Matrise

rektangulær rekke av tall, symboler eller uttrykk, arrangert i rader og kolonner

En matrise i matematikk er et rektangulært sett av elementer, ordnet i rekker og kolonner.[1][2] Elementene er vanligvis reelle eller komplekse tall, men kan også være mer generelle objekter i en kropp eller en ring. Et eksempel på en matrise er vist i figuren til høyre.

(n × m)-matrise med elementer

En (n × m)-matrise har n rekker eller rader og m kolonner eller søyler, og dimensjonen til matrisen sies å være n × m. En matrise med like mange rader som kolonner kalles en kvadratisk matrise. Rangen til en matrise er det største antallet lineært uavhengige rader eller kolonner i matrisen.

Matriser har et stort anvendelsesområde i matematikk og også i andre fagfelt, som fysikk og kjemi. Viktige grunner for dette er nær sammenheng mellom matriser og lineære algebraiske ligninger samt matriser og lineære transformasjoner. Praktiske problemstillinger kan lede til svært store matriser, der millionvis av elementer ikke er uvanlig. På grunn av det store bruksområdet, er det lagt ned en stor innsats i å utvikle effektive beregningsmetoder for matriser.

I matematikk er grunnleggende teori for matriser en del av fagfeltet lineær algebra, men de studeres også i andre spesialområder, som i numerisk matematikk. Det er utviklet en rik terminologi for matrisetyper og matrise-egenskaper. Matriser som består av kun én kolonne eller én rekke svarer til vektorer, mens en tensor kan betraktes som en generalisering av en matrise fra to dimensjoner (rekker, kolonner) til tre eller flere dimensjoner.

Notasjon og terminologi for generelle matriser

rediger

Dimensjon

rediger

En matrise betegnes vanligvis med en stor bokstav  , ofte også med fet skrift  . Dimensjonen eller ordenen til matrisen er (n × m), når n er antallet rekker og m er antallet kolonner. Dette kan markeres på flere måter:[2]

 .

Tilsvarende sier en også at n er rekke-dimensjonen og m er kolonne-dimensjonen. Matrisen karakteriseres som en (n × m)-matrise.

I en kvadratisk matrise er det like mange kolonner som rekker. Dersom det går klart fram at en matrise er kvadratisk, kan en oppgi dimensjonen som n.[3]

En matrise med bare én rekke eller én søyle kan betraktes som en vektor og kalles da henholdsvis en rekkematrise og en søylematrise, alternativ en rekkevektor og en søylevektor.[4] Dimensjonen til disse vil være henholdsvis (1 × m) og (n × 1).

Matrise-elementer

rediger

I en reell matrise er elementene reelle tall, og i en kompleks matrise er elementene komplekse. Mengden av alle reelle matriser skrives som  , der   er mengden av reelle tall. Mengden av komplekse matriser skrives tilsvarende som  .[5]

Flere alternative skrivemåter for å spesifisere matriser er i vanlig bruk. Dersom alle elementene skal skrives ut, bruker en som regel en form for parenteser til å omslutte elementene:

 

En generell (n × m)-matrise med n rekker og m kolonner kan skrives på formen

 

Matrise-elementene skrives ofte med liten bokstav, og hvert element er definert ved to indekser:   er elementet i rekke nummer   og kolonne nummer  .

Matriser kan også skrives i kompakt form, uten å definere hvert enkelt element:

 

De enkelte elementene kan spesifiseres ved hjelp av en regel, som i det følgende eksempelet:

 

Diagonaler

rediger

I en kvadratisk matrise utgjør elementene   med   prinsipaldiagonalen eller hoveddiagonalen, ofte omtalt bare som diagonalen.[2] Sekundærdialogen eller skjevdiagonalen går fra øvre høyre hjørne til nedre vestre hjørne, det vil si elementene  .[6][7]

Sammen med hoveddiagonalen kan en definere sidediagonaler, der   eller  . Diagonalen med  , det vil si diagonalen rett over hoveddiagonalen, kalles superdiagonalen.[8] Tilsvarende kan en definere subdiagonalen som diagonalen rett under hoveddiagonalen.

Undermatriser

rediger

Fra en generell matrise kan en definere en undermatrise eller en submatrise ved å slette at antall rekker og/eller søyler.[9] Det følgende eksempelet viser hvordan en undermatrise er laget fra matrisen   ved å slette en enkelt rad og en enkelt søyle, vist i rød farge;

 

Blokkmatriser

rediger

En matrise definert ved et sett av undermatriser kalles en blokkmatrise eller en partisjonert matrise.[2] I det følgende eksempelet er en blokkmatrise   definert ved fire undermatriser  :

 

Skrevet med alle elementene fullt ut, er matrisen gitt ved

 

Matriseoperasjoner

rediger

Elementære operasjoner

rediger

De følgende rekkeoperasjonene er kalt de elementære rekkeoperasjonene:[10]

  • Ombytting av to rekker i matrisen.
  • Multiplikasjon av alle elementene i en rekke med et tall ulik null.
  • Addisjon av et multiplum av en rekke til en annen rekke.

De elementære søyleoperasjonene er definert tilsvarende. Sammen utgjør disse de elementære matriseoperasjonene.

Addisjon og subtraksjon

rediger

To matriser   og   med samme dimensjon kan adderes ved å summere de enkelte elementene:[11]

 

Subtraksjon defineres tilsvarende. Fra definisjonen følger det umiddelbart at matriseaddisjon er kommutativ, det vil si at  .

Skalarmultiplikasjon

rediger

Multiplikasjon med en skalar   er definert ved å multiplisere alle elementene i matrisen:[11]

 

De to operasjonene matriseaddisjon og skalarmultiplikasjon gjør at mengden av (n×m)-matriser definerer et vektorrom.

Matrisemultiplikasjon

rediger

Dersom   er en (n×m)-matrise og   er en (m×p)-matrise, så kan produktmatrisen   defineres ved at matrise-elementene til   er gitt ved summen[11]

 .

Her er   og   matrise-elementene til   og  . Produktmatrisen C er en (n×p)-matrise.

Matrisemultiplikasjon er assosiativ, slik at  , når matrisene  ,   og   er slik at multiplikasjonene er definert. Videre er multiplikasjon distributiv med hensyn på addisjon, slik at   og  . Derimot er multiplikasjonen ikke kommutativ, slik at   generelt ikke er lik  . Produktene   og   vil bare være definert samtidig dersom   har dimensjonen (n × m) og   har dimensjonen (m × n). Dette er tilfelle dersom begge matrisene er kvadratiske.

Et skalarprodukt mellom to vektorer kan betraktes som et produkt av en rekkematrise og en søylematrise. Matriseproduktet kan en dermed se på som en generalisering av skalarproduktet.[12]

Produkt av en matrise med seg selv kan skrives som en potens:  . Ved å addere slike potenser kan en også lage matrisepolynom. En kan også definere kvadratroten av en matrise   som en matrise   med egenskapen  .[13]

Med matrisemultiplikasjon er mengden av matriser en gruppe. Med både addisjon og multiplikasjon er mengden også en algebraisk struktur.

Kronecker-produkt

rediger

Dersom   er en (n×m)-matrise og   er en (p×q)-matrise, så er Kronecker-produktet definert ved[11]

 

Resultatmatrisen har dimensjon (np)×(mq). Produktet kalles også tensorprodukt og direkte produkt.

Hadamard-produkt

rediger

Hadamard-produktet eller Schur-produktet for matriser er et elementvis produkt av to matriser med samme dimensjon (n×m):[11]

 

Direkte sum

rediger

Den direkte summen av to kvadratiske matriser er definert ved[14]

 

Transponering

rediger

Den transponerte matrisen   er definert ved en ombytting av rekker og kolonner i den opprinnelige matrisen  :[15]

 

For den transponerte matrisen brukes også notasjonen  ,  ,   og  .[16][5][17]

Konjungert transponering

rediger

Den konjugert-transponerte matrisen   er definert ved en ombytting av rekker og kolonner i den opprinnelige matrisen   samt kompleks konjugasjon av matrise-elementene:[15]

 

  kalles også den hermitsk-adjungerte til matrisen. Notasjonen   er også brukt.[trenger referanse]

Invers

rediger

Inversen til en kvadratisk matrise   er definert som den entydig bestemte matrisen   som oppfyller ligningen[18]

 

der   er identitetsmatrisen.

Matrisen   er invertibel hvis determinanten til   er ulik null:  . I motsatt fall er matrisen singulær.

En (2×2)-matrise kan inverteres med formelen

  .

Generalisert invers

rediger

For en generell matrise   er en generalisert invers   en matrise som oppfyller ligningen[18]

 .

Dersom   er en kvadratisk (n×n)-matrise med rang n, så er  . Den generaliserte inversen er generelt ikke entydig.

Matrisetyper

rediger

Kvadratiske matriser

rediger

De følgende definisjonene gjelder for kvadratiske matriser.

  • En båndmatrise er en matrise der det eksisterer to positive heltall   og   slik at elementene er lik null for   og for  . Båndbredden til matrisen er  .[19]
  • En diagonalmatrise er en matrise der alle elementene utenom diagonalen er lik null.[15] En diagonalmatrise kan skrives  , med elementene på diagonalen spesifisert.
  • En diagonaldominant matrise er en matrise der absoluttverdien av et diagonalelement er større eller lik summen av de andre elementene i en rekke.[20]
  • En hermitisk matrise er en matrise der  .[21][22]
  • En Hessenberg-matrise er en matrise der elementene i matrisen eller i den transponerte matrisen er lik null for  .[23][24]
  • En Hilbert-matrise er en matrise der  .[25]
  • En idempotent matrise er en matrise der  .[22]
  • En identitetsmatrise er en diagonalmatrise der alle diagonalelementene er lik 1. En vanlig notasjon for identitetsmatrisen er  .[5]
  • En M-matrise eller en Minkowski-matrise er en ikke-singulær matrise der   for   og der også  .
  • En nilpotent matrise er en matrise der   for et heltall  .[26]
  • En normalmatrise er en matrise der  .[22]
  • En ortogonal matrise er en ikke-singulær matrise der  , det vil si  .[22][26]
  • En positiv-definit matrise er en matrise der produktet   alltid er ikke-negativt. Tilsvarende er en negativt-definit matrise en matrise der produktet   alltid er ikke-positivt.[22]
  • En singulær matrise er en matrise med determinant lik null. Tilsvarende er en regulær matrise eller ikke-singulær matrise en matrise med determinant ulik null.[27][28]
  • En skalarmatrise er en diagonalmatrise der alle diagonalelementene er samme tall  , det vil si matrisen  .[6]
  • En skjevsymmetrisk matrise er en matrise der  .[29]
  • En Toeplitz-matrise er en matrise der elementene på en vilkårlig diagonal er reelle og like, det vil si at   og   er reelle tall.[30]
  • En triangulærmatrise er en matrise der elementene over eller under diagonalen er lik null.[31]
  • En tridiagonal matrise er en matrise der elementene er lik null dersom  .[24]
  • En unitær matrise er en ikke-singulær matrise der  .[31]
  • En Vandermonde-matrise er en matrise der   og   er reelle eller komplekse tall.[32]

Generelle matriser

rediger
  • En glissen matrise er en matrise der de fleste elementene er lik null.[24]
  • En nullmatrise er en matrise der alle elementene lik null. Nullmatrisen kan skrives som  .[5]
  • En positiv matrise er en reell matrise der alle elementene er positive.[31]

Teori for kvadratiske matriser

rediger

Determinanter

rediger
Utdypende artikkel: Determinant

For en reell, kvadratisk matrise er determinanten et reelt tall, entydig bestemt av elementene i matrisen. Tilsvarende er determinanten til en kompleks matrise et komplekst tall. Presist kan en si at determinanten er en funksjon med definisjonsmengde lik mengden av reelle/komplekse, kvadratiske matriser og med verdimengde lik mengden av reelle/komplekse tall.

Dersom en uttrykker en matrise som en samling av rekker,  , så kan en definere determinanten som en funksjon   med de følgende egenskapene:[33]

  • Funksjonen er homogen i hver rekke, det vil si at  .
  • Funksjonen er additiv i hver rekke, det vil si at  .
  • Funksjonen er lik null dersom to rekker er like.
  • Funksjonen er lik 1 for identitetsmatrisen.

Determinanten til matrisen   betegnes som regel   eller  . Notasjonen   brukes også, men det er lett å forveksle dette symbolet med absoluttverdien av matrisen. For absoluttverdien av en matrise brukes både   og  . Ønsker en å presisere elementene i matrisen, skrives determinanten vanligvis ved å omgi elementene med loddrette streker:

 

Leibniz' formel uttrykket determinanten som en sum av n produkt.[trenger referanse] Hvert produkt inneholder n faktorer, der hver faktor er et matrise-element. I hvert produkt er hver rekke og hver søyle i matrisen representert med ett og kun ett element. For en (2×2)-matrise er determinanten gitt ved formelen

  .

Determinanter kan også beregnes ved hjelp av Laplace-ekspansjon.[34]

Determinanten kan brukes til å karakterisere egenskaper til matrisen og til den lineære transformasjonen som matrisen representerer. For eksempel vil en kvadratisk matrise med en determinant ulik null, ha definert en invers. Determinanten til en ortogonal matrise har alltid absoluttverdi lik 1.

Matrisespor

rediger

Sporet til en kvadratisk matrise   skrives   og er lik summen av elementene på diagonalen:[14]

 

Notasjonen er avledet av det engelske begrepet «trace», som betyr spor.

Sporet er også lik summen av egenverdiene. En rekke generelle relasjoner gjelder for matrisespor:[35]

 

Egenverdier og egenvektorer

rediger
Utdypende artikkel: Egenvektor

Egenverdiene til en kvadratisk matrise er definert som nullpunktene til det karakteristiske polynomet, definert ved

 .

Her er   enhetsmatrisen med samme dimensjon n som  . Polynomet i   har grad n, og tar en multiplisiteten med i betraktning vil matrisen ha n egenverdier.

Alternativt kan en definere en egenverdi som et tall   som gjør at ligningen

 .

har en løsning ulik nullvektoren. Løsningsvektoren   kalles en egenvektor til  .

Ifølge Caley-Hamiltons teorem tilfredsstiller matrisen   sitt eget karakteristiske polynom, det vil si

 ,

der høyre side nå er nullmatrisen.

Teori for generelle matriser

rediger

Matriserang

rediger

Rangen til en matrise er det største antallet lineært uavhengige rekker eller kolonner i matrisen.[9]

Dersom rangen i en matrise er lik  , så eksisterer det en kvadratisk, ikke-singulær undermatrise av dimensjon (p×p), mens eventuelle kvadratiske undermatriser av høyere dimensjon er singulære.

Rangen til en matrise endres ikke dersom det utføres en eller flere elementære operasjoner på matrisen.

Matrisenorm

rediger
Utdypende artikkel: Norm (matematikk)

Normen til en generell matrise   er et ikke-negativ reelt tall   definert med de følgende egenskapene[36]

  •   hvis   og   hvis og bare hvis  .
  •   for alle skalarer  .
  •   for alle matriser   og  .

Det eksisterer en stort utvalg av matrisenormer, eksempelvis:

 

Den siste normen kalles Frobenius-normen og er mye brukt i numerisk analyse.

Lineære ligninger

rediger

Lineære algebraiske ligninger er ligninger på formen

 

der   er en kjent koeffisientmatrise og   en kjent vektor. Den ukjente   er også en vektor. For et system med like mange ligninger som ukjente kan en formelt skrive en entydig løsning som

 

Løsningen eksisterer dersom den inverse matrisen   er definert, det vil si dersom matrisen er ikke-singulær. Lineære ligninger kan løses ved hjelp av Cramers regel eller ved Gauss-eliminasjon.

I det generelle tilfellet der   er en ikke-kvadratisk matrise, så kan matriserang brukes til å studere om systemet har ingen, én eller mange løsninger.[37]

Lineære transformasjoner

rediger

Matriser er nært knyttet til lineære transformasjoner.[38] La   være en lineær transformasjon mellom to endelig-dimensjonale vektorrom:  . Anta at det er valgt basis for hver av de to vektorrommene. Da kan transformasjonen representeres på matriseform:

 

Matrisen   har dimensjon (n×m). Hver kolonne i   representerer transformasjonen av en basisvektor i   relativ til den valgte basisen i  . Elementene i   kalles komponentene til transformasjonen, relativ til de to valgte basisene. Med valgte basiser for   og   er vektorrommet av matriser   isomorft med vektorrommet av lineære transformasjoner fra   til  .[39]

Når matrisen A er ortogonal, sies også   å være en ortogonal transformasjon. Slike transformasjoner har mange anvendelser, blant annet i geometri for å beskrive operasjoner som translasjon, rotasjon, speilvending, projeksjon og skalering av objekter i rommet.

To kvadratiske matriser   og   sies å være similære dersom det eksisterer en tredje invertibel matrise   slik at[27]

 .

Similære matriser er representasjoner av én og samme lineære transformasjon, men relativ til ulike basis-valg.[40]

Singulærverdier

rediger

Singulærverdiene til en matrise   med dimensjon (n × m) er kvadratrøttene til egenverdiene til produktet   dersom   og til produktet   dersom  .

En matrise   kan alltid skrives som et matriseprodukt

 

der   er en diagonalmatrise av singulærverdiene, og   og   er unitære matriser. Matriseproduktet   kalles singulærverdi-dekomponeringen til matrisen.

Numerisk matriseregning

rediger

Matriser inngår i svært mange praktiske problemstillinger, og det eksisterer derfor et rikt utvalg av metoder for matriser på datamaskiner. Slike metoder studeres i numerisk lineær algebra, et fagfelt i numerisk analyse. En rekke standard bibliotek med implementasjon av numeriske algoritmer for matriser er utviklet, slik som BLAS[41] og LAPACK[42].

Numeriske metoder for matriser omfatter både direkte metoder og iterative metoder. En vanlig direkte metode for å finne løsningen av mindre ligningssystem  , er Gauss-eliminasjon med pivotering. Dimensjonen til matriser som har opphav i løsning av differensialligninger kan bli svært stor, med mange millioner elementer. For ligningssystem med slike matriser brukes typisk iterative metoder, slik som konjugerte-gradient-metoden.

For å finne elementene i et produkt av to (n × n)-matriser numerisk, trenger en orden   operasjoner, dersom en bruker summasjonsformelen gitt over. Det har vært jaktet intenst på mer effektive metoder, og den gjeldede teoretiske hastighetsgrensen (mars 2021) for matrisemultiplikasjon er  .[43]

For å analyse egenskaper til en numeriske matrisemetode, brukes noen ganger kondisjonstallet til matrisen, definert ved[44]

 

Definisjonen avhenger av hvilken norm som brukes.

Generaliseringer

rediger

Tensorer

rediger

En matrise der elementene er tall kan representere en lineær transformasjon mellom to vektorrom, med valgte faste basiser i begge vektorrommene. Den lineære transformasjonen er i seg selv uavhengig av basisene. I mange problemstillinger i fysikk og geometri kan det være hensiktsmessig å la valgt basis endre seg i rommet, for eksempel i problemstillinger knyttet til en kuleflate. En tensor er en multilineær transformasjon som også har definert transformasjonsregler knyttet til endringer i basisvektorene.[45] Tilsvarende en lineær transformasjon kan en tensor representeres ved et multi-dimensjonal sett av komponenter, og tensoren kan i den forstand betraktes som en generalisering av en matrise. En matrise kan være en representasjon av en 2.ordens tensor.

Historie og etymologi

rediger

Bruk av matriser har en lang historie, med utgangspunkt i studiet av ligninger og determinanter. Arthur Caley er kalt «grunnleggeren av matriseteori»,[46] etter å ha publisert flere artikler i 1840-årene om emnet.[47] I disse artiklene brukte han både doble vertikale streker og forskjellige typer parenteser for å angi matriser.

Selve ordet «matrise» ble første gang bruk av James Joseph Sylvester i 1850.[48][46]

Stammen i det latinske ordet «matrix» er «mater» med betydning «mor». Ordet «matrix» ble i latin brukt som betegnelse på et avlsdyr av hunnkjønn, men gikk etter hvert over til å bety «livmor» og også «gravid kvinne». Gradvis fikk ordet også metaforisk betydning, brukt for å betegne «noe som er opphav til noe annet». En matrise i matematikk er opphav til geometriske og algebraiske transformasjoner.[49]

Se også

rediger

Litteratur

rediger
  • Helmut Lütkepohl (1996). Handbook of matrices. Chichester: John Wiley and Sons. ISBN 0-471-97015-8. 
  • Fr. Fabricius-Bjerre (1977). Lærebog i geometri. Analytisk geometri og lineær algebra. Lyngby, Danmark: Polyteknisk forlag. ISBN 87-502-0440-8. 
  • Gene Golub, Charles van Loan (1996). Matrix computations. Baltimore: Johns Hopkins University Press. ISBN 0-8018-5414-8. 
  • T.M. Apostol (1969). Calculus. II. New York: John Wiley & Sons. ISBN 0-471-00008-6. 
  • Ronald Douglas Milne (1980). Applied functional analysis, an introductory treatment. London: Pitman Publishing Limited. ISBN 0-273-08404-6. 

Referanser

rediger
  1. ^ E.J.Borowski, J.M.Borwein (1989). Dictionary of mathematics. Glasgow: Collins. s. 366-367. ISBN 0-00-434347-6. 
  2. ^ a b c d H. Lütkepohl: Handbook of matrices s.1
  3. ^ Fr. Fabricius-Bjerre: Lærebog i geometri.... s.4
  4. ^ Fr. Fabricius-Bjerre: Lærebog i geometri.... s.124
  5. ^ a b c d H. Lütkepohl: Handbook of matrices s.xiv
  6. ^ a b H. Lütkepohl: Handbook of matrices s.273
  7. ^ «Skew Diagonal». Wolfram MathWorld. Besøkt 8. februar 2022. 
  8. ^ «Superdiagonal». Wolfram MathWorld. Besøkt 8. februar 2022. 
  9. ^ a b Fr. Fabricius-Bjerre: Lærebog i geometri.... s.101ff
  10. ^ H. Lütkepohl: Handbook of matrices s.12
  11. ^ a b c d e H. Lütkepohl: Handbook of matrices s.3
  12. ^ T.M. Apostol: Calculus , Bind II s.54
  13. ^ H. Lütkepohl: Handbook of matrices s.8
  14. ^ a b H. Lütkepohl: Handbook of matrices s.4
  15. ^ a b c H. Lütkepohl: Handbook of matrices s.5
  16. ^ T.M. Apostol: Calculus , Bind II s.91
  17. ^ Fr. Fabricius-Bjerre: Lærebog i geometri.... s.2
  18. ^ a b H. Lütkepohl: Handbook of matrices s.7
  19. ^ H. Lütkepohl: Handbook of matrices s.227
  20. ^ H. Lütkepohl: Handbook of matrices s.238
  21. ^ Fr. Fabricius-Bjerre: Lærebog i geometri.... s.173
  22. ^ a b c d e H. Lütkepohl: Handbook of matrices s.10
  23. ^ H. Lütkepohl: Handbook of matrices s.250
  24. ^ a b c G.H.Golub, C.F.Van Loan: Matrix computations s.6
  25. ^ H. Lütkepohl: Handbook of matrices s.251
  26. ^ a b G.H.Golub, C.F.Van Loan: Matrix computations s.7
  27. ^ a b H. Lütkepohl: Handbook of matrices s.275
  28. ^ Fr. Fabricius-Bjerre: Lærebog i geometri.... s.7
  29. ^ a b H. Lütkepohl: Handbook of matrices s.156
  30. ^ G.H.Golub, C.F.Van Loan: Matrix computations s.125
  31. ^ a b c H. Lütkepohl: Handbook of matrices s.11
  32. ^ H. Lütkepohl: Handbook of matrices s.284
  33. ^ T.M. Apostol: Calculus , Bind II s.74
  34. ^ R. D. Milne: Applied functional analysis... s.79
  35. ^ H. Lütkepohl: Handbook of matrices s.41
  36. ^ G.H.Golub, C.F.Van Loan: Matrix computations s.14-15
  37. ^ Fr. Fabricius-Bjerre: Lærebog i geometri.... s.116ff
  38. ^ Fr. Fabricius-Bjerre: Lærebog i geometri.... s.159
  39. ^ T.M. Apostol: Calculus , Bind II s.52
  40. ^ R. D. Milne: Applied functional analysis... s.78
  41. ^ «BLAS (Basic Linear Algebra Subprograms)». netlib.org. Besøkt 11. februar 2022. 
  42. ^ «LAPACK - Linear Algebra PACKage». netlib.org. Besøkt 11. februar 2022. 
  43. ^ «Matrix Multiplication Inches Closer to Mythic Goal». Quanta Magazine. 23. mars 2021. Besøkt 11. februar 2022. 
  44. ^ G.H.Golub, C.F.Van Loan: Matrix computations s.25
  45. ^ Rutherford Aris (1989). Vectors, tensors and the basic equations of fluid mechanics. New York: Dover Publications. s. 28. ISBN 0-486-66110-5. 
  46. ^ a b Richard W. Feldmann Jr (1962). «Arthur Caley - founder of matrix theory». The Mathematical Teacher. 55 (6): 482–484. 
  47. ^ Florian Cajori (2007). A history of mathematical notations. II. Princeton, USA: Cosimo. s. 92-93. ISBN 978-1-60206-684-7. 
  48. ^ «Matrices and determinants». MacTutor. Besøkt 10. februar 2022. 
  49. ^ Steven Schwartzman (1994). The words of mathematics. An etymological dictionary of mathematical terms used in English. Washington, DC: The Mathematical Association of America. s. 132. ISBN 0-88385-511-9.