TUTi

Exercise 4: Solution

Loss: BCE - Forward method

def forward(self, y_out, y_truth, individual_losses=False):

Performs the forward pass of the binary cross entropy loss function.

rparam y_out: [N,] array predicted wvalue of your model (the Logits).
ry_truth: [N,] array ground truth value of your training set.
rreturn:

- individual_losses=False --> A4 single scalar, which is the mean of the binary cross entropy loss

for each sample of your training set.

- individual_losses=True --> [N,] array of binary cross entropy loss for each sample of your training set.
result = None
B R R R R R R R R R R R R R R R R R R R

TODO: £
Implement the forward pass and return the output of the BCE loss.
#
#
Hint:
Have @ look at the school implementation of the L1 (MAE) and the
MSE loss, and observe how the individual losses are dealt with.

R R R R R R R R R
result = - (y_truth * np.log{y_out) + (1 - y_truth) * np.log(l - y_out))
if individual_losses:

return result

result = np.mean(result)

#EHHEE H#H4H 1 1o 1 8 R 1 B B 1 H#H4H 1

END OF YOUR CODE
R S R S R I R R R R R R

|2D|_ PI’OTC NleSSher return result

Loss: BCE - Backward method

def backward(self, y_out, y_truth):

Performs the backward pass of the loss function.

rparam y_out: [N,] array predicted value of your model.

ty_truth: [N,] array ground truth value of your training set.

:return: [N,] array of binary cross entropy loss gradients w.r.t y_out
for each sample of your training set.

gradient = None

R R N R R N R R N R R N R N R R N R R N R R BN R R R R R R R R R R R R R
TODO:

Implement the backward pass. Return the gradient w.r.t to the input
to the loss function, y_out.

Hint:

Don't forget to divide by N, which i1s the number of samples in

HoH H oK H R

=
#
#
the batch. It is crucial for the magnitude of the gradient.
R R R R R R R R B Y

gradient = (-(y_truth / yv_out) + (1 - v _truth) / (1 - y_out)) / len(y_truth)

S S S B R S R e
END OF YOUR CODE
B I I B R

return gradient

[2DL: Prof. Niessner

[2DL: Prof. Niessner

Classifier: Sigmoid

def sigmoid({self, x):

Computes the ouput of the sigmoid function.

iparam x: input of the sigmoid, np.array of any shape

rreturn: output of the sigmoid with same shape as input vector x

out = None

B R R R

TODO:
Implement the sigmoid function over the input x. Return "out™.
Note: The sigmoid() function operates element-wise.

R S R S
out = 1 / (1 + np.exp(-x))

R S R S
END OF YOUR CODE 3

B R R R

return out

Classifier: Forward method

def forward(self, X):

Performs the forward pass of the model.

rparam X: N % D array of training data. Each row is a D-dimensional point.
Mote that it is changed to N x (D + 1) to include the bias term.
sreturn: Predicted logits for the data in X, shape N x 1

1-dimensional array of length N with classification scores.

Note: This simple neural-network contains TWO consecutive layers:
A fully-connected layer and a sigmoid layer.

assert self.W iz not None, "weight matrix W is not initialized”
add a column of 1ls to the data for the bias term

batch_size, _ = X.shape

X = np.concatenate((X, np.ones{(batch_size, 1))}, axis=1)

output variable

vy = None

[2DL: Prof. Niessner

HHHEHHES s G HHEHHES B EEES
TODO: i
Implement the forward pass and return the output of the model. Note
that you need to implement the function self.sigmoid() for that.
Also, save in self.cache an array of all the relevant variables that
you will need to use in the backward() function. E.g.: (X, |
HEHEHAES HEHEHEHES HEHEHEHS HEHEHAES HEHEEEEEES
y = X.dot(self.uW)

z = self.sigmoid(y)

Save the samples for the backward pass

self.cache = (X, z)

HEHEHAES HEHEHEERES HEHEHERES HEHEHES HEEEEEEEES
END OF YOUR CODE =
HHHEHHES s G HHEHHES B EEES
return z

[2DL: Prof. Niessn

Classifier: Backward method

def backward(self, dout):

Performs the backward pass of the model.

:param dout: N x M array. Upsteam derivative. It is as the same shape of the forward() output.
If the output of forward{) is z, then it is dL/dz, where L is the loss function.

treturn: dW --» Gradient of the weight matrix, w.r.t the upstream gradient 'dout'. (dL/dw)

MNote: Pay attention to the order in which we calculate the derivatives. It is the opposite of the forward pass!

assert self.cache is not None, "Run a forward pass before the backward pass. Also, don't forget to store the relevat variables\

di = None

TODO: # . '

Implement the backward pass. Return the gradient w.r.t W --> di. # Keep the d|men5|oms Of the arrays
Make sure you've stored ALL needed variables in self.cache. # . .

: : in mind:

Hint 1: It is recommended to follow the TUM article (Section 3) on

calculating the chain-rule, while dealing with matrix notations: # ><: [NI D]

https://bit.ly/tum-article

. . v IN, 1],

Hint 2: Remember that the derivatiwve of sigmoid(x) is independent of # ,
%, and could be calculated with the result from the forward pass. # d\x/ Shoutd be Of Shape [N’ D] aS |t

S contains a gradient of the output
et us demote y < Ko b 2 slametdy w.rt. W for each sample (N:

%« = se1t.cachs number

#1) Glsay = dusde * 4z / ay. According to stanfora’s trice of samples). The average over all

dz_dy =z * (1 - z)

dl_dy = dout * dz_dy # MNow, this is the upstream derivative for step 2. SampLeS |S ta ken |n the SOLver Step

2) dl/dw = dl/dy * dy/dw. According to stanford's trick:
di = X.T.dot(dl_dy)

-

END OF YOUR CODE #

Optimization

Optimizer: Step method

def stepi(self, dw):

A vanilla gradient descent step.

rparam dw: [D+1,1] array gradient of loss w.r.t weights of your linear model

rreturn weight: [D+1,1] updated weight after one step of gradient descent.

weight = self.model.W

S S R

TODO:
Implement the gradient descent step over the weight, using the
learning rate.

OSSO
weight -= self.lr * dw
OSSO

END OF YOUR CODE
S S R

I2DL: Prof. Niessner self.model.W = weight

Solver: Step method

def _=tep(self):

Make a single gradient update. This is called by train() and should not

be called manually.

model = self.model
loss_func = self.loss_func

¥_train = self.X_train

S e Model and loss_func return
LR L LS forward when called, cf. __call__0

TODO: ' '

Perform the optimizer step, on higher level of abstraction. |r] tk]e}lr k>€asse§ (:lEBESESEBES' FTCDr LC)ESES

Sirrpl}lf' call the I’ele‘-;ant functions c:lycu’lrrc:t?iel and the loss # gradient USe backward method

function, according to the deep-learning pipline. Then, use

the optimizer variable to perform the step.

. . .

Hint 1: What inputs each step requires? How do we obtain them? # qulr](j tk]EB lerT]E}r}ES|<)r]ES ()f.éatl

o , i elements. In particular, we want to

Hint 2: Don't forget the order of operations: forward, loss, # s ,

4 backward, : update W (via opt.step() with an
Cmmmmmmm——————— array of the same shape, ie., [1, D]

model_forward = model.forward(¥_train)

loss = loss_func(model_forward, y_train)

loss_grad = loss_func.backward(model_forward, y_train)

grad = model.backward(loss_grad)

opt.step(grad)

END OF YOUR CODE

#

[2DL: Prof. Niessner

TUTi

Questions? Piazza

	Diapositiva 1: Exercise 4: Solution
	Diapositiva 2: Loss: BCE – Forward method
	Diapositiva 3: Loss: BCE – Backward method
	Diapositiva 4: Classifier: Sigmoid
	Diapositiva 5: Classifier: Forward method
	Diapositiva 6: Classifier: Backward method
	Diapositiva 7: Optimization
	Diapositiva 8: Optimizer: Step method
	Diapositiva 9: Solver: Step method
	Diapositiva 10: Questions? Piazza

