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Neural Network

output layer
input layer
hidden layer

Source: http://cs231n.aithub.io/neural-networks-1/
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Compute Graphs — Neural Networks

INnput layer

A

X0

e

Output layer
|

yi = A(b; +
7N

Activation bias
function
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Goal: We want to compute gradients of
the loss function L w.rt all weights w

L—zL

L. sum over loss per sample, eg.
2 loss — simply sum up squares:

Li = (J; — y)*

— use chain rule to compute partials
dL  dL 0y,
Owir 09y 0w

We want to compute gradients w.rt
all weights W all biases b



Summary

Caf

« We have IWoos
— (Directionall compute graph -
— Structure graph into layers o et W) = |5 of

— Compute partial derivatives w.rt Wimn
welghts (unknowns) 5

| Obym |

o Next

— Find weights based on gradients Cradient step

W' =W — aViy fieyy (W)
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Optimization
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Gradient Descent

x* = argmin f(x)

INnitialization

Optimum
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Gradient Descent

x* = argmin f(x)

INnitialization

Follow the SLOD&
of the
DERIVATIVE
df (x) " flx+h)—f(x)
= l1im

dx h—0 h

Optimum
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Gradient Descent

« From derivative to gradient Direction of
greatest increase
df (x of the function
];EC ) Vef (x)

« QGradient steps in direction of negative gradient
Vef (%)

x'=x—aV.f(x)

L earning rate
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Gradient Descent

« From derivative to gradient Direction of
greatest increase
df (x of the function
];EC ) Vef (x)

« QGradient steps in direction of negative gradient
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X

_ xf(x)
x'=x—aV.f(x)

SMALL Learning rate
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Gradient Descent

« From derivative to gradient Direction of
greatest increase
df (x of the function
];EC ) Vef (x)

« QGradient steps in direction of negative gradient

Vef (%)
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b
x'=x—aV.f(x)

LARGE Learning rate
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Gradient Descent

x* = argmin f(x)
No guarantee to reach
the global optimum

Initialization

L ocal optimum Global optimum
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Convergence of Gradient Descent

« Convex function: all local minima are global minima
)

f(x) Is convex iff the line between any two points lies above or on the graph.

I2DL: Prof. Niessner 13



Convergence of Gradient Descent

« Neural networks are non-convex
— many (different) local minima
— no (practical) way to say which one is globally optimal

INnitialization

Local optimum Global optimum
12DL: Prof. Niessner
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Convergence of Gradient Descent

Big learning rate Small learning rate

Overshooting, oscillation, Slow convergence
algorithm diverges

Source: https.//builtincom/data-science/gradient-descent
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Convergence of Gradient Descent

Cost
A

Plateau

> 0

. Global
Local minimum -
minimum
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Gradient Descent: Multiple Dimensions

(X (ﬂ'«

v
v

Source: builtin.com/data-science/gradient-descent

Various ways to visualize..
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Gradient Descent: Multiple Dimensions

Source: http.//blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png
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Gradient Descent for Neural Networks

| 0SS function - of -
Li = (@; —y)?

aWo,o,o

| .

— aof

@ Yo Vwbfixyy (W) = ow,

mn

&\

1

af
output layer | Obym |

input layer o .
hidden layer Vi = Alby z Wiij)
| ] Just simple
ust Sl Z
— hj = A(bo,j + 2 XkW0,j,k) A(x) = max(0, x)
k
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Gradient Descent: Single Training Sample

« (Qiven a loss function L and a single training sample
x5}
« Find best model parameters 8 = {W, b}
e Cost Li(B, xi,yi)
— 0 = argmin L;(x;,y;)
« Gradient Descent
— Initialize 8* with ‘random’ values (more on that later)
— 0%t = 0% — aVyL; (0%, x;,v;)
— Iterate until convergence: |@%*1 — @%| < €
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Gradient Descent: Single Training Sample

° 9k+1 = Bk — anLi(Bk,xi,yi
1 | |: Training sample

\Weights, biases after » Loss function
update step » Gradient wrt.

» [_earning rate

v
Welghts, biases at step k
(current model)

 VgLi(0%,x;,y;) computed via backpropagation
* Typically: dim (VeLi(B",xi,yi)) = dim(0) > 1 million
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Gradient Descent: Multiple Training Samples

« Civen a loss function L and multiple (n) training
samples {x;, y;}
« Find best model parameters @ = {W, b}

i COSt L= %Z?=1Li(01 xi} yl)

— 0 = argmin L
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Gradient Descent: Multiple Training Samples

« Update step for multiple samples
0" = 0% — aVpL(0", X(1.n}, Yi1.m3)
« Gradient Is average / sum over residuals

VoL (0%, Xty Yi1.m}) = %Z?ﬂ l‘79Li(9k' Xi,y i?

Reminder: this comes from backprop.

« Often people are lazy and just write: VL = Y1t VgL;
— omitting % IS not 'wrong, It just means rescaling the
learning rate
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Side Note: Optimal Learning Rate

Can compute optimal learning rate a using Line Search
(optimal for a given set)

1. Compute gradient: VgL = % 1 Vel;
2. Optimize for optimal step a:
arg main L(B% —aVyL)

ék+1

3. 9k+1 — Ok — C(VHL

Not that practical for DL since
it requires many evaluations.
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Gradient Descent on Train Set

« Glven large train set with n training samples {x;, y;}
— Let's say 1 million labeled images
— Let's say our network has 500k parameters

o Gradient has 500k dimensions

* n=1million
— Extremely expensive to compute

I2DL: Prof. Niessner



Stochastic Gradient Descent (SGD)

« |[fwe have n training samples, we need to compute
the gradient for all of them which is 0(n)

e |f we consider the problem as empirical risk
minimization, we can express the total loss over the

training data as the expectation of all the samples

(2 Li(0,x;, yl)) Eip1,.m[Li(6, x5, ¥:)]

I2DL: Prof. Niessner



Stochastic Gradient Descent (SGD)

« The expectation can be approximated with a small
supset of the data

1
IEi~[1,...,Tl] [Ll(el Xi, yl)] ~ mzjes (L] (9; xj) y])) with S € {11 veny Tl}

Minibatch
choose subset of trainset m K n

B; = {{x1, y1} {x2, Y2} oo, A, Y3}
{B1, B2, ..., Bym}
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Stochastic Gradient Descent (SGD)

« Minibatch size Is hyperparameter
— Typically power of 2 — 8, 16, 32, 64, 128..

— Smaller batch size means greater variance in the
gradients

— Nolisy updates
— Mostly limited by GPU memory (in backward pass)
- Eg,
« Train set has n = 22° (about 1 million) images
« With batch size m = 64 By _n/m = B1 .. 16,384 Minibatches

(Epoch = complete pass through training set)
12DL: Prof. Niessner



Stochastic Gradient Descent (SGD)

HIWNamwx{l--m}» Y{l..m})
" k now refers to k-th iteration
VoL = — ?i1 VoL;

m

\ m training samples in the current minibatch
Gradient for the k-th minibatch

Note the terminology: iteration vs epoch
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Convergence of SGD

Suppose we want to minimize the function F(8) with
the stochastic approximation

o*+t = 6% — o, H(0%, X)

where aq, as ... a,, 1S a sequence of positive step-sizes
and H(0%,X) is the unbiased estimate of VF(8%), ie

E[H(6%, X)| = VF(6%)

Robbins, H. and Monro, S. "A Stochastic Approximation Method' 1951,

12DL: Prof. Niessner



Convergence of SGD

ok*1 = gk — o, H(6%, X)

converges to a local ( ) minimum If the following
conditions are met:

) a,=20,vyn=0

) Z;.f:l aAp = @0
) Ype1 tp <
)

The proposed sequence by Robbins and Monro is a,, & %,for n>0
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Problems of SGD

« Gradient Is scaled equally across all dimensions
— e, cannot Independently scale directions

— need to have conservative min learning rate to avoid
divergence

— Slower than necessary

« Finding good learning rate is an art by itself
— More next lecture
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Gradient Descent with Momentum

=— >

source: A Ng
We're making many steps
back and forth along this Would love to go faster here.
dimension. \Would love to |.e., accumulated gradients over

track that this is averaging time
out over time.
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Gradient Descent with Momentum

=B - vk — VL(H")
)</ \

| Grad|ent of current minibatch
veloCity  |earning rate

accumulation rate
(‘friction’, momentum)

9k+1 — ek + vk+1
AN

velocity
welghts of model

Exponentially-welghted average of gradient
Important: velocity v* is vector-valued!

[Sutskever et al, ICML'13] On the importance of initialization and momentum in deep learning
12DL: Prof. Niessner 34



Gradient Descent with Momentum

Step will be largest when a sequence of
gradients all point to the same direction

Hyperparameters are a, 8
B is often set to 0.9

—30 . !
-30 —20 —-10 O 10 20
Source: |. Goodfellow

0k+1 — Hk + vk+1

I2DL: Prof. Niessner 35



Gradient Descent with Momentum

e Canitovercome local mnma?

9k+1 — ek + vk+1

2D Prof. Niessner



Nesterov Momentum

e | ook-ahead momentum
pk+1 = 9k + B - v
pht+l — ,B vk — o - VHL(’ék+1)
9k+1 — Hk + vk+1

Nesterov, Yurii E. "A method for solving the convex programming problem with convergence rate O (1/k" 2)." Dokl akad. nauk Sssr. Vol. 269.
1083,

I2DL: Prof. Niessner
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Nesterov Momentum

* First make a big jump in the direction of the previous accumulated gradient.
* Then measure the gradient where you end up and make a correction.

| S
. 2

brown vector = jump, red vector = correction, green vector = accumulated gradient

blue vectors = standard momentum
pk+1 — gk +'8,vk
Source: G, Hinton ~
vk+1 — ,8 . vk —a- VBL(9k+1)

kt1 = gk + pktl
I2DL: Prof. Niessner
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Root Mean Squared Prop (RMSProp)

==

Small gradients

Large gradients

Source: Andrew. Ng

« RMSProp divides the learning rate by an
exponentially-decaying average of squared gradients.

Hinton et al. "Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.” COURSERA: Neural
networks for machine learning 4.2 (2012): 26-31.

I2DL: Prof. Niessner 39



RMSProp

Sk+1 = IB y Sk + (1 — ,B]_[VQL o VQL]J:\

Element-wise multiplication
Vol -

.\/W-I-E\

Element-wise division

9k+1 — Bk—a

Hyperparameters. a, B, €

/ I Typically 1078

Needs tuning! Often 0.9

I2DL: Prof. Niessner 40



RMSProp

=

Source: A Ng

Y-Direction
Large gradients

X-direction Small gradients
(Uncentered) variance of gradients

~ Second momentun s (T F S T A BT L
I\We're dividing by square gradientsy e o Vol
| - Division in Y-Direction will be ! 6 =0 W+ .

I
| large :
- Division in X-Direction will be i | |

i Can increase learning rate!

I2DL: Prof. Niessner A1



RMSProp

« Dampening the oscillations for high-variance
directions

« Can use faster learning rate because it is less likely to
diverge
— Speed up learning speed
— Second moment

12DL: Prof. Niessner



Adaptive Moment Estimation (Adam)

[dea : Combine Momentum and RMSProp

k+1 _ k kY . First momentum:
m =pf1-m*+ (1 - :Bl)VOL(e ) ‘ mean of gradients

it = B, vF + (1 = By)[VeL(0%) o VoL(6%)]

mk+1 \
k+1l = g% — . Note : This is not the

Voktlie update rule of Adam  Second momentum:
variance of gradients

p
Q. What happens at k = 07 ]

A. We need bias correctionasm® = 0and v® =0
o

[Kingma et al., ICLR'15] Adam: A method for stochastic optimization
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Adam : Bias Corrected

« Combines Momentum and RMSProp

mktl = B -mk + (1 — B)VeL(0F) vl =B, - v* + (1 — B,)[VeL(6%) o VyL(6%)

« mk and v¥ are initialized with zero
— blas towards zero
— Need bias-corrected moment updates

Update rule of Adam

r -------------------------------------------------- -I
| k+1 k+1

I A~ m ~ 4 ~k+1
1wkt = — phtl — — . 9kt = gk — 4 Zlc :
L 1 - ﬂl 1 — ﬁz prtlqe .!

l2DL: Prof. Niessner 44



Adam

« Exponentially-decaying mean and of
gradients (combines first and order
momentum)

* Hyperparameters a, 1. B, €

/// -[ = [, -mF + (1 — VL (6%)

— k k k
Needs tuning! 10ften 0.9 Typically 10~ 8I =P 'kv + (1 - :82)[V0LI(CB ) ° VGL(B )]
Often 0.999 a1 — M prt1 - v
________________ 1—ﬁ1k+1 1_sz+1
Sk+1
T 0k+1 — ek a- m
Defaults in PyTorch VoK1 4 ¢
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There are a few others..

 Vanilla SGD

e Momentum

e RMSProp

o Adagrad Adam Is mostly method

« Adadelta of choice for neural networks!

* AdaMax

* Nada

e AMSGrad t's actually fun to play around with SGD

* Proxrrop ILE’Ede?atse;and you get pretty immediate
feedback ©
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Convrger ce
N

S — Momentumg
~—— NAG
— Adagrad |

Adadelta
— Rmsprop -

- -\-.,
\\‘ \ | ' /-4
WY 7/
N %
!
!
i ,;/
\\ ’ i
/,
\ ! /;

Source: http.//ruder.io/optimiz qad nt-des

2Dl Prof. Niessner
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Convergence

- SGD

- Momentum
- NAG

- Adagrad

~—— Adadelta
— Rmsprop

0,005 00 D
: g5

0 - eﬁoof%%%,m
3 SHXIUNOK)

1.0

-1.5
Source: http.//ruder.io/optimizing-gradient-descent/
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Convergence
g TAdwem 1000 |
N HEE

2Dl Prof. Niessner


https://github.com/Jaewan-Yun/optimizer-visualization

Jacoblan and Hessian

« Derivative f:R > R d];(x)
X

. of(x)  0f(x)

o Gradient f:R™ >R %f(x) € R™ V. f =< gxf ----- gxz >
of;
e Jacoblan f:R™ > R" J € R*X™ 1=( af?)
J /i

. af (x)

e Hessian fiR™ > R H € RmX™ H = (aaj;axxj)

ij

second derivatives

I2DL: Prof. Niessner



Newton's Method

« Approximate our function by a second-order Taylor
series expansion

1
L(0) = L(By) + (0 —0,)"VyL(6,) + 5(9 —60y)"H(O — 0,)

\

First derivative Second derivative (curvature)

dL(@)

5 loo=0 & 0*=0,-—HV,L(0)

At optimum:

More info:
https.//en.wikipedia.ora/wiki/Tavlor_series
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Newton's Method

 |teratively step to minimum of parabolic fit:

9k+1 Bk H-1 VBL(Bk)

7

We got rid of the learning rate!
SGD  Oki1 =0 —aVpL(0y,x; ,y; )

I2DL: Prof. Niessner



Newton's Method

« Differentiate and equate to zero

0" = 0,|— H‘1|79L(0)
Parameters of a Number of
network (millions) clements Iin the
Hessian
n n2

I2DL: Prof. Niessner

Update step

Computational
complexity of ‘inversion’
per iteration

O(n?)



Newton's Method

« QGradient Descent (green)
« Newton's method exploits

the curvature to take a
more direct route

Source: https.//en.wikipedia.org/wiki/Newton%27s_method_in_optimization
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Newton's Method

J(8) = (y — X0)" (y — X6)

7

\.

Can you apply Newton's
method for linear regression?
What do you get as a result?

\

J
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BFGS and L-BFGS

Broyden-Fletcher-Goldfarb-Shanno algorithm
Belongs to the family of quasi-Newton methods
Have an approximation of the inverse of the Hessian

0" =0, {H1V,L(0)

BFGS  O(n?)
o Limited memory: L-BFGS O(n)

I2DL: Prof. Niessner



Gauss-Newton

* X1 = X — He (o) 7'V (xx)
— ‘true’ 29 derivatives are often hard to obtain (e.g.,
numerics)

— Hf ~ 2JiJr

« Fornon-linear least squreas, Gauss-Newton (GN):
X1 = Xk — [2Jr ()" Jr Q) 17TV F (i)

« Solve linear system (again, inverting a matrix Is
unstable):

Z(IF(xk)T]F(xk))l(xk — 'xk+1) = Vf(xx)

Solve for delta vector

12DL: Prof. Niessner



L evenberg

* [evenberg Tikhonov
— "damped’ version of Gauss-Newton: regularization

UrCe) Jr(Oa) HA 1) (g — Xp41) = Vf(xk)

— ‘Interpolation’ between Gauss-Newton (small 4) and Gradient
Descent (large 1)

— The damping factor A is adjusted in each iteration ensuring:

f(x) > f(Xpera)

 If the equation Is not fulfilled increase 4
« — frust region
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Levenberg-Marquardt

« [evenberg-Marquardt (LM)

UrCa) ' Jr G + 4 - diag Jr Co) ' Jr(x1))) - (e — Xie41)
= Vi (x)

— Instead of a plain Gradient Descent for large 4, scale each
component of the gradient according to the curvature.

« Avoids slow convergence in components with a small
gradient
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Which, What, and When?

« Standard: Adam
« Fallback option: SGD with momentum

« Newton, L-BFGS, GN, LM only if you can do full batch
updates (doesn't work well for minibatches)

L
|
This practically never happens for DL
Theoretically, it would be nice though due to fast
convergence
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General Optimization

 Linear Systems (Ax = b)
— LU, QR, Cholesky, Jacobl, Gauss-Seldel, CG, PCG, etc.

« Non-linear differentiable problems:
— Gradient Descent, SGD «— first order
— Newton, Gauss-Newton, LM, (LBFGS  « second order

e Others

— Genetic algorithms, MCMC, Metropolis-Hastings, graph
cut methods,.

— Constrained and non-smooth problems (Lagrange,
ADMM, primal-dual, proximal methods, etc))
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General Optimization - Remember

Think about your problem and optimization at hand

SGD Is specifically designed for minibatch

When you can, use 2" order method — it's just faster

GD or SGD Is not a way to solve a linear system!
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Next Lecture

e Thisweek:

— Check exercises
— Check office hours ©

« Next lecture
— Training Neural networks
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Some References to SGD Updates

« Goodfellow et al. 'Deep Learning’ (2016),
— Chapter 8: Optimization
« Bishop "Pattern Recognition and Machine Learning’
(2000),
— Chapter 5.2: Network training (gradient descent)
— Chapter 54 The Hessian Matrix (second order methods)
o Nhitps.//ruderio/optimizing-gradient-descent/index.html
« PyTorch Documetation (with further readings)
— https.//pytorch.org/docs/stable/optim.html
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https://pytorch.org/docs/stable/optim.html

TUTi

See you hext week ©
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