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Scaling Optimization
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Lecture 4 Recap
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Neural Network
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Source: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/
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Compute Graphs → Neural Networks
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𝑥𝑘

ො𝑦0 𝑦0
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ො𝑦1 𝑦1

…

ො𝑦𝑖 = 𝐴(𝑏𝑖 +෍

𝑘

𝑥𝑘𝑤𝑖,𝑘)

𝐿 =෍

𝑖

𝐿𝑖

𝐿𝑖 = ො𝑦𝑖 − 𝑦𝑖
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We want to compute gradients w.r.t. 
all weights 𝑾 AND all biases 𝑏

Activation 
function

bias

𝜕𝐿

𝜕𝑤𝑖,𝑘
=

𝜕𝐿

𝜕 ො𝑦𝑖
⋅
𝜕 ො𝑦𝑖
𝜕𝑤𝑖,𝑘

⟶ use chain rule to compute partials

Goal: We want to compute gradients of 
the loss function 𝐿 w.r.t. all weights 𝑤

𝐿: sum over loss per sample, e.g. 
L2 loss ⟶ simply sum up squares:
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Summary
• We have

– (Directional) compute graph
– Structure graph into layers
– Compute partial derivatives w.r.t. 

weights (unknowns)

• Next
– Find weights based on gradients

5

Gradient step:
𝑾′ = 𝑾− 𝛼𝛻𝑾𝑓𝒙,𝒚 (𝑾)

𝛻𝑾𝑓 𝒙,𝒚 (𝑾) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚
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Optimization

6



I2DL: Prof. Niessner

Gradient Descent
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Optimum

Initialization

𝑥∗ = argmin 𝑓(𝑥)
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Gradient Descent
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Follow the slope 
of the 
DERIVATIVE

Initialization

Optimum

𝑥∗ = argmin 𝑓(𝑥)
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Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

9

Direction of 
greatest increase 

of the function

Learning rate

ⅆ𝑓 𝑥

ⅆ𝑥
𝛻𝑥𝑓 𝑥

𝛻𝑥𝑓(𝑥)

𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓 𝑥

𝑥
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Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient
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Direction of 
greatest increase 

of the functionⅆ𝑓 𝑥

ⅆ𝑥
𝛻𝑥𝑓 𝑥

𝑥

SMALL Learning rate

𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓 𝑥
−𝛻𝑥𝑓(𝑥)
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Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient
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Direction of 
greatest increase 

of the functionⅆ𝑓 𝑥

ⅆ𝑥
𝛻𝑥𝑓 𝑥

𝛻𝑥𝑓(𝑥) 𝑥

LARGE Learning rate

𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓 𝑥
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Gradient Descent

Global optimum

12

No guarantee to reach 
the global optimum

Initialization

𝒙∗ = argmin 𝑓(𝒙)

Local optimum



I2DL: Prof. Niessner

Convergence of Gradient Descent
• Convex function: all local minima are global minima

13

f(x) is convex iff the line between any two points lies above or on the graph.

f(x)
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Convergence of Gradient Descent

14

Global optimum

Initialization

Local optimum

• Neural networks are non-convex
– many (different) local minima
– no (practical) way to say which one is globally optimal
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Convergence of Gradient Descent
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Source: https://builtin.com/data-science/gradient-descent

Overshooting, oscillation, 
algorithm diverges

Slow convergence

https://builtin.com/data-science/gradient-descent
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Convergence of Gradient Descent

16
Source: A. Geron
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Gradient Descent: Multiple Dimensions
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Various ways to visualize…

Source: builtin.com/data-science/gradient-descent

http://builtin.com/data-science/gradient-descent
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Gradient Descent: Multiple Dimensions
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Source: http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png

http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png
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Gradient Descent for Neural Networks

19

𝑥0

𝑥1

𝑥2

ℎ0

ℎ1

ℎ2

ℎ3

ො𝑦0

ො𝑦1

𝑦0

𝑦1

ො𝑦𝑖 = 𝐴(𝑏1,𝑖 +෍

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)

ℎ𝑗 = 𝐴(𝑏0,𝑗 +෍

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)

Loss function
𝐿𝑖 = ො𝑦𝑖 − 𝑦𝑖

2

Just simple: 
𝐴 𝑥 = max(0, 𝑥)

𝛻𝑾,𝒃𝑓𝒙,𝒚 (𝑾) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚
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Gradient Descent: Single Training Sample

• Given a loss function 𝐿 and a single training sample 
{𝒙𝑖 , 𝒚𝑖}

• Find best model parameters 𝜽 = 𝑾, 𝒃

• Cost 𝐿𝑖 𝜽, 𝒙𝑖 , 𝒚𝑖
– 𝜽 = argmin 𝐿𝑖(𝒙𝑖 , 𝒚𝑖)

• Gradient Descent:
– Initialize 𝜽1 with ‘random’ values (more on that later)
– 𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿𝑖(𝜽

𝑘 , 𝒙𝑖 , 𝒚𝑖)

– Iterate until convergence: 𝜽𝑘+1 − 𝜽𝑘 < 𝜖

20
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Gradient Descent: Single Training Sample

21

• 𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿𝑖(𝜽
𝑘 , 𝒙𝑖 , 𝒚𝑖)

• 𝛻𝜽𝐿𝑖 𝜽
𝑘 , 𝒙𝑖 , 𝒚𝒊 computed via backpropagation 

• Typically: ⅆim 𝛻𝜽𝐿𝑖 𝜽
𝑘 , 𝒙𝑖 , 𝒚𝑖 = ⅆim 𝜽 ≫ 1𝑚𝑖𝑙𝑙𝑖𝑜𝑛

Weights, biases at step k
(current model)

Weights, biases after
update step

Learning rate
Gradient w.r.t. 𝜽

Training sample
Loss function
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Gradient Descent: Multiple Training Samples

• Given a loss function 𝐿 and multiple (𝑛) training 
samples {𝒙𝑖 , 𝒚𝑖}

• Find best model parameters 𝜽 = 𝑾, 𝒃

• Cost 𝐿 = 1

𝑛
σ𝑖=1
𝑛 𝐿𝑖(𝜽, 𝒙𝑖 , 𝒚𝑖)

– 𝜽 = argmin 𝐿

22
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Gradient Descent: Multiple Training Samples

23

• Update step for multiple samples

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿 𝜽𝑘 , 𝒙 1..𝑛 , 𝒚 1..𝑛

• Gradient is average / sum over residuals

𝛻𝜽𝐿 𝜽𝑘 , 𝒙 1..𝑛 , 𝒚 1..𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝛻𝜽𝐿𝑖 𝜽

𝑘 , 𝒙𝑖 , 𝒚𝒊

Reminder: this comes from backprop.

• Often people are lazy and just write: 𝛻𝐿 = σ𝑖=1
𝑛 𝛻𝜽𝐿𝑖

 omitting 1
𝑛

is not ‘wrong’, it just means rescaling the 

learning rate
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Side Note: Optimal Learning Rate
Can compute optimal learning rate 𝛼 using Line Search
(optimal for a given set)

1. Compute gradient:  𝛻𝜽𝐿 =
1

𝑛
σ𝑖=1
𝑛 𝛻𝜽𝐿𝑖

2. Optimize for optimal step 𝛼:
argmin

𝛼
𝐿(𝜽𝑘 − 𝛼 𝛻𝜽𝐿)

3. 𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿

24

Not that practical for DL since 
it requires many evaluations.
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Gradient Descent on Train Set
• Given large train set with 𝑛 training samples {𝒙𝑖 , 𝒚𝑖}

– Let’s say 1 million labeled images
– Let’s say our network has 500k parameters 

• Gradient has 500k dimensions
• 𝑛 = 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

→ Extremely expensive to compute

25
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Stochastic Gradient Descent (SGD)
• If we have 𝑛 training samples, we need to compute 

the gradient for all of them which is 𝑂(𝑛)

• If we consider the problem as empirical risk 
minimization, we can express the total loss over the 
training data as the expectation of all the samples

26

1

𝑛
෍

𝑖=1

𝑛

𝐿𝑖 𝜽, 𝒙𝒊, 𝒚𝒊 = 𝔼𝑖~ 1,…,𝑛 𝐿𝑖 𝜽, 𝒙𝒊, 𝒚𝒊
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Stochastic Gradient Descent (SGD)
• The expectation can be approximated with a small 

subset of the data

27

𝔼𝑖~ 1,…,𝑛 𝐿𝑖 𝜽, 𝒙𝒊, 𝒚𝒊 ≈
1

𝑆
෍

𝑗∈𝑆
𝐿𝑗 𝜽, 𝒙𝒋, 𝒚𝒋 with S ⊆ 1,… , 𝑛

Minibatch 
choose subset of trainset 𝑚 ≪ 𝑛

𝐵𝑖 = { 𝒙𝟏, 𝒚𝟏 , 𝒙𝟐, 𝒚𝟐 , … , 𝒙𝒎, 𝒚𝒎 }
{𝐵1, 𝐵2, … , 𝐵𝑛/𝑚}
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Stochastic Gradient Descent (SGD)
• Minibatch size is hyperparameter

– Typically power of 2 → 8, 16, 32, 64, 128…
– Smaller batch size means greater variance in the 

gradients
→ noisy updates

– Mostly limited by GPU memory (in backward pass)
– E.g., 

• Train set has n = 220 (about 1 million) images
• With batch size m = 64: 𝐵1 … 𝑛/𝑚 = 𝐵1 … 16,384 minibatches

28

(Epoch = complete pass through training set)
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Stochastic Gradient Descent (SGD)

29

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿(𝜽
𝑘 , 𝒙{1..𝑚}, 𝒚{1..𝑚})

𝛻𝜽𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜽𝐿𝑖

Note the terminology: iteration vs epoch

𝑘 now refers to 𝑘-th iteration

𝑚 training samples in the current minibatch

Gradient for the 𝑘-th minibatch
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Convergence of SGD

30

Robbins, H. and Monro, S. “A Stochastic Approximation Method" 1951.

Suppose we want to minimize the function 𝐹 𝜃 with 
the stochastic approximation

where 𝛼1, 𝛼2…𝛼𝑛 is a sequence of positive step-sizes 
and 𝐻 𝜃𝑘 , 𝑋 is the unbiased estimate of 𝛻F 𝜃𝑘 , i.e.

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝐻 𝜃𝑘 , 𝑋

𝔼 𝐻 𝜃𝑘 , 𝑋 = 𝛻F 𝜃𝑘
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Convergence of SGD

31

converges to a local (global) minimum if the following 
conditions are met:

1) 𝛼𝑛 ≥ 0, ∀ 𝑛 ≥ 0
2) σ𝑛=1

∞ 𝛼𝑛 = ∞
3) σ𝑛=1

∞ 𝛼𝑛
2 < ∞

4) 𝐹 𝜃 is strictly convex

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝐻 𝜃𝑘 , 𝑋

The proposed sequence by Robbins and Monro is  𝛼𝑛 ∝
𝛼

𝑛
, 𝑓𝑜𝑟 𝑛 > 0
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Problems of SGD
• Gradient is scaled equally across all dimensions

→ i.e., cannot independently scale directions
→ need to have conservative min learning rate to avoid 
divergence 
→ Slower than ‘necessary’

• Finding good learning rate is an art by itself
→ More next lecture

32
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Gradient Descent with Momentum

33

We’re making many steps 
back and forth along this 
dimension. Would love to 
track that this is averaging 
out over time.

Would love to go faster here…
I.e., accumulated gradients over 
time

Source: A. Ng
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Gradient Descent with Momentum

34
[Sutskever et al., ICML’13] On the importance of initialization and momentum in deep learning 

𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 − 𝛼 ⋅ 𝛻𝜽𝐿(𝜽
𝑘)

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝒗𝑘 is vector-valued!

Gradient of current minibatch
velocityaccumulation rate

(‘friction’, momentum) learning rate

velocity
weights of model
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Gradient Descent with Momentum

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

35

Step will be largest when a sequence of 
gradients all point to the same direction

Source: I. Goodfellow

Hyperparameters are 𝛼, 𝛽
𝛽 is often set to 0.9
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Gradient Descent with Momentum
• Can it overcome local minima?

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

36
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Nesterov Momentum
• Look-ahead momentum

෩𝜽𝑘+1 = 𝜽𝑘 + 𝛽 ⋅ 𝒗𝑘

𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 − 𝛼 ⋅ 𝛻𝜽𝐿(෩𝜽
𝑘+1)

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

37

Nesterov, Yurii E. "A method for solving the convex programming problem with convergence rate O (1/k^ 2)." Dokl. akad. nauk Sssr. Vol. 269. 
1983.
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Nesterov Momentum

38

Source: G. Hinton
෩𝜽𝑘+1 = 𝜽𝑘 + 𝛽 ⋅ 𝒗𝑘

𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 − 𝛼 ⋅ 𝛻𝜽𝐿(෩𝜽
𝑘+1)

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1
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Root Mean Squared Prop (RMSProp)

• RMSProp divides the learning rate by an 
exponentially-decaying average of squared gradients.

39

Small gradients

La
rg

e 
g

ra
d

ie
nt

s

Source: Andrew. Ng

Hinton et al. "Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude." COURSERA: Neural 
networks for machine learning 4.2 (2012): 26-31.
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RMSProp

40

𝒔𝑘+1 = 𝛽 ⋅ 𝒔𝑘 + (1 − 𝛽)[𝛻𝜽𝐿 ∘ 𝛻𝜽𝐿]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝛻𝜽𝐿

𝒔𝑘+1 + 𝜖

Hyperparameters: 𝛼, 𝛽, 𝜖

Typically 10−8

Often 0.9

Element-wise multiplication

Needs tuning!

Element-wise division
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RMSProp

41

X-direction Small gradients

Y
-D

ire
ct

io
n
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e 
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Source: A. Ng

𝒔𝑘+1 = 𝛽 ⋅ 𝒔𝑘 + (1 − 𝛽)[𝛻𝜽𝐿 ∘ 𝛻𝜽𝐿]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝛻𝜽𝐿

𝒔𝑘+1 + 𝜖

We’re dividing by square gradients:
- Division in Y-Direction will be 
large
- Division in X-Direction will be 
small

(Uncentered) variance of gradients 
→ second momentum

Can increase learning rate!
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RMSProp
• Dampening the oscillations for high-variance 

directions

• Can use faster learning rate because it is less likely to 
diverge
→ Speed up learning speed
→ Second moment

42
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Adaptive Moment Estimation (Adam)

43

[Kingma et al., ICLR’15] Adam: A method for stochastic optimization

Idea : Combine Momentum and RMSProp
𝒎𝑘+1 = 𝛽1 ⋅ 𝒎

𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘

𝒗𝑘+1 = 𝛽2 ⋅ 𝒗
𝑘 + (1 − 𝛽2)[𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘 ]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝒎𝑘+1

𝒗𝑘+1+𝜖

First momentum: 
mean of gradients

Second momentum: 
variance of gradients

Q. What happens at 𝑘 = 0?
A. We need bias correction as 𝒎0 = 0 and 𝒗0 = 0

Note : This is not the 
update rule of Adam
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Adam : Bias Corrected

44

• Combines Momentum and RMSProp

𝒎𝑘+1 = 𝛽1 ⋅ 𝒎
𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘 𝒗𝑘+1 = 𝛽2 ⋅ 𝒗

𝑘 + (1 − 𝛽2)[𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘

• 𝒎𝑘 and 𝒗𝑘 are initialized with zero 
→ bias towards zero
→ Need bias-corrected moment updates

ෝ𝒎𝑘+1 =
𝒎𝑘+1

1 − 𝛽1
𝑘+1

ෝ𝒗𝑘+1 =
𝒗𝑘+1

1 − 𝛽2
𝑘+1 𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅

ෝ𝒎𝑘+1

ෝ𝒗𝑘+1+𝜖

Update rule of Adam
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Adam

45

• Exponentially-decaying mean and variance of 
gradients (combines first and second order 
momentum)

• Hyperparameters: 𝛼, 𝛽1, 𝛽2, 𝜖
𝒎𝑘+1 = 𝛽1 ⋅ 𝒎

𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘

𝒗𝑘+1 = 𝛽2 ⋅ 𝒗
𝑘 + 1 − 𝛽2 𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘

ෝ𝒎𝑘+1 =
𝒎𝑘+1

1−𝛽1
𝑘+1 ෝ𝒗𝑘+1 =

𝒗𝑘+1

1−𝛽2
𝑘+1

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
ෝ𝒎𝑘+1

ෝ𝒗𝑘+1 + 𝜖

Typically 10−8Often 0.9
Often 0.999

Defaults in PyTorch

Needs tuning!
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There are a few others…
• ‘Vanilla’ SGD
• Momentum
• RMSProp
• Adagrad
• Adadelta
• AdaMax
• Nada
• AMSGrad
• ProxProp

46

Adam is mostly method 
of choice for neural networks!

It’s actually fun to play around with SGD 
updates.
It’s easy and you get pretty immediate 
feedback ☺
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Convergence

47
Source: http://ruder.io/optimizing-gradient-descent/

http://ruder.io/optimizing-gradient-descent/
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Convergence

48
Source: http://ruder.io/optimizing-gradient-descent/

http://ruder.io/optimizing-gradient-descent/
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Convergence

49
Source: https://github.com/Jaewan-Yun/optimizer-visualization

https://github.com/Jaewan-Yun/optimizer-visualization
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Jacobian and Hessian

• Derivative

• Gradient

• Jacobian

• Hessian

50

second derivatives

𝒇:ℝ → ℝ
ⅆ𝑓 𝑥

ⅆ𝑥

𝒇:ℝ𝑚 → ℝ 𝛻𝒙𝑓 𝒙 ∈ ℝ𝑚

𝒇:ℝ𝑚 → ℝ𝑛 𝐉 ∈ ℝ𝑛 ×𝑚

𝒇:ℝ𝑚 → ℝ 𝐇 ∈ ℝ𝑚×𝑚

𝛻𝒙𝑓 =
𝜕𝑓 𝒙

𝜕𝑥1
, . . . ,

𝜕𝑓 𝒙

𝜕𝑥m

𝐉 =
𝜕fi 𝒙

𝜕𝑥𝑗 𝑖𝑗

𝐇 =
𝜕𝑓 𝒙

𝜕𝑥i𝜕𝑥j 𝑖𝑗
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Newton’s Method
• Approximate our function by a second-order Taylor 

series expansion

51

More info: 
https://en.wikipedia.org/wiki/Taylor_series

First derivative Second derivative (curvature)

𝐿 𝜽 ≈ 𝐿 𝜽0 + 𝜽 − 𝜽0
𝑇𝜵𝜽𝐿 𝜽0 +

1

2
𝜽 − 𝜽0

𝑇𝐇 𝜽 − 𝜽0

ⅆ𝐿 𝜽

ⅆ𝜽
│𝜽∗ = 0At optimum: ⟺ 𝜽∗ = 𝜽0 − 𝐇−1𝛻𝜽𝐿 𝜽

https://en.wikipedia.org/wiki/Taylor_series
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Newton’s Method
• Iteratively step to minimum of parabolic fit:

52

SGD

We got rid of the learning rate!

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿 𝜽𝑘 , 𝐱𝒊 , 𝐲𝒊

𝜽k+1 = 𝜽k − 𝐇−1𝛻𝜽𝐿 𝜽𝒌
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Newton’s Method
• Differentiate and equate to zero

53

Update step

Parameters of a 
network (millions)

Number of 
elements in the 

Hessian

Computational 
complexity of ‘inversion’ 

per iteration

𝜽∗ = 𝜽0 − 𝐇−1𝛻𝜽𝐿 𝜽



I2DL: Prof. Niessner

Newton’s Method
• Gradient Descent (green)

• Newton’s method exploits 
the curvature to take a 
more direct route
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Source: https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

https://en.wikipedia.org/wiki/Newton's_method_in_optimization
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Newton’s Method

55

Can you apply Newton’s 
method for linear regression? 
What do you get as a result?

𝐽 𝜽 = 𝐲 − 𝐗𝛉 𝑇 𝐲 − 𝐗𝛉
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BFGS and L-BFGS
• Broyden-Fletcher-Goldfarb-Shanno algorithm
• Belongs to the family of quasi-Newton methods
• Have an approximation of the inverse of the Hessian

• BFGS
• Limited memory: L-BFGS
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𝜽∗ = 𝜽0 − 𝐇−1𝛻𝜽𝐿 𝜽
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Gauss-Newton
• 𝑥𝑘+1 = 𝑥𝑘 −𝐻𝑓 𝑥𝑘

−1𝛻𝑓(𝑥𝑘)
– ‘true’ 2nd derivatives are often hard to obtain (e.g., 

numerics)

– 𝐻𝑓 ≈ 2𝐽𝐹
𝑇𝐽𝐹

• For non-linear least squreas, Gauss-Newton (GN): 
𝑥𝑘+1 = 𝑥𝑘 − [2𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 ]−1𝛻𝑓(𝑥𝑘)

• Solve linear system (again, inverting a matrix is 
unstable):

2 𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

57

Solve for delta vector
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Levenberg
• Levenberg

– “damped” version of Gauss-Newton:

𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ 𝐼 ⋅ 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

– “Interpolation” between Gauss-Newton (small 𝜆) and Gradient 
Descent (large 𝜆)

– The damping factor 𝜆 is adjusted in each iteration ensuring:
𝑓 𝑥𝑘 > 𝑓(𝑥𝑘+1)

• if the equation is not fulfilled increase 𝜆
• → trust region
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Tikhonov
regularization
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Levenberg-Marquardt

• Levenberg-Marquardt (LM)

𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ ⅆ𝑖𝑎𝑔(𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 ) ⋅ 𝑥𝑘 − 𝑥𝑘+1
= 𝛻𝑓(𝑥𝑘)

– Instead of a plain Gradient Descent for large 𝜆, scale each 
component of the gradient according to the curvature.
• Avoids slow convergence in components with a small 

gradient

59



I2DL: Prof. Niessner

Which, What, and When?
• Standard: Adam

• Fallback option: SGD with momentum

• Newton, L-BFGS, GN, LM only if you can do full batch 
updates (doesn’t work well for minibatches)
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This practically never happens for DL
Theoretically, it would be nice though due to fast 

convergence
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General Optimization

• Linear Systems (Ax = b)
– LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, etc.

• Non-linear differentiable problems:
– Gradient Descent, SGD ← first order
– Newton, Gauss-Newton, LM, (L)BFGS ← second order

• Others
– Genetic algorithms, MCMC, Metropolis-Hastings, graph 

cut methods,…
– Constrained and non-smooth problems (Lagrange, 

ADMM, primal-dual, proximal methods, etc.)
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General Optimization - Remember
• Think about your problem and optimization at hand 

• SGD is specifically designed for minibatch

• When you can, use 2nd order method → it’s just faster

• GD or SGD is not a way to solve a linear system!
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Next Lecture
• This week:

– Check exercises
– Check office hours ☺

• Next lecture 
– Training Neural networks
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Some References to SGD Updates
• Goodfellow et al. “Deep Learning” (2016), 

– Chapter 8: Optimization
• Bishop “Pattern Recognition and Machine Learning” 

(2006), 
– Chapter 5.2: Network training (gradient descent)
– Chapter 5.4: The Hessian Matrix (second order methods)

• https://ruder.io/optimizing-gradient-descent/index.html
• PyTorch Documetation (with further readings)

– https://pytorch.org/docs/stable/optim.html
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https://ruder.io/optimizing-gradient-descent/index.html
https://pytorch.org/docs/stable/optim.html
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See you next week 
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