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Exercise 2: Math Background (Solution)

1 Linear algebra

a) A ∈ RM×N , B ∈ RM×M , C ∈ R1×N , D ∈ R1×1.

b) f(x) = ∑N
i=1

∑N
j=1 xixjMij = ∑N

i=1 xi
∑N

j=1 xjMij = ∑N
i=1 xi(M · x)i = x⊤Mx.

c) Proof: Consider ∥u − v∥2, we have:

∥u − v∥2 = ⟨u − v, u − v⟩
= ⟨u, u⟩ − ⟨u, v⟩ − ⟨v, u⟩ + ⟨v, v⟩
= ∥u∥2 − 2⟨u, v⟩ + ∥v∥2

= 0
Hence, u = v.

2 Linear Least Square

a) By definition of the gradient, we need to determine ∇xf(x) =


∂f(x)
∂x1

∂f(x)
∂x2...

∂f(x)
∂xn

. For 1 ≤ k ≤ n, we

have
∂f(x)
∂xk

= ∂

∂xk

(
n∑

i=1
bixi

)
=

n∑
i=1

∂

∂xk
(bixi) =

n∑
i=1

δikbi = bk.

The Kronecker delta is defined as follows: δij =
{

0 if i ̸= j,

1 if i = j.

Hence, we obtain ∇xf(x) =


∂f(x)
∂x1

∂f(x)
∂x2...

∂f(x)
∂xn

 =


b1
b2
...

bn

 = b.
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b) To determine the gradient of the function f(x) = x⊤Ax, where A is a symmetric matrix in
Sn, we can use the definition of the gradient:

∇xf(x) =
[

∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

]
We start by computing the partial derivative of f with respect to xi.

∂f

∂xi
= ∂

∂xi
(x⊤ · (Ax)) = ∂x⊤

∂xi
· (Ax) + x⊤ · ∂(Ax)

∂xi
= ei

⊤ · (Ax) + x⊤ · Aei

=
∑

j

Aijxj +
∑

j

Aijxj = 2
∑

j

Aijxj = 2(Ax)i

where ei is the standard basis vector in the i’th direction (1 at the i’th, and all other entries
are 0’s).

Thus, the gradient of f is:

∂f(x)
∂x

= [2(Ax)1, 2(Ax)2, . . . , 2(Ax)n] = 2Ax

Therefore, the gradient of the quadratic function f(x) = x⊤Ax is ∂f
∂x = 2Ax.

c) Let us first rewrite the expression:

f(x) = ∥Ax − b∥2
2

= (Ax − b)⊤(Ax − b)
= ((Ax)⊤ − b⊤)(Ax − b)
= (x⊤A⊤ − b⊤)(Ax − b)
= x⊤A⊤Ax − x⊤A⊤b − b⊤Ax + b⊤b

= x⊤A⊤Ax − 2x⊤A⊤b + b⊤b.

Note that x⊤A⊤b = b⊤Ax, because both result with a scalar. Since if s ∈ R → s⊤ = s →
x⊤A⊤b = (x⊤A⊤b)⊤ = b⊤Ax.

Thus, by using part a) → ∂b⊤x
∂x = b and b) → ∂x⊤Ax

∂x = 2Ax, we obtain:

∇xf(x) = ∇x(x⊤A⊤Ax − 2x⊤A⊤b + b⊤b) = ∇xx⊤A⊤Ax − ∇x2x⊤A⊤b + 0
= 2A⊤Ax − 2A⊤b = 2A⊤(Ax − b)

.
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3 Calculus - derivatives

a) The derivatives are:

• f ′
1(x) =

[
(x3 + x + 1)2

]′
= 2(x3 + x + 1)(x3 + x + 1)′ = 2(x3 + x + 1)(3x2 + 1)

• f ′
2(x) =

[
e2x−1
e2x+1

]′
= (e2x−1)′(e2x+1)−(e2x−1)(e2x+1)′

(e2x+1)2 = 2e2x(e2x+1)−(e2x−1)2e2x

(e2x+1)2 = 4e2x

(e2x+1)2

• f ′
3(x) =

=
[
(1 − x) log(1 − x)

]′
= log(1 − x) · (1 − x)′ + (1 − x) · log′(1 − x)

= − log(1 − x) + (1 − x) · ∂ log(y)
∂y

· ∂y

∂x
= − log(1 − x) + (1 − x) · 1

1 − x
· (1 − x)′

= − log(1 − x) − 1

b) The gradients are:

• ∇f4 = ∂
∂x

(
1
2∥x∥2

2

)
= ∂

∂x

(
1
2x⊤x

)
= ∂

∂x

(
1
2x⊤Ix

)
= 1

2 · 2Ix = x

• ∇f5 = ∂
∂x

(
1
2∥x∥2

)
= ∂

∂x

(
1
2
√

x⊤x
)

= 1
2 · 1

2(x⊤x)− 1
2 · ∂(x⊤x)

x = 1
2 · 1

2(x⊤x)− 1
2 · 2Ix = 1

2
x

∥x∥2

c) The Jacobians are:

• Jf6 =


∂f1
∂r

∂f1
∂φ

∂f2
∂r

∂f2
∂φ

 =
[
cos(φ) −r sin(φ)
sin(φ) r cos(φ)

]

• Jf7 =

∂f1
∂t

∂f2
∂t

 =
[
−r sin t
r cos t

]

d) The divergences are:

• divf8 = ∂(−y)
∂x + ∂x

∂y = 0

• divf9 = ∂x
∂x + ∂y

∂y = 2
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4 Sigmoid derivative

a)
d

dx
σ(x) = d

dx

1
1 + e−x

= d

dx
(1 + e−x)−1 = −(−e−x)

(1 + e−x)2 = e−x

(1 + e−x)2

b)

e−x

(1 + e−x)2

= e−x + 1 − 1
(1 + e−x)2

= 1 + e−x

(1 + e−x)2 − 1
(1 + e−x)2

= 1
1 + e−x

− 1
(1 + e−x)2

= 1
1 + e−x

(
1 − 1

1 + e−x

)
= σ(x)(1 − σ(x))
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5 Softmax derivative

5.1 1st approach - two cases

When deriving σ(z) with respect to z, there are n×n partial derivates but we notice that they reduce
to only two distinct kinds:

• ŷi = σ(z)i w.r.t zi. For example, deriving ez1∑n

k=1 ezk
w.r.t z1. (z1 appears both in the nominator

and in the denominator)

• ŷi = σ(z)i w.r.t zj , i ̸= j. For example, deriving ez1∑n

k=1 ezk
w.r.t z2 (z2 appears only in the

denominator).

We first derive the first kind:

∂ŷ1
∂z1

= ∂

(
ez1∑n

k=1 ezk

)
/∂z1 = ez1 ·

∑n
k=1 ezk − ez1 · ez1

(∑n
k=1 ezk) (∑n

k=1 ezk) = ez1 (∑n
k=1 ezk − ez1)

(∑n
k=1 ezk) (∑n

k=1 ezk) =

= ez1

(∑n
k=1 ezk) ·

∑n
k=1 ezk − ez1

(∑n
k=1 ezk) = ŷ1 ·

(
1 − ez1∑n

k=1 ezk

)
= ŷ1 · (1 − ŷ1) .

In the last and second to last equality, we used a trick, or the observation, that we can express these
terms in means of ŷ. In a similar fashion, we derive the second kind:

∂ŷ1
∂z2

= ∂

(
ez1∑n

k=1 ezk

)
/∂z2 = �������: 0

0 ·
∑n

k=1 ezk − ez2 · ez1

(∑n
k=1 ezk) (∑n

k=1 ezk) = − ez2

(∑n
k=1 ezk) · ez1

(∑n
k=1 ezk) = −ŷ1ŷ2.

In conclusion, the partial derivatives of the softmax layer ŷ = σ(z) with respect to its input z are
given by:

∂ŷi

∂zj
=
{

ŷi · (1 − ŷi) i = j

−ŷiŷj i ̸= j

5.2 2nd approach - solve all in one!

A nice trick to solve both cases in one. First, we derive:

∂ log(si)
∂zj

= 1
si

∂si

∂zj

Therefore:

∂si

∂zj
= si · 1

si

∂si

∂zj
= si · ∂ log(si)

∂zj
= si

∂

∂zj
log( ezi∑C

k=1 ezk
) = si

∂

∂zj
[zi − log(

C∑
k=1

ezk)]

= si(δij − 1∑C
k=1 ezk

ezj ) = si(δij − sj)
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With {
δij = 1 i = j

δij = 0 i ̸= j
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6 Probability

a) We use the definition of the variance, namely

Var(X) = E[X2] − E[X]2 (1)

and equivalently,
E[X2] = Var(X) + E[X]2. (2)

Since X, Y ∼ N (0, σ2), we are given that E[X] = E[Y ] = 0. With these observations, we obtain

Var(XY ) (1)= E[X2Y 2] − E[XY ]2

(∗)= E[X2]E[Y 2] − E[X]2E[Y ]2

(2)= (Var(X) + E[X]2)(Var(Y ) + E[Y ]2) − E[X]2E[Y ]2

= Var(X)Var(Y ) + Var(X)E[Y ]2︸ ︷︷ ︸
=0

+Var(Y )E[X]2︸ ︷︷ ︸
=0

= Var(X)Var(Y )

(∗)X, Y are independent.

b) We use the properties of the expectation and the variance of a random variable. For the mean
of Z, we observe:

E[Z] = E
[

X − µ

σ

]
= 1

σ
· E[X − µ]

= 1
σ

· (E[X] − E[µ])

= 1
σ

· (µ − µ)

= 0

For the variance, remember that:

Var
[

X − µ

σ

]
= E

[(
X − µ

σ
− E

[
X − µ

σ

])2
]

= E
[(

X − µ

σ
− E[X] − µ

σ

)2]

= E
[(

X − E[X]
σ

)2]

= 1
σ2E

[
(X − E[X])2

]
= 1

σ2 · Var[X − µ].
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Therefore, we observe that:

Var[Z]

= Var
[

X − µ

σ

]
= 1

σ2 Var[X − µ]

= 1
σ2E[(X − µ − E[X − µ])2]

= 1
σ2E[(X − µ − 0)2]

= 1
σ2E[(X − µ)2]

= 1
σ2 Var[X]

= 1
σ2 σ2

= 1.

In summary, we conclude that Z ∼ N (0, 1).
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