400, 754427520000, 32953394073600000, 311409573995520000, 37269497815783833600000, 7890485108998805913600000000, 1096106738916569123487744000000, 4067286739206415827555188736000000000, 7924734685010508814047938347008000000000000

OFFSET

1,3

COMMENTS

Nonzero entries in A180491. Note that this sequence, while increasing in general, is not strictly increasing.

a(n) is divisible by (n-1)!. - Robert G. Wilson v, Sep 09 2010

FORMULA

a(n) = A173392(A000040(n)) = A180491(A000040(n)). - Ridouane Oudra, Nov 01 2024

EXAMPLE

Since prime(4) = 7, a(4) = (7 mod 2) * (7 mod 3) * (7 mod 4) * (7 mod 5) * (7 mod 6) = 1 * 1 * 3 * 2 * 1 = 6.

MAPLE

a:= n-> (p-> mul(irem(p, k), k=2..p-1))(ithprime(n)):

seq(a(n), n=1..17); # Alois P. Heinz, Jul 16 2022

MATHEMATICA

f[n_]:=Times@@(Mod[n, # ]&/@ Range[2, n-1]); Table[f[Prime[i]], {i, 20}] (* Harvey P. Dale, Sep 18 2010 *)

f[n_] := Times @@ Mod[n, Range[2, n - 1]]; Table[ f@ Prime@ n, {n, 10}] (* Robert G. Wilson v, Sep 09 2010 *)

CROSSREFS
KEYWORD

nonn,changed

AUTHOR

Carl R. White, Sep 08 2010

STATUS

approved

Product of remainders of n mod k, for k = 2,3,4,...,n-1.
(history; published version)
Revision #10 approved by Joerg Arndt at Sat Nov 02 04:24:59 EDT 2024
NAME

Product of remainders of n mod k, for k = 2,3,4,...,n-1.

DATA

1, 1, 1, 0, 2, 0, 6, 0, 0, 0, 720, 0, 2160, 0, 0, 0, 2419200, 0, 65318400, 0, 0, 0, 754427520000, 0, 0, 0, 0, 0, 32953394073600000, 0, 311409573995520000, 0, 0, 0, 0, 0, 37269497815783833600000, 0, 0, 0, 7890485108998805913600000000, 0

OFFSET

1,5

COMMENTS

a(n) is zero where n is composite and is trivially less than or equal to n! when n is prime or 1.

a(n)=0 iff n is composite. See A180492. - Robert G. Wilson v, Sep 09 2010

FORMULA

a(n) = A080339(n)*A173392(n). - Ridouane Oudra, Nov 01 2024

EXAMPLE

a(7) = (7 mod 2) * (7 mod 3) * (7 mod 4) * (7 mod 5) * (7 mod 6) = 1 * 1 * 3 * 2 * 1 = 6.

MAPLE

a:=proc(n) if n=1 then 1; elif isprime(n)=true then mul(n mod i, i=2..n-1); else 0; fi: end: seq(a(n), n=1..60); # Ridouane Oudra, Nov 01 2024

MATHEMATICA

f[n_] := Times @@ Mod[n, Range[2, n - 1]]; Array[f, 42] (* Robert G. Wilson v, Sep 09 2010 *)

CROSSREFS
KEYWORD

nonn,changed

AUTHOR

Carl R. White, Sep 08 2010

STATUS

approved

Abundant numbers k such that k^2 + A033880(k)^2 is a perfect square.
(history; published version)
Revision #11 approved by Joerg Arndt at Sat Nov 02 04:23:54 EDT 2024
NAME

Abundant numbers k such that k^2 + A033880(k)^2 is a perfect square.

DATA

336, 1080, 3078, 6048, 6552, 19845, 47616, 239760, 435708, 599400, 760320, 873180, 997920, 1468800, 1602300, 2004480, 4312440, 4612608, 4713984, 10181808, 10665984, 11554816, 12160512, 24149664, 31244850, 46431744, 56439504, 64995840, 116958492

OFFSET

1,1

COMMENTS

These abundant numbers along with their abundances form the legs of an integral Pythagorean triangle.

Odd terms are very rare: 19845 is the only one up to 10^9.

EXAMPLE

336 is a term because its abundance is 320 and 320^2 + 336^2 = 464^2.

MATHEMATICA

l={}; Do[a=DivisorSigma[1, n]-2*n; If[a>0&&IntegerQ@Sqrt[n^2+a^2], AppendTo[l, n]], {n, 12, 2*10^8}]; l

PROG

(PARI) for(n=12, 2*10^8, a=sigma(n)-2*n; a>0&&issquare(n^2+a^2)&&print1(n", "))

(Python)

import sympy as sp

for i in range(12, 200000000):

a=sp.ntheory.factor_.divisor_sigma(i) - 2*i

if a>0 and sp.ntheory.primetest.is_square(i*i+a*a):

print(i, end=", ")

CROSSREFS
KEYWORD

nonn,new

AUTHOR

Waldemar Puszkarz, Oct 17 2024

STATUS

approved

Numbers k such that 3*k+1 divides 3^k+1.
(history; published version)
Revision #38 approved by Joerg Arndt at Sat Nov 02 04:08:50 EDT 2024
NAME

Numbers k such that 3*k+1 divides 3^k+1.

DATA

0, 1, 9, 3825, 6561, 102465, 188505, 190905, 1001385, 1556985, 3427137, 5153577, 5270625, 5347881, 13658225, 14178969, 20867625, 23828049, 27511185, 29400657, 48533625, 80817009, 83406609, 89556105, 108464265, 123395265, 127558881, 130747689, 133861905

OFFSET

1,3

COMMENTS

This is to 3 as A224486 is to 2

Displayed terms complete up to 200*10^6. - _Joerg Arndt_, Apr 08 2013

LINKS

Joerg Arndt, <a href="/A222948/b222948.txt">Table of n, a(n) for n = 1..64</a> (all terms <= 10^9)

FORMULA

{n such that (1+A000244(n))/A016777(n) is an integer}.

EXAMPLE

0 is a term because (3^0+1)/(3*0+1) = 2.

1 is a term because (3^1+1)/(3*1+1) = 1.

9 is a term because (3^9+1)/(3*9+1) = 703.

PROG

(PARI) for(n=0, 10^9, if((3^n+1)%(3*n+1)==0, print1(n, ", "))); /* Joerg Arndt, Apr 08 2013 */

/* the following program is significantly faster; it gives terms >=1: */

(PARI) for(n=0, 10^12, my(m=3*n+1); if( Mod(3, m)^n==Mod(-1, m), print1(n, ", ") ) ); /* Joerg Arndt, Apr 08 2013 */

CROSSREFS

Cf. A224486 (k such that 2*k+1 divides 2^k+1).

Cf. A000244, A016777.

KEYWORD

nonn,changed

AUTHOR

Jonathan Vos Post, Apr 07 2013

EXTENSIONS

Terms > 9 from Joerg Arndt, Apr 08 2013

STATUS

approved

Conjectured lower bounds for the Riemann hypothesis function floor(H(k) + exp(H(k))*log(H(k))) - sigma(k).
(history; published version)
Revision #15 approved by Joerg Arndt at Sat Nov 02 04:08:03 EDT 2024
NAME

Conjectured lower bounds for the Riemann hypothesis function floor(H(k) + exp(H(k))*log(H(k))) - sigma(k).

DATA

0, 1, 2, 6, 23, 33, 34, 78, 105, 207, 492, 1536, 1667, 3036, 5155, 5206, 7682, 8748, 9051, 15895, 21295, 22160, 36300, 58331, 58657, 71186, 81276, 91902, 126789, 142721, 143828, 240466, 291217, 306310, 471093, 743434, 872803, 963860, 1652806, 1742555

OFFSET

1,3

COMMENTS

Here H(k) is the k-th harmonic number, Sum_{i=1..k} 1/i, and sigma(k) is the sum of the divisors of k. This sequence gives the conjectured values of A057641 that form a lower bound. For instance,

all numbers x <= 0 appear for n <= 12 = A176679(3);

all numbers x <= 1 appear for n <= 24 = A176679(4);

all numbers x <= 2 appear for n <= 60 = A176679(5);

all numbers x <= 6 appear for n <= 120 = A176679(6);

all numbers x <= 23 appear for n <= 180 = A176679(7).

The pattern continues.

CROSSREFS
KEYWORD

nonn,changed

AUTHOR

T. D. Noe, Mar 28 2013

STATUS

approved

Numbers m such that m^2 + (m+3)^2 is prime.
(history; published version)
Revision #22 approved by Joerg Arndt at Sat Nov 02 04:07:52 EDT 2024
NAME

Numbers m such that m^2 + (m+3)^2 is prime.

DATA

1, 2, 5, 7, 10, 11, 16, 20, 22, 25, 37, 40, 41, 46, 50, 55, 61, 62, 65, 77, 85, 91, 92, 101, 106, 107, 116, 122, 125, 127, 130, 131, 142, 145, 146, 152, 155, 161, 172, 181, 182, 187, 196, 197, 206, 220, 221, 232, 235, 241, 242, 257, 260, 262, 265, 271, 275, 280, 281, 286, 295, 310, 317, 325, 326, 346, 356, 362, 380, 382, 386, 391

OFFSET

1,2

LINKS

Zak Seidov, <a href="/A224870/b224870.txt">Table of n, a(n) for n = 1..1000</a>

FORMULA

a(n) = (1/2)*(sqrt(2*A076727(n) - k^2) - k), k = 3.

MAPLE

A224870:=n->`if`(isprime(n^2 + (n+3)^2), n, NULL): seq(A224870(n), n=1..10^3); # Wesley Ivan Hurt, Feb 11 2017

MATHEMATICA

k = 3; Select[Range[500], PrimeQ[#^2 + (# + k)^2]&]

PROG

(PARI) isok(n) = isprime(n^2 + (n+3)^2); \\ Michel Marcus, Feb 13 2017

CROSSREFS
KEYWORD

nonn,changed

AUTHOR

Zak Seidov, Jul 22 2013

STATUS

approved

A finite set of numbers relevant for the representation of numbers as primitive distinct sums of three squares (0 squared allowed).
(history; published version)
Revision #17 approved by Joerg Arndt at Sat Nov 02 04:07:48 EDT 2024
NAME

A finite set of numbers relevant for the representation of numbers as primitive distinct sums of three squares (0 squared allowed).

DATA

1, 2, 3, 6, 9, 11, 18, 19, 22, 27, 33, 43, 51, 57, 67, 99, 102, 123, 163, 177, 187, 267, 627

OFFSET

1,2

COMMENTS

This set of 23 numbers, possibly with one more number a >= 5*10^10, appears in a corollary of the Halter-Koch reference (Korollar 1.(c), p. 13 with the first line of r_3(n) on p. 11). A number is representable as a^2 + b^2 + c^2 with a,b, and c integers, 0 <= a < b < c, and gcd(a,b,c) = 1 if and only if n is not congruent 0, 4, 7 (mod 8) and not one of the numbers {a(k), k = 1 .. 23}, and, if it exists at all, a further number >= 5*10^10.

For the multiplicities of these representable numbers see A224447, and for the numbers themselves see A224448.

For a similar set of numbers relevant for sums of three nonzero squares see A051952.

LINKS

F. Halter-Koch, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa42/aa4212.pdf">Darstellung natürlicher Zahlen als Summe von Quadraten</a>, Acta Arith. 42 (1982) 11-20, pp. 13 and 11.

MATHEMATICA

representableQ[n_] := Length[ Select[ PowersRepresentations[n, 3, 2], Unequal @@ # && GCD @@ # == 1 & ]] > 0; Select[ Range[1000], Not[ representableQ[#] || MatchQ[ Mod[#, 8], 0 | 4 | 7]] &] (* Jean-François Alcover, Apr 10 2013 *)

CROSSREFS
KEYWORD

nonn,fini,changed

AUTHOR

Wolfdieter Lang, Apr 09 2013

STATUS

approved

Discussion
Sat Nov 02
04:04
Michel Marcus: I wonder rather: 0 squared ?