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Training Neural 
Networks
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Lecture 5 Recap
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Gradient Descent for Neural Networks
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Stochastic Gradient Descent (SGD)
𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿(𝜽

𝑘 , 𝒙{1..𝑚}, 𝒚{1..𝑚})

𝛻𝜽𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜽𝐿𝑖

:
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𝑘 now refers to 𝑘-th iteration

𝑚 training samples in the current minibatch

Gradient for the 𝑘-th minibatch
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Gradient Descent with Momentum
𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 + 𝛻𝜽𝐿(𝜽

𝑘)

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅ 𝒗𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝒗𝑘 is vector-valued!
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Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel
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RMSProp
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Source: A. Ng

𝒔𝑘+1 = 𝛽 ⋅ 𝒔𝑘 + (1 − 𝛽)[𝛻𝜽𝐿 ∘ 𝛻𝜽𝐿]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝛻𝜽𝐿

𝒔𝑘+1 + 𝜖

We’re dividing by square gradients:
- Division in Y-Direction will be 
large
- Division in X-Direction will be 
small

(Uncentered) variance of gradients 
→ second momentum

Can increase learning rate!
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Adam
• Combines Momentum and RMSProp
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𝒎𝑘+1 = 𝛽1 ⋅ 𝒎
𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘 𝒗𝑘+1 = 𝛽2 ⋅ 𝒗

𝑘 + (1 − 𝛽2)[𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘

• 𝒎𝑘+1 and 𝒗𝑘+1 are initialized with zero 
→ bias towards zero
→ Typically, bias-corrected moment updates

ෝ𝒎𝑘+1 =
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Training Neural Nets
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Learning Rate: Implications

• What if too high?

• What if too low?
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Source: http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/neural-networks-3/
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Learning Rate  
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Need high learning rate when far away

Need low learning rate when close
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Learning Rate Decay

• 𝛼 =
1

1+𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒∗𝑒𝑝𝑜𝑐ℎ
⋅ 𝛼0

– E.g., 𝛼0 = 0.1, 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 = 1.0

→ Epoch 0: 0.1

→ Epoch 1: 0.05

→ Epoch 2: 0.033

→ Epoch 3: 0.025

...
11

0

0,02

0,04

0,06

0,08

0,1

0,12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Learning Rate over Epochs



I2DL: Prof. Niessner

Learning Rate Decay
Many options:
• Step decay 𝛼 = 𝛼 − 𝑡 ⋅ 𝛼 (only every n steps)

– T is decay rate (often 0.5)

• Exponential decay 𝛼 = 𝑡𝑒𝑝𝑜𝑐ℎ ⋅ 𝛼0
– t is decay rate (t < 1.0)

• 𝛼 =
𝑡

𝑒𝑝𝑜𝑐ℎ
⋅ 𝑎0

– t is decay rate 

• Etc.
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Training Schedule
Manually specify learning rate for entire training process

• Manually set learning rate every n-epochs
• How? 

– Trial and error (the hard way)
– Some experience (only generalizes to some degree)

Consider: #epochs, training set size, network size, etc.
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Basic Recipe for Training

• Given a dataset with labels
– {𝑥𝑖 , 𝑦𝑖}

• 𝑥𝑖 is the 𝑖𝑡ℎ training image, with label 𝑦𝑖
• Often dim 𝑥 ≫ dim(𝑦) (e.g., for classification)
• 𝑖 is often in the 100-thousands or millions

– Take network 𝑓 and its parameters 𝑤, 𝑏
– Use SGD (or variation) to find optimal parameters 𝑤, 𝑏

• Gradients from backpropagation

14
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Gradient Descent on Train Set
• Given large train set with (𝑛) training samples {𝒙𝑖 , 𝒚𝑖}

– Let’s say 1 million labeled images
– Let’s say our network has 500k parameters 

• Gradient has 500k dimensions
• 𝑛 = 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

• Extremely expensive to compute
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Learning
• Learning means generalization to unknown dataset

– (So far no ‘real’ learning)
– i.e., train on known dataset → test with optimized 

parameters on unknown dataset

• Basically, we hope that based on the train set, the 
optimized parameters will give similar results on 
different data (i.e., test data)

16



I2DL: Prof. Niessner

Learning
• Training set (‘train’):

– Use for training your neural network  

• Validation set (‘val’):
– Hyperparameter optimization
– Check generalization progress

• Test set (‘test’):
– Only for the very end
– NEVER TOUCH DURING DEVELOPMENT OR TRAINING
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Learning
• Typical splits

– Train (60%), Val (20%), Test (20%)
– Train (80%), Val (10%), Test (10%)

• During training:
– Train error comes from average minibatch error
– Typically take subset of validation every n iterations

18
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Basic Recipe for Machine Learning
• Split your data
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Find your hyperparameters

20%

train testvalidation

20%60%
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Cross Validation
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train

validationRun 1

Run 2

Run 3

Run 4

Run 5

Split the training data into N folds
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Cross Validation

21

Find your hyperparameters

train testvalidation

20%60% 20%
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Basic Recipe for Machine Learning
• Split your data
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train testvalidation
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Basic Recipe for Machine Learning

23

Credits: A. Ng
Done
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Over- and Underfitting
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Underfitted Appropriate Overfitted

Source: Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017
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Over- and Underfitting
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Source: https://srdas.github.io/DLBook/ImprovingModelGeneralization.html

https://srdas.github.io/DLBook/ImprovingModelGeneralization.html
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Learning Curves
• Training graphs

- Accuracy - Loss

26
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Learning Curves
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https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
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Overfitting Curves
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Val

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
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Other Curves
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Underfitting (loss still decreasing) Validation Set is easier than Training set
Source: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
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To Summarize
• Underfitting

– Training and validation losses decrease even at the end 
of training

• Overfitting
– Training loss decreases and validation loss increases

• Ideal Training
– Small gap between training and validation loss, and both 

go down at same rate (stable without fluctuations).

30
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To Summarize
• Bad Signs

– Training error not going down
– Validation error not going down
– Performance on validation better than on training set
– Tests on train set different than during training

• Bad Practice 
– Training set contains test data
– Debug algorithm on test data

31

Never touch during 
development or 

training
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Hyperparameters
• Network architecture (e.g., num layers, #weights)
• Number of iterations
• Learning rate(s) (i.e., solver parameters, decay, etc.)
• Regularization (more later next lecture) 
• Batch size
• …
• Overall: 

learning setup + optimization = hyperparameters
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Hyperparameter Tuning
• Methods:

– Manual search: 
• most common 

– Grid search (structured, for ‘real’ applications)
• Define ranges for all parameters spaces and 

select points
• Usually pseudo-uniformly distributed
→ Iterate over all possible configurations

– Random search:
Like grid search but one picks points at random 
in the predefined ranges
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Find a Good Learning Rate

35
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Find a Good Learning Rate
• Use all training data with small weight decay
• Perform initial loss sanity check e.g., log(𝐶) for 

softmax with 𝐶 classes
• Find a learning rate that makes 

the loss drop significantly 
(exponentially) within 
100 iterations

• Good learning rates to try: 
1e-1, 1e-2, 1e-3, 1e-4

38

Training time

Loss
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Coarse Grid Search
• Choose a few values of learning rate and weight 

decay and see which ones work
• Train a few models for a few epochs
• Good weight decay to try: 1e-4, 1e-5, 0
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Refine Grid
• Pick best models found with coarse grid
• Refine grid search around these models
• Train them for longer (10-20 epochs) without learning 

rate decay
• Study loss curves <- most important debugging tool!

40
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Tensorboard: 
Visualization in 

Practice

48
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Tensorboard: Compare Train/Val Curves
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Tensorboard: Compare Different Runs
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Tensorboard: Visualize Model 
Predictions
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Tensorboard: Visualize Model 
Predictions
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Tensorboard: Compare 
Hyperparameters
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How to train your 
neural network?

5
4
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Setup Visualizations
• Always visualize train and 

validation loss curves.

• Check data loading and augmentation by visualizing 
samples. 

5
5
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Setup Visualizations
• TensorBoard is easy to setup

• And provides an easy-to-use 
interface for visualizing 
image batches, metrics, 
histograms, videos …

5
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https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html
https://www.tensorflow.org/tensorboard/

https://pytorch.org/docs/stable/tensorboard.
html?highlight=summarywriter#

https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html
https://www.tensorflow.org/tensorboard/
https://pytorch.org/docs/stable/tensorboard.html?highlight=summarywriter
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Is data loading correct?
• Data output (target): overfit to single training sample 

(needs to have 100% because it just memorizes input)
– It’s irrespective of input !!!

• Data input: overfit to a handful (e.g., 4) training 
samples
– It’s now conditioned on input data

5
7
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Overfitting curves

58

1 sample

4 samples

Loss goes to 0
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Debugging: overfitting -> generalization 

• Move from overfitting to a hand-full of samples
– 5, 10, 100, 1000…
– At some point, we should see generalization

• Apply common sense: can we overfit to the current 
number of samples?

• Always be aware of network parameter count!

5
9
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Check timings
• How long does each iteration take?

– Get precise timings!!!
– If an iteration takes > 500ms, things get dicey…

• Where is the bottleneck: data loading vs backprop?
– Speed up data loading: smaller resolutions, compression, train 

from SSD – e.g., network training is good idea
– Speed up backprop 

• Estimate total timings: how long until you see some 
pattern? How long till convergence?

6
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Network architecture
• 100% mistake so far: “let’s use super big network and 

train for two weeks and we see where we stand.” 
[because we desperately need those 2%...]

• Start with simplest network possible: rule of thumb 
divide #layers you started with by 5.

• Get debug cycles down – ideally, minutes!!!

6
1
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Debugging
• Need train/val/test curves

– Evaluation needs to be consistent!
– Numbers need to be comparable

• Only make one change at a time
– “I’ve added 5 more layers and double the training size, 

and now I also trained 5 days longer” – it’s better, but 
WHY?

6
2
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Overfitting
• ONLY THINK ABOUT THIS ONCE YOUR TRAINING LOSS 

GOES DOWN AND YOU CAN OVERFIT!

• Typically try this order:
• Network too big – makes things also faster 
• More regularization; e.g., weight decay
• Not enough data - makes things slower!
• Dropout - makes things slower!
• Guideline: make training harder -> generalize better

6
3
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Severe overfitting!

64

 Try smaller network size, data augmentations, regularizations. 

Training loss

Validation loss
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Moderate overfitting
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Training loss

Validation loss
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No overfitting

66

Training loss

Validation loss
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Pushing the limits!
• PROCEED ONLY IF YOU GENERALIZE AND YOU ADDRESSED 

OVERFITTING ISSUES!

• Bigger network -> more capacity, more power - needs also 
more data!

• Better architecture -> ResNet is typically standard, but 
InceptionNet architectures perform often better (e.g., 
InceptionNet v4, XceptionNet, etc.)

• Schedules for learning rate decay
• Class-based re-weighting (e.g., give under-represented classes 

higher weight)
• Hyperparameter tuning: e.g., grid search; apply common sense!

6
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Bad signs…
• Train error doesn’t go down…
• Validation error doesn’t go down… (ahhh we don’t learn)
• Validation performs better than train… (trust me, this 

scenario is very unlikely – unless you have a bug )
• Test on train set is different error than train… (forgot 

dropout?)
• Often people mess up the last batch in an epoch…

• You are training set contains test data…
• You debug your algorithm on test data…

6
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“Most common” neural net mistakes
• you didn't try to overfit a single batch first. 
• you forgot to toggle train/eval mode for the net. 
• you forgot to .zero_grad() (in pytorch) before 

.backward(). 
• you passed softmaxed outputs to a loss that expects 

raw logits. 
• you didn't use bias=False for your Linear/Conv2d 

layer when using BatchNorm, or conversely forget to 
include it for the output layer

6
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Credit: A. Karpathy
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https://x.com/MattNiessner/status/1441027241870118913
70

https://x.com/MattNiessner/status/1441027241870118913
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Next Lecture

• Next lecture
– More about training neural networks: output functions, loss 

functions, activation functions

• Check the exercises 
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See you next week 
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