TLTI
Exercise O:

Faclal Keypoints
Detection




Keypoint Model

The __init__ function:
HHH#H# S S S S S S

def conv_sandwich(inp, out, kernel_size, stride, pad):
Tips:
conv = nn.Conv2d(inp, out, kernel size, stride, pad)

nn.init.kaiming_normal_(conv.weight, nonlinearity="relu") _You can use HFWSXEQLJerﬂja[ﬂDF

return nn.Sequential ( staclking'Lga\/ers 'together in order to
conv, avoid writing this common block
nn.MaxPool2d(2, 2), again.
nn.ReLU()

) - nn.Sequential doesn't take list as
e o 0 argument, so we need to
layers.append(conv_sandwich(1, 32, kernel size=3, stride=1, pad=1)) decompose
layers.append(conv_sandwich(32, 64, kernel size=3, stride=1, pad=1)) It by USHWg the *cxaeraton

layers.append(conv_sandwich(64, 128, kernel size=3, stride=1, pad=1))
layers.append(conv_sandwich (128, 256, kernel size=3, stride=1, pad=1))
self.convs = nn.Sequential(*layers)

self.fcl
self.fc2

nn.Sequential(nn.Linear(256 * 6 * 6, 256), nn.RelLU())

CLaSSIﬁcatlon nn.Sequential(nn.Linear (256, 30))

nn.init.kaiming_normal_(self.fc1[0].weight, nonlinearity="relu")
nn.init.xavier_normal_(self.fc2[0].weight)
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e, 1Ol INIessner



Keypoint Model

def conv_sandwich(inp, out, kernel_size, stride, pad):
return nn.Sequential(
nn.Conv2d(inp, out, kernel_size, stride, pad),
nn.MaxPool2d(2, 2),
nn.ReLU()

layers = []

layers.append(conv_sandwich(1, 32, kernel_size=3, stride=1, pad=1))
layers.append(conv_sandwich(32, 64, kernel_size=3, stride=1, pad=1))
layers.append(conv_sandwich(64, 128, kernel_size=3, stride=1, pad=1))
layers.append(conv_sandwich(128, 256, kernel_size=3, stride=1, pad=1))
self.convs = nn.Sequential(xlayers)

CONV2D

CLASS torxch.nn.Conv2d(in_channels: int, out_channels: int, kernel_size: Union[T, Tuple[T,
T11, stride: Union[T, Tuple[T, T]] = 1, padding: Union[T, Tuple[T, T1] = O,
dilation: Union[T, Tuple[T, T]] = 1, groups: int = 1, bias: bool = True,
padding_mode: str = 'zeros')

[SOURCE]

For the first sandwich layer:

conv_sandwich(1l, 32, kernel_size=3, stride=1, pad=1)

nn.Conv2d(inp, out, kernel_size, stride, pad),
after the convad:
the output size = (width +2"padding- kernel_size)/stride + 1
= (96+2-3)/1+1 - 96
nn.MaxPool2d(2, 2),
after maxpooling: 96,2 - 48

output dimension: (32,48,48)

After 4 sandwich layers, the output dimension is (256,6,6)



Keypoint Model - forward

def forward(self, x):

# check dimensions to use show_keypoint_predictions later
if x.dim() == 3:
X = torch.unsqueeze(x, ©)
SR AR R S R A S S S S A S R S R

# QUely): Define the forward pass behavior of your model #
# for an input image x, forward(x) should return the #
# corresponding predicted keypoints. #
# NOTE: what is the required output size? #

SR L L

self.convs(x)
Xx.view(x.size(0), -1)
self.fcl(x)
self.fc2(x)

X X X X
]

it S
# END OF YOUR CODE #
S
return x

Remark:

Keep in mind that we need
to reshape the output after
applying the convolutional
layers.



Training Loop

# Qe8 - Train Your Model

# model.to(device)

import torch.optim as optim
from torch import nn

batch_size = 20
n_epochs = 2

criterion = nn.MSELoss()

train_loader = DatalLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0,

optimizer = optim.SGD(
model.parameters(),
1r=0.01,
momentum=0.9,
weight_decay=1e-6,
nesterov=True

model.train() # prepare net for training
running_loss = 0.0
avg_loss = 0.0
for epoch in range(n_epochs):
for i, data in enumerate(train_loader):
image, keypoints = data["image"].to(device), data["keypoints"].to(device)
predicted_keypoints = model(image).view(-1, 15, 2)
loss = criterion(torch.squeeze(keypoints), torch.squeeze(predicted_keypoints))
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item() if abs(loss.item() - avg_loss) < 100 else ©
if i % 10 == 9: # print every 10 batches
avg_loss = running_loss / (len(train_loader) * epoch + i)
print(
"Epoch: {}, Batch: {}, Avg. Loss: {}".format(epoch + 1, i + 1, avg_loss)
)

print("Finished Training")

# END OF YOUR CODE #

- Load training data in batches and shuffle the data with PyTorch's Datal oader class.
- Train the model and track the loss




Hyperparameters tuning:

We have trained the model with different combination of hyperparameters, and the best Score we have achieved is 283,
You can train with other hyperparameters and get better results!

layers.append(conv_sandwich(1, 32, kernel_size=3, stride=1, pad=1))
layers.append(conv_sandwich(32, 256, kernel_size=3, stride=1, pad=1))
Iayers.append(conv_sandwich_(2_5_6, 128, kernel_size=3, stride=1, pad=1))
layers.append(conv_sandwich(128, 256, kernel_size=3, stride=1, pad=1))
self.convs = nn.Sequential(*layers)

self.fc1 = nn.Sequential(nn.Linear(256 * 6 * 6, 256), nn.ReLU())

self.fc2 = nn.Sequential(nn.Linear(256, 30), nn.Tanh())

weight decay momentum Learning rate Score
le-7 1.0 0.01 167.84
le-7 0.9 0.01 163.06
le-6 1.0 0.01 127.22
le-6 0.9 0.01 156.90
le-7 1.0 0.1 0.94
le-7 0.9 0.1 251.66
le-6 1.0 0.1 0.99
le-6 0.9 0.1 121.56

layers.append(conv_sandwich(1, 32, kernel_size=3, stride=1, pad=1))
layers.append(conv_sandwich(32, 64, kernel_size=3, stride=1, pad=1))
Iayers.append(conv_sandwich(_é&]ZS, kernel_size=3, stride=1, pad=1))
layers.append(conv_sandwich(128, 256, kernel_size=3, stride=1, pad=1))
self.convs = nn.Sequential(*layers)

self.fc1 = nn.Sequential(nn.Linear(256 * 6 * 6, 256), nn.ReLU())

self.fc2 = nn.Sequential(nn.Linear(256, 30), nn.Tanh())

weight decay momentum Learning rate Score
le-7 1.0 0.01 130.93
le-7 0.9 0.01 160.91
le-6 1.0 0.01 101.45
le-6 0.9 0.01 160.06
le-7 1.0 0.1 0.96
le-7 0.9 0.1 259.32
le-6 1.0 0.1 0.70
le-6 0.9 0.1 283.31
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Optional Exercise Q;

Spatial Batch
Normalization

2DL: Prof Niessner



The forward pass

def spatial_batchnorm_forward(x, gamma, beta, bn_param):

out, cache = None, None

B B S s

- Unlike the normal batchnorm which

# TODO: Implement the forward pass for spatial batch normalization. #

# # |

# HINT: You can implement spatial batch normalization using the # CompuJ[eS mean and variance Of
# vanilla version of batch normalization defined above. Your # each feature Spa’ua[ batchnorm
# implementation should be very short; ours is less than five lines. # '

I A R computes them of each channel

# Computation in one sweep by rearranging the dims to fit into

# the batchnorm_f d f k

x_sw:pp:dc::;.trzr?:;(:se(;?m?;?rZ, 3, 1)) - \X/e Onty need to rearrange the

x_swapped_reshaped = np.reshape(x_swapped, (-1, x_swapped.shape[-1])) dlmens'ong Of data and then use

out_temp, cache = batchnorm_forward( the normaL batchnorm ]Cor\)(/ard
X_swapped_reshaped, gamma, beta, bn_param) ,

out = np.transpose(np.reshape(out_temp, x_swapped.shape), (0, 3, 1, 2)) ]CUHCJ[IOH here.

R R R S S R S R R R S R S S I R R R S FEH
# END OF YOUR CODE #
S R R S S S R R A S R S S I R S
return out, cache




The backward pass

def spatial_batchnorm_backward(dout, cache):

dx, dgamma, dbeta = None, None, None

HER R AR R SRR R R SRR ER AR RS RS R R RS S
# TODO: Implement the backward pass for spatial batch normalization. #

# # . . .
# HINT: You can implement spatial batch normalization using the # - S|m|tar aS the forward paSS, |ﬂ
# vanilla version of batch normalization defined above. Your #

# implementation should be very short; ours is less than five lines. # tkwea t)EaC:L<\X/EaI/Cj F)Eafsss \X/EE (:Earw

compute the gradients by using the
dout_swapped = np.transpose(dout, (8, 2, 3, 1))
dout_swapped_reshaped = np. reshape( backprop from normal batchnorm
dout_swapped, (-1, dout_swapped.shape[-1])) : ' :
with the rearranged dimensions.

dx_sr, dgamma, dbeta = batchnorm_backward(dout_swapped_reshaped, cache)

dx = np.transpose(np.reshape(dx_sr, dout_swapped.shape), (@, 3, 1, 2))

# END OF YOUR CODE #
W I R R I I R I R S
return dx, dgamma, dbeta




Questions? Piazza &



