
Exercise 2: Math Background

We use the following notations in this exercise:

- Scalars are denoted with lowercase letters. E.g. x, ϕ
- Vectors are denoted with bold lowercase letters. E.g. $\mathbf{x}, \mathbf{\phi}$
- Matrices are denoted with bold uppercase letters. E.g. \mathbf{X}, Σ

1 Linear algebra

Tasks:

a) Let

$$f(\mathbf{x}, \mathbf{y}) = \mathbf{x}^\top \mathbf{A} \mathbf{y} + \mathbf{x}^\top \mathbf{B} \mathbf{x} - \mathbf{C} \mathbf{y} + \mathbf{D}$$

with $\mathbf{x} \in \mathbb{R}^M, \mathbf{y} \in \mathbb{R}^N$, function $f : \mathbb{R}^M \times \mathbb{R}^N \rightarrow \mathbb{R}$.

Compute the dimensions of the matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ for the function so that the mathematical expression is valid.

b) Let $\mathbf{x} \in \mathbb{R}^N, \mathbf{M} \in \mathbb{R}^{N \times N}$. Express the function $f(\mathbf{x}) = \sum_{i=1}^N \sum_{j=1}^N x_i x_j M_{ij}$ using only matrix-vector multiplications.

c) Suppose $\mathbf{u}, \mathbf{v} \in \mathbf{V}$, where \mathbf{V} is a vector space. $\|\mathbf{u}\| = \|\mathbf{v}\| = 1$ and $\langle \mathbf{u}, \mathbf{v} \rangle = 1$. Prove that $\mathbf{u} = \mathbf{v}$.

Note: In this task we define the norm as $\|\mathbf{v}\| := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$, where $\langle \mathbf{u}, \mathbf{v} \rangle$ is the inner product between two vectors.

2 Linear Least Square

In this exercise, we want to determine the gradients for a few simple functions, which will be helpful for the upcoming lectures.

Note: Remember the definition of a *gradient*: The gradient of a scalar-valued function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, denoted by ∇f , is a vector-valued function that gives, geometrically, the rate and direction of the steepest ascent of f at each point in \mathbb{R}^n . The components of the gradient are the partial derivatives of f with respect to each coordinate axis, and are written as:

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

where x_1, x_2, \dots, x_n are the coordinates of a point in \mathbb{R}^n .

- a) For $\mathbf{x} \in \mathbb{R}^n$, let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ with $f(\mathbf{x}) = \mathbf{b}^\top \mathbf{x}$ for some known vector $\mathbf{b} \in \mathbb{R}^n$. Determine the gradient of the function f .
Hint: Use that $f(\mathbf{x}) = \mathbf{b}^\top \mathbf{x} = \sum_{i=1}^n b_i x_i$.
- b) Now consider the quadratic function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ with $f(\mathbf{x}) = \mathbf{x}^\top \mathbf{A} \mathbf{x}$ for a symmetric matrix $\mathbf{A} \in \mathbb{S}_n$. Determine the gradient of the function f .
Hint: A symmetric matrix $\mathbf{A} \in \mathbb{S}_n$ satisfies that $A_{ij} = A_{ji}$ for all $1 \leq i, j \leq n$.
- c) Now let us go a step further and let us determine the derivative of the following function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ with

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 = (\mathbf{A}\mathbf{x} - \mathbf{b})^\top (\mathbf{A}\mathbf{x} - \mathbf{b})$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$.

3 Calculus - derivatives

a) Compute the derivatives for the following functions: $f_i : \mathbb{R} \rightarrow \mathbb{R}$, $i \in \{1, 2, 3\}$

- $f_1 : f_1(x) = (x^3 + x + 1)^2$
- $f_2 : f_2(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$
- $f_3 : f_3(x) = (1 - x) \log(1 - x)$ (**Note:** In this course, $\log(x) = \log_e(x) = \ln(x)$)

b) For a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, the *gradient* is defined as $\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$. Calculate the gradients of the following functions: $f_i : \mathbb{R}^2 \rightarrow \mathbb{R}$, $i \in \{4, 5\}$

- $f_4 : f_4(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$
- $f_5 : f_5(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2$

c) For a function $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$, the *Jacobian* is defined as

$$\mathbb{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Calculate the Jacobian matrix of the following functions: $f_i : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $i \in \{6, 7\}$

- $f_6 : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^2$, $f_6(r, \varphi) = (r \cos \varphi, r \sin \varphi)^\top$
- $f_7 : \mathbb{R} \rightarrow \mathbb{R}^2$, $f_7(t) = (r \cos t, r \sin t)^\top$

d) For a function $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ the *divergence* is defined as $\text{div} f = \sum_{i=1}^n \frac{\partial f_i}{\partial x_i}$. Calculate the divergence for the following functions: $f_i : \mathbb{R}^n \rightarrow \mathbb{R}^n$, $i \in \{8, 9\}$

- $f_8 : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $f_8(x, y) = (-y, x)^\top$
- $f_9 : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $f_9(x, y) = (x, y)^\top$

4 Sigmoid derivative

In this question we will derive the derivative of the sigmoid function:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

As seen in lecture 02, the sigmoid function is a popular activation function used in machine learning, which maps any input value to a value between 0 and 1. In logistic regression, the sigmoid function is used to map the output of the regression algorithm to a probability between 0 and 1, which can be interpreted as the probability of an input belonging to a particular class. This probability is then used to make a binary decision about whether the input belongs to the class or not.

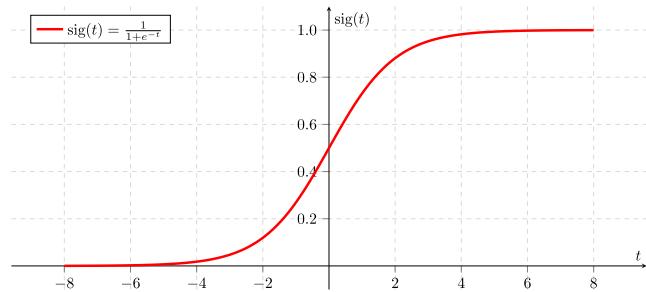


Figure 1: The sigmoid function

- Find the derivative of the sigmoid function: $\frac{\partial \sigma(x)}{\partial x}$
- Show that the derivative expression that you've found in the previous task could be represented with the sigmoid function itself, i.e.:

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$$

Hint: $e^{-x} = e^{-x} + 1 - 1$

5 Softmax derivative

In this exercise, we want to take a look at the softmax function, which is a common activation function in neural networks in order to normalize the output of a network to a probability distribution over predicted output classes. We will discuss the softmax function later in this lecture in more detail.

The softmax function $\sigma : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is defined by

$$\sigma(z)_i = \frac{e^{z_i}}{\sum_{j=1}^n e^{z_j}}$$

for $1 \leq i \leq n$ and $z = (z_1 \ z_2 \ \dots \ z_n)^\top$. In the expanded form, we write:

$$\hat{y} = \sigma(z_1, z_2, \dots, z_n) = \left[\frac{e^{z_1}}{\sum_{k=1}^n e^{z_k}}, \frac{e^{z_2}}{\sum_{k=1}^n e^{z_k}}, \dots, \frac{e^{z_n}}{\sum_{k=1}^n e^{z_k}} \right].$$

Determine the derivative of the softmax function.

Hint: Deriving $\sigma(z)$ with respect to z will lead to $n \times n$ partial derivatives, i.e. $\frac{\partial \sigma(z)_i}{\partial z_j}$ for $1 \leq i, j \leq n$. It is important to consider the two cases (1) $i = j$ and (2) $i \neq j$

6 Probability

a) Variance.

We say that two random variables X, Y are independent if and only if the joint cumulative distribution function $F_{X,Y}(x, y)$ satisfies

$$F_{X,Y}(x, y) = F_X(x)F_Y(y).$$

In the case of independence, the following property holds for these variables: Let f, g be two real-valued functions defined on the codomains of X, Y , respectively. Then

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)] \cdot \mathbb{E}[h(Y)].$$

Assume that X, Y are two random variables that are independent and identically distributed (i.i.d.) with $X, Y \sim \mathcal{N}(0, \sigma^2)$. Prove that

$$\text{Var}(XY) = \text{Var}(X)\text{Var}(Y)$$

Remember this property, as it will play an important role at a later point of the lecture, when we take a look at the initialization of the weights of a neural network (Xavier initialization).

b) Normal distribution.

Remark: The family of random variables that are normally distributed is closed under linear transformation, that means if X is normally distributed, then for every $a, b \in \mathbb{R}$ the random variable $aX + b$ is normally distributed.

For this exercise, assume that the random variable X is normally distributed with mean μ and variance σ^2 , i.e. $X \sim \mathcal{N}(\mu, \sigma^2)$. Let $Z = \frac{X-\mu}{\sigma}$. From the remark, we know that Z is again normally distributed. Determine the mean and the variance of the random variable Z .