
I2DL: Prof. Niessner

Scaling Optimization

1

I2DL: Prof. Niessner

Lecture 4 Recap

2

I2DL: Prof. Niessner

Neural Network

3

Source: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

I2DL: Prof. Niessner

Compute Graphs → Neural Networks

4

𝑥0

𝑥𝑘

ො𝑦0 𝑦0

Input layer Output layer

ො𝑦1 𝑦1

…

ො𝑦𝑖 = 𝐴(𝑏𝑖 +෍

𝑘

𝑥𝑘𝑤𝑖,𝑘)

𝐿 =෍

𝑖

𝐿𝑖

𝐿𝑖 = ො𝑦𝑖 − 𝑦𝑖
2

We want to compute gradients w.r.t.
all weights 𝑾 AND all biases 𝑏

Activation
function

bias

𝜕𝐿

𝜕𝑤𝑖,𝑘
=

𝜕𝐿

𝜕 ො𝑦𝑖
⋅
𝜕 ො𝑦𝑖
𝜕𝑤𝑖,𝑘

⟶ use chain rule to compute partials

Goal: We want to compute gradients of
the loss function 𝐿 w.r.t. all weights 𝑤

𝐿: sum over loss per sample, e.g.
L2 loss ⟶ simply sum up squares:

I2DL: Prof. Niessner

Summary
• We have

– (Directional) compute graph
– Structure graph into layers
– Compute partial derivatives w.r.t.

weights (unknowns)

• Next
– Find weights based on gradients

5

Gradient step:
𝑾′ = 𝑾− 𝛼𝛻𝑾𝑓𝒙,𝒚 (𝑾)

𝛻𝑾𝑓 𝒙,𝒚 (𝑾) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚

I2DL: Prof. Niessner

Optimization

6

I2DL: Prof. Niessner

Gradient Descent

7

Optimum

Initialization

𝑥∗ = argmin 𝑓(𝑥)

I2DL: Prof. Niessner

Gradient Descent

8

Follow the slope
of the
DERIVATIVE

Initialization

Optimum

𝑥∗ = argmin 𝑓(𝑥)

I2DL: Prof. Niessner

Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

9

Direction of
greatest increase

of the function

Learning rate

ⅆ𝑓 𝑥

ⅆ𝑥
𝛻𝑥𝑓 𝑥

𝛻𝑥𝑓(𝑥)

𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓 𝑥

𝑥

I2DL: Prof. Niessner

Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

10

Direction of
greatest increase

of the functionⅆ𝑓 𝑥

ⅆ𝑥
𝛻𝑥𝑓 𝑥

𝑥

SMALL Learning rate

𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓 𝑥
−𝛻𝑥𝑓(𝑥)

I2DL: Prof. Niessner

Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

11

Direction of
greatest increase

of the functionⅆ𝑓 𝑥

ⅆ𝑥
𝛻𝑥𝑓 𝑥

𝛻𝑥𝑓(𝑥) 𝑥

LARGE Learning rate

𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓 𝑥

I2DL: Prof. Niessner

Gradient Descent

Global optimum

12

No guarantee to reach
the global optimum

Initialization

𝒙∗ = argmin 𝑓(𝒙)

Local optimum

I2DL: Prof. Niessner

Convergence of Gradient Descent
• Convex function: all local minima are global minima

13

f(x) is convex iff the line between any two points lies above or on the graph.

f(x)

I2DL: Prof. Niessner

Convergence of Gradient Descent

14

Global optimum

Initialization

Local optimum

• Neural networks are non-convex
– many (different) local minima
– no (practical) way to say which one is globally optimal

I2DL: Prof. Niessner

Convergence of Gradient Descent

15

Source: https://builtin.com/data-science/gradient-descent

Overshooting, oscillation,
algorithm diverges

Slow convergence

https://builtin.com/data-science/gradient-descent

I2DL: Prof. Niessner

Convergence of Gradient Descent

16
Source: A. Geron

I2DL: Prof. Niessner

Gradient Descent: Multiple Dimensions

17

Various ways to visualize…

Source: builtin.com/data-science/gradient-descent

http://builtin.com/data-science/gradient-descent

I2DL: Prof. Niessner

Gradient Descent: Multiple Dimensions

18

Source: http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png

http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png

I2DL: Prof. Niessner

Gradient Descent for Neural Networks

19

𝑥0

𝑥1

𝑥2

ℎ0

ℎ1

ℎ2

ℎ3

ො𝑦0

ො𝑦1

𝑦0

𝑦1

ො𝑦𝑖 = 𝐴(𝑏1,𝑖 +෍

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)

ℎ𝑗 = 𝐴(𝑏0,𝑗 +෍

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)

Loss function
𝐿𝑖 = ො𝑦𝑖 − 𝑦𝑖

2

Just simple:
𝐴 𝑥 = max(0, 𝑥)

𝛻𝑾,𝒃𝑓𝒙,𝒚 (𝑾) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚

I2DL: Prof. Niessner

Gradient Descent: Single Training Sample

• Given a loss function 𝐿 and a single training sample
{𝒙𝑖 , 𝒚𝑖}

• Find best model parameters 𝜽 = 𝑾, 𝒃

• Cost 𝐿𝑖 𝜽, 𝒙𝑖 , 𝒚𝑖
– 𝜽 = argmin 𝐿𝑖(𝒙𝑖 , 𝒚𝑖)

• Gradient Descent:
– Initialize 𝜽1 with ‘random’ values (more on that later)
– 𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿𝑖(𝜽

𝑘 , 𝒙𝑖 , 𝒚𝑖)

– Iterate until convergence: 𝜽𝑘+1 − 𝜽𝑘 < 𝜖

20

I2DL: Prof. Niessner

Gradient Descent: Single Training Sample

21

• 𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿𝑖(𝜽
𝑘 , 𝒙𝑖 , 𝒚𝑖)

• 𝛻𝜽𝐿𝑖 𝜽
𝑘 , 𝒙𝑖 , 𝒚𝒊 computed via backpropagation

• Typically: ⅆim 𝛻𝜽𝐿𝑖 𝜽
𝑘 , 𝒙𝑖 , 𝒚𝑖 = ⅆim 𝜽 ≫ 1𝑚𝑖𝑙𝑙𝑖𝑜𝑛

Weights, biases at step k
(current model)

Weights, biases after
update step

Learning rate
Gradient w.r.t. 𝜽

Training sample
Loss function

I2DL: Prof. Niessner

Gradient Descent: Multiple Training Samples

• Given a loss function 𝐿 and multiple (𝑛) training
samples {𝒙𝑖 , 𝒚𝑖}

• Find best model parameters 𝜽 = 𝑾, 𝒃

• Cost 𝐿 = 1

𝑛
σ𝑖=1
𝑛 𝐿𝑖(𝜽, 𝒙𝑖 , 𝒚𝑖)

– 𝜽 = argmin 𝐿

22

I2DL: Prof. Niessner

Gradient Descent: Multiple Training Samples

23

• Update step for multiple samples

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿 𝜽𝑘 , 𝒙 1..𝑛 , 𝒚 1..𝑛

• Gradient is average / sum over residuals

𝛻𝜽𝐿 𝜽𝑘 , 𝒙 1..𝑛 , 𝒚 1..𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝛻𝜽𝐿𝑖 𝜽

𝑘 , 𝒙𝑖 , 𝒚𝒊

Reminder: this comes from backprop.

• Often people are lazy and just write: 𝛻𝐿 = σ𝑖=1
𝑛 𝛻𝜽𝐿𝑖

 omitting 1
𝑛

is not ‘wrong’, it just means rescaling the

learning rate

I2DL: Prof. Niessner

Side Note: Optimal Learning Rate
Can compute optimal learning rate 𝛼 using Line Search
(optimal for a given set)

1. Compute gradient: 𝛻𝜽𝐿 =
1

𝑛
σ𝑖=1
𝑛 𝛻𝜽𝐿𝑖

2. Optimize for optimal step 𝛼:
argmin

𝛼
𝐿(𝜽𝑘 − 𝛼 𝛻𝜽𝐿)

3. 𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿

24

Not that practical for DL since
it requires many evaluations.

I2DL: Prof. Niessner

Gradient Descent on Train Set
• Given large train set with 𝑛 training samples {𝒙𝑖 , 𝒚𝑖}

– Let’s say 1 million labeled images
– Let’s say our network has 500k parameters

• Gradient has 500k dimensions
• 𝑛 = 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

→ Extremely expensive to compute

25

I2DL: Prof. Niessner

Stochastic Gradient Descent (SGD)
• If we have 𝑛 training samples, we need to compute

the gradient for all of them which is 𝑂(𝑛)

• If we consider the problem as empirical risk
minimization, we can express the total loss over the
training data as the expectation of all the samples

26

1

𝑛
෍

𝑖=1

𝑛

𝐿𝑖 𝜽, 𝒙𝒊, 𝒚𝒊 = 𝔼𝑖~ 1,…,𝑛 𝐿𝑖 𝜽, 𝒙𝒊, 𝒚𝒊

I2DL: Prof. Niessner

Stochastic Gradient Descent (SGD)
• The expectation can be approximated with a small

subset of the data

27

𝔼𝑖~ 1,…,𝑛 𝐿𝑖 𝜽, 𝒙𝒊, 𝒚𝒊 ≈
1

𝑆
෍

𝑗∈𝑆
𝐿𝑗 𝜽, 𝒙𝒋, 𝒚𝒋 with S ⊆ 1,… , 𝑛

Minibatch
choose subset of trainset 𝑚 ≪ 𝑛

𝐵𝑖 = { 𝒙𝟏, 𝒚𝟏 , 𝒙𝟐, 𝒚𝟐 , … , 𝒙𝒎, 𝒚𝒎 }
{𝐵1, 𝐵2, … , 𝐵𝑛/𝑚}

I2DL: Prof. Niessner

Stochastic Gradient Descent (SGD)
• Minibatch size is hyperparameter

– Typically power of 2 → 8, 16, 32, 64, 128…
– Smaller batch size means greater variance in the

gradients
→ noisy updates

– Mostly limited by GPU memory (in backward pass)
– E.g.,

• Train set has n = 220 (about 1 million) images
• With batch size m = 64: 𝐵1 … 𝑛/𝑚 = 𝐵1 … 16,384 minibatches

28

(Epoch = complete pass through training set)

I2DL: Prof. Niessner

Stochastic Gradient Descent (SGD)

29

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿(𝜽
𝑘 , 𝒙{1..𝑚}, 𝒚{1..𝑚})

𝛻𝜽𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜽𝐿𝑖

Note the terminology: iteration vs epoch

𝑘 now refers to 𝑘-th iteration

𝑚 training samples in the current minibatch

Gradient for the 𝑘-th minibatch

I2DL: Prof. Niessner

Convergence of SGD

30

Robbins, H. and Monro, S. “A Stochastic Approximation Method" 1951.

Suppose we want to minimize the function 𝐹 𝜃 with
the stochastic approximation

where 𝛼1, 𝛼2…𝛼𝑛 is a sequence of positive step-sizes
and 𝐻 𝜃𝑘 , 𝑋 is the unbiased estimate of 𝛻F 𝜃𝑘 , i.e.

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝐻 𝜃𝑘 , 𝑋

𝔼 𝐻 𝜃𝑘 , 𝑋 = 𝛻F 𝜃𝑘

I2DL: Prof. Niessner

Convergence of SGD

31

converges to a local (global) minimum if the following
conditions are met:

1) 𝛼𝑛 ≥ 0, ∀ 𝑛 ≥ 0
2) σ𝑛=1

∞ 𝛼𝑛 = ∞
3) σ𝑛=1

∞ 𝛼𝑛
2 < ∞

4) 𝐹 𝜃 is strictly convex

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝐻 𝜃𝑘 , 𝑋

The proposed sequence by Robbins and Monro is 𝛼𝑛 ∝
𝛼

𝑛
, 𝑓𝑜𝑟 𝑛 > 0

I2DL: Prof. Niessner

Problems of SGD
• Gradient is scaled equally across all dimensions

→ i.e., cannot independently scale directions
→ need to have conservative min learning rate to avoid
divergence
→ Slower than ‘necessary’

• Finding good learning rate is an art by itself
→ More next lecture

32

I2DL: Prof. Niessner

Gradient Descent with Momentum

33

We’re making many steps
back and forth along this
dimension. Would love to
track that this is averaging
out over time.

Would love to go faster here…
I.e., accumulated gradients over
time

Source: A. Ng

I2DL: Prof. Niessner

Gradient Descent with Momentum

34
[Sutskever et al., ICML’13] On the importance of initialization and momentum in deep learning

𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 − 𝛼 ⋅ 𝛻𝜽𝐿(𝜽
𝑘)

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝒗𝑘 is vector-valued!

Gradient of current minibatch
velocityaccumulation rate

(‘friction’, momentum) learning rate

velocity
weights of model

I2DL: Prof. Niessner

Gradient Descent with Momentum

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

35

Step will be largest when a sequence of
gradients all point to the same direction

Source: I. Goodfellow

Hyperparameters are 𝛼, 𝛽
𝛽 is often set to 0.9

I2DL: Prof. Niessner

Gradient Descent with Momentum
• Can it overcome local minima?

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

36

I2DL: Prof. Niessner

Nesterov Momentum
• Look-ahead momentum

෩𝜽𝑘+1 = 𝜽𝑘 + 𝛽 ⋅ 𝒗𝑘

𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 − 𝛼 ⋅ 𝛻𝜽𝐿(෩𝜽
𝑘+1)

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

37

Nesterov, Yurii E. "A method for solving the convex programming problem with convergence rate O (1/k^ 2)." Dokl. akad. nauk Sssr. Vol. 269.
1983.

I2DL: Prof. Niessner

Nesterov Momentum

38

Source: G. Hinton
෩𝜽𝑘+1 = 𝜽𝑘 + 𝛽 ⋅ 𝒗𝑘

𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 − 𝛼 ⋅ 𝛻𝜽𝐿(෩𝜽
𝑘+1)

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

I2DL: Prof. Niessner

Root Mean Squared Prop (RMSProp)

• RMSProp divides the learning rate by an
exponentially-decaying average of squared gradients.

39

Small gradients

La
rg

e
g

ra
d

ie
nt

s

Source: Andrew. Ng

Hinton et al. "Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude." COURSERA: Neural
networks for machine learning 4.2 (2012): 26-31.

I2DL: Prof. Niessner

RMSProp

40

𝒔𝑘+1 = 𝛽 ⋅ 𝒔𝑘 + (1 − 𝛽)[𝛻𝜽𝐿 ∘ 𝛻𝜽𝐿]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝛻𝜽𝐿

𝒔𝑘+1 + 𝜖

Hyperparameters: 𝛼, 𝛽, 𝜖

Typically 10−8

Often 0.9

Element-wise multiplication

Needs tuning!

Element-wise division

I2DL: Prof. Niessner

RMSProp

41

X-direction Small gradients

Y
-D

ire
ct

io
n

La
rg

e
g

ra
d

ie
nt

s

Source: A. Ng

𝒔𝑘+1 = 𝛽 ⋅ 𝒔𝑘 + (1 − 𝛽)[𝛻𝜽𝐿 ∘ 𝛻𝜽𝐿]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝛻𝜽𝐿

𝒔𝑘+1 + 𝜖

We’re dividing by square gradients:
- Division in Y-Direction will be
large
- Division in X-Direction will be
small

(Uncentered) variance of gradients
→ second momentum

Can increase learning rate!

I2DL: Prof. Niessner

RMSProp
• Dampening the oscillations for high-variance

directions

• Can use faster learning rate because it is less likely to
diverge
→ Speed up learning speed
→ Second moment

42

I2DL: Prof. Niessner

Adaptive Moment Estimation (Adam)

43

[Kingma et al., ICLR’15] Adam: A method for stochastic optimization

Idea : Combine Momentum and RMSProp
𝒎𝑘+1 = 𝛽1 ⋅ 𝒎

𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘

𝒗𝑘+1 = 𝛽2 ⋅ 𝒗
𝑘 + (1 − 𝛽2)[𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝒎𝑘+1

𝒗𝑘+1+𝜖

First momentum:
mean of gradients

Second momentum:
variance of gradients

Q. What happens at 𝑘 = 0?
A. We need bias correction as 𝒎0 = 0 and 𝒗0 = 0

Note : This is not the
update rule of Adam

I2DL: Prof. Niessner

Adam : Bias Corrected

44

• Combines Momentum and RMSProp

𝒎𝑘+1 = 𝛽1 ⋅ 𝒎
𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘 𝒗𝑘+1 = 𝛽2 ⋅ 𝒗

𝑘 + (1 − 𝛽2)[𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘

• 𝒎𝑘 and 𝒗𝑘 are initialized with zero
→ bias towards zero
→ Need bias-corrected moment updates

ෝ𝒎𝑘+1 =
𝒎𝑘+1

1 − 𝛽1
𝑘+1

ෝ𝒗𝑘+1 =
𝒗𝑘+1

1 − 𝛽2
𝑘+1 𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅

ෝ𝒎𝑘+1

ෝ𝒗𝑘+1+𝜖

Update rule of Adam

I2DL: Prof. Niessner

Adam

45

• Exponentially-decaying mean and variance of
gradients (combines first and second order
momentum)

• Hyperparameters: 𝛼, 𝛽1, 𝛽2, 𝜖
𝒎𝑘+1 = 𝛽1 ⋅ 𝒎

𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘

𝒗𝑘+1 = 𝛽2 ⋅ 𝒗
𝑘 + 1 − 𝛽2 𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘

ෝ𝒎𝑘+1 =
𝒎𝑘+1

1−𝛽1
𝑘+1 ෝ𝒗𝑘+1 =

𝒗𝑘+1

1−𝛽2
𝑘+1

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
ෝ𝒎𝑘+1

ෝ𝒗𝑘+1 + 𝜖

Typically 10−8Often 0.9
Often 0.999

Defaults in PyTorch

Needs tuning!

I2DL: Prof. Niessner

There are a few others…
• ‘Vanilla’ SGD
• Momentum
• RMSProp
• Adagrad
• Adadelta
• AdaMax
• Nada
• AMSGrad
• ProxProp

46

Adam is mostly method
of choice for neural networks!

It’s actually fun to play around with SGD
updates.
It’s easy and you get pretty immediate
feedback ☺

I2DL: Prof. Niessner

Convergence

47
Source: http://ruder.io/optimizing-gradient-descent/

http://ruder.io/optimizing-gradient-descent/

I2DL: Prof. Niessner

Convergence

48
Source: http://ruder.io/optimizing-gradient-descent/

http://ruder.io/optimizing-gradient-descent/

I2DL: Prof. Niessner

Convergence

49
Source: https://github.com/Jaewan-Yun/optimizer-visualization

https://github.com/Jaewan-Yun/optimizer-visualization

I2DL: Prof. Niessner

Jacobian and Hessian

• Derivative

• Gradient

• Jacobian

• Hessian

50

second derivatives

𝒇:ℝ → ℝ
ⅆ𝑓 𝑥

ⅆ𝑥

𝒇:ℝ𝑚 → ℝ 𝛻𝒙𝑓 𝒙 ∈ ℝ𝑚

𝒇:ℝ𝑚 → ℝ𝑛 𝐉 ∈ ℝ𝑛 ×𝑚

𝒇:ℝ𝑚 → ℝ 𝐇 ∈ ℝ𝑚×𝑚

𝛻𝒙𝑓 =
𝜕𝑓 𝒙

𝜕𝑥1
, . . . ,

𝜕𝑓 𝒙

𝜕𝑥m

𝐉 =
𝜕fi 𝒙

𝜕𝑥𝑗 𝑖𝑗

𝐇 =
𝜕𝑓 𝒙

𝜕𝑥i𝜕𝑥j 𝑖𝑗

I2DL: Prof. Niessner

Newton’s Method
• Approximate our function by a second-order Taylor

series expansion

51

More info:
https://en.wikipedia.org/wiki/Taylor_series

First derivative Second derivative (curvature)

𝐿 𝜽 ≈ 𝐿 𝜽0 + 𝜽 − 𝜽0
𝑇𝜵𝜽𝐿 𝜽0 +

1

2
𝜽 − 𝜽0

𝑇𝐇 𝜽 − 𝜽0

ⅆ𝐿 𝜽

ⅆ𝜽
│𝜽∗ = 0At optimum: ⟺ 𝜽∗ = 𝜽0 − 𝐇−1𝛻𝜽𝐿 𝜽

https://en.wikipedia.org/wiki/Taylor_series

I2DL: Prof. Niessner

Newton’s Method
• Iteratively step to minimum of parabolic fit:

52

SGD

We got rid of the learning rate!

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿 𝜽𝑘 , 𝐱𝒊 , 𝐲𝒊

𝜽k+1 = 𝜽k − 𝐇−1𝛻𝜽𝐿 𝜽𝒌

I2DL: Prof. Niessner

Newton’s Method
• Differentiate and equate to zero

53

Update step

Parameters of a
network (millions)

Number of
elements in the

Hessian

Computational
complexity of ‘inversion’

per iteration

𝜽∗ = 𝜽0 − 𝐇−1𝛻𝜽𝐿 𝜽

I2DL: Prof. Niessner

Newton’s Method
• Gradient Descent (green)

• Newton’s method exploits
the curvature to take a
more direct route

54

Source: https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

https://en.wikipedia.org/wiki/Newton's_method_in_optimization

I2DL: Prof. Niessner

Newton’s Method

55

Can you apply Newton’s
method for linear regression?
What do you get as a result?

𝐽 𝜽 = 𝐲 − 𝐗𝛉 𝑇 𝐲 − 𝐗𝛉

I2DL: Prof. Niessner

BFGS and L-BFGS
• Broyden-Fletcher-Goldfarb-Shanno algorithm
• Belongs to the family of quasi-Newton methods
• Have an approximation of the inverse of the Hessian

• BFGS
• Limited memory: L-BFGS

56

𝜽∗ = 𝜽0 − 𝐇−1𝛻𝜽𝐿 𝜽

I2DL: Prof. Niessner

Gauss-Newton
• 𝑥𝑘+1 = 𝑥𝑘 −𝐻𝑓 𝑥𝑘

−1𝛻𝑓(𝑥𝑘)
– ‘true’ 2nd derivatives are often hard to obtain (e.g.,

numerics)

– 𝐻𝑓 ≈ 2𝐽𝐹
𝑇𝐽𝐹

• For non-linear least squreas, Gauss-Newton (GN):
𝑥𝑘+1 = 𝑥𝑘 − [2𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘]−1𝛻𝑓(𝑥𝑘)

• Solve linear system (again, inverting a matrix is
unstable):

2 𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

57

Solve for delta vector

I2DL: Prof. Niessner

Levenberg
• Levenberg

– “damped” version of Gauss-Newton:

𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ 𝐼 ⋅ 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

– “Interpolation” between Gauss-Newton (small 𝜆) and Gradient
Descent (large 𝜆)

– The damping factor 𝜆 is adjusted in each iteration ensuring:
𝑓 𝑥𝑘 > 𝑓(𝑥𝑘+1)

• if the equation is not fulfilled increase 𝜆
• → trust region

58

Tikhonov
regularization

I2DL: Prof. Niessner

Levenberg-Marquardt

• Levenberg-Marquardt (LM)

𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ ⅆ𝑖𝑎𝑔(𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘) ⋅ 𝑥𝑘 − 𝑥𝑘+1
= 𝛻𝑓(𝑥𝑘)

– Instead of a plain Gradient Descent for large 𝜆, scale each
component of the gradient according to the curvature.
• Avoids slow convergence in components with a small

gradient

59

I2DL: Prof. Niessner

Which, What, and When?
• Standard: Adam

• Fallback option: SGD with momentum

• Newton, L-BFGS, GN, LM only if you can do full batch
updates (doesn’t work well for minibatches)

60

This practically never happens for DL
Theoretically, it would be nice though due to fast

convergence

I2DL: Prof. Niessner

General Optimization

• Linear Systems (Ax = b)
– LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, etc.

• Non-linear differentiable problems:
– Gradient Descent, SGD ← first order
– Newton, Gauss-Newton, LM, (L)BFGS ← second order

• Others
– Genetic algorithms, MCMC, Metropolis-Hastings, graph

cut methods,…
– Constrained and non-smooth problems (Lagrange,

ADMM, primal-dual, proximal methods, etc.)

61

I2DL: Prof. Niessner

General Optimization - Remember
• Think about your problem and optimization at hand

• SGD is specifically designed for minibatch

• When you can, use 2nd order method → it’s just faster

• GD or SGD is not a way to solve a linear system!

62

I2DL: Prof. Niessner

Next Lecture
• This week:

– Check exercises
– Check office hours ☺

• Next lecture
– Training Neural networks

63

I2DL: Prof. Niessner

Some References to SGD Updates
• Goodfellow et al. “Deep Learning” (2016),

– Chapter 8: Optimization
• Bishop “Pattern Recognition and Machine Learning”

(2006),
– Chapter 5.2: Network training (gradient descent)
– Chapter 5.4: The Hessian Matrix (second order methods)

• https://ruder.io/optimizing-gradient-descent/index.html
• PyTorch Documetation (with further readings)

– https://pytorch.org/docs/stable/optim.html

64

https://ruder.io/optimizing-gradient-descent/index.html
https://pytorch.org/docs/stable/optim.html

I2DL: Prof. Niessner

See you next week 

65

