TUTi

Exercise 4: Solution



Loss: BCE - Forward method

def forward(self, y_out, y_truth, individual_losses=False):

Performs the forward pass of the binary cross entropy loss function.

rparam y_out: [N, ] array predicted wvalue of your model (the Logits).
ry_truth: [N, ] array ground truth value of your training set.
rreturn:

- individual_losses=False --> A4 single scalar, which is the mean of the binary cross entropy loss

for each sample of your training set.

- individual_losses=True --> [N, ] array of binary cross entropy loss for each sample of your training set.
result = None
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# TODO: £
# Implement the forward pass and return the output of the BCE loss. #
# #
# #
# Hint: #
# Have @ look at the school implementation of the L1 (MAE) and the #
# MSE loss, and observe how the individual losses are dealt with. #

R R R R R R R R R
result = - (y_truth * np.log{y_out) + (1 - y_truth) * np.log(l - y_out))
if individual_losses:

return result

result = np.mean(result)
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# END OF YOUR CODE #
R S R S R I R R R R R R
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Loss: BCE - Backward method

def backward(self, y_out, y_truth):

Performs the backward pass of the loss function.

rparam y_out: [N, ] array predicted value of your model.

ty_truth: [N, ] array ground truth value of your training set.

:return: [N, ] array of binary cross entropy loss gradients w.r.t y_out
for each sample of your training set.

gradient = None

R R N R R N R R N R R N R N R R N R R N R R BN R R R R R R R R R R R R R
# TODO:

# Implement the backward pass. Return the gradient w.r.t to the input
# to the loss function, y_out.

Hint:

Don't forget to divide by N, which i1s the number of samples in

HoH H oK H R

=
#
#
# the batch. It is crucial for the magnitude of the gradient.
R R R R R R R R B Y

gradient = (-(y_truth / yv_out) + (1 - v _truth) / (1 - y_out)) / len(y_truth)

S S S B R S R e
# END OF YOUR CODE #
B I I B R

return gradient
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Classifier: Sigmoid

def sigmoid({self, x):

Computes the ouput of the sigmoid function.

iparam x: input of the sigmoid, np.array of any shape

rreturn: output of the sigmoid with same shape as input vector x

out = None

B R R R

# TODO: #
# Implement the sigmoid function over the input x. Return "out™. #
# Note: The sigmoid() function operates element-wise. #

R S R S
out = 1 / (1 + np.exp(-x))

R S R S
# END OF YOUR CODE 3

B R R R

return out



Classifier: Forward method

def forward(self, X):

Performs the forward pass of the model.

rparam X: N % D array of training data. Each row is a D-dimensional point.
Mote that it is changed to N x (D + 1) to include the bias term.
sreturn: Predicted logits for the data in X, shape N x 1

1-dimensional array of length N with classification scores.

Note: This simple neural-network contains TWO consecutive layers:
A fully-connected layer and a sigmoid layer.

assert self.W iz not None, "weight matrix W is not initialized”
# add a column of 1ls to the data for the bias term

batch_size, _ = X.shape

X = np.concatenate( (X, np.ones{(batch_size, 1))}, axis=1)

# output variable

vy = None
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HHHEHHES s G HHEHHES B EEES
# TODO: i
# Implement the forward pass and return the output of the model. Note #
# that you need to implement the function self.sigmoid() for that. #
# Also, save in self.cache an array of all the relevant variables that #
# you will need to use in the backward() function. E.g.: (X, | #
HEHEHAES HEHEHEHES HEHEHEHS HEHEHAES HEHEEEEEES
y = X.dot(self.uW)

z = self.sigmoid(y)

# Save the samples for the backward pass

self.cache = (X, z)

HEHEHAES HEHEHEERES HEHEHERES HEHEHES HEEEEEEEES
# END OF YOUR CODE =
HHHEHHES s G HHEHHES B EEES
return z
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Classifier: Backward method

def backward(self, dout):

Performs the backward pass of the model.

:param dout: N x M array. Upsteam derivative. It is as the same shape of the forward() output.
If the output of forward{) is z, then it is dL/dz, where L is the loss function.

treturn: dW --» Gradient of the weight matrix, w.r.t the upstream gradient 'dout'. (dL/dw)

MNote: Pay attention to the order in which we calculate the derivatives. It is the opposite of the forward pass!

assert self.cache is not None, "Run a forward pass before the backward pass. Also, don't forget to store the relevat variables\

di = None

# TODO: # . '

# Implement the backward pass. Return the gradient w.r.t W --> di. # Keep the d|men5|oms Of the arrays
# Make sure you've stored ALL needed variables in self.cache. # . .

: : in mind:

# Hint 1: It is recommended to follow the TUM article (Section 3) on #

# calculating the chain-rule, while dealing with matrix notations: # ><: [NI D]

# https://bit.ly/tum-article #

. . v IN, 1],

# Hint 2: Remember that the derivatiwve of sigmoid(x) is independent of # ,
# %, and could be calculated with the result from the forward pass. # d\x/ Shoutd be Of Shape [N’ D] aS |t

S contains a gradient of the output
et us demote y < Ko b 2 slametdy w.rt. W for each sample (N:

%« = se1t.cachs number

#1) Glsay = dusde * 4z / ay. According to stanfora’s trice of samples). The average over all

dz_dy =z * (1 - z)

dl_dy = dout * dz_dy # MNow, this is the upstream derivative for step 2. SampLeS |S ta ken |n the SOLver Step

# 2) dl/dw = dl/dy * dy/dw. According to stanford's trick:
di = X.T.dot(dl_dy)

-

END OF YOUR CODE #



Optimization



Optimizer: Step method

def stepi(self, dw):

A vanilla gradient descent step.

rparam dw: [D+1,1] array gradient of loss w.r.t weights of your linear model

rreturn weight: [D+1,1] updated weight after one step of gradient descent.

weight = self.model.W

S S R

# TODO: #
# Implement the gradient descent step over the weight, using the #
# learning rate. #

OSSO
weight -= self.lr * dw
OSSO

# END OF YOUR CODE #
S S R

I2DL: Prof. Niessner self.model.W = weight



Solver: Step method

def _=tep(self):

Make a single gradient update. This is called by train() and should not

be called manually.

model = self.model
loss_func = self.loss_func

¥_train = self.X_train

S e Model and loss_func return
LR L LS forward when called, cf. __call__0

# TODO: ' '

# Perform the optimizer step, on higher level of abstraction. |r] tk]e}lr k>€asse§ (:lEBESESEBES' FTCDr LC)ESES

# Sirrpl}lf' call the I’ele‘-;ant functions c:lycu’lrrc:t?iel and the loss # gradient USe backward method

# function, according to the deep-learning pipline. Then, use #

# the optimizer variable to perform the step. #

# # . . .

# Hint 1: What inputs each step requires? How do we obtain them? # qulr](j tk]EB lerT]E}r}ES|<)r]ES ()f.éatl

o , i elements. In particular, we want to

# Hint 2: Don't forget the order of operations: forward, loss, # s ,

4 backward, : update W (via opt.step() with an
Cmmmmmmm——————— array of the same shape, ie., [1, D]

model_forward = model.forward(¥_train)

loss = loss_func(model_forward, y_train)

loss_grad = loss_func.backward(model_forward, y_train)

grad = model.backward(loss_grad)

opt.step(grad)

# END OF YOUR CODE #

# # # # # # # #
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Questions? Piazza
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