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Exercise 2: Math Background (Solution)

1 Linear algebra

a) A RM*XN B c RMXM ¢ ¢ RN D e R,

b) f($) = Zz 1 Z =1 xl$]Mz] = Z =17 Zé\/:1 :EjMij = Zivzl :L‘Z(M ’ w)z =z Mz.

c¢) Proof: Consider ||u — v||?, we have:

||u—'vH2 (u —v,u —v)
= (u,u) — (u,v) — (v,u) + (v,v)
= [lul]® - 2(u,v) + [|v|?

=0
Hence, u = v.
2 Linear Least Square
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a) By definition of the gradient, we need to determine Vf(x) = 69‘1:2 . For 1 <k <n, we
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The Kronecker delta is defined as follows: ¢;; = {1 ?f l 7 ‘7
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Hence, we obtain V, f(x) = 83_”2 =|.|=b
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b) To determine the gradient of the function f(x) = x' Ax, where A is a symmetric matrix in
S,, we can use the definition of the gradient:

Vaf() = of of oL

Ox1’ Oxs’ " Oz,

We start by computing the partial derivative of f with respect to z;.

x! x
of 0 (" - (Ax)) = oz (Az) + ' - d(Az)

= ZAijacj + ZAijxj = 22141']'.%‘]' = 2(14:}!2)Z
J J J

=e; -(Az) +x' - Ae;

where e; is the standard basis vector in the i’th direction (1 at the ¢’th, and all other entries
are 0’s).

Thus, the gradient of f is:

of (z)
ox

= [2(Az)1,2(Ax)y, ..., 2(Ax),] = 24z

Therefore, the gradient of the quadratic function f(x) = ' Ax is % =2Ax.

c) Let us first rewrite the expression:

f(®) = || Az — b||3
= (Az—b)' (Az —b)
= ((Az)" —b")(Axz — b)
= (:BTAT — bT)(A.’L' —b)
—ax'ATAx —2"ATb—b"Ax+b'b
—ax"ATAx —2¢"ATb+b"b.

Note that €T ATb = b" Az, because both result with a scalar. Since if s € R — s = s —
z'ATb=(x"ATD)" =b" Az.

Thus, by using part a) — 8%% =band b) — 8‘””;% = 2Ax, we obtain:

Vef(@) =Va(x' ATAz —22"ATb+b'b) =V, AT Az — V22" ATb+0
=2AT Az —2ATb=2AT (Ax —b)



3 Calculus - derivatives

a) The derivatives are:

/
¢« f@) =@+ e +1?] =20 +a+ 1)@+ e+ 1) =260 + 2+ 1) (322 + 1)
T / 621‘7 !’ 621 _ 6217 eQz / e2z eQz _ 6217 621 x
® fé(l‘) = {Z;Ur” = ( 1)( (+el2.)ac+(1)2 1)( +1) = 2 ( zre1226+(1)2 1)2 — (ezélfilp
o f3(2) =
/
= [(1 - 2)log(1 - )|
=log(l—z) - (1—2z)+(1—=2)-log'(1—2x)
= —log(1—2)+(1—x)- algi@ -% = log(1—z)+(1—z)- 1:@ (1-z)
=—log(l—z)—1

b) The gradients are:

» V=g (dlel3) = 5 (3272) = & (
o Vis= g (3llllz) = &

¢) The Jacobians are:
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d) The divergences are:

o divfy =22+ % =0

. lef9:%+%:




4 Sigmoid derivative
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5 Softmax derivative

5.1 1st approach - two cases

When deriving o(z) with respect to z, there are n x n partial derivates but we notice that they reduce
to only two distinct kinds:

o ; =0(z); wr.t z;. For example, deriving ﬁ w.r.t z1. (21 appears both in the nominator
k=

1 e
and in the denominator)

e §; = o(z); wr.t z;,i # j. For example, deriving ZL

A W.It 2 (22 appears only in the
k=1

denominator).

We first derive the first kind:

>kt €%
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In the last and second to last equality, we used a trick, or the observation, that we can express these
terms in means of §. In a similar fashion, we derive the second kind:
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In conclusion, the partial derivatives of the softmax layer § = o(z) with respect to its input z are
given by:

09i _ {@-(1—@» i=j
0z; =90 i F]
5.2 2nd approach - solve all in one!

A nice trick to solve both cases in one. First, we derive:

(‘Hog(si) - l 832-

82?]' S; &zj
Therefore:
0s; 1 0s; 0log(s;) 0 e =
aZj 5 S; 8,2]' N Ozj y azj Og(zgzl e?k ) 5 aZj [Z Og(kgl € )]
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With
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0y =0 i#]



6 Probability

a) We use the definition of the variance, namely
Var(X) = E[X?] — E[X]? (1)

and equivalently,
E[X?] = Var(X) + E[X]% (2)

Since X,Y ~ N(0,0?), we are given that E[X] = E[Y] = 0. With these observations, we obtain

var(XY) 2 E[X2Y?] - E[XY]?
“ EIX2E[Y?] - E[X]2E[Y]?
& (Var(X) + E[X]?) (Var(Y) + E[Y]?) - E[X]E[Y]?
= Var(X)Var(Y) + Var(X) E[Y]? +Var(Y) E[X]?
=0 =0
= Var(X)Var(Y)

(*)X,Y are independent.

b) We use the properties of the expectation and the variance of a random variable. For the mean
of Z, we observe:

X —
E[Z] = E { K }
o
1
= —E[X — /]
o
1
= - (EIX] - E[u)
1
; (e — )
=0
For the variance, remember that:
X —
Var { H
o

== [])]

& (X—M_E[X]—M)]




Therefore, we observe that:

Var[Z]

[

= %Var[X —

= SE[(X —u—E[X — )’
= E[(X —p -0

= E[(X —

- %Var[X]

1

In summary, we conclude that Z ~ N (0,1).



