Decimal expansion of Integral_{x=0..1} arcsin(x)^2/x dx.
6, 5, 8, 4, 7, 2, 3, 2, 5, 6, 9, 9, 6, 3, 4, 1, 3, 6, 4, 8, 7, 0, 9, 8, 8, 9, 7, 1, 6, 6, 0, 0, 5, 2, 7, 5, 9, 0, 5, 5, 8, 1, 7, 5, 6, 2, 4, 9, 0, 4, 1, 8, 5, 7, 2, 6, 2, 7, 9, 5, 3, 5, 1, 2, 0, 5, 1, 7, 0, 8, 7, 9, 6, 6, 7, 6, 6, 8, 2, 2, 7, 7, 6, 3, 3, 3, 8, 6, 3, 7, 0, 6, 3, 1, 2, 9, 9, 9, 4, 5
0,1
George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 122.
Chenli Li, Wenchang Chu, <a href="http://dx.doi.org/10.3390/math10162980">Improper integrals involving powers of Inverse Trigonometric and hyperbolic Functions</a>, Mathematics 10 (16) (2022) 2980
D. Cvijovic, H. M. Srivastava, <a href="https://dx.doi.org/10.1016/j.jmaa.2008.10.017">Evaluations of some classes of the trigonometric moment intgrals</a>, J. Math. Anal. Applic. 351 (2009) 244-256, example set 1.
J. C. Tanner, <a href="http://www.jstor.org/stable/3213813">The Proportion of Quadrilaterals Formed by Random Lines in a Plane</a>, Journal of Applied Probability, Vol. 20, No. 2 (Jun., 1983), pp. 400-404.
J. C. Tanner, <a href="http://www.jstor.org/stable/3213589">Polygons Formed by Random Lines in a Plane: Some Further Results</a>, Journal of Applied Probability, Vol. 20, No. 4 (Dec., 1983), p. 778
Equals 1/8*(Pi^2*log(4) - 7*zeta(3)).
Also equals Sum_{n>=1} 4^(n-1)/(n^3*binomial(2*n, n)).
Also equals 1/2*hypergeometric4F3([1, 1, 1, 1], [3/2, 2, 2], 1).
Also equals Integral_{x=0..Pi/2} x^2*cot(x) dx. - Michel Marcus, Aug 29 2015
0.65847232569963413648709889716600527590558175624904185726279535120517...
1/8*(Pi^2*Log[4] - 7*Zeta[3]) // RealDigits[#, 10, 100]& // First
(PARI) (Pi^2*log(4) - 7*zeta(3))/8 \\ Michel Marcus, Sep 04 2015
Cf. A002117 (zeta(3)).
nonn,cons,easy,changed
Jean-François Alcover, Apr 29 2013
approved