Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

ATTACHING TO A PROCESS

We are all of us
tethered to our guide,
[finding somewhere to begin.

What is a debugger without a process to debug? In this
chapter, you’ll start writing your debugger by creat-

ing a program that can attach itself to other processes,
either ones that are already running or ones that it
launches itself. Users will be able to interact with the
debugger through a simple command line interface.

You'll put into practice some of the operating system fundamentals we
talked about in Chapter 2 and get your first taste of the ptrace system call.
You'll also begin to structure your debugger in a way that you can test more
easily and use as a library rather than just on the command line.

Process Interaction

Before you write any code, you need to understand the facilities that Linux
provides to spawn new processes and trace their execution.

26

Chapter 3

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

fork and exec

On Linux systems, new processes are spawned using the fork and exec syscalls.
The fork syscall divides the running process into two separate processes that
are identical save for the return value of fork itself; the new, or child, process
returns 0, whereas the original, or parent, process returns the process identifier
(PID) of the child. Every process running on your system has a unique PID
that you can use in many syscalls to indicate the process on which to operate.

After forking, the child and parent are free to walk their own paths in
life. The child process may choose to do something completely different
from the parent by executing a different program. It can do so using the
exec* family of syscalls, which replace the currently executing program with a
new one.

Because all spawned tasks follow this common algorithm, no process is
born out of nothing on Linux; the links between parents and children form
a sort of family tree. The topmost process belongs to whichever tool your
flavor of Linux uses as its initialization system, likely init or systemd, and has
the PID 1. You can visualize this tree using tools like ps. Here is some of the
output of ps ax --forest on my WSL system:

PID TTY STAT ~ TIME COMMAND

12?2 Sl 0:00 /init
12427 ? Ss 0:00 /init
12428 ? S 0:00 _ /init
12429 pts/0 Ss 0:00 _ -bash
17351 pts/0 R+ 0:00 _ ps ax --forest
16972 ? Ss 0:00 /init
16973 ? S 0:00 _/init
16974 pts/2 Ss+ 0:00 _ -bash

Note that ps ax --forest is not a process born out of the ether; it was
spawned by my bash shell, which was in turn spawned by init, which was
itself spawned by a different init process.

ptrace

As mentioned in Chapter 2, ptrace is the main debugging interface pro-
vided by Linux, so you’ll spend a lot of time with it while building your fully
fledged debugger. This interface gives you a myriad of tools with which to
communicate with a different process. We often refer to such a process as
the inferior process, or simply the inferior.

Unfortunately, as it was first shipped in 1975 with V6 Unix, ptrace isn’t
exactly a shining example of modern API design. The Unix philosophy “do
one thing and do it well” seems to have skipped over this particular function,
as it does rather a lot of things. (Generally 36 things, although its features
may vary depending on the Linux kernel version you’re using.)

The ptrace interface lives in the <sys/ptrace.h>header and looks like this:

long ptrace(enum _ ptrace_request request, pid_t pid,

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

void *addr, void *data);

The request parameter indicates the action you would like to perform,
which could be anything from reading memory to setting up a process to
be traced or sending a SIGKILL. The pid parameter is the PID of the pro-
cess you’d like to operate on. The addr and data parameters vary in meaning
depending on the value you pass for request.

You can examine the tool’s manual pages for an exhaustive list of avail-
able commands, as there are too many to reasonably list here. I'll introduce
you to certain commands when you need them, but here are a few examples
to give you a taste of what is available:

PTRACE_PEEKDATA Reads 8 bytes of memory at the given address
PTRACE_ATTACH Attaches to the existing process with a given PID
PTRACE_GETREGS Retrieves the current values of all CPU registers

PTRACE_CONT Continues the execution of a process that is currently halted

The return value from ptrace depends on the request, but generally
speaking, it returns -1 and sets errno when an error occurs. (This is an ex-
ample of poor API design; return values whose meanings differ based on the
arguments supplied are confusing and difficult to handle correctly.)

While it’s tempting to ignore the return value, you should always check
if the call to ptrace returned -1 and, if so, report this error to the user. This
could save you hours spent tracking down a heisenbug because you forgot
to check for ptrace errors. Drink some water. Get enough sleep. Check your
return codes.

Launching and Attaching to Processes

With the background out of the way, let’s launch a program. We’ll support
two ways to attach the debugger to a process:

* Launching a named program ourselves and attaching to it by run-
ning sdb <program name>

* Attaching to an existing process by running sdb -p <pid>

To keep the focus on the process interaction code, our command line
argument handling will be very basic.

The Main Function

Begin by writing the main function in sdb/tools/sdb.cpp. A common pattern
we’ll use in this book is assuming that some function already exists, writing
code that uses it, and then implementing that function, a workflow called
top-down programming.

Let’s assume we have a function called attach that launches, attaches to
the given program name or PID, and returns the PID of the inferior:

Attaching to a Process 27

28

Chapter 3

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

#include <iostreams
#include <unistd.h>

namespace {
pid_t attach(int argc, const char** argv);

}

int main(int argc, const char** argv) {

0 if (argc == 1) {
std::cerr << "No arguments given\n";
return -1;

pid_t pid = attach(argc, argv);

We’ll make a habit of putting symbols inside anonymous namespaces if
they’re used only in the implementation file in which they’re defined. This
practice will avoid name collisions if we happen to reuse a name across dif-
ferent files. In this case, for example, we put the attach function in an anony-
mous namespace @. Its return type, pid_t, is an integral type for storing a
process ID.

In main, we call attach with the command line arguments provided to sdb.
The first command line argument of a C++ program is always the path to the
running executable itself, so the user should supply at least two arguments
to specify the program to launch or the PID to attach to. If they’ve supplied
only one argument @, we throw an error.

The Attaching Function

Now write the attach function in sdb.cpp. Although it’s best practice to place
this code in libsdb, we’ll first implement the basic launching and attaching
functionality in a single file and refactor it at the end of the chapter to work
in a decent error-handling story.

A high-level view of the structure of attach looks like this:

#include <string_view>
#include <sys/ptrace.h>

namespace {
pid_t attach(int argc, const char** argv) {
pid_t pid = 0;
// Passing PID
O if (argc == 3 8& argv[1] == std::string view("-p")) {

}

// Passing program name
else {

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

® return pid;
}

In attach, we check if the first command line argument passed was -p @.
Note that simply writing argv[1] == "-p" would have done the wrong thing, as
it would have compared only the pointer values rather than the string con-
tents. Instead, we use C++17’s std: :string_view to avoid relying on old crusty
C functions or dynamically allocating memory with std: :string. Next, we de-
fine two branches inside the function, leaving them blank for now. Then, we
return pid @, whose value we’ll set inside of those blocks.

Let’s implement the block that attaches to an existing process. For this,
we use the PTRACE_ATTACH request:

--snip--
// Passing PID
if (argc == 3 && argv[1] == std::string view("-p")) {
pid = std::atoi(argv[2]);
if (pid <= 0) {
std::cerr << "Invalid pid\n";
return -1;
}
© if (ptrace(PTRACE_ATTACH, pid, /*addr=*/nullptr, /*data=*/nullptr) < 0) {
® std::perror("Could not attach");
return -1;

}

--snip--

We attach to the process by passing PTRACE_ATTACH and the process’s ID
to ptrace @. As a result, Linux will allow us to send other ptrace requests to
this process. It will also send the process a SIGSTOP to pause its execution.
Because we’re good citizens, we check if ptrace returned an error. Then, we
pass nullptr as the addr and data arguments, as they’re unused in the PTRACE_ATTACH
request.

If an error occurs, ptrace additionally sets the errno variable with an er-
ror code describing what went wrong. We use std: :perror @ to print this de-
scription to stderr, along with a string that we pass to provide more context
to the user.

Next, let’s implement the launch-and-attach functionality using fork and
exec:

--snip--
// Passing program name
else {
const char* program_path = argv[1];

Attaching to a Process 29

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

O if ((pid = fork()) < 0) {
std: :perror("fork failed");
return -1;

if (pid == 0) {
// We're in the child process.
// Execute debuggee.

}

--snip--

We call fork and then ensure that no error occurred. Recall that fork
returns 0 inside the child process, so we test for this case.

If we’re in the child process, we should replace the currently executing
program with the program we want to debug. However, before we call exec,
we must set the process up to be traced using the PTRACE_TRACEME request,
which will allow us to send more ptrace requests to this process in the future:

--snip--
if (pid == 0) {
if (ptrace(PTRACE_TRACEME, 0, nullptr, nullptr) < 0) {
std::perror("Tracing failed");
return -1;
}
@ if (execlp(program path, program path, nullptr) < 0) {
std::perror("Exec failed");
return -1;

}

--snip--

After enabling process tracing, we call execlp @, which is one of the fla-
vors of exec I mentioned earlier in this chapter. The 1 in execlp means that
arguments passed to the program should be supplied individually rather
than as an array. The p means that the facility will search the PATH environ-
ment variable for the given program name if the supplied path doesn’t con-
tain a forward slash (/). Here is the signature for execlp:

int execlp(const char *file, const char *arg, ...);

The ... at the end of the argument list means that this function takes a
variable number of arguments. Such functions are called varargs functions.

After we’ve attached to the process, we should wait until it has paused
execution before we accept any user input. Linux helps us here by stopping
the process on a call to exec if it’s being traced using ptrace. We wait for this
stop to occur using the waitpid function, whose signature is as follows:

pid t waitpid(pid t pid, int *status, int options);

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

We can pass waitpid the PID of a child process to wait until a state change,
which occurs when the child is either terminated or stopped by a signal. If
the process has already changed state, the function will return immediately;
otherwise, the parent process will block until a change occurs.

The status output parameter can give us information about the state
change that happened. We can call various macros on the returned status to
check its properties, such as WIFSIGNALED(status), which checks if the child
was terminated by a signal. Consult the manual pages for waitpid for the
complete list of macros.

The options parameter allows us to pass various flags to tune the wait,
such as WCONTINUED to be notified if a SIGCONT resumes the child process. For
now, we’ll simply pass the PID and ignore the other parameters. Extend the
main function as follows:

#include <sys/types.h>
#include <sys/wait.h>

int main(int argc, const char** argv) {
if (argec == 1) {
std::cerr << "No arguments given\n";
return -1;

pid t pid = attach(argc, argv);

int wait_status;
int options = 0;
® if (waitpid(pid, &wait status, options) < 0) {
std: :perror("waitpid failed");

We wait for the process to stop after we attach to it @. Now that we’ve at-
tached to a process (which we may have also launched), we can start reading
commands from the user.

Adding a User Interface

We want the user to interact with the debugger through a command line
interface. We’ll provide such an interface using libedit, which lets us im-
plement history, searching, and the kind of navigation you expect from a
console-based debugger. (In fact, the LLDB debugger uses libedit as well.)
Add basic support for libedit in sdb/tools/sdb.cpp (we’ll shortly replace this
code with something more complex, this is just to give you a feel for the
process):

#include <editline/readline.h>
#include <string>

Attaching to a Process 31

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

namespace {
void handle_command(pid_t pid, std::string view line);

}

int main(int argc, const char** argv) {
--snip--
char* line = nullptr;
@ while ((line = readline("sdb> ")) != nullptr) {
® handle_command(pid, line);
® add_history(line);
O free(line);
}

We loop in main, reading input from the user until there is nothing left
to read @. Within the loop, the readline function from libedit takes a prompt
and returns a char* representing the line it reads from the user. If it reads an
end-of-file (EOF) marker (because the user has entered CTRL-D), it returns
nullptr.

Next, we call a currently non-existent function that handles the com-
mand . We add the command to the searchable history using add_history
®, which libedit provides. Finally, we clean up the memory that readline
allocated for the line @; no one likes memory leaks.

Now we’ll go one step further: if the user enters an empty line, we treat
this as a shortcut to re-run the last command. Replace the code you just
wrote with this:

--snip--

char* line = nullptr;

while ((line = readline("sdb> ")) != nullptr) {
O std::string line_str;

O if (line == std::string view("")) {
free(line);
if (history_length > 0) {
® line_str = history list()[history_length - 1]->line;

}
}
O else {
line_str = line;
add_history(line);
free(line);
}

® if (!line_str.empty()) {
handle_command(pid, line_str);

}

32 Chapter3

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

}

We add the std: :string local variable @ for holding the command to be
executed, regardless of whether it came straight from the user or from the
readline history.

Next, we check whether the line is empty @. If so, we free the memory
for it before trying to retrieve the last item in the readline history. The libedit
provides a history list function for retrieving the history and a history_length
global variable that tells us how many entries there are. Using these, we find
the most recent line input by the user ®.

If the line wasn’t empty @, we save its contents into line_str, add it to
our history, and free its memory. Finally, we handle the command if we
received one ©.

Handling User Input

Now that we can retrieve textual commands from the user, we need to in-
terpret them and carry out the requested action. Our commands will follow
a format similar to that of the GDB and LLDB debuggers. To continue the
program, a user can enter continue, cont, or evenjust c. If they want to set a
breakpoint on an address, they’ll enter break set oxcafecafe, where oxcafecafe
is the desired address in hexadecimal format.

Add support for continuing the program in sdb/tools/sdb.cpp:

#include <vector>

@ namespace {
std::vector<std::string> split(std::string view str, char delimiter);
bool is prefix(std::string view str, std::string view of);
void resume(pid t pid);
void wait_on_signal(pid_t pid);

® void handle_command(
pid_t pid, std::string view line) {
auto args = split(line, ' ');
auto command = args[0];

if (is_prefix(command, "continue")) {
resume(pid);
wait_on_signal(pid);

}
else {

std::cerr << "Unknown command\n";
}

Attaching to a Process 33

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

We declare several functions in an anonymous namespace to carry out
string handling and process manipulation tasks @. We’ll implement these
shortly. Note that you can’t call the resume function continue because continue
is a keyword in C++.

We implement a simple command handler @ by splitting the command
on spaces in case the user provided arguments to the command. If the com-
mand is a prefix of continue, we continue the process and then wait for it to
halt. If we don’t recognize the command, we print an error message for the
user.

(M)
AUTO

The command-handling function uses auto, a feature added in C++11 that
specifies that the type of a variable should be deduced from its initializer. So, if
we write auto i = 0; then i will be of type int.

Importantly, auto doesn’t deduce references. If your function returns a reference
like int& get(); and binds it o a variable like auto i = var.get();, then i will be
an int, not an int8. In other words, it will be a copy of the return, not a
reference fo it. You need to explicitly ask for references with code like

auto& i = var.get();.

I'll use auto throughout this book to make the code shorter or to save us from
having to think about a variable’s type if it's not very important.

Next, fill in split and is_prefix, a couple of small string manipulation
helpers:

#include <algorithm>
#include <sstream>

namespace {

© std::vector<std: :string> split(std::string view str, char delimiter) {
std: :vector<std: :string> out{};
std::stringstream ss {std::string{str}};
std::string item;

while (std::getline(ss, item, delimiter)) {
out.push_back(item);

return out;

O bool is prefix(std::string view str, std::string view of) {
if (str.size() » of.size()) return false;
return std::equal(str.begin(), str.end(), of.begin());

34 Chapter 3

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

The split function @ uses std: :stringstream and std: :getline to read de-
limited text from the string we give it. The std: :getline function will read a
block of text from the given stream into item until it hits the given delimiter.
We then collect all of these blocks into a std: :vector and return it.

The is_prefix function @ is a small utility function that returns an in-
dication of whether a string is either equal to or a prefix of another string.
If you’re using C++20, you can simplify this kind of string processing with
ranges.

Finally, we use ptrace magic to make the inferior process continue:

namespace {
@ void resume(pid t pid) {
if (ptrace(PTRACE_CONT, pid, nullptr, nullptr) < 0) {
std::cerr << "Couldn't continue\n";
std::exit(-1);

® void wait_on_signal(pid t pid) {
int wait_status;
int options = 0;
if (waitpid(pid, 8wait_status, options) < 0) {
std: :perror("waitpid failed");
std::exit(-1);

The resume function @ wraps a call to ptrace with the PTRACE_CONT request
in some error handling. This request causes the operating system to resume
the execution of the process. The wait_on_signal function @ similarly wraps a
call to waitpid. Now we can evaluate the fruits of our efforts.

Manual Testing

Let’s manually test the features we’ve just added and then automate these
tests once we’ve cleaned up the structure of the code.

We'll start with process launching. You should now be able to launch a
process, have it stop once launched, and then resume its execution by enter-
ing continue. Give it a try by starting one of Linux’s most useful programs,
yes, which does nothing more than print out y over and over and over. Run
it through sdb and continue it like so:

$ tools/sdb yes
sdb> continue

You should be immediately bombarded by an endless stream of y. This
is good; it means the launching behavior is working.

Attaching to a Process 35

36

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

Now we’ll test process attaching. To attach the program to an existing
process, you could try targeting a GUI application and noting that it halts
execution when you start sdb. If you’re using the terminal only, you could try
running it with yes if you’re brave enough or run the following slightly less
exciting test:

$ while sleep 5; do echo "I'm alive!"; done&
[1] 1247
$ tools/sdb -p 1247

The first command will print “I'm alive!” every five seconds. The amper-
sand at the end is important; it sends the command to the background.

The command should output the PID of the background process, which
will likely be different on your machine. Pass this PID to sdb to attach to that
process. When you do so, “I'm alive!” should stop printing. When you con-
tinue, it should print “I'm alive!” once and then return control back to the
debugger because of the call to waitpid. Neat!

Depending on your Linux distribution, you may not be allowed to use
PTRACE_ATTACH on processes that aren’t children of sdb. This is due to the Yama
Linux Security Module (LSM). There are two ways around this. First, you
can globally allow attaching to non-child processes by setting LSM to “classic
ptrace permissions” mode, like so:

$ echo 0 > /proc/sys/kernel/yama/ptrace_scope

You may need to run this with sudo. Second, you can add capabilities to
sdb to trace non-child processes with setcap CAP_SYS_PTRACE=+eip sdb.

Refactoring into a Library

Chapter 3

We’ve written code the quick-and-dirty way to get going, but now it’s time to
refactor the project so it will serve us better as we scale up the debugger.

As mentioned in “The Directory Structure” on page 1, we’ll place most
of the debugger functionality in libsdb and treat sdb as a command line driver
for the library. This will make testing much easier.

As such, ptrace shouldn’t appear in sdb, which shouldn’t even be aware
of'its existence. Let’s create some data structures in libsdb that represent the
components of the system and move the ptrace calls into them.

Creating a Process Type

We’ll need a type that represents any running process we can launch, attach
to, continue, and wait on signals for. We’ll call it sdb: :process. Like many
types we’ll make over the course of this book, sdb: :process represents some
unique resource. We shouldn’t be able to copy an sdb: :process object, be-
cause that would mean creating an entire new process on the system.

As such, users of the library will need to interact with sdb: :process through
pointers. To make our lives easier, we'll use smart pointers, which are wrap-
pers for pointers that automatically manage the allocated memory, rather

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

than requiring programmers to remember when to free it. Create a new file
called sdb/include/libsdb/process. hpp:

#ifndef SDB_PROCESS_HPP
#define SDB_PROCESS_HPP

#include <filesystem>
#include <memory>
#include <sys/types.h>

namespace sdb {
class process {
public:
@ static std::unique ptr<process> launch(std::filesystem::path path);
static std::unique_ptr<process> attach(pid_t pid);

void resume();
O /*2%/ wait_on_signal();

pid t pid() const { return pid_; }

private:
pid_t pid_ = 0;
};
}
#endif

We declare launch @ and attach member functions that create sdb: :process
objects. The launch function takes the path to the program to launch, whereas
attach takes the PID of the existing process to attach to.

A user should be able to resume a process that is currently halted, so we
declare a member for that. They should also be able to wait for the inferior
to be signaled. We should return some information about what signal was
received, but we’ll have to do some more thinking about what type to return,
so for now, I've left this as an open question .

Finally, an sdb: :process object needs to keep track of the PID for the pro-
cess it is tracking and expose this to users, so we add a data member and a
member function to retrieve it.

s)

THE STD::UNIQUE_PTR SMART POINTER

Our process type uses the std::unique_ptr smart pointer. As an example of its
use, if we allocate an int and store the pointer in a std: :unique_ptr, we don't
call delete when we're done with it because the smart pointer handles this for
us:

{

std::unique_ptr<int> i (new int(42));

Attaching to a Process 37

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

Memory is allocated when new is called and automatically freed when the
std: :unique_ptr object is destroyed.

In some cases, it's safer to use the helper function std: :make_unique<T>, as in
auto i = std::make_unique<int>(42);, because it avoids some tricky problems
related to exceptions and evaluation order. I'll prefer this when possible. See
Chapter 4 of Effective Modern C++ by Scott Meyers (O'Reilly, 2014) or the
Stack Overflow question at https://stackoverflow.com/questions/ 106508/
what-is-a-smart-pointer-and-when-should-i-use-one for more details.

We must make sure that users can’t construct a process object without
going through those static member functions and that they can’t acciden-
tally copy it, so we’ll disable the default constructor and copy operations:

namespace sdb {
class process {
--snip--
@ process() = delete;
® process(const processd) = delete;
process& operator=(const processd) = delete;

--snip--

};

We delete the default constructor @ to force client code to use the static
members and then delete the copy constructors @ to disable copy and move
behavior.

We should clean up the inferior process if we launched it ourselves but
leave it running otherwise. Let’s add a destructor and a member to track
whether we should terminate the process:

namespace sdb {
class process {

public:
@ ~process();
--snip--
private:
pid t pid_ = 0;
® Dbool terminate on end_ = true;
};

We declare the destructor as a public member @ and add a new pri-
vate data member to track termination ®. We should also keep track of the
current running state of the process. We’ll add an enum for this:

https://stackoverflow.com/questions/106508/what-is-a-smart-pointer-and-when-should-i-use-one
https://stackoverflow.com/questions/106508/what-is-a-smart-pointer-and-when-should-i-use-one

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

namespace sdb {
@ enum class process_state {

stopped,
running,
exited,
terminated
b
class process {
public:
--snip--

(2] process_state state() const { return state_; }
private:

pid t pid_ = 0;

bool terminate on_end_ = true;
® process_state state_ = process_state::stopped;

};

The process_state enum @ represents the various situations in which a
process may find itself. We represent it using a strongly typed enum (enum class),
which is a G++11 feature that stops enumerator values from implicitly con-
verting to and from integers and automatically qualifies the enumerator
names with the name of the enum (like process_state::stopped). We add a
member to track the state the process is in ® and expose this to users . Fi-
nally, we need to provide a way for the static members to construct a process
object. We do this with a private constructor:

namespace sdb {
class process {
--snip--
private:
process(pid_t pid, bool terminate_on_end)
: pid_(pid), terminate_on_end_(terminate_on_end) {}
--snip--

};

We make this member private so that client code must use the static
launch and attach functions to construct the process object.

Implementing launch and attach

Now we can implement the declared members, starting with launch and attach.
For the most part, we can steal the code from sdb/tools/sdb.cpp. Implement
them in in sdb/src/process.cpp:

#include <libsdb/process.hpp>

Attaching to a Process 39

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

std: :unique_ptr<sdb: :process>
sdb: :process::launch(std::filesystem: :path path) {
pid_t pid;
if ((pid = fork()) < 0) {
// Error: fork failed @
}
if (pid == 0) {
if (ptrace(PTRACE_TRACEME, 0, nullptr, nullptr) < 0) {
// Exror: Tracing failed
}
if (execlp(path.c_str(), path.c_str(), nullptr) < 0) {
// Error: exec failed
}
}
std::unique_ptr<process> proc (new process(pid, /*terminate_on_end=*/true));
proc->wait_on_signal();
return proc;
}
std: :unique_ptr<sdb: :process>
sdb: :process::attach(pid_t pid) {
if (pid == 0) {
// Error: Invalid PID
}
if (ptrace(PTRACE_ATTACH, pid, nullptr, nullptr) < 0) {
// Error: Could not attach
}
std: :unique_ptr<process> proc (new process(pid, /*terminate_on_end=*/false));
proc->wait_on_signal();
return proc;
}

First, launch carries out the fork and exec process you learned about at
the start of the chapter, then it creates a new sdb: :process object using the
private constructor we just implemented and waits for the process to halt.
Since we’re launching the process, we pass true as the terminate_on_end argu-
ment. We’'ll address the comments about errors @ shortly.

40 Chapter 3

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

Next, attach uses PTRACE_ATTACH to attach to the running process, and
then constructs the sdb: :process and waits for the underlying process to
halt. Since we’re not launching the process in this case, we pass false as the
terminate_on_end parameter.

You'll also need to add this file to sdb/sr¢/CMakeLists.txt to get it included
in the build. While you’re at it, you can remove the test sdb/sr¢/libsdb.cpp and
sdb/include/libsdb/libsdb.hpp files created in Chapter 1. Replace the existing
add_library call with this:

add_library(libsdb process.cpp)

The biggest change we made to the code ported over from sdb/tools/sdb.cpp
was replacing the printing of error messages and the termination of the pro-
gram with comments. Now, force-terminating the program from a library
when the program may be able to recover is not good, but code comments
aren’t a good alternative. Unfortunately, it’s time to think about errors.

Handling Errors

There are many different ways to handle errors in C++. The four main ones
are: ignoring them, using exceptions, using error codes, and relying on
result types like std: :expected.

The first option is unfortunately a common choice, but we can do better
for this project. The others are all reasonable options. LLDB disables excep-
tions, so it uses custom result types and error codes. Projects written in C
don’t get many options, so they use error codes.

In sdb, we’ll opt for exceptions. The debugger doesn’t have the kind of
memory footprint or predictability constraints that often cause projects to
eschew exceptions, and exceptions will let us focus on the code’s “happy
path” while still being robust enough to help us diagnose errors if we make
mistakes. We won’t to try to deal with every possible error case, but will
deal with many common ones so you don’t have to spend hours diagnosing
issues.

Let’s begin by creating an sdb-specific exception type that we can use to
differentiate our own errors from ones produced within the system, which
we’ll need to handle properly. We'll put the type in sdb/include/libsdb/er-

ror.hpp:

#ifndef SDB_ERROR_HPP
#define SDB_ERROR_HPP

#include <stdexcept>
#include <cstring>

namespace sdb {
class error : @ public std::runtime_error {
public:
[[noreturn]]

Attaching to a Process q

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

static void send(const std::stringd& what) { throw error(what); }
[[noreturn]]
static void send_errno(const std::string® prefix) {

throw error(prefix + ": " + @ std::strerror(errno));

}
private:
error(const std::stringd what) : std::runtime_error(what) {}
};
}
#endif

The sdb: :error type inherits from std: :runtime_error @ as it’s a special
kind of runtime error. We provide two ways to create one: error::send, which
takes a message to use as the error description, and error: :send_errno, which
uses the contents of errno as the error description, adding the message we
provide as a prefix. We declare both of these with the [[noreturn]] attribute,
which indicates to the compiler that this function does not return control
flow when it exits. This will prevent the compiler from issuing unnecessary
warnings in some cases.

While send simply throws a new error with the given message, send_errno
calls std: :strerror @ to get a string representation of errno. This function
is similar to std: :perror, but it returns the message as a string rather than
printing it to stderr.

Finally, we make a private member function that forwards the error
message on to the std: :runtime_error constructor.

Let’s put the new type into practice in the attach and launch functions in

sdb/src/process.cpp:

#include <libsdb/error.hpp>

std: :unique_ptr<sdb: :process>
sdb: :process::launch(std::filesystem: :path path) {
pid_t pid;
if ((pid = fork()) < 0) {
error::send_errno("fork failed");

}
if (pid == 0) {
if (ptrace(PTRACE_TRACEME, 0, nullptr, nullptr) < 0) {
error::send_errno("Tracing failed");
}
if (execlp(path.c_str(), path.c_str(), nullptr) < 0) {
error::send_errno("exec failed");
}
}

42 Chapter 3

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

std: :unique_ptr<process> proc (new process(pid, /*terminate_on_end=*/true));
proc->wait_on_signal();

return proc;

std: :unique_ptr<sdb: :process>
sdb: :process::attach(pid t pid) {
if (pid == 0) {
error::send("Invalid PID");
}
if (ptrace(PTRACE_ATTACH, pid, nullptr, nullptr) < 0) {
error::send_errno("Could not attach");

}

std: :unique_ptr<process> proc (new process(pid, /*terminate_on_end=*/false));
proc->wait_on_signal();

return proc;

I've replaced all the comments from the old version of the code with
calls to either error::send or error::send_errno, depending on whether errno
was set by the operation that failed.

You might still notice an issue with the error handling in process: : launch;
I briefly mentioned this when we implemented tracing. We’ll fix it in Chap-
ter 4. For now, let’s move on to the destructor.

Destructing Processes

We can implement the destructor by calling kill on the child and waiting un-
til it exits. (I wish the function were named something nicer, like politely_ask_to_stop,
but oh well.) Here is the process-destructing code, which should go in sdb/sr-

¢/process.cpp:

sdb: :process: :~process() {
if (pid_ !'= 0) {
int status;
if (state_ == process_state::running) {
@ kill(pid_, SIGSTOP);
waitpid(pid_, &status, 0);

}
® ptrace(PTRACE DETACH, pid , nullptr, nullptr);

kill(pid_, SIGCONT);

if (terminate_on_end_) {

® kill(pid_, SIGKILL);
waitpid(pid_, &status, 0);

Attaching to a Process 43

44

Chapter 3

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

}

If we have a valid PID when the destructor runs, then we want to detach.
For PTRACE_DETACH to work, the inferior must be stopped, so if it is currently
running, we send it a SIGSTOP @ and wait for it to stop. We then detach from
the process @ and let it continue. Finally, if we earlier determined that we
should terminate the inferior when the managing sdb: :process destructs, we
send it a SIGKILL ® and wait for it to terminate.

Note that we don’t handle any errors here or throw exceptions. Throw-
ing exceptions is generally a no-no from destructors, because if you're call-
ing the destructor in the first place due to an exception being thrown up the
stack, there’s no way to throw an additional exception, so the program is ter-
minated. We could log errors somewhere, but this will do for our purposes.
You'll have to just believe in your destructor.

Now, we’ll turn to the last two functions in process.

Resuming the Process

We want sdb: :process: :resume to force the process to resume and update its
tracked running state. Implement it in sdb/sr¢c/process.cpp:

void sdb::process::resume() {
if (ptrace(PTRACE_CONT, pid_, nullptr, nullptr) < 0) {
error::send_errno("Could not resume");

}

state_ = process_state::running;

We simply issue a PTRACE_CONT command, check for errors, and update
the state to be running.

Waiting on Signals

Now let’s implement wait_on_signal. I said earlier that we should return some
information about the signal that occurred. Let’s make a type for this pur-
pose in sdb/include/libsdb/process. hpp:

#include <cstdint>
namespace sdb {
struct stop reason {
stop_reason(int wait_status);

© process_state reason;
O std::uint8 t info;
};

class process {

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

public:
--snip--

® stop reason wait on_signal();
--snip--

};

The sdb: :stop_reason type holds the reason for a stop (whether the pro-
cess exited, terminated, or just stopped) @ and some information about the
stop (such as the return value of the exit or the signal that caused a stop or
termination) ®. This information will come from the status output param-
eter of waitpid, which we’ll parse inside the stop_reason constructor. We also
fill in that question mark from earlier in the return type of wait_on_signal
with the new stop_reason type ©.

Let’s parse the waitpid status in the stop_reason: :stop_reason implemen-
tation, found in sdb/sr¢/process.cpp. We can use a series of macros to inspect
the status that waitpid gives us:

sdb::stop_reason::stop reason(int wait_status) {

if (WIFEXITED(wait_status)) {
reason = process state::exited;
info = WEXITSTATUS(wait_ status);

}

else if (WIFSIGNALED(wait_status)) {
reason = process_state::terminated;
info = WTERMSIG(wait_status);

}

else if (WIFSTOPPED(wait status)) {
reason = process_state::stopped;
info = WSTOPSIG(wait_status);

First, WIFEXITED tells us if a given status represents an exit event; then,
WEXITSTATUS extracts the exit code. We use WIFSIGNALED and WIFSTOPPED to figure
out whether the stop was due to a termination or a stop and WTERMSIG and
WSTOPSIG to extract the signal codes.

We can now use this type inside wait_on_signal:

sdb::stop_reason sdb::process::wait_on_signal() {
int wait_status;
int options = 0;
if (waitpid(pid_, 8&wait_status, options) < 0) {
error::send_errno("waitpid failed");
}
stop_reason reason(wait_status);
state_ = reason.reason;
return reason;

Attaching to a Process 45

46

Chapter 3

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

We call waitpid, update the state of the process based on the stop rea-
son, and then return the reason to the caller. Now that sdb: :process has all
the ptrace functionality we relied on in sdb/tools/sdb.cpp, we can go back and
substitute it in for the ptrace calls. As a result, attach becomes this:

#include <libsdb/process.hpp>

namespace {
std: :unique_ptr<sdb: :process> attach(int argc, const char** argv) {

// Passing PID

if (argc == 3 8&& argv[1] == std::string view("-p")) {
pid t pid = std::atoi(argv[2]);

@ return sdb::process::attach(pid);

}

// Passing program name

else {
const char* program_path = argv[1];

O return sdb::process::launch(program_path);

}

We replace the ptrace calls that attached to the process with a call to
sdb: :process: :attach @. We then do a similar replacement for the launch
code ®. We can get rid of the resume and wait_on_signal functions in sdb/tool-
s/sdb.cpp and replace handle_command with this:

namespace {
void handle_command(std::unique_ptr<sdb: :process>& process,
O std::string view line) {
auto args = split(line, ' ');
auto command = args[0];

if (is_prefix(command, "continue")) {
® process->resume();
process->wait_on_signal();

}
else {

std::cerr << "Unknown command\n";
}

First, we update the signature to take a std: :unique_ptr<sdb: :process>&
instead of a PID @. We then call our new version of resume that lives inside
sdb: :process. If the user issues a continue command, we call resume ® and
wait_on_signal on the given process.

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

Even better, we can augment that call to process->wait_on_signal() to
print some details out to the user:

namespace {
void print_stop_reason(
const sdb::process& process, sdb::stop _reason reason) {
std::cout << "Process "

<< process.pid() << ;

switch (reason.reason) {
case sdb::process_state::exited:
std::cout << "exited with status
<< static_cast<int>(reason.info);

break;
case sdb::process_state::terminated:
std::cout << "terminated with signal "
® << sigabbrev_np(reason.info);
break;
case sdb::process state::stopped:
std::cout << "stopped with signal " << sigabbrev_np(reason.info);
break;

std::cout << std::endl;

void handle_command(std::unique_ptr<sdb: :process>& process,
std::string view line) {
--snip--
if (is_prefix(command, "continue")) {
process->resume();
auto reason = process->wait_on_signal();
® print_stop_reason(*process, reason);

}

--snip--

We introduce a function called print_stop_reason that, as you might ex-
pect, prints the stop reason. It starts by printing out the inferior’s PID to the
user, and then prints out a message saying why that process stopped. If it ex-
ited, we print the exit status, and if it terminated or stopped due to a signal,
we print the signal name. Fortunately, there is a function called sigabbrev_np
O that gets the signal abbreviation for a given signal code, so we use that
here. If you’re using a toolchain that doesn’t supply the sigabbrev_np func-
tion, you can instead index the sys_siglist array, like sys_siglist[reason.info].
Update the implementation of handle_command to call print_stop_reason @.

Attaching to a Process 47

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

The last refactoring step is to update main to marshal the sdb: :process
around and report exceptions back to the user. We’ll place the main loop of
the debugger into a main_loop function that gets called from main:

#include <libsdb/error.hpp>
namespace {
void main loop(std::unique ptr<sdb::process>& process) {
char* line = nullptr;
while ((line = readline("sdb> ")) != nullptr) {
std::string line str;

if (line == std::string view("")) {
free(line);
if (history_length > 0) {
line_str = history list()[history_length - 1]->line;

}

}

else {
line_str = line;
add_history(line);
free(line);

}

if (!line_str.empty()) {
try {

@ handle_command(process, line_str);

}

@ catch (const sdb::error& err) {
std::cout << err.what() << "\n';

int main(int argc, const char** argv) {
if (argc == 1) {
std::cerr << "No arguments given\n";
return -1;

try {
® auto process = attach(argc, argv);
main_loop(process);

}

O catch (const sdb::errord err) {
std::cout << err.what() << "\n';

48 Chapter 3

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

We extract the main loop in main into the new main_loop function, which
takes the process as an argument. Then we pass that process through to
handle_command @. If we encounter an error while handling a user command,
we report the error and continue running so they can issue more commands.
We achieve this with a catch handler @.

In main, we pass the process returned by attach @ to main_loop. If launch-
ing or attaching to the initial process fails, we just exit @.

I'm sure you’ll agree that this code will be much easier to manipulate
and test than the old version.

Summary

In this chapter, you built a library that can launch, attach to, and continue
Linux processes. You wrote a command line interface for it that exposes
these facilities to the user.

In the next chapter, you’ll learn how to use pipes to communicate be-
tween the debugger and the launched process, and use them to implement
automated tests for the code you just wrote.

Check Your Knowledge

1. What facilities are used on Linux to launch a new process?
2. Whatis the name of Linux’s debug API?

3. How do we wait for a child process to be signaled on Linux?

Attaching to a Process 49

Building a Debugger (Sample Chapter) © 11/13/2025 by Sy Brand

