TUTi

Exercise 3: Solution

I2DL: Prof. Niessner

ImageFolderDataset. __len__()

def _len_ (self):
length = None
HEHH G S S T R
TODO:
Return the length of the dataset (number of images)
HEHH S H R S HE R T R
length = len(self.images)
HEHH RS H S S H S S H
END OF YOUR CODE =
HEHA A G S S H T R ST S R S S S S e e T
return length

I2DL: Prof. Niessner

ImageFolderDataset. __getitem__()

def __getitem__(self, index):
data_dict = None

TODO:

create a dict of the data at the given index in your dataset

The dict should be of the following format:

{"image": <i-th image>,

"label": <label of i-th image>}

Hints:

- use load_image_as_numpy() to load an image from a file path

- If applicable (Task 4: 'Transforms and Image Preprocessing'),
make sure to apply self.transform to the image:

* oW ¥ ¥ R R OB ¥ ¥ R

* B #®

image_transformed = self.transform(image)

3
3
'
t
£
£

label = self.labels[index]
path = self.images[index]
image = self.load_image_as_numpy(path)
if self.transform is not None:

image = self.transform(image)
data_dict = {

"image": image,

"label": label,

END OF YOUR CODE

return data_dict

I2DL: Prof. Niessner

selfimageslindex] contains the full name
of the image we want to retrieve (we don't
want to keep all images in memory at the
same time - we only read them when it's
required)

Selflabelslindex] contains the label of the
Image we want to retrieve

We only apply the transformation if it's not
None

RescaleTransform: __call__()

def

I2DL: Prof. Niessner

__call (self, images):
BHEH G R R H

TODO:
Rescale the given images:
- from (self. data min, self. data max)
- to (self.min, self.max)

BHHE S S S S R R
images = images - self._data_min # normalize to (0, data_max-data_min)
images /= (self. data max - self. data min) # normalize to (0, 1)
images *= (self.max - self.min) # norm to (@, target max-target min)
images += self.min # normalize to (target min, target max)

HHHG S S S S S S S S S S S S R e S T
END OF YOUR CODE
HEHS G S S H S S S

return images

compute_image_mean_and_std()

def compute image mean _and std(images):
Calculate the per-channel image mean and standard deviation of given images
:param images: numpy array of shape NxHxWxC

(for N images with C channels of spatial size HxW)

:returns: per-channels mean and std; numpy array of shape C
mean, std = None, None
HHEH
TODO:
Calculate the per-channel mean and standard deviation of the images
Hint: You can use numpy to calculate mean and standard deviation
B
mean = np.mean(images, axis=(0, 1, 2))
std = np.std(images, axis=(0, 1, 2))
HEHH G S T S R S R
END OF YOUR CODE =
HHHH S S S S S S S R

return mean, std

I2DL: Prof. Niessner

I2DL: Prof. Niessner

def

Dataloader: __len__()

len (self):
length = None
HfHHS S SR S S S S G S R S S S S e

TODO:
Return the length of the dataloader
Hint: this is the number of batches you can sample from the dataset.
Don't forget to check for drop last!

HHHH SRS S S R S S T S T R
if self.drop_last:

length = len(self.dataset) // self.batch size
else:

length = int(np.ceil(len(self.dataset) / self.batch_size))
BHEHHEH G S R R S S
END OF YOUR CODE
HEgH S R S S S S S S S S R R R
return length

Dataloader: __iter__

__iter__(self):

TODO:
Define an iterable function that samples batches from the dataset.

Each batch should be a dict containing numpy arrays of length

batch_size (except for the last batch if drop_last=True)
Hints:

#

L T

- np.random.permutation(n) can be used to get a list of all
numbers from @ to n-1 in a random order
- To load data efficiently, you should try to load only those
samples from the dataset that are needed for the current batch.
An easy way to do this is to build a generator with the yield
keyword, see https://wiki.python.org/moin/Generators
- Have a look at the "DatalLoader" notebook first. This function is
supposed to combine the functions:
— combine_batch_dicts
— batch_to_numpy
— build_batch_iterator
in section 1 of the notebook.

def combine_batch_dicts(batch):

Combines a given batch (list of dicts) to a dict of numpy arrays
:param batch: batch, list of dicts

ags [{k3s vA; k2% V2, ey Tk, V85 k2: Whi wesly wial
:returns: dict of numpy arrays
e.g« fkls [vl; W3; «s:l; k2: [V25 Vb4 wwwly sk

wun
batch_dict = {}
for data_dict in batch:
for key, value in data_dict.items():
if key not in batch_dict:
batch_dictl[key] = []
batch_dict[keyl.append(value)
return batch_dict

I2DL: Prof. Niessner

Hints:

\We create two helper functions: one for
merging a batch of dictionaries as well as a
convenient way to convert those dictionaries to
numpy arrays which we will then feed to our
networks later.

Dataloader: __iter__()

def batch_to_numpy(batch):
"""Transform all values of the given batch dict to numpy arrays"""
numpy_batch = {} .
for key, value in batch.items(): Hlnts
numpy_batch[key] = np.array(value)
return numpy_batch

e Shuffling is implemented here using

if self.shuffle:

index_iterator = iter(np.random.permutation(len(self.dataset))) numpyls random permutatlon but there
else: . . .

index_iterator = iter(range(len(self.dataset))) are mULUp[e pOSS|bLe SOLUUOHS
e 1) e \We iterate over the dataset and use yield
forindex in index_iterator: to properly invoke our iterator

batch.append(self.dataset[index]) ,

5 AREECH) e el baEoR S e Finally we have to check for the last

z:ii: l:a;;h_to_numpy(comblne_batch_dlcts(batch)) batch Slze |n Ol’der tO aCCOUﬂt]Cor

‘drop_last’

if len(batch) > @ and not self.drop_last:
yield batch_to_numpy(combine_batch_dicts(batch))

I2DL: Prof. Niessner 8

Questions? Piazza &

I2DL: Prof. Niessner

