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Abstract 

Background Trimethylamine‑N‑oxide (TMAO) is linked with obesity, while limited evidence on its relationship 
with body fat distribution. Herein, we investigated the associations between serum TMAO and longitudinal change 
of fat distribution in this prospective cohort study.

Methods Data of 1964 participants (40–75y old) from Guangzhou Nutrition and Health Study (GNHS) during 2008–
2014 was analyzed. Serum TMAO concentration was quantified by HPLC–MS/MS at baseline. The body composition 
was assessed by dual‑energy X‑ray absorptiometry at each 3‑y follow‑up. Fat distribution parameters were fat‑to‑lean 
mass ratio (FLR) and trunk‑to‑leg fat ratio (TLR). Fat distribution changes were derived from the coefficient of linear 
regression between their parameters and follow‑up duration.

Results After an average of 6.2‑y follow‑up, analysis of covariance (ANCOVA) and linear regression displayed women 
with higher serum TMAO level had greater increments in trunk FLR (mean ± SD: 1.47 ± 4.39, P-trend = 0.006) and TLR 
(mean ± SD: 0.06 ± 0.24, P-trend = 0.011). Meanwhile, for women in the highest TMAO tertile, linear mixed‑effects model 
(LMEM) analysis demonstrated the annual estimated increments (95% CI) were 0.03 (95% CI: 0.003 – 0.06, P = 0.032) 
in trunk FLR and 1.28 (95% CI: ‑0.17 – 2.73, P = 0.083) in TLR, respectively. In men, there were no similar significant 
observations. Sensitivity analysis yielded consistent results.

Conclusion Serum TMAO displayed a more profound correlation with increment of FLR and TLR in middle‑aged 
and older community‑dwelling women in current study. More and further studies are still warranted in the future.

Trial registration NCT 03179657.
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Background
Obesity, characterized by a high body mass index 
(BMI), is linked to various health issues like meta-
bolic syndrome (MetS) [1], and cardiovascular diseases 
(CVDs) [2]. However, the paradox that older adults 
with higher BMI tend to live longer, and that the aging 
population faces equal risks of chronic diseases regard-
less of BMI, has shifted focus to body fat distribution 
[3]. Specifically, the buildup of visceral adipose tis-
sue (VAT) is strongly connected to problems like dys-
lipidemia, insulin resistance, and higher mortality risk, 
regardless of overall body weight or fat mass [4–6]. 
Additionally, the trunk-to-leg fat ratio (TLR), a marker 
of unfavorable fat distribution, is a valuable predictor of 
CVD mortality [7]. These changes in body composition 
are important aspects of aging and can harm overall 
health as individuals age [8].

Although sex hormones, aging, and genetic varia-
tions have been suggested as factors influencing body 
fat redistribution, studies on serum metabolites that 
could act as potential biomarkers for body fat distribu-
tion are limited. Trimethylamine-N-oxide (TMAO), a 
gut-derived metabolite produced following ingestion of 
dietary choline or carnitine, is regulated by these afore-
mentioned factors [9]. Meanwhile, TMAO is reported 
to promote dyslipidemia, atherosclerosis, and clotting, 
making it an independent risk factor for CVD [10]. 
Researches also shown strong links between TMAO 
and obesity or obesity-related diseases [11–13]. Nota-
bly, a case–control study showed a significant positive 
correlation between serum TMAO and visceral fat in 
hemodialysis patients [14]. Meanwhile, participants 
with obesity in two different intervention programs 
demonstrated positive associations between serum 
TMAO levels and visceral fat mass or trunk fat at base-
line [15, 16]. However, previous studies have often 
focused on individuals with hemodialysis or obesity, 
neglecting the general population, and primarily con-
sidered body weight or absolute fat quantity. What is 
more, whether serum TMAO levels relate to long-term 
unfavorable fat accumulation in the broader popula-
tion remains uncertain. Therefore, further prospective 
studies are necessary to explore the link between serum 
TMAO levels and fat distribution, especially the 
adverse kind, which could inform strategies for pre-
venting obesity and related metabolic conditions.

In this prospective cohort study, we enrolled com-
munity-dwelling Chinese adults aged 40 to 75 from the 
"Guangzhou Nutrition and Health Study (GNHS)" with a 
median follow-up of 6.2 years. Our goal was to investi-
gate how serum TMAO levels relate to changes in fat dis-
tribution over time, focusing particularly on unfavorable 
fat distribution.

Materials
Participants
The data of this prospective cohort study were obtained 
from the Guangdong Nutrition and Health Study 
(GNHS), a prospective cohort study designed to explore 
the effects of dietary and environmental factors on car-
dio metabolic outcomes and osteoporosis. Recruitment 
took place from July 2008 to June 2010. As previously 
described [17], the inclusion criteria encompassed indi-
viduals aged 40 to 75 years who had resided in Guang-
zhou for at least five years. Demographic characteristics 
and biological samples were obtained at baseline; body 
composition was assessed during the follow-up phase 
every 3 years thereafter. The current exclusion crite-
ria comprised: (1) self-reported or diagnosed cognitive 
impairment, immobility, chronic renal dysfunction, or 
cancer (n = 72) at baseline or during the 6.2-year follow-
up period; (2) missing data on key covariates (n = 29); 
(3) implausible dietary energy intake (men, < 800 kcal/d 
or > 4000 kcal/d; women, < 500 kcal/d or > 3500 kcal/d) 
(n = 17); (4) missing data on serum TMAO level or serum 
TMAO level being out of 95% CI (n = 736); (5) partici-
pants did not complete two follow-up body composi-
tion examinations (n = 351). Eventually, a total of 1964 
participants with a median follow-up of 6.2 years were 
included for the data analysis (Fig.  1). All participants 
provided written informed consent. The study protocol 
was approved by the ethics committee (L2017-004).

Serum TMAO and its precursors measurement
After a 10-h fasting period, a 10-mL venous blood sam-
ple was collected at the beginning of the study and stayed 
undisturbed. S Serum was subsequently separated by 
centrifugation at 3000 × g for 15 min and stored at -80°C 
until analysis.

Serum TMAO and its precursors (choline, betaine) 
were quantified by high-performance liquid chroma-
tography-tandem mass spectrometry (HPLC–MS/MS, 
Agilent 6400 Series Tridple Quad LC/MS, CA, USA), 
following previously established protocols [11]. In brief, 
50 μL of serum was combined with a working solution 
containing internal standards (TMAO-d9, choline-d9, 
betaine-d9). Subsequently, 50 μL of acetonitrile spiked 
with 1% formic acid was added to the mixture and vor-
texed. After centrifugation at 15,100 × g at 4 °C for 10 
min, approximately 120 μL of the supernatants were 
transferred into vials for HPLC–MS/MS analysis. The 
analytes and their corresponding isotopes were moni-
tored using specific precursor-product ion transitions, 
with an iron spray voltage of 3500 V. The coefficients 
of variance (CVs) for between-run assays were 6.0% for 
TMAO, 4.91% for choline, and 6.21% for betaine.
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Body composition assessment
During each follow-up visit, a trained physician con-
ducted an examination of the body composition of 
every participant. This assessment utilized dual-energy 
X-ray absorptiometry (DXA, Discovery W, Hologic Inc, 
Waltham, USA), operating in the "whole-body scans" 
mode.

The software accompanying the Hologic Discovery 
system (version 3.2) facilitated the direct acquisition 
of fat mass (FM) and bone mineral content (BMC). 
Absolute lean mass (LM) was determined by subtract-
ing BMC from the original fat-free lean mass, thereby 
isolating non-bone lean mass. Precise positioning of 
regions of interest, such as the arms, legs, and trunk 
areas, and subsequent DXA scan analyses, were carried 

out by a proficient physician (Additional Fig. S1). Sub-
sequently, to account for variations in weight, FM 
and LM were adjusted at baseline using the residual 
method. This adjustment was made in preparation for 
subsequent analyses [18].

Covariates
The covariates were collected at baseline. Sociodemo-
graphic information (age and income), lifestyle (smoking, 
alcohol or tea drinking, and daily activity), and medical 
history were collected using a structured questionnaire 
administered in a face-to-face interview. Dietary intake 
was assessed by a validated 79-item food frequency 
questionnaire (FFQ) and adjusted by the energy residual 
method. Daily activities were assessed by a 19-item ques-
tionnaire, including daily occupation, leisure-time activ-
ity, and household chores [19]. Anthropometric data, 
including weight, height, and waist circumference (WC), 
were measured twice at baseline and each follow-up visit, 
and the averages were applied to later analyses. Fast-
ing glucose levels were examined using fingertip blood 
sampling. Serum total cholesterol (TC), triglycerides 
(TG), and fasting glucose levels were quantified by col-
orimetric methods using a Roche Cobas 8000 C702 auto-
mated analyzer (Roche Diagnostics, Shanghai, China). 
The intra-assay coefficient of variation was 3.1% for TC, 
5.8% for TG, and 2.5% for glucose, respectively [20]. For 
the concentration of serum TMAO would be affected by 
its precursors, the serum choline and betaine were also 
adjusted in the models.

Statistical analysis
Descriptive data were expressed as either mean and 
standard deviation (SD) for normally distributed vari-
ables or median and interquartile range for non-nor-
mally distributed variables. Categorical variables were 
presented as frequencies and percentages. Given the 
observed differences in body composition between 
females and males, we displayed all primary results sepa-
rately for women and men. Baseline characteristics were 
assessed based on data distribution, utilizing independ-
ent t-tests, Kruskal–Wallis tests, or χ2 tests.

The ratio of fat-to-lean mass (FLRs) or percentage of fat 
mass (FM%) for the entire body and specific regions were 
calculated. The trunk-to-leg fat ratio (TLR) was deter-
mined by the ratio of absolute trunk FM to leg FM. These 
FLR and TLR values served as indices for fat distribu-
tion (FD). Changes in FD (ΔFD) were derived from linear 
regression coefficients between these indices and follow-
up duration, multiplied by the mean follow-up duration 
of 6.2 years [21].

Analysis of covariance (ANCOVA) was conducted to 
compare the mean 6.2-year changes across serum TMAO 

Fig. 1 Flow chart of recruitment of participants
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tertiles. This model was adjusted for baseline variables, 
including age, BMI, TG, TC, high-density lipoprotein 
cholesterol (HDL-C), low-density lipoprotein cholesterol 
(LDL-C), TMAO precursors (choline, betaine), dietary 
intake (energy, protein, and fat), lifestyle, and daily activ-
ity [5]. Preliminary results did not show significant differ-
ences in ΔFM across serum TMAO tertiles (all P > 0.05, 
Additional Tables S1 and S2); therefore, subsequent anal-
yses focused on the association between serum TMAO 
and the 6.2-year ΔFD.

Multiple linear regressions (MLR) were employed to 
explore the adjusted association between ΔFD and each 
SD increment of serum TMAO. To validate these find-
ings, linear mixed-effects models (LMEMs) were utilized 
to compare estimated changes in FD over time across 
serum TMAO tertiles. This analysis incorporated an 
interaction test between tertiles and time to account for 
repeated assessments of whole or regional FD over time.

Sensitivity analysis was performed on participants 
under 65 years of age who had complete covariate data. 
For participants with missing covariate values, multi-
variate imputation by chained equations (MICE) was 
employed to address these gaps. All statistical tests were 
two-sided, and statistical significance was determined 
at a P-value < 0.05. Statistical analyses were conducted 
using R software (version 4.1.2). LMEMs were analyzed 
using the "nlme" package (version 3.1–152), MICE was 
conducted using "mice" (version 3.13.0), and additional 
packages included "tidyverse" (version 1.3.1) and "VIM" 
(version 6.1.1) in R studio (version 1.3.1093). Data visu-
alization was achieved using the "ggplot2" package (ver-
sion 3.3.5) in R studio.

Results
Characteristics of the study participants
A total of 1964 eligible participants, consisting of 1423 
women and 541 men, were enrolled in the study. The 
sex-specific baseline characteristics of the participants 
are detailed in Table 1. The median age of all participants 
at baseline was 57 years, and the average serum TMAO 
level was 2.33 μmol/L. In comparison to women, men 
were older and had higher monthly income levels (> 3000 
yuan/month). Additionally, men exhibited a higher like-
lihood of developing CVDs, type 2 diabetes, or obesity. 
Furthermore, men engaged in less physical activity and 
had lower levels of TC, HDL-C, LDL-C, and TG (all 
P < 0.05). 

Changes in fat distribution over 6.2 years among serum 
TMAO level tertiles
To investigate differences in 6.2-year ΔFD across 
serum TMAO tertiles, we employed ANCOVA analy-
ses. As illustrated in Fig.  2, after adjusting for potential 

confounding factors, women exhibited a dose–response 
relationship in Δ total FLR, Δ trunk FLR, and Δ TLR 
across serum TMAO level tertiles (Ptrend = 0.037, 0.006, 
and 0.011, respectively). However, no significant differ-
ences in Δ FD were observed among men (Fig. 2).

Subsequently, MLR analysis was conducted to explore 
associations between each SD increase of serum TMAO 
levels and ΔFD. In women, the results showed that 
each SD increase in serum TMAO level (0.44 μmol/L) 
was associated with a 0.260 increase in Δ trunk FLR 
(P = 0.030) and a 0.069 increase in in ΔTLR (P = 0.024) 
(Additional Table S3). Similar associations were observed 
when analyzing TMAO as a continuous variable (Addi-
tional Fig. S2). However, in men, no significant associa-
tions were observed between each SD increase in serum 
TMAO levels (0.42 μmol/L) and any of the 6.2-year Δ FD 
indices (all P > 0.05, Additional Table S3 and Fig. S3).

To confirm the association between FD and serum 
TMAO levels over time, LMEMs were employed 
(Table  2). After adjusting for covariates, the interaction 
analysis indicated that in women, within the highest ter-
tile of serum TMAO level, there were estimated mean 
changes (95% CI) per year of 1.28 (-0.17, 2.73)/year in 
trunk FLR and 0.03 (0.003, 0.06)/year in TLR (P-interac-

tion = 0.083 and 0.032, respectively). Conversely, no signif-
icant associations were observed in men (Table 2).

Sensitivity analyses
To account for the impact of age on body fat mass, we 
conducted sensitivity analyses on participants under the 
age of 65 who had complete covariate data. In women, 
those in the highest tertile of serum TMAO still exhibited 
a greater increase in trunk FLR (Ptrend = 0.019) and ΔTLR 
(Ptrend = 0.087) compared to those in the lowest tertile 
(Additional Table S4). LMEMs further demonstrated an 
annual increment of 0.02 in trunk FLR (P = 0.041) and 
and 2.91 in TLR (P = 0.012) among women (Additional 
Table S5). However, similar to previous analyses, no sig-
nificant associations between TMAO and changes in Δ 
FD were found in the sensitivity analysis.

For women, we further investigated whether meno-
pausal status influences the distribution of body fat. 
Our findings show that the correlations between serum 
TMAO levels and trunk FLR and the change in ΔTLR 
were only significant in postmenopausal women (Addi-
tional Fig. S4).

Discussion
In this study, we examined the correlation between 
serum TMAO and long-term fat distribution in commu-
nity-dwelling adults aged 40–75. In the follow-up period 
with a median of 6.2 years, we discovered that higher 
serum TMAO levels were significantly associated with 
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increased FLR and TLR, especially in middle-aged and 
older women.

As individuals age, changes occur in their body weight 
and composition. Previous studies have mainly empha-
sized the strong correlation between higher body weight, 
often measured using BMI, and the risk of obesity-related 
diseases and CVDs [22–24]. However, recent research 
has drawn attention to the role of body fat distribution 
in these conditions. For example, a 12-year follow-up 
study found that body fat distribution was independently 
associated with cardiovascular disease risk in partici-
pants from the UK biobank [25]. Another cross-sectional 
study found that the ratio of trunk fat to peripheral fat, as 

determined by DXA examination, was positively associ-
ated with CVDs, independent of total body fat mass [26]. 
These findings indicate that BMI alone is insufficient as a 
predictor of these diseases, emphasizing the importance 
of monitoring changes in both body fat mass and distri-
bution as individual age.

TMAO, a potentially harmful metabolite originating 
in the gut, is produced when dietary choline or carnitine 
is oxidized by the liver enzyme flavin monooxygenase 3 
(FMO3) [27]. Previous research has identified TMAO 
as an independent risk factor for the CVD [10], and it 
is associated with insulin resistance and obesity [28, 29] 
However, a recent meta-analysis revealed a nonlinear 

Table 1 Baseline characteristics of participants

TMAO trimethylamine N-oxide, BMI body mass index, WHR waist-to-hip ratio, CVDs cardiovascular diseases, TC total cholesterol, HDL-C high-density lipoprotein 
cholesterol, LDL-C low-density lipoprotein cholesterol, TG triglycerides, MET metabolic equivalent-h/d, IQR interquartile range
1 Normally distributed continuous data are presented as mean with SD. T-test was conducted for calculating the P-value
2 Non-normally distributed continuous data are presented as median with IQR. Kruskal–Wallis was conducted for the P-value
3 Categorical data are presented as frequency and percentage. χ2 tests were conducted for calculating the P-value

Total Women Men P

N 1964 1423 541

serum TMAO, μmol/L1 2.3 ± 2.2 2.4 ± 2.3 2.3 ± 2.1 0.569

Age (years)1 57.4 ± 4.9 56.7 ± 4.6 59.1 ± 5.1 < 0.001

Post‑menopause (n, %)3 1112 (78.1) 1112 (78.1) ‑

Monthly income (Yuan/person)3 0.002

 < 1500 628 (32.7) 460 (33.0) 168 (32.1)

 1500–3000 909 (47.4) 669 (47.9) 240 (45.9)

 > 3000 382 (19.9) 267 (13.9) 115 (22.0)

Dietary intakes

 Energy (kcal/d)2 1759.6 (1494.4, 2129.3) 1680.0 (1434.5, 2025.8) 2031.9 (1661.4, 2370.0) < 0.001

 Protein (g/d)2 73.5 (60.0, 90.6) 70.8 (58.4, 87.2) 81.2 (66.5, 98.3) < 0.001

 Fat (g/d)2 57.5 (44.3, 75.4) 55.2 (42.3, 72.9) 65.0 (50.0, 81.5) < 0.001

Daily Activity (MET)2 36.5 (30.5, 58.2) 36.6 (30.7, 58.0) 36.1 (30.1, 58.4) < 0.001

Alcohol drinker (n, %)3 101 (5.2) 28 (1.4) 73 (13.7) < 0.001

Tea drinker (n, %)3 972 (50.1) 607 (43.1) 365 (68.7) < 0.001

Smoking (n, %)3 262 (13.4) 7 (0.5) 255 (47.1) < 0.001

BMI (kg/m2)1 23.2 ± 0.1 23.0 ± 0.2 23.8 ± 0.1 < 0.001

Waist‑to‑hip ratio (WHR)1 0.88 ± 0.05 0.87 ± 0.06 0.92 ± 0.05 < 0.001

Obesity (n, %)3 708 (36.0) 473 (33.2) 235 (43.4) < 0.001

CVDs (n, %)3 194 (11.5) 159 (13.0) 35 (7.7) 0.007

Type 2 diabetes (n, %)3 76 (4.5) 45 (3.7) 31 (6.8) 0.032

Hypertension (n, %)3 347 (20.6) 246 (20.0) 101 (22.1) 0.281

Biochemical indicators

 TC, mmol/L2 5.4 (4.8, 6.1) 5.6 (4.9, 6.20) 5.0 (4.4, 5.7) < 0.001

 HDL‑C, mmol/L2 1.4 (1.2, 1.6) 1.4 (1.2, 1.7) 1.3 (0.9, 1.9) 0.039

 LDL‑C, mmol/L2 3.6 (3.0, 4.2) 3.6 (3.1, 4.2) 3.4 (2.9, 4.0) < 0.001

 TG, mmol/L2 1.3 (0.9, 1.8) 1.3 (0.9, 1.8) 1.0 (0.7, 1.7) 0.020

 Fasting Glu, mmol/L2 4.6 (4.0, 5.0) 4.6 (4.2, 5.0) 4.7 (4.3, 5.1) 0.001

 betaine, μmol/L1 51.3 ± 0.4 49.8 ± 16.7 55.4 ± 0.7 < 0.001

 choline, μmol/L1 21.9 ± 0.4 21.1 ± 15.1 23.9 ± 0.7 0.001
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correlation between TMAO levels and BMI in healthy 
individuals [13]. The existence of the obesity paradox 
during the natural aging process further highlights com-
plexity of the relationship between TMAO levels and 
body weight (BMI) as well as body fat distribution in 
assessing chronic disease risk [30].

In the current study, we observed that changes in trunk 
FLR and TLR (Fig.  2, Table  2) increased with higher 
serum TMAO levels, particularly among women. Nota-
bly, the absolute body fat mass did not show significant 
changes (Additional Tables S1 and S2). Both FLR and 
TLR are well-established predictors of CVDs [5, 31]. Fat 
distribution in the trunk and legs can be influenced by 
factors such as inflammation and insulin resistance [32, 
33]. In a study involving healthy Mexican adolescents, a 
positive association was found between trunk FLR and 
hyperinsulinemia [34]. Furthermore, the Korea National 
Health and Nutrition Examination Survey revealed a 
significant association between higher trunk FLR and 
increased prevalence of MetS [35]. While there is limited 
direct epidemiological evidence linking metabolically 
unhealthy fat distribution to TMAO, there are indica-
tions that TMAO could potentially impact body com-
position, specifically influencing fat distribution in the 
trunk and legs. A recent study demonstrated that TMAO 

exacerbated sarcopenic obesity development through 
ROS-AKT/mTOR signaling in aged mice fed a high-
fat diet [36]. Additionally, previous reports have shown 
that elevated circulating TMAO could induce low-grade 
chronic systemic inflammation through various inflam-
matory proteins (IL-6, ICAM1, COX2, LPS etc.) and 
contribute to metabolic dysfunction [37, 38]. Moreo-
ver, a meta-analysis concluded that TMAO may serve 
as a novel biomarker for diabetes mellitus, CVDs, and 
kidney function [39]. These findings suggest that serum 
TMAO levels may impact fat distribution in the trunk 
and legs during the aging process, emphasizing the need 
for further research to fully comprehend the underlying 
mechanisms.

The present study demonstrated a sex-related dif-
ference in the association between changes in body 
fat distribution and serum TMAO levels. One plausi-
ble explanation for this sex-related difference lies in 
the regulation of FMO3 expression by sex hormones. 
FMO3, responsible for the majority of hepatic TMA 
conversion to TMAO, exhibits higher expression in the 
female liver compared to the male liver [40]. Notably, 
the majority of women in our study were postmenopau-
sal with an average age of 57, and it has been reported 
that declining estrogen levels might down-regulate 

Fig. 2 Comparisons of Δ FD indices across serum TMAO tertiles are shown by violin plot. P1:ANCOVA were conducted to compare the difference 
in total and regional Δ FD indices across the tertiles of serum TMAO after adjusted co‑variables of baseline age, BMI, dietary intake (energy, protein, 
and fat), daily activity, and lifestyles (smoking, alcohol drinking), TC, TG, HDL‑C, LDL‑C, serum choline, and betaine.P2: Median of each serum TMAO 
tertile was applied for p‑trend test using linear regression model to investigate the dose‑response relationship of total and regional Δ FD indices 
across the tertiles of serum TMAO. The value of P2 was obtained after adjusting covariates of baseline age, BMI, dietary intake (energy, protein, 
and fat), daily activity, and lifestyles (smoking, alcohol drinking), TC, TG, HDL‑C, LDL‑C, serum choline, and betaine
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FMO3 activation [40]. In our stratified analysis (Addi-
tional Fig. S4), we observed that only postmenopausal 
women showed increased trunk FLR (P = 0.009) and 
ΔTLR (P < 0.001) with elevated serum TMAO levels. 
However, the proportion of premenopausal women in 
the analysis was merely 22.9%, which could explain the 
lack of significance in the interaction effects between 
serum TMAO and menopausal status. Furthermore, 

as women age, the composition of their gut microbi-
ome tends to shift towards a profile abundant in Fir-
micutes, leading to elevated levels of secondary bile 
acids and activation of the farnesoid X receptor (FXR) 
[41]. FXR, a crucial regulator of FMO3, may counter-
balance the effects of reduced estrogen levels, partially 
elucidating the sex-related distinctions. Additionally, 
FMO3 contributes to metabolic dysfunction through 
TMAO, which triggers PERK signaling [38]. Studies 
in humans and rodents have consistently shown that 
estrogens promote fat accumulation in subcutaneous 
adipose tissue in women rather than visceral adipose 
tissue (VAT). The decrease in estrogen levels post-
menopause contributes to increased visceral fat mass 
and metabolic obesity [42]. In contrast, adult men typi-
cally have a lower average total body fat percentage 
compared to adult women due to testosterone, despite 
a tendency for greater fat accumulation in VAT. These 
findings imply that women may be more vulnerable to 
the effects of serum TMAO concerning fat distribution.

The study has several strengths. Firstly, it is the first 
to investigate the link between serum TMAO levels and 
unhealthy fat accumulation in middle-aged and older 
Chinese adults using a prospective study design. Sec-
ondly, the study had a relatively large sample size and 
considered potential socioeconomic and behavioral fac-
tors that could affect the association between serum 
TMAO levels and body composition. Thirdly, a compari-
son between participants included and excluded from the 
study (Additional Table  S6) showed that those included 
had healthier lifestyles, with fewer smokers, less alcohol 
consumption, and lower incomes. Despite the poten-
tial underestimation of results, the associations between 
serum TMAO levels and central fat deposition remained 
robust after adjusting for these factors. Additionally, 
accurate body composition measurements were obtained 
from participants using DEXA [43]. The quantification of 
Serum TMAO levels was precise, rapid, and stable using 
HPLC–MS.

However, this study had some limitations. The find-
ings may not be directly applicable to other populations 
because this was a single-center study. A single assess-
ment of TMAO levels did not account for changes in 
TMAO levels over time, so the LMEM analysis was per-
formed to minimize the impact of covariates on TMAO 
and body fat over time. The smaller sample size of men in 
the study may have contributed to the lack of significant 
findings in this group, emphasizing the need for larger 
studies involving men in the future. Moreover, future 
research should consider measuring sex hormones to 
better assess post-menopausal status. Finally, it’s impor-
tant to note that since the study was observational in 
nature, establishing causality is not possible.

Table 2 Linear mixed model for the association of serum TMAO 
level with total or regional Δ FD parameters over the 6.2‑year 
follow‑up

The data of a total of 1423 women and 541 men were assessed using LMEMs 
with serum TMAO, time, and the serum TMAO × time interaction term as fixed 
effects and the subject identifier as a random intercept. All models were 
adjusted for baseline age, BMI, energy intake, protein intake, fat intake, alcohol 
consumption, smoking, tea drinking, physical activity, TC, TG, HDL-C, and LDL-C 
levels. The mean follow-up duration was 6.2-year on an average. LMEM, linear 
mixed-effects model

Women P Men P

Total FLR (ref. Tertile 1)

 Tertile2 ‑1.14 (‑3.86, 1.57) 0.409 ‑1.15 (‑4.27, 1.97) 0.471

 Tertile3 0.38 (‑2.34, 3.10) 0.786 0.56 (‑2.59, 3.70) 0.729

 Time 0.88 (‑0.51, 2.27)  < 0.001 1.19 (‑0.40, 2.77)  < 0.001

 Tertile2*Time 0.66 (‑1.06, 2.38) 0.423 2.18 (‑1.75, 2.19) 0.828

 Tertile3*Time 0.47 (‑1.26, 2.20) 0.591 ‑0.56 (‑2.54, 1.42) 0.577

Trunk FLR (ref. Tertile 1)

 Tertile2 1.10 (‑1.26, 3.46) 0.361 ‑0.55 (‑3.20, 2.10) 0.683

 Tertile3 2.67 (0.35, 4.99) 0.024 0.29 (‑2.38, 2.96) 0.832

 Time 0.30 (0.29, 0.31)  < 0.001 ‑6.51 (‑7.86. 
‑5.17)

 < 0.001

 Tertile2*Time 0.64 (‑0.84, 2.11) 0.397 ‑0.01 (‑1.66, 1.69) 0.988

 Tertile3*Time 1.28 (‑0.17, 2.73) 0.083 ‑0.31 (‑1.99, 1.37) 0.716

Leg FLR (ref. Tertile 1)

 Tertile2 ‑1.50 (‑4.88, 1.89) 0.386 ‑1.28 (‑4.39, 1.82) 0.418

 Tertile3 0.06 (‑3.34, 3.46) 0.974 ‑0.95 (‑2.18, 4.08) 0.552

 Time 0.36 (‑1.37, 2.10)  < 0.001 1.73 (0.15, 3.31)  < 0.001

 Tertile2*Time 0.70 (‑1.45, 2.85) 0.524 0.46 (‑1.52, 2.41) 0.657

 Tertile3*Time 0.53 (‑1.63, 2.68) 0.633 ‑0.65 (‑2.63, 1.32) 0.517

Arm FLR (ref. Tertile 1)

 Tertile2 ‑2.51 (‑7.22, 2.19) 0.296 ‑0.91 (‑5.47, 1.65) 0.294

 Tertile3 0.94 (‑3.79, 5.66) 0.698 0.33 (‑3.26, 3.91) 0.858

 Time 0.94 (‑3.79, 5.66)  < 0.001 3.69 (1.88, 5.50)  < 0.001

 Tertile2*Time 1.23 (‑1.76, 4.21) 0.421 0.50 (‑1.75,2.75) 0.664

 Tertile3*Time 0.26 (‑2.74, 3.26) 0.865 ‑0.57 (‑2.83,1.67) 0.624

Trunk‑to‑leg fat ratio (ref. Tertile 1)

 Tertile2 ‑0.02 (‑0.07, 0.03) 0.611 0.05 (‑0.09,0.19) 0.497

 Tertile3 0.05 (‑0.004, 
0.10)

0.251 3e‑04(‑0.14, 0.14) 0.996

 Time 1.98 (0.04,0.08)  < 0.001 ‑0.14(‑0.21, ‑0.07)  < 0.001

 Tertile2*Time 0.02 (‑0.02, 0.04) 0.264 ‑0.03 (‑0.12, 0.06) 0.496

 Tertile3*Time 0.03(0.003, 
0.06)

0.032 ‑8e‑04 
(‑0.09,0.09)

0.985
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Conclusion
In conclusion, the study found a positive association 
between serum TMAO levels and long-term increases 
in trunk fat-to-lean ratio (FLR) and trunk-to-limb fat 
ratio (TLR) in Chinese women aged 40 to 75 years liv-
ing in the community. This discovery suggests a poten-
tial strategy for preventing obesity or sarcopenia during 
aging. However, further research is needed to explore 
the underlying mechanisms of this association.
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