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Tagungsbericht 52/1989

Asymptotic methods for computer-intensive procedures in statistics

10.12. bis 16.12.1989

Die Tagung fand unter der Leitung von Prof. R.Beran (Berkeley) und Prof. -

D.W Miiller (Heidelberg) statt.

Die Verfiigbarkeit hoher Rechenleistung hat das Gebiet der Statistik zu
veriindern begonnen. Die Tagung sollte dieser Entwicklung Rechnung tragen
und Experten aus dem Gebiet der computer-intensiven Verfahren mit
Fachleuten aus der asymptotischen Statistik in Kontakt bringen. Insgesamt
wurden 34 Vortriige gehalten, davon einige mit Computer-Demonstrationen.

Breiten Raum nahm naturgemiB das Thema "Bootstrap” ein. Daneben gab es
aber auch Beitriige aus den Gebieten: Parallelrechnen, Bildverarbeitung,
Mustererkennung, empirische ProzeB-Methoden, Design-Optimierung,
stochastische Suchverfahren, Clusteranalyse, Robustheit und
Nichtparametrik. '
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BERAN, R.

Suppose the variable X to be predicted and the learning sample Y, that was
observed are independent, with a joint distribution that depends on an
unknown paramter 6. A prediction region D, for X is a random set,
depending on Y,, that contains X with prescribed probability a. In
sufficiently regular models, D, can be constructed so that overall coverage
probability converges to o at rate n”’, where r is any posi!ive integer. This
paper shows that the conditional coverage probability of D, given Y,
converges in probability to « at a rate which usually cannot exceed nlz,

BICKEL, P.J.

Second order efficiency and the bootstrap

We consider bootstrap confidence bounds for a parameter 6(F) when X, ...,
X, are i.i.d. F € ¥ where ¥ may be parametric or not. If the model is
parametric we compare on second order efficiency grounds (using the n12
term) bootstrap bounds of various types, "studentized”, BCA, etc. If the
underlying estimate is efficient, all bounds, whether based on the parametric
or nonparametric bootstrap, which are second order correct are also second
order efficient. However the bounds differ to order n!. They match the
corresponding "exact” bounds to that order but differ according to what
estimate of scale, parametric or nonparametric, is used or whether the
parametric or nonparametric bootstrap is used. They also differ depending on

- which efficient estimate of 0 is used. Simulation and theoretical comparisons

in performance based on these differences may be worthwhile.
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Some asymptotic expressions for the bias of adaptive density estimators were
examined and found to be misleading in the tails of the density. Numerical
integration was used to study the exact theoretical properties of these
estimators. (This work is joint with Peter Foster.)

Nonparametric regression was used to incorporate the natural assumption of
smoothness over time into a repeated measurements analysis. The quadratic
form structure of the test statistic allows highly accurate p-values to be

computed in tests for features such as group x time interaction. (This work is
joint with Adelchi Azzalini).

DICICCIO, Th.J.
Al imati marginal tai iliti

In many situations, inference about a scalar parameter in the presence of
nuisance parameters requires integration of either a joint density of pivotal
quantities or a joint posterior density which is known except for a
normalizing constant. For such cases, accurate approximations of marginal
tail probabilities are useful to avoid highdimensional integrals. Two such
approximations are presented. They are based on normal approximations to
the distribution of a variable analogous to the signed root log likelihood ratio
statistic that arises in parametric inference. The approximations are easy to
implement, requiring only first- and second-order partial derivatives of the
log joint density. The accuracy of the approximations is illustrated in the
conditional analysis of extreme-value regression models for censored data,
where they are found to be excellent even for small sample sizes.

Forschungsgemeinschaft

o®




DAVIES, P.L.
high it

A list of desirable properties of robust regression estimates was given
- including such properties as high breakdown point, efficiency,
differentiability. The following method was proposed for obtaining an
estimator which enjoyed at least several of the desirable properties. In the
first stage an S-estimator is used to obtain a high breakdown point. This
| estimator is then smoothed by using a one- or two-step M-estimator with a
‘ smooth y-function. The problem of leverage points was also considered.
| _ This leads to the problem of obtaining a robust measure of dispersion for all
|
|

_nondegenerate probabﬂity measures on RP. Using a modification of a
proposal of Donoho and Stahel it was shown that it is possible to construct

such a dispersion operator.

| Consider a sequence X, X,, ..., X;; of independent random variab}es,

where X; has distribution F for i <n® and G otherwise. The changepoint

" @ € (0,1) is an unknown parameter to be estimated, and F and G are two
unknown probability distributions.
The nonparametric changepoint-estimators of Darkhovskh (1976) and
Carlstein (1988) are described, and rates of consistency are given under some

~ general assumptions on F,G and @ (depending on n).
In a special model the limiting distribution of four particular estimators is
presented, and in a mean-shift model the nonparametric estimators are
compared with Hinkley“s (1970) semiparametric estimator.
Finally two methods for the construction of bootstrap-confidence sets are
proposed. One of them is based on the distribution of the estimators, while in
the other case bootstrap-tests are inverted.
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EDDY, W.F.
! hronous iterati

A network of computers can be used for calculations which are
"embarassingly parallel” (e.g. sampling experiments) by subdividing the
calculations among the processors. For more complex calculations (e.g.
solving systems of linear equations) complicated algorithms which depend on
the ratio of the interprocessor communication speed to the processor
computation speed have been developed. In this talk we describe a general
iterative algorithm for performing complex calculations on a network of
computers. The algorithm only requires that the calculation be expressed as
the fixed point of a smooth function from R™ to R? (with spectral radius less

" than 1). The algorithm has been used to solve linear equations, eigenvector

problems, differential equations and integral equations. We discuss an
example application.

‘FALK, M.

It is shown that the accuracy of the bootstrap estimate of the quantile function
pertaining to the distribution of the sample g-quantile based on n independent
identically distributed observations is exactly Op(n™4), g € (0,1) fixed.
This rate can be improved considerably by applying smoothed bootstrap
estimates. The results are formulated in terms of functional central limit
theorems for the corresponding quantile bootstrap processes.

" FRANKE, J.

Thet - ies analysi

We discuss two applications of the bootstrap in time series analysis: 1) to
M-estimators of ARMA-parameters, and 2) to nonparametric kernel
spectrum estimates.
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Part 1 (with Jens-Peter Kreiss): we describe a bootstrap procedure for
ARMA- processes based on resampling from the residuals. Then, we apply it
to get approximations of the distribution of centered and scaled M-estimates
of the parameters. As the Mallows distance between those laws vanishes, the
bootstrap principle holds in theory. In practice, the procedure works quite
well for sample sizes N =30 - 50.

Part 2 (with Wolfgang Hiirdle): given T data from a linear process with i.i.d.
innovations and spectral density f(w), we first transform them to the

~ periodogram Ir(®). From asymptotics of the periodogram we get the

multiplicative regression model 1-1(0)]-) = f(o)j) g, j=1,.., [T2]; where

; = 2xj/T and the residuals €; are "approximately” i.i.d. in a vague sense.
We discuss bootstrap approximations of kernel estimators for f(w) where we
resample from the residuals pretending that the g are really i.i.d. We prove
that the Mallows distance between the laws of the rescaled, centered estimate
and its bootstrap approximation vanishes asymptotically. However, we have
to be careful how to choose the initial estimate for f(w) which we need for

getting hold of the residuals: if chosen again as a kernel estimate its
bandwidth has to be asymptotically larger than the optimal.

The problem of nonparametric estimation of a multivariate survival function
Ft)=P(T 21), T = (TI,...,Tk), based on randomly censored data has

remained a challenge for many years. An efficient estimator is unknown but

many competing root-n consistent estimators have been devised. Recently
D. Dabrowska (1988, Ann.Stat.) proposed an ad hoc estimator which turns
out though usually inefficient to have very attractive properties.

Her estimator can be expressed in terms of the following new representation
of a multivariate survival function in terms of conditional multivariate hazard
measures:
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-J.Zinn.)

Fo= JI P M0+ X )"adsaisc)

€C{1,..,k} sc<tc BEC 8CACB

(—1)ic\at

where A(ds AL"C) =Pr(Ty4 € dsAlTC 2 1) can be estimated naively by
the ratio of numbers of observations known to lie in a small cell divided by

the number known to lie in an appropriate upper quadrant, P is the product
integral. -

We discuss asymptotic results, including the correctness of the bootstrap, for
the estimator based on compact differentiability. The représentation just given
is easily interpretable and easy to manipulate by formal algebra to get the right
answers. However it involves several "mathematically illegal" operations and
a calculus of interpretational rules has to be developed to justify the natural
formal manipulations.

GINE, E.
Empiri es i ion wi

Uniform Donsker classes, i.e. classes of functions where the CLT for the
empirical process based on P holds for all P and uniformly in P, can be
characterized by a Gaussian property not too difficult to check. These classes
include the "Euclidean" ones, but not only them. They have the property that:
If ¥ is uniform Donsker then

IR, - ROIIG —> OwhereG =F UF-F and R, n = 0,1,... are p.m.’s,

: s 1/2 . s -

implies n »(?n r -R) .—)w GRo in L°°(F), where Pn.Rn is the empirical

process based on n i.i.d. (R) random variables. Taking R = Pg_this should
n

apply to the "parametric" or semiparametric bootstrap. (Work done with
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Consider a discrete estimation problem like the restoration of ann X n -

pixel image from additive white noise of intensity o2. Simulated annealing
and greedy algorithms approximations to the maximum penalized likelihood
estimator are based on an energy function of the image. One can show that
the expected time to reach the approximate level of the global maximum of the
MPL- function is polynomial in n for the simulated annealing algorithm. The
consistency of the image obtained seems to be governed (both for the greedy
and the stochastic algorithms) by the requirement of a small noise level o?

" and that the original image is an approximate fixpoint under the restoration

algorithm. Sipoe the efficiency of the MPL - estimators depend crucially on
oversmoothing, the exact global maximum point of the MPL- function may
be inconsistent.

GRUBEL, R.
Stochastic models as functional

A stochastic model relates certain quantities of interest to other (known)
‘quantities and may be regarded as a functional from an to, e.g., a set of
distributions. We consider the G/G/1 queueing model and analyze the
functional which associates the stationary waiting time distribution with the
interarrival and service time distributions; a reformulation of the Spitzer-
Baxter identities plays a key role. This analysis leads to an efficient algorithm
for computing stationary waiting time distributions. The derivative of the
functional is obtained and used to arrive at new approximation formulae.

This approach also leads to non-parametric estimators. We use a different

model to show how local linearizations of the functional can be used to obtain -

asymptotic normality results for such estimators.
A final example explains the use of the FFT algorithm in a simple bootstrap
problem. .
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R ling L

We discuss two applications of the Golden Section Bootstrap also called i |
Wild Bootstrap. The first application is with Enno Mammen on the

distribution of squared error distance between a parametric and a ‘
l nonparametric model. The second one is with Steve Marron on constructing
. simultaneous error bars for nonparametric regression curves. The Golden

Section Bootstrap is defined as follows: given ei a residual from a
: . nonparah:cuic kernel estimator we choose a two point distribution G; = p 8,
+(1-p)8, at each X; so that EGZ =0, EG;Z? = §2, EG;Z? = §3. The solution
| to this set of equations is G, = 88, w.p.(1+V5)/10, = (1- )& w.p.(1-VS)/10,
where 8 =(14+V5)/2 is the golden ratio number. Using the first terms of the
Fibonacci series we can approximate 8 by 8/5 and derive efficient
algorithms.

In linear models with i.i.d. error terms, confidence intervals and confidence
sets can be generated by a method based in fact only on the (abstract)
bootstrap distribution of the true error terms, yet having observable final
results. The conditional distribution of the statistic used in this case has the

. same limit as the one of the statistic used in the ordinary bootstrap method,
thus making the abstract method valid. Small simulations indicate that the
small sample properties of the abstract method are probably better than those
of the ordinary method.
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LEVIT, B.Ya.

n imali imators i h isan

pammeters

Recently a second order optimality theory has been developed providing the
practitioners with the functional forms of second order minimax and/or
admissible estimators. In principle these estimators allow an improvement on
the traditional first order optimal ones, however they usually contain some
free parameters which should be tuned by numerical computations. Some
examples show that performing the computation enlightens the ways in
which these estimators should be modified to perform still better for the
samples of moderate size.

Some efforts have been made to develop the second order admissibility
theory applicable to nonparametric estimators as well. As an example it can
be shown that the sample mean is a second order admissible estimator of the
population mean iff the distributions of the sample F admit finite exponential
moments | eSX dF for any c. The result indicates a clear relation betwen a
second order admissibility and a kind of (strong) robustness.

LIU, R.
Rot i effici . 1;

Via a representation theorem we establish that typically the standard delete-1
jackknife and the classical bootstrap are equally efficient for estimating mean-
square-error of a statistic in the i.i.d. setting. This equivalence no longer
holds as one moves to the linear regression model. It turns out that the
bootstrap is more efficient when error variables are homogeneous, and the
jackknife is more robust when they are heterogenous. In fact we can divide
all the commonly used resampling procedures for linear regression models
into two classes: the E-type (the Efficient ones like the bootstrap) and the R-
type (the Robust ones like the jackknife). Thus the theory presented here
provides a unified view of all the known resampling procedures.
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We consider the case that one observes a data set of n i.i.d. data points
(X1.Y)sor K Yp) with X; € RP and Y; € R and that one wants to
estimate the least squares linear model defined by the parameter B = arg min ,
E(Y; - Xin)z. An estimate for B is given by the least squares estimatorﬁ=
(0 XiXiT)'1Z fiYi' In this talk we compare different estimates for the
distribution of (B - B): the normal approximation with mean 0 and estimated
covariance matrix, the bootstrap estimate (based on resampling from
{(X1:Y )s-or X, YD), and the wild bootstrap estimate (based on the "wild
estimation” of the conditional distribution LY - X;TBIX; ) for every 1Si<n
by an arbitrary distribution with mean 0, variance (Y; - X;T)2, and third
moment (Y] - XiTﬁ)3). In an asymptotic approach where everything
(especially also the dimension of the fitted linear model) may depend on n we
will show that bootstrap works under weaker assumptions than wild
bootstrap but that - if the linear model is true (i.e. E(Y;IX;) = X;TB) wild
bootstrap is strictly more accurate than bootstrap for the distribution of the
studentized estimator.

Let (X;,....X,)) be i.i.d. random variables, X; = (Y;,Zy), Y; =0 or 1, Z, with
values in RY. Let ﬁn be the empirical measure of {X;}, indexed by the V-C
class V consisting of sets of the form {i} XK, i = 0,1, and K a lower left
"octant"” of RY, The logistic model is parametrized by 8 = (B,F) ,n € R¥1,
F an unknown probability; the joint distribution Pg then satisfies Py {Z,€ A}
=F(A), Py {Y;=11Z=z) =p(B,z) where log p(B,2)(1 - p(B,2)]" =
Bo+B1zz€ RY, Bye RL, By = (By....By). B = (Bo.B1.--Bo)-

The parameter set © then consists of all such 8. The goodness of fit statistic
M, =infy. g Vn sup ., P, Py is shown to have the asymptotic Limit
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inf e span@ | W - 1(u)| where W is a Gaussian process in L ,(V), 1 is a linear
operator from © to L, (V) and || is the L, (V) norm. A computationally
feasible variant of M, is proposed, wherin infg is replaced by inferl ; here

8, is a random subset of © consisting of j, bootstrap replicas of an
appropriate preliminary estimate of . This new stochastic GOF statistic is
shown to have the same limit as M, (under regularity); asymptotically valid
critical values are shown to be obtainable by a special "conditional bootstrap”
method.

" A method forinvestigating the number of modes of a distribution is being

proposed and studied. The method uses the excess mass functional as a tool
for exhibiting sets of excessive empirical mass in comparison with multiples
of uniform measure. By this approach one separates the investigation about
the number of modes from questions concerning their location. For

distributions on the line, the excess mass functional can be estimated at a

square root rate, a rate typically not found for classical methods. The
asymptotic behavior of estimators is analyzed, and tests for multimodality
based on the excess mass are derived. (Joint work with G.Sawitzki.)

NIEMANN, H.
Iterative leaming of

A "concept” in our approach is a data structure representing an object or event
in the real world. It has as substructures parts, specializations,
concretezations, relations, and attributes. Automatic learning of a concept
requires determination of those substructures. The learning process is
iterative; it uses concept-schemas representing a priori knowledge, an
observation, and the concept acquired so far. The learning algorithm consists
of the three main steps of observation description, concept formation, and
generalization.
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OLSHEN, R.
Gai lysis and the |

The talk was a report on bootstrap-based prediction in models that arise in
gait analysis. By "gait analysis” was meant the study of free speed human
walking on a level surface. Because walking is nearly periodic, a suitable
model for motion data for the ith ina group of N learning sample subjects is

yO(0) = og® + Xy {0 cosj® + B sinj6]; the zeroth order term ()
is studied separately from the sum of harmonic terms. The focus of the talk
‘ - was the latier. We observe ,0)(8) at evenly spaced points (indexed by k),
with errors €. The vectors (@, @ ,..., B;®));,_;  are assumed iid, and the
‘mean O (e} are, also; 62(8) is the variance of y,@(8). We wish to
' determine if a test §, = ¥,(6) differs from the learning sample. The o;®s
and Bj(i)'s are estimated by least squares, and from these estimates 62(8) is
estimated. Simultaneously for every m > 0, in an obvious notation,
P{maxel('y"h(e) -$(8))/8(8)l > m } is estimated by a bootstrap process. It
has been found that (subject to moment and smoothness assumptions) while
- critical values cannot be estimated hyperaccurately, coverage probabilities can
be (O(N-3/4+7) ¥ y> 0). A ViogN/N almost sure rate of convergence of
certain bootstrap conditional probabilities to their true values has been
established. Material discussed during the talk involves joint work with many
others: C.Bai, P.Bickel, E.Biden, D. Sutherland, and M. Wyatt.

RASCH, D.

Let us consider the model (random variables underlined)

. y=f(x;0) +g, i=1.n 0€ Q,dm@Q) =p<n,6T=(8,..8)
and the least squares estimator § = arg inf g ¢ o [ Zioy_o(¥; - £x,0))2].
Let further - with u;(x,8) = 9/08; f(x,8) and x" = (x),...,x,) - the n X p
matrix F be given by F(x,0) = (uj(xi,e)). Then Jennrich (1969) showed for
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normally and independently distributed ¢; that under mild conditions

Vn(8 - 8) is asymptotically N(0,) distributed where £ i the limes of

n V(8,0,x) with V = V(8,0,x) = o2 [FT(x,0)F(x,0)] 1.

The author presents results of his research group concerning tests and
confidence estimations valid for small n 2 ny based on V and gives ng -
values for special functions f. Some theorems concerning D-optimum exact
experimental designs are also given. Further the expert system CADEMO is
mentioned which includes all recent results.

REISS, R.-D.

Condifional Poi !

Consider functionals of the conditional distribution F(e | x) of Y given X =x
like the mean and the median getting in that particular cases, as a function of
x, the mean and the median regression function. Using a Poisson process
approximation it was proved by Falk and Reiss (1989) that conditional

- statistical functionals are asymptotically normal if the asymptotic normality

holds for the pertaining unconditional procedure. Extending the framework to
functionals having their values in the space of distribution functions one is
able to reduce conditional bootstrap problems to unconditional ones.
ROSLER, U.

Fireflies in a black ¢

AsSume you observe the number of active fireflies in a black box as a
function of time. Assuming independence and stationarity, what can you

_ extract from the data on the underlying structure. The superposition of

Deutsche

independent processes complicates the matter. We tried different methods,
Markov processes, Semimarkov processes, alternating renewal processes.
All these are ¢ mixing processes with exponential rate. We present some
central limt theorems and discuss some estimators derived from these.

This problem shows up in biochemistry observing ion channels in a cell
membrane.
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ROMANO, J.P.
B hoice of funi

Consider the problem of estimating 8 = &(P) based on data x, from an
unknown distribution P. Given a family of estimators T,, g of 6(P) , the
goal is to choose B among B € I so that the resulting estimator is as good
as possible. Typically, B can be regarded as a tuning or smoothing
parameter, and proper choice of P is essential for good performance of T, B
In this paper, we discuss the theory of B being chosen by the bootstrap.
Specifically, the bootstrap estimate of B, ﬁ,,, is chosen to minimize an
empirical bootstrap estimate of risk. A general theory is presented to establish
the consistency and weak convergence properties of these estimators.
Confidence intervals for 6(P) based on Tnﬁ” are also asyxilptoﬁcally valid.
Several applications of the theory are presented, including optimal choice of
trimming proportion, bandwidth selection in density estimation, and optimal
combinations of estimates.

ROUSSEEUW, P.J.

r

! ics of i

" The remedian with base b proceeds by computing medians of groups of b

observations, and then medians of these medians, until only a single estimate
remains. This method merely needs k arrays of size b (where n = b¥), so the
total storage is O(log n) for fixed b, or alternatively O(n!/¥) for fixed k. Its
storage economy makes it useful for robust estimation in large data bases, for
real-time engineering applications in which the data themselves are not
stored, and for resistant "averaging" of curves or images. The method is
equivariant for monotone transformations. Optimal choices of b with respect
to storage and finite-sample breakdown are derived. The remedian is a
consistent estimator of the population median, and it converges at a
nonstandard rate to a median-stable distribution.

;
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SAWITZKI, G.

Distributed ing: the NetWork imp .

NetWork is an implementation model for distributed computing in an
environment with random availability. The idea is to make use of ‘idle time'
on computér networks, while gharameeing absolute priority of the 'home
user’ of any station. As an example, for an iterative problem defined by F:
RN — RN, define the restriction to a 'slice’ S < {1, ... ,N } as
F(x): =x; (i€ S), F(x): =F(x); (i€ S).

Assign slices to (random) processors. Instead of the original iteration Fx
you get random results defining a process Z, with Zg = xg, Z, = ¢(Z,,_,

" F(xp.¢)) for a random delay Tt > 0. Random assignment of tasks to

processors can be optimized for minimal net interference and maximum net
performance. The same applies to the choice of c to guarantee Z, xo — lim
F, xq for contractions F. The implementation model is used for pattern
processing with a neural net as a demonstration example.

SEILLIER - MOISEIWITSCH, F.

Prediction intervals for a new observable X are constructed from a pivotal
quantity P (with distribution function F). It is assumed that X is generated
from some generalized linear model, as are the data X™ which allow the
parameters § and ¢ to be estimated. By plugging in these estimates one

-introduces an error in the coverage probability of order 0,012 in the

conditional probability and of order Op(n'l) in the overall probability. The
distribution of the former is normal asymptotically. Two ways of getting rid
of the bias O(n"!) are considered. The first introduces a perturbation of order
O(n'l) in the nominal coverage probability. The order proposes to use,
instead of o, Fn'l(a;ﬁn,$n) in the construction of the interval, i.e. the largest
« th-quantile of the (overall) distribution of F(P(X;ﬁnﬁn))."l"his critical value
is estimated via resampling procedures. If a series of such intervals have been
constructed, tests based on scoring rules and a martingale central limit
theorem are proposed to check the adequacy of the model.
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SHORACK, G.R.

Limiti havior of 1.~

Consider L= n1X; Coi
0< g, S...<& ., < 1. Use integrated scores ¢ ; obtained from some J
function that is "nice" (essentially Lipschitz in the middle and regularly
varying in the tails). Suppose J >0 and g T . Then appropriately normalized
L, is asymptotically normal if and only if the quantile function K(1) =

g(&,,) for Uniform(0,1) order statistics

\n tJ(s) dg(s) is in the domain of attraction of the normal distribution.

Moreover, all possible subsequential limits are obtained, as well as a
condition determining when and only when there is stochastic compactness.
The same sort of solutions are obtained when k; and k;* observations are
trimmed from the two tails. (The case k;, — oo, but k;/n — 0 and the case
\/n(kn/n - a) = 0 for 0 < a < 1 are considered.) This is joint work with David
Mason.

_ STEIGER,W.

. ion of multivari i

Let S = (X;,....X,} be a given set of points in RY. The goal is to generalize
the usual median to the case d > 1. One generalization peels off convex hulls
as far as possible: points on the convex hull C(S,), are assigned depth 1,
where S; = S. Thereafter, S;,; = §;\ C(S;) is obtained, i > 1, and points on
C(S;) are assigned a depth of i. A second generalization uses Tukey’s
directional depth, and the last is based on Regina Liu’s simplicial depth,
where depth(X;) counts the number of simplices A[X j l,...,Xj de 1] that
contain X, i # jg. For each notion of depth, a median is a point of maximal
depth. All three medians were shown to have 0 asymptotic breakdown point.

The first and third are invariant under affine transformations. Computational
aspects were discussed. An omY algorithm for the simplicial median was
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described, d < 3, along with a lower bound of n(log n). The problem of
determining the exact complexity of the simplicial median in the plane seems
to involve deep combinatorial properties of configurations of points. It would
be very interesting to know whether it is necessary to find the depth of every
point in order to determine the point of maximal depth.

STREITBERG, B.

Under the assumption of independent p-variate gaussian observations, the
usual T2 statistic is UMP-invariant for the standard multivariate one-sample
and two-sample testing problems. While the assumption of gaussianity is not
crucial for large samples (T2 is asymptotically distribution free), it is not well
known that the independence assumption might also not be justified in many
applications. The argument is as follows: consider for instance a randomized
clinical trial conducted for the sake of comparing two drugs A,B and assume
the Hy, situation that A and B are identical. The patients i = 1,...,n are
recruited haphazardly and their potential reaction to the drugs (A,B) can be
described by pairs (F;,G;) of p-dimensional measures, where H: F,=G;
fori=1,..nIna carefully planned design, independence over patients can
be justified. There is, however, no good reason for assuming homogenity
F;= Fj for i # j (why should two different patients have exactly the same
probability of, say, recovering from an illness?). A well-planned experiment
is randomized, e.g. a permutation ¢ : (1,..,n} = (1,..,n} is chosen
uniformly from the symmetric group S, and patients with 6(i) < n, are
treated with A. The ‘conditional Hy-distribution of the observations y =
(¥1»---¥n)» given o, factorizes, but is not homogeneous. The unconditional
Hy-distribution of y is a mixture over S, and, therefore, permutation
invariant, but does not, in general, factorize.

Much weaker assumptions are possible for permutation tests: the Hy-
distribution of y is invariant under the action of a group G, where G = S,"
for the one-sample case (sign invariance) and G = S, for the two-sample case

(permutation invariance), both with the obvious actions. Given a statistic V,

where large values of V serve to indicate a possible break of symmetry, the
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p-value l{g € G: V(g(y)) € V(y)}l /|Gl is conditionally distribution free. If
one uses V = T2, the conditional H,-distribution is asymptotically again
x2[p], given a mild Lindeberg (one-sample case) or Noether condition. More
interesting is the fact that the exact distribution can be computed for
reasonable p,n (in general the problem is NP-hard) rather easily using a
formal generating function for s = gy; + gy, +...+ gy, where m = n in the
one-sample case and m = n; in the two-sample case. The basic idea can, for a
special univariate case, already be found in Euler’s Introductio.

VAN ZWET, W.R.
Hoeffding”

We discuss Hoeffding s decomposition and its relation to the bootstrap. It is
shown that the naive bootstrap works only for asymptotically normal
statistics. In more complicated cases one needs detailed knowledge of the
structure of the statistic to be able to make an appropriate version of the
bootstrap work. However, such knowledge also enables one to determine the
distribution of the statistic to the required order by other methods. All such
methods are asymptotically equivalent to the bootstrap, and massive
computation will be needed to determine the most promising procedures.

YOUNG, G.A.

An approximation to the distribution of A=%X/s,s2=n"1Z,_| | (x, - D2,
can be obtained by (i) saddlepoint approximation of the joint distribution of
(%, x2), (ii) transformation to obtain the joint distribution of (A, s), (iii)
Laplace approximation to obtain the marginal distribution of A. The method
is described, illustrated, and its deficiencies discussed. Application to analytic
approximation of the bootstrap distribution of the studentized mean is
considered, shadowing Davison & Hinkley (1988).

-

Berichterstatter: D.W, Miiller
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