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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 52/1989

Asymptotic methods for computer-intensive procedures in statistics

10.12. bis 16.12.1989

Die Tagung fand unter der Leitung von Prof. R.Beran (Berkeley) und Prof..

D.W.Müller (Heidelberg) statt

Die VerfUgbarkeit hoher Rechenleistung hat das Gebiet der Statistik zu
verändern begonnen. Die Tagung sollte dieser Entwicklung Rechnung tragen

und Experten aus dem Gebiet der computer-intensiven Verfahren mit
Fachleuten aus der asymptotischen Statistik in Kontakt bringen. Insges~t
wurden 34 Vorträge gehalten, davon einige mit Computer-Demonstrationen.

Breiten Raum nahm naturgemäß das Thema "Bootstraptl ein. Daneben gab es

aber auch Beiträge aus den G~bieten: Parallelrechnen, Bildverat:beitung,
Mustererkennung, empirische Prozeß-Methoden, Design-Optimierung,
stochastische Suchverfahren, Clusteranalyse, Robustheit und

Nichtparamettik.
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BERAN,R.

Controlling conditianal caverage _abilitY in predietion

Suppose the variable X to be predicted and the le~ng sampie y11 that was

observed are independent, with a joint distribution that depends on an

unknown paramter 6. A prediction region D II for X is a random set,

depending on Yn' that contains X with prescribed probability a. In
sufficiently regular models, D n can be constructed so that overall coverage

probability converges to a at rate n-r, where r is any positive integer. This

paper shows that the conditional coverage probability öf D n' given Y11'

converges in probability to a at a rate which usually cannot exceed n-l12•

BICKEL, P.J.

Second order efficiency and the bootstrap

We consider bootstrap confidence bounds far a parameter 9(F) when XI' ...,

X n are i.i.d. F E l' where l' may be parametric or not. H the model is

parametric we compare on second order efficiency grounds (using the n-Ifl

term) bootstrap bounds of various types, Ustudentizedu, BCA, etc. H the
underlying estimate is efficien~·allbounds, whether based on the parametric
er nonparametric bootstrap, which are second order correct are also second

order efficient. However the bounds differ to order 0-1. They match the
corresponding uexactU bounds to that order but differ according to what
estimate of scale, parametric or nonparametric, is used or whether the
p~etric or nonparametric bootstrap is used. They also differ depending on

which efficient estimate of 9 is used Simulation and theoretical comparisons
in performance based on these differences may be wonhwhile.
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BOWMAN, A.W.

Asymptotic metbods and computer-intensive procedures in nQoparametric

smoothing

Some asymptotic expressions for the bias of adaptive density estimators were
examined and found to be misleading in the talls of the density. Numerical
integration was used to study the exact theoreti"cal propenies of these
estimators. (This work is joint with Peter Faster.)
Nonparametric regression was used to incorporate the natural assumption of
smoothness over time into a repeated measurements analysis. The quadratic
form structure of the test statistic allows highly accurate p-values to be

computed in tests for features such as group x time interaction. (This work is
joint with Adelchi Azzalini).

DICICCIO, Tb.J.

A~proximations to marginal tail probabilities

In many situations, inference about a scalar parameter in the presenee of
nuisanee parameters requires integration of either a joint density of pivotal
quantities or a joint posterior density whieh is known' exeept for a
normalizing constant. For such eases, accurate approximations of marginal
tail probabilities are useful to avoid highdimensional integrals. Two sueh
approximations are presented. They are based on normal approximations to
the distribution of a variable analogous to the signed I'OOt log likelihood ratio
statistic that arises in parametric inference. The approximations are easy to
implement, requiring only first- and second-order partial derivatives of the
log joint density. Tbe accuracy of the approximations is illustrated in the
conditional analysis of extreme-value regression models for censored data,
where they are faund to be excellent even for small sampie sizes.
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DAVIES, P.L.

Same aspects of high breakdown regression

A list of desirable properties of robust regression estimates was given
. including such p!operties as high breakdown point, efficiency,

differentiability. Tbc following method was proposed for obtaining an
estimator which enjoyed at least several of the desirable properties. In the
first stage an S-estimator is used to obtain a high breakdown point. This
estimator is then smoothed by using a one- or two-step M-estimator with a

smooth 'I'-funcrlon. Tbe probiem of leverage points was also considered.
This leads to the problem of obtaining a robust measure of dispersion far an
nondegenerate probability measures on RP. U sing a modification of a
proposal of Donoho and Stabel it was shown that it is posslble to construct

such a dispersion operator.

DüMBGEN,L.

On nonparametric chanGJlOinHfStimation

Considcr a sequence Xl' X2' ...,~ of independent random variab~es,

where ~ has distribution F far i S n9 and G otherwise. The changepoint

9 E (0,1) is 'an unknown parameter to be estimated, and F and Garetwo
unknown probability distributions.
Tbc nonparamettic change~int.:.estimatorsof Darkhovskh (1976) and
Carlstein (1988) are described, and rates of consistency are given under same

general assumptions on F,G and e(depending on n).
In a special model the limiting distribution of four particular estimators is
presented, and in a mean-shüt model the nonparametric estimators are
compared with Hinkley's (1970) semiparametric estimator.
Finally two methods for the construction of bootstrap-confidence sets are

proposed ODe of them is based on the distribution of the estimators, while in
the other case bootstrap-tests are inverted

•
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EDDY, W:F.

Asyncbppnousigrration

A network of computers ean be used for calculations which are
"embarassingly parallel" (e.g. sampling experiments) by subdividing the

caleulations among the processors. For more complex calculations (e.g.

solving syStems cf linear equations) eomplicated algorithms whieb depend on
the ratio of the interprocessor communication speed to tbe processor

computation speed have been developed. In this talk we describe a general

iterative algorithm far performing complex calculations on a network of
computers. Tbe algorithm only requires that the caleulation be expressed as

the tixed point of a smooth function from Rn to Rn (with spectral radius less

. than 1). The algorithm has been used 10 solve linear equations, eigenvcctor

problems, differential equations and integral equations. We discuss an

example application.

-FALK,M.

On the accuraCV pf bootstmp estimates pf the Quantile function pf sampie

~

It is shown tbat the accuracy of the bootstrap estimate of the quantile funetion
pertaining 10 the distribution oflbe sampie q-quantile based on n independent

identically disttibuted observations is exaetly Op(n-1/4), q E (0,1) fixed.

This rate ean be improved considerably by applying smoothed bootstrap
estimates. Tbc results are formuüted in terms of functional centrallimit
theorems far the conesponding quantile bootstrap processes.

FRANKE, J.

• The bootstmp in time series analysis

We discuss two applications of the bootstrap in time series analysis: 1) to
M-estimators of ARMA-parameters, and 2) to nonparametrie kernel
spectrum estimates.
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Part 1 (with Jens-Peter Kreiss): we descrit>e a bootstrap procedure for
ARMA- processes based on resanlpling from the residuals. Theo, we apply it

to get approximations of the distribution of centered and scaled M-estimates
of the parameters. As the Mallows distance between those laws vanishes, the

bootstrap principle holds in theory. In practice, the procedure works quite

weIl far sample sizes N = 30 - 50.
Part 2 (with Wolfgang Härdle): given T data from a linear process with i.i.d.

innovations and spectral density f(co), we frrst transform them to the

periodogram IT(co). From asymptotics of the periodogram we get the

multiplicative regression model IT<COj) = f(Olj) fj , j"= 1,•.., [T/2]~ where

COj = 21tjJT and the residuals Ej are "approximately" i.i.d. in a vagu~ sense.

We discuss bootstrap approximations of kernel estimators far f(Ol) where we

resample from the residuals pretending that the Ej are really i.i.d. We prove

that the Mallows distance between the laws of the rescaled, centered estimate

and its bootstrap approximation vanishes asymptotically. However, we have

10 be careful how to choose the initial estimate for f(co) which we need far

getting hold of the residuals: if chosen again as a kernel estimate its
bandwidth has 10 be asymptotically larger than the optimal.

r

GILL,R.

BootSbJRpin& the multiyariate pmduet-limit estimator

1be problem of nonparamettic estimation of a multivariate survival function
F(t) = Pr(T ~ t), T = (T1, ... ,Tt ), based on randomly censored data has

remained achallenge far many years. An efficient estimator is unknown but
many competing root-n consisten~ estimators have been devised. Recently
D. Dabrowska (1988, Ann.Stat.) proposed an ad hoc estimator which tun)s

out though usually inefficient to have very attraetive properties.
Her estimator can be expressed in terms of the following new representation
of a multivariate survival function in terms of conditional multivariRte hazard
measures:

•
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where A(dsA1se) = Pr(TA E dsAITe ~ tc> can be estimated naively by

the ratio of numbers of observations known to lie in a small cell divided by

the number known to lie in an appropriate upper quadrant,:P is the product
integral.
We discuss asymptotic results, including the correctness ~f the bootstrap, for
the estimator based on compaet differentiability. The representation just given
is easily interpretable and easy to manipulate by fannal algebra to get the right
answers. However it involves several "mathematically illegal" operations and
a calculus of interpretational roles has to be developed to justify the natural
fonnal manipulations:

GINE, E.

Empirical processes in conneCUOi1 with the bootstI'iU'

Unifonn Donsker classes, Le. classes of functions where the CLT for the
empirieal process based on P holds for all P and uniformly in P, can be
eharacterized by a Gaussian propeny not too difficult to check. These classes
include the "Euclidean ll ones, but not ooly them. They have the ptoperty that:

If f' is unifonn Donsker then

11 Rn - Ralla ~ 0 where a =f' u F·t and Rn n = 0,1,... are p.m.'s,

implies nl/2(pn R - Rn> --+ GR in [,00CF), where Pn ~ is the empirical
. 'n w 0 '&'0

process based on n Li.d. (Rn) raildom variables. Taking Rn =POn this should

apply to the "parametrie" or semiparametric bootstrap. (Work done witl!
"I.Zinn.) .
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GÖTZE,F.

Discrete nonparametric estimation problems

Consider a discrete estimation problem like the restoration of an n x n­

pixel image from additive white noise of intensity cJl. Simulated annealing

and greedy algotithms approximations to the maximum penalized likelihood

estimator are based on an energy funetion of the image. One ean show that
the expected time to reach the approximate level of the global maximum of the

MPL- function is polynomial in n for the simulated annealing algorithm. The

consistency of tbe image obtained seems 10 be govemed (both for the greedy

and the.stoehastie algorithms) by the requirement of a small noise level cJ1
.. and that the original image is an approximate fixpoint under tlie restoration

algorithm. Since the effieieney of the MPL - estimators depend cnteially. on

oversmoothiJig, the exact global maximum point of the MPL- funetion may
be inconsistenL

GRÜBEL, R.

Stocba.,tic rDodc1s U functjonals

A stochastic model relates cenain quantities of interest to other (knQwo)

.quantities and may be regarded as a funetional from an to, e.g., a set of

distributions. We consider the G/G/l queueing model and analyze the

functional wbich associates the stationary waiting time distribution with the

interarrival and service time distributions; a refonnulation of the Spitzer­

Baxter identities plays a key role. This analysis leads to an emcient algorithm

far computing stationary waiting time distributions. The derivative of tbe
functional is obtained and used 10 arrive at new approximation formulae..

This approach also leads 10 non-parametric estimators. We use a different

model to show how locallinearizations of the funetional can be used 10 obtain .

asymptorlc normality results far such estimators.
A final example explains the use of the FFr algorithm in a simple bootstrap
problem. .

•
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HÄRDLE,W.

We discuss two applications of the Golden Seetion Bootstrap also called
Wild Bootstrap. Tbe fmt application is with Enno Mammen on the
distribution of squared error distance between a parametric and a
nonparametric model. Tbe second one is with Steve Marron on constructing
simultaneous errar bars far nonparametric regression curves. Tbe Golden

Seetion Bootstrap is defined as folIows: given ~i a residual from a

.nonpanUnetrie kernel estimator we choose a two point distribution Gi = p Sa

+(1-p)Sa, at each~ so that EGiZ =0, EGiZ
2 =e?, EGiZ3 =~3. Tbe solution

to this set of equations is Gi =~w.p.(I+~S)/I0, =(1- 8)Ei w.p.(I-..JS)/lO,

where 8 =(I+...JS)/2 is the golden ratio number. Using the first terms of the

Fibonacei series we ean approximate 8 by 8/5 and derive effieieot

algorithms.

HOLM,S.

Abstract bootstmP fOT linear models

In linear mOdels with i.i.d. error tenns, confidence intervals and confidence
sets can be generated by a method based in fact .ooly on the (abstract)
bootstnlp distribution of the ttue error terms, yet having observable fmal
results. The eonditional distribution of the statistic used in this ease has the
same limit as the one ofthe statistie used in the ordinary bootstrap method,
thos making the abstract method valid. Small simulations indicate that the
small sample properties ofthe abstract method are probably better than those
of the ordinary method.
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LEVIT, B.Ya.

Second order Qptimality of estimators "in the presence of the nuisance

parameters

Recently a second order op'timality theory has been developed providing the
practitioners with the functional fonns of second order minimax and/or
admissible estimators. In principle these estimators allow an improvement on
the traditional first order optimal ones, however they usually contain same
free parameters .which should be tuned by numerical computations. Some
examples show that performing the computation enlightens the ways in
which these estimators should be modified to perform still better for the
sampies of moderate size.
Some effons have been made to develop the second order admissibility
theory applicable to nonparametric estimators as weIl. As an example it can
be shown that the sample mean is a second order admissible estimator of the
population mean iff the distributions of the sample F admit finite exponential

moments I eex dF for ~y c. Tbe lesult indieates a elear relation betwen a
second order admissibility and a kind of (streng) robustness.

LID, R.

RQbusmess and efficiency in resamplint:

Via a representation theorem we establish that typically the standard delete-l
jackknife and the classical bootstrap are equally efficient for estimating mean­
square-errar of a statistic in the i.i.d. setting. This equivalence no langer
holds as one moves to the linear regression model. It turns out that the
bootstrap is more efficient when error variables are homogeneous, and the
jackknife is More robust when they are heterogenous. In fact we can divide
all the commonly used resampling'procedures for linear regression models
into two elasses: the E-type (tbe Efficient ones like the bootstrap) and the R­
type (tbe Robust ODes like the jackknife). Thus the theory presented here
provides a unified view of all the known resampling procedures.

•
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MAMMEN,E.

Bootstmp and wild bootstrap in high dimeosionallinear models

We consider the case that ODe observes a data set of n i.Ld. data points

(XI,YI)"'" (Xn'Yn) witli ~ E RP and Yi E R ~d that one wants to

estimate the least squares linear model defined by the parameter 13 =arg min b
A

E(Yi - XiTb)2. An estimate for 13 is given by the least squares estimator 13 =

(1: XiXiT)-l}: XiYi. In this talk we compare different estimates for the
~

distribution of (J3 - 13): the nonnal approximation with mean 0 and estimated
covariance matrix, the bootstrap estimate (based on resampling from

{(XI'YI)"'" (Xo,Yn))), and the wild bootstrap estimate (based on the "wild

estimation" ofthe conditional distribu~onL(Yi - XiTplXi ) far every IS i S n

by an arbitrary distribution with mean 0, variance (Yi-XiTß)2, and third
;\

moment (Yi - XiTp)3). In an asymptotic approach where everything

(especially also the dimension of the fitted linear model) may depend on n we

will show that boots~ap works under weaker assumptions than wild

bootstrap but that - if the linear model is true (Le. E(YilXi ) = XiTß) wild

bootstrap is stticdy More accurate than bootstrap for the distribution of the
studentized estimator.

Mll..LAR, P.W.

BQQtsuap. stoehastic search. Md tbe loKistic model

Let (XI,...,xn) be i.Ld. random variables, ~ =(Yi'~)' Yi = 0 er 1, Zi with

values in Rd. Let Po be the empirical measure of {~}, indexed by the V-C

class 1) consisting of sets of the form {i} x K, i = 0,1, and Kalower left

"octant" ofRd. The logistic model is parametrized by e= (ß,F), 11 E Rd+l,

F an unknown probability; the joint distribution Pe then satisfies Pe {~E A}

= F(A), Pe {Yi= 11 ~= z} =p(l3,z) where log p(l3,z)[l - p(~,z)rl =
A A' d 1 .
"'0 + ~l z, ZER, Po ER, ~I = (ß1,···,Pd), ß = (ßO'~l,·,·,Pd)·

The parameter set 8 then consists of all such 9. The goodness of fit statistic'

~ == infee8 -.Jn sup vel1 IPn- Pe I is shown to have the asymptotic limit
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infuespan8 1w -1(u)1 where W is ~ Gaussianprocess in Loo(V), 1 is a linear

operator from 8 to Loo(V) and 11 is the Loo(V) nonn. A computationally

feasible variant of Mu is proposed, wherin infS is replaced by infa ; here
. n

e n is a random subset of 8 consisting of jn bootstrap replicas of an

appropriate preliminary estimate of 9. This new stochastic GOF statistic is
shown to h~ve the same limit as~ (under regularity); asymptotically valid

critical vahies are shown to be obtainable by a special Hconditional bootstraptl

method.

MÜLLER, D.W.

,Excess rDass esrimates and tbe modaJjty pr a distribution

A methQd for'investigating the number of modes of a distribution is being
proposed and studied. Tbe method uses the excess mass functional as a tool
for exhibiting sets of excessive empirical mass in comparison with multiples
of uniform measUIe. By this approach one separates the investigation about
the number of modes from questions conceming their location. For
distributions on the line, the excess mass functional ean be estimated at a
square root rate, a rate typieally not found for elassical methods. Tbe
asymptotic behavior of estimators is analyzed, and tests for multiQlOdality
based on the excess mass are derived. (Joint werk with G.Sawitzki.)

NIEMANN, ,H.

Iterative leamin& of CODce.PfS

A ttconcept'~ in our approach is a data sbUeture representing an object or event
in the real world. It has as substructures parts, specializations,
concretezations, relations, and attributes. Automatie learning of a concept
requires determination of those substructures. Tbc learning process is
iterative; it uses concept-schemas representing apriori knowledge, an
observation, and the concept acquired so far. The leaming algorithm consists
of the three main steps of observation description, concept formation, and
generalization.

•
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OLSHEN, R.

OBit analysis,and the bootstrap

Tbe talk was areport on bootstrap-based prediction in models that arise in

gait analysis. By "gait analysis" was meant the study of free speed human

walking on a level smface. Because walking is nearly periodic, a suitable

model far rDotion data far the ith in a group ofN leaming sample subjects is

y{i)(9) = a.o(f) + ~j=l..J[~(i) cosj8 + P/f) sinj9]; the zeroth order tenn (CIo>
is studied separately from the sum ofharmonic tenns. Tbe focus of the talk

was the lauer. We observe Yb(i)(9) at eve~y spaced points (indexed by k),

with errors fit. The vectors «a1(i) ,••• , Pli) »i=1...N are assumed üd, arid the

.mean 0 {Eik} are, also; 0 2(8) is the variance of Yb(i)(8). We wish to

determine if a test Yb = Yb(9) differs from the learning sampie. The a/i)'s
and Pli)'s are estimated by least squares, and from these estimates 0 2(9) is

estimated. Simultancously for every m > 0, in an obvious notation,

P {maxel(Yb(9) - 9(9»/a(9)I > m} is estimated by a bootstrap process. It

has been found that (subject 10 mo~nt and smoothness assumptions) while

critical values cannot be estimated hyperaccurately, coverage probabilities can

be (O(N-3/4+'Y) V y> 0). A -VlogN/N almost sure ra~ of convergence of

certain bootstrap conditional probabilities 10 their true values has been

established Material discussed during the talk involves joint werk with many
others: C.Bai:, P .Bickel, E.Biden, D. Sutherland; and M. Wyatt.

RASCH,D.

lbe UR of tbe 8sYDJ1)tgtic coyariance matrix rOT smalJ sample inrerence Md
.~ design in nonlinear repession

ut os consider the model (random variables Wlderlined)

Xi =f(Xj,8) + ~, i =1,...n, 8 E C, dim.(C) =p S·n, eT = (9 1,... ,9p)

and the least squares estimator i = arg inf ee n [li=l...n(Yi - f(Xj,8»)2].

Let further - with uj(x,9) = ata8j f(x,a) and xT = (xl' ...'xn) - the n x p

matrix F be given by F(x,a) =(uj(xi,8)). Then Jennrich (1969) showed far

                                   
                                                                                                       ©



13

normally and independently distributed~ that under mild eonditions

..Jn(9 - 9) is asymptotieally N(O,~) distributed where ~ is the limes of

n V(9,9,x) with V = vdi,9,x) = 0 2 [FT(x,9)F(x,9)]-1.

Tbe author presents results of his research group coneeming. tests and

confidence estimations v~id ~or small n ~ Do based on V and gives nO ­

values for special functions f. Some theorems concernißg D-optimum exact

experimental designs are also given. Funher the expert system CADEMO is

mentioned which includes all recent results.

REISS, R.-D.

Conditional euryes. Poisson processes, bootstrap

Consider functionals of the conditional distribution F(· I x) C?f Y given X =x
like the mean and the median getting in that particular eases, as a funetion of

x, the. mean and the median regression funetion. Using a Poisson process

approximation it was proved by Falk and Reiss (1989) that conditional

. statistical funetionals are asymptotically normal if the asymptotic nonnality

holds far the pertaining unconditional procedure. Extending the framework 10

functionals having their values mthe space of distribution functions ODe is
able 10 reduce conditional bootstrap problems to uncoDditional ones.

RÖSLER, u.

Fireflies in a black box

Assume you observe the number of active fireflies in a black box as a

function of time. Assuming independence and stationarity, what can you

extract from the data on the underlying structure. Tbe superposition of
independent processes eo~plicates the matter. We tried different methods,
Markov processes, Semimarkov processes, altemating renewal processes.

All these are cl> mixing processes with exponeotial rate. We preseot some
centrallimt theorems and discuss some estimators derived from these.

This problem shows up in biochemistty observing ion channels in a eell
membrane.

•
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ROMANO, J.P.

Bootstnm choice of tuning pannetexs

Consider the problem of .estimating 8 =8{P} based on data xn from an

unknown distribution P. Given a family of estimators TntIJ of 8(P} , the

goal is to choose ßamong ßE I so that the resulting estimator is as good

as possible. Typically, ß can be regarded as a tuning or smoothing

parameter, and proper choice of Pis essential for good performance of TlI.ft
In this paper, we discuss the theory of ß being chosen by the bootstrap.

Specifically, the bootstrap estimate of ß, Pn, is chosen to minimize an

empirical bootstrap estimate of risk. A general theory is presented 10 establish

the consistency and weak convergence properties of these estimators.

Confidence intervals for 8{P} based on Tn.Pn are also asymptotically valid.

Several applications of the theory are presented, including optimal choice of
trimming proportion, bandwidth selection in density estimation, and optimal

combinations of estimates.

ROUSSEEUW, P.J.

Asymptotics of tbe remedian

. Tbe remedian with base b proceeds by computing medians of groups of b

observations, and then medians ofthese medians, until on1y a single estimate

remains. This method merely needs k arrays of size b (where n =J>k), so the

total storage is O(lo~ n) for fIXed b, or altematively O(n11k) far fixed k. Its

storage economy makes it useful far robust estimation in large data bases, far

real-time engineering applications in which the data themselves are not
stored, and far resistant tlaveraging" of curves or images. Tbe method is
equivariant far monotone transformations. Optimal choices of b with respect

to storage and finite-sample breakdown are derived Tbe remedian is a

consistent estimator of the population median, and it converges at a
nonstandard rate to a median-stable distribution.
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SAWITZKI, G.

Distributed computing: the NetWork implemeotation

NetWork is an implementation model for distributed computing in an

environment with random availability. Tbe idea is to malee use of 'idle time'

on computer networks, while guaranteeing absolute priority of the 'home

user' of any station. As an example, for an iterative problem defmed by F:

RN -+ RN, define the restriction to a 'slice' Sc {I, ... ,N } as

F(x): = ~ (i~ S), F(x): = F(x)i (ie S).

Assign slices to (random) processors. Instead of the original iteration FnX

you get random results defining a process Zn with Zo = xo, Zn =c(Zn-l'

F(xn_'t» for a random delay 't > O. Random assignment of tasks to

processors can be optimized for minimal net interference and maximum net

performance. Tbe same applies to the choice of c to guarantee Zn Xo -+ lim

Fn Xo for contraetions F. Tbe implementation model is used for pattern

processing with a neural net as a demonstration example.

SEllliER - MOISEIWITSCH, F.

. Ouasilikelihood based predietion intervals

Predietion intCrvals for a new observable X are constructed from a pivotal
quantity P (with distribution func~on F). It is assumed that X is generated

from some generalized linear model, as are the data X(n) which allow the

p~etersß and • to be estimated. By plugging in these estimates one

. introduces Sn error in the coverage probability of order Op(n- I12) in the

conditional probability and of order Open-I) in the overall probability. Tbe

distribution of the farmer is normal asymptotically. Two ways of getting rid

of the bias O(n-1) are considered. The first introduces a perturbation of order

0(n-1) in the nominal coverage probability. Tbe order proposes to use,
1 ~ A

instead of a, Fn- (~,9n) in the construction of the interval, Le. the largest

a th"quantile of the ~overall) distribution ofF(P(X;ßn,q)n»."This critical value

is estimated via resampling procedures. If aseries of such intervals have been
consttucted, tests based on scoring rules and a martingale central limit
theorem are proposed to check the adequacy of the model.

•
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SHORACK, G.R.

Limiting behavior of L-statistics

Consider Ln == o-I1:1...n cni g(~n:i) for Unifonn(O, 1) order statistics

oS ~n:lS.... S ~n:nS; 1. Use integrated scores cni obtained from some J

function that is nnice lt (essentially Lipschitz in the middle and regularly

varying in the tails). Suppose J ~ 0 and g t . Tben appropriately nonnalized

Ln is asymptotically normal if and only if the quantile function K(t) ==

fl12..}(S) dg(s) is in the domain of attraction of the normal distribution.

Moreover, all possible subsequential limits are obtained, as weH as a
conditioo detennining wheo and ooly when there is stocbastic compactness.
Tbe same sort of solutions are obtained when ~ and ~' observations are

trimmed from the two tails. (Tbe case ~ -+ 00 , but kJn -+ 0 aod the case

vn(kJn - a) -+ 0 for 0 < a < 1 are considered.) This is joint work with David

Mason.

STEIGER,W.

ComputatiOD or multivariate medians

Let S = {XI ,...,"n} be"a given set of points in Rd. Tbe goal is to generalize

the usual median to the case d > 1. One generalization peels off convex bulls
as far as possible: points on the convex hull C(SI)' are assigned depth 1,

where SI =S. Thereafter, Si+1 =Si \ C(Si) is obtained, i ~ 1, and points on

C(Si) are assigned a depth of i. A second generalization uses Tukey's

directional depth, and the last is based on Regina Liu's simplicial depth,

where depth(~i) counts the number of simplices A[Xh ,... ,Xjd+1] that

contain Xi' i ~ js. For each notion of depth, a median is a point of maximal

depth. All three medians were shown to have 0 asymptotic breakdown point.
The ftrst and third are invariant under affine transfonnations. Computational

aspects were discussed. An O(nd) algorithm for the simplicial median was
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deseribed, d S 3, along with a lower bound of n(log n). Tbe problem of

determining the exact eomplexity of the simplicial median in the plane seems

to involve deep eombinatorial properties of configurations of points. It would

be very interesting to know whether it is necessary to fmd the dept.h of every

point in order to detennine the point of maximal depth.

STREITBERG, B.

Exact distributions rOT twQ problems from multivariate nonparametrics

Under the assumption of inde~ndentp-variate gaussian observations, the

usual T2 statistic is UMP-invariant far the standard multivariate one-sample

and two-sample testing problems. While the assumption of gaussianity is not

crocial far large sampIes ([2 is asymptotically distribution free), it is not weIl

known that the independence assumption might also not be justified in many

applications. The argument is as folIows: consider for instance a randomized

clinical trial eonducted far the sake of eomparing two drugs A,B and assume

the Ho situation that A and B are identical. Tbe patients i = I,...,n are

recruited haphazardly and their potential reaction to the drugs (A,B) can be

described by pairs (Fi,Gi) of p-dimensional measures, where Ho: Fi =Gi

for i = 1,...,n. In a carefully planned design, independenee over patients can

be justified. There is, however, no good reason for assuming homogenity
Fi = Fj far i ~ j (why should two different patients have exactIy the same

probability of, say, recovering from an illness?). A weIl-planned experiment

is randomized, e.g. a permutation 0 : fl, ... ,n} --+ {I,... ,n} is chosen

uniformly from the symmetrie group Sn and patients with a(i) S n1 are

treated with A. Tbe 'eonditional Ho-distribution of the observations y =

(Yl'."'Yn)' given 0, factorizes, but is not homogeneous. Tbe uneonditional

HO-distribution of y is a mixture over Sn and, therefore, permutation

invariant, but does not, in general, factorize.

Mueh weaker assumptions are possible for permutation tests: the Ho-
distribution of y is invariant under the action of a group G, where G = S2n

for the one-sample ease (sign invariance) and G =Sn for the two-sample ease

(permutation invariance), both with the obvious actions. Given a statistic V,
where large values of V serve to ißdicate a possible break of symmetry, the .

•

•
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p-value I{g E G: V(g(y» S; V(y)}I/IGI is eonditionally distribution free. If

ODe uses V = T2 , the eonditional Ho-distribution is asyt;Ilptotieally again

X2[P], given a mild Lindeberg (one-sample ease) or Noether condirion. More
interesting is the f~et that the exaet distribution ean be eomputed for
reasonable p,n (in general the problem is NP-hard) rather easily using a

fonnal generating funetion for s =gyl + gy2 +...+ gym ~here m = n in tJ:1e
one-sample case and m =01 in the two-sample ease. The basie idea can, for a

special univariate ease, already be fouod in Euler's Introduetio.

VAN ZWET, W.R.

Hoeffding's decomposition and the bootstrap

We discuss Hoeffding's decomposition and its relation to the bootstrap. It is
shown that the naive bootstrap works only for asymptotically nOtmal
statisties. In more complieated eases one needs detailed knowledge of the
structure of the statistic to be able to make an appropriate version of the
bootstrap work. However, such knowledge also enables one to determine the
distribution of the statistie to the required order by other methods. All sueh
metpods are asymptotically equivalent to the bootstrap, and massive
computation will be needed to determine the most promising procedures.

YOUNG, G.A.

Saddlepoint approximation to SUdent"s tft with application 10 boQtstrappin~

the stlldeorizr4 mean

An approximation 10 the distribution ofA=X/s, S 2 = n·1 ~i=I ..n (Xi - X)2,

can be obtained by (i) saddlepoint approximation of the joint distribution of

(x, ;2), (ü) transformation to obtain the joint distribution of (A, s), (üi)

Laplace approximation to obtain the marginal distribution of A.. The method
is described, illustrated, and its deficiencies discussed. Application to analytic
approximation of the bootstrap distribution of the studentized mean is
considered, shadowing Davison & Hinkley (1988).

Berichterstatter: D.W. Müller
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