
I2DL: Prof. Niessner

Training Neural
Networks

1

I2DL: Prof. Niessner

Lecture 5 Recap

2

I2DL: Prof. Niessner

Gradient Descent for Neural Networks

3

𝑥0

𝑥1

𝑥2

ℎ0

ℎ1

ℎ2

ℎ3

ො𝑦0

ො𝑦1

𝑦0

𝑦1

ො𝑦𝑖 = 𝐴(𝑏1,𝑖 +෍

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)

ℎ𝑗 = 𝐴(𝑏0,𝑗 +෍

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)

Loss function
𝐿𝑖 = ො𝑦𝑖 − 𝑦𝑖

2

Just simple:
𝐴 𝑥 = max(0, 𝑥)

𝛻𝑾,𝒃𝑓𝒙,𝒚 (𝑾) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚

I2DL: Prof. Niessner

Stochastic Gradient Descent (SGD)
𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿(𝜽

𝑘 , 𝒙{1..𝑚}, 𝒚{1..𝑚})

𝛻𝜽𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜽𝐿𝑖

:

4

𝑘 now refers to 𝑘-th iteration

𝑚 training samples in the current minibatch

Gradient for the 𝑘-th minibatch

I2DL: Prof. Niessner

Gradient Descent with Momentum
𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 + 𝛻𝜽𝐿(𝜽

𝑘)

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅ 𝒗𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝒗𝑘 is vector-valued!

5

Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel

I2DL: Prof. Niessner

RMSProp

6

X-direction Small gradients

Y
-D

ire
ct

io
n

L
ar

g
e

g
ra

d
ie

nt
s

Source: A. Ng

𝒔𝑘+1 = 𝛽 ⋅ 𝒔𝑘 + (1 − 𝛽)[𝛻𝜽𝐿 ∘ 𝛻𝜽𝐿]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝛻𝜽𝐿

𝒔𝑘+1 + 𝜖

We’re dividing by square gradients:
- Division in Y-Direction will be
large
- Division in X-Direction will be
small

(Uncentered) variance of gradients
→ second momentum

Can increase learning rate!

I2DL: Prof. Niessner

Adam
• Combines Momentum and RMSProp

7

𝒎𝑘+1 = 𝛽1 ⋅ 𝒎
𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘 𝒗𝑘+1 = 𝛽2 ⋅ 𝒗

𝑘 + (1 − 𝛽2)[𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘

• 𝒎𝑘+1 and 𝒗𝑘+1 are initialized with zero
→ bias towards zero
→ Typically, bias-corrected moment updates

ෝ𝒎𝑘+1 =
𝒎𝑘+1

1 − 𝛽1
𝑘+1

ෝ𝒗𝑘+1 =
𝒗𝑘+1

1 − 𝛽2
𝑘+1 𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅

ෝ𝒎𝑘+1

ෝ𝒗𝑘+1+𝜖

I2DL: Prof. Niessner

Training Neural Nets

8

I2DL: Prof. Niessner

Learning Rate: Implications

• What if too high?

• What if too low?

9

Source: http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/neural-networks-3/

I2DL: Prof. Niessner

Learning Rate

10

Need high learning rate when far away

Need low learning rate when close

I2DL: Prof. Niessner

Learning Rate Decay

• 𝛼 =
1

1+𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒∗𝑒𝑝𝑜𝑐ℎ
⋅ 𝛼0

– E.g., 𝛼0 = 0.1, 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 = 1.0

→ Epoch 0: 0.1

→ Epoch 1: 0.05

→ Epoch 2: 0.033

→ Epoch 3: 0.025

...
11

0

0,02

0,04

0,06

0,08

0,1

0,12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Learning Rate over Epochs

I2DL: Prof. Niessner

Learning Rate Decay
Many options:
• Step decay 𝛼 = 𝛼 − 𝑡 ⋅ 𝛼 (only every n steps)

– T is decay rate (often 0.5)

• Exponential decay 𝛼 = 𝑡𝑒𝑝𝑜𝑐ℎ ⋅ 𝛼0
– t is decay rate (t < 1.0)

• 𝛼 =
𝑡

𝑒𝑝𝑜𝑐ℎ
⋅ 𝑎0

– t is decay rate

• Etc.
12

I2DL: Prof. Niessner

Training Schedule
Manually specify learning rate for entire training process

• Manually set learning rate every n-epochs
• How?

– Trial and error (the hard way)
– Some experience (only generalizes to some degree)

Consider: #epochs, training set size, network size, etc.

13

I2DL: Prof. Niessner

Basic Recipe for Training

• Given a dataset with labels
– {𝑥𝑖 , 𝑦𝑖}

• 𝑥𝑖 is the 𝑖𝑡ℎ training image, with label 𝑦𝑖
• Often dim 𝑥 ≫ dim(𝑦) (e.g., for classification)
• 𝑖 is often in the 100-thousands or millions

– Take network 𝑓 and its parameters 𝑤, 𝑏
– Use SGD (or variation) to find optimal parameters 𝑤, 𝑏

• Gradients from backpropagation

14

I2DL: Prof. Niessner

Gradient Descent on Train Set
• Given large train set with (𝑛) training samples {𝒙𝑖 , 𝒚𝑖}

– Let’s say 1 million labeled images
– Let’s say our network has 500k parameters

• Gradient has 500k dimensions
• 𝑛 = 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

• Extremely expensive to compute

15

I2DL: Prof. Niessner

Learning
• Learning means generalization to unknown dataset

– (So far no ‘real’ learning)
– i.e., train on known dataset → test with optimized

parameters on unknown dataset

• Basically, we hope that based on the train set, the
optimized parameters will give similar results on
different data (i.e., test data)

16

I2DL: Prof. Niessner

Learning
• Training set (‘train’):

– Use for training your neural network

• Validation set (‘val’):
– Hyperparameter optimization
– Check generalization progress

• Test set (‘test’):
– Only for the very end
– NEVER TOUCH DURING DEVELOPMENT OR TRAINING

17

I2DL: Prof. Niessner

Learning
• Typical splits

– Train (60%), Val (20%), Test (20%)
– Train (80%), Val (10%), Test (10%)

• During training:
– Train error comes from average minibatch error
– Typically take subset of validation every n iterations

18

I2DL: Prof. Niessner

Basic Recipe for Machine Learning
• Split your data

19

Find your hyperparameters

20%

train testvalidation

20%60%

I2DL: Prof. Niessner

Cross Validation

20

train

validationRun 1

Run 2

Run 3

Run 4

Run 5

Split the training data into N folds

I2DL: Prof. Niessner

Cross Validation

21

Find your hyperparameters

train testvalidation

20%60% 20%

I2DL: Prof. Niessner

Basic Recipe for Machine Learning
• Split your data

22

20%

train testvalidation

20%60%

Ground truth error …... 1%

Training set error ….... 5%

Val/test set error ….... 8%

Bias
(underfitting)
Variance
(overfitting)

E
xa

m
p

le
 s

ce
na

rio

I2DL: Prof. Niessner

Basic Recipe for Machine Learning

23

Credits: A. Ng
Done

I2DL: Prof. Niessner

Over- and Underfitting

24

Underfitted Appropriate Overfitted

Source: Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017

I2DL: Prof. Niessner

Over- and Underfitting

25

Source: https://srdas.github.io/DLBook/ImprovingModelGeneralization.html

https://srdas.github.io/DLBook/ImprovingModelGeneralization.html

I2DL: Prof. Niessner

Learning Curves
• Training graphs

- Accuracy - Loss

26

I2DL: Prof. Niessner

Learning Curves

27

t
e
s
t

val

Source: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

I2DL: Prof. Niessner

Overfitting Curves

28

t
e
s
t

Source: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

Val

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

I2DL: Prof. Niessner

Other Curves

29

Underfitting (loss still decreasing) Validation Set is easier than Training set
Source: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

I2DL: Prof. Niessner

To Summarize
• Underfitting

– Training and validation losses decrease even at the end
of training

• Overfitting
– Training loss decreases and validation loss increases

• Ideal Training
– Small gap between training and validation loss, and both

go down at same rate (stable without fluctuations).

30

I2DL: Prof. Niessner

To Summarize
• Bad Signs

– Training error not going down
– Validation error not going down
– Performance on validation better than on training set
– Tests on train set different than during training

• Bad Practice
– Training set contains test data
– Debug algorithm on test data

31

Never touch during
development or

training

I2DL: Prof. Niessner

Hyperparameters
• Network architecture (e.g., num layers, #weights)
• Number of iterations
• Learning rate(s) (i.e., solver parameters, decay, etc.)
• Regularization (more later next lecture)
• Batch size
• …
• Overall:

learning setup + optimization = hyperparameters

32

I2DL: Prof. Niessner

Hyperparameter Tuning
• Methods:

– Manual search:
• most common 

– Grid search (structured, for ‘real’ applications)
• Define ranges for all parameters spaces and

select points
• Usually pseudo-uniformly distributed
→ Iterate over all possible configurations

– Random search:
Like grid search but one picks points at random
in the predefined ranges

33

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

Se
co

n
d

 P
ar

am
et

er

First Parameter

Grid search

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

Se
co

n
d

 P
ar

am
et

er

First Parameter

Random search

I2DL: Prof. Niessner

Find a Good Learning Rate

35

I2DL: Prof. Niessner

Find a Good Learning Rate
• Use all training data with small weight decay
• Perform initial loss sanity check e.g., log(𝐶) for

softmax with 𝐶 classes
• Find a learning rate that makes

the loss drop significantly
(exponentially) within
100 iterations

• Good learning rates to try:
1e-1, 1e-2, 1e-3, 1e-4

38

Training time

Loss

I2DL: Prof. Niessner

Coarse Grid Search
• Choose a few values of learning rate and weight

decay and see which ones work
• Train a few models for a few epochs
• Good weight decay to try: 1e-4, 1e-5, 0

39

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

Se
co

n
d

 P
ar

am
et

er

First Parameter

Grid search

I2DL: Prof. Niessner

Refine Grid
• Pick best models found with coarse grid
• Refine grid search around these models
• Train them for longer (10-20 epochs) without learning

rate decay
• Study loss curves <- most important debugging tool!

40

I2DL: Prof. Niessner

Tensorboard:
Visualization in

Practice

48

I2DL: Prof. Niessner

Tensorboard: Compare Train/Val Curves

49

t
e
s
t

I2DL: Prof. Niessner

Tensorboard: Compare Different Runs

50

t
e
s
t

I2DL: Prof. Niessner

Tensorboard: Visualize Model
Predictions

51

t
e
s
t

I2DL: Prof. Niessner

Tensorboard: Visualize Model
Predictions

52

t
e
s
t

I2DL: Prof. Niessner

Tensorboard: Compare
Hyperparameters

53

t
e
s
t

I2DL: Prof. Niessner

How to train your
neural network?

5
4

I2DL: Prof. Niessner

Setup Visualizations
• Always visualize train and

validation loss curves.

• Check data loading and augmentation by visualizing
samples.

5
5

I2DL: Prof. Niessner

Setup Visualizations
• TensorBoard is easy to setup

• And provides an easy-to-use
interface for visualizing
image batches, metrics,
histograms, videos …

5
6

https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html
https://www.tensorflow.org/tensorboard/

https://pytorch.org/docs/stable/tensorboard.
html?highlight=summarywriter#

https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html
https://www.tensorflow.org/tensorboard/
https://pytorch.org/docs/stable/tensorboard.html?highlight=summarywriter

I2DL: Prof. Niessner

Is data loading correct?
• Data output (target): overfit to single training sample

(needs to have 100% because it just memorizes input)
– It’s irrespective of input !!!

• Data input: overfit to a handful (e.g., 4) training
samples
– It’s now conditioned on input data

5
7

I2DL: Prof. Niessner

Overfitting curves

58

1 sample

4 samples

Loss goes to 0

I2DL: Prof. Niessner

Debugging: overfitting -> generalization

• Move from overfitting to a hand-full of samples
– 5, 10, 100, 1000…
– At some point, we should see generalization

• Apply common sense: can we overfit to the current
number of samples?

• Always be aware of network parameter count!

5
9

I2DL: Prof. Niessner

Check timings
• How long does each iteration take?

– Get precise timings!!!
– If an iteration takes > 500ms, things get dicey…

• Where is the bottleneck: data loading vs backprop?
– Speed up data loading: smaller resolutions, compression, train

from SSD – e.g., network training is good idea
– Speed up backprop

• Estimate total timings: how long until you see some
pattern? How long till convergence?

6
0

I2DL: Prof. Niessner

Network architecture
• 100% mistake so far: “let’s use super big network and

train for two weeks and we see where we stand.”
[because we desperately need those 2%...]

• Start with simplest network possible: rule of thumb
divide #layers you started with by 5.

• Get debug cycles down – ideally, minutes!!!

6
1

I2DL: Prof. Niessner

Debugging
• Need train/val/test curves

– Evaluation needs to be consistent!
– Numbers need to be comparable

• Only make one change at a time
– “I’ve added 5 more layers and double the training size,

and now I also trained 5 days longer” – it’s better, but
WHY?

6
2

I2DL: Prof. Niessner

Overfitting
• ONLY THINK ABOUT THIS ONCE YOUR TRAINING LOSS

GOES DOWN AND YOU CAN OVERFIT!

• Typically try this order:
• Network too big – makes things also faster 
• More regularization; e.g., weight decay
• Not enough data - makes things slower!
• Dropout - makes things slower!
• Guideline: make training harder -> generalize better

6
3

I2DL: Prof. Niessner

Severe overfitting!

64

 Try smaller network size, data augmentations, regularizations.

Training loss

Validation loss

I2DL: Prof. Niessner

Moderate overfitting

65

Training loss

Validation loss

I2DL: Prof. Niessner

No overfitting

66

Training loss

Validation loss

I2DL: Prof. Niessner

Pushing the limits!
• PROCEED ONLY IF YOU GENERALIZE AND YOU ADDRESSED

OVERFITTING ISSUES!

• Bigger network -> more capacity, more power - needs also
more data!

• Better architecture -> ResNet is typically standard, but
InceptionNet architectures perform often better (e.g.,
InceptionNet v4, XceptionNet, etc.)

• Schedules for learning rate decay
• Class-based re-weighting (e.g., give under-represented classes

higher weight)
• Hyperparameter tuning: e.g., grid search; apply common sense!

6
7

I2DL: Prof. Niessner

Bad signs…
• Train error doesn’t go down…
• Validation error doesn’t go down… (ahhh we don’t learn)
• Validation performs better than train… (trust me, this

scenario is very unlikely – unless you have a bug )
• Test on train set is different error than train… (forgot

dropout?)
• Often people mess up the last batch in an epoch…

• You are training set contains test data…
• You debug your algorithm on test data…

6
8

I2DL: Prof. Niessner

“Most common” neural net mistakes
• you didn't try to overfit a single batch first.
• you forgot to toggle train/eval mode for the net.
• you forgot to .zero_grad() (in pytorch) before

.backward().
• you passed softmaxed outputs to a loss that expects

raw logits.
• you didn't use bias=False for your Linear/Conv2d

layer when using BatchNorm, or conversely forget to
include it for the output layer

6
9

Credit: A. Karpathy

I2DL: Prof. Niessner

https://x.com/MattNiessner/status/1441027241870118913
70

https://x.com/MattNiessner/status/1441027241870118913

I2DL: Prof. Niessner

Next Lecture

• Next lecture
– More about training neural networks: output functions, loss

functions, activation functions

• Check the exercises 

71

I2DL: Prof. Niessner

See you next week 

72

I2DL: Prof. Niessner

References
• Goodfellow et al. “Deep Learning” (2016),

– Chapter 6: Deep Feedforward Networks

• Bishop “Pattern Recognition and Machine Learning” (2006),
– Chapter 5.5: Regularization in Network Nets

• http://cs231n.github.io/neural-networks-1/

• http://cs231n.github.io/neural-networks-2/

• http://cs231n.github.io/neural-networks-3/

73

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/

