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Al vs ML vs DL

Artificial Intelligence

Machine Learning

Deep
Learning
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A SImple Task:
Image Classification
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Image Classification
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Image Classification

Occlusions
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Image Classification

Background clutter
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@ Image Classification

)/

Representation
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A Simple Classifier
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Nearest Neighbor —
NN classifier = dog

distance

I2DL: Prof. Niessner 12



Nearest Neighbor

K-NN classifier = cat

I

distance
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Nearest Neighbor

The Data NN Classifier 5NN Classifier

How does the NN classifier perform on training data?

What classifier is more likely to perform best on test data?
What are we actually learning?

2Dl Prof. Niessner Source: https.//commons.wikimedia.org/wiki/File:Dataiclasses.png



https://commons.wikimedia.org/wiki/File:Data3classes.png

Nearest Neighbor

L1 distance: |x — c|
* Hyperparameters < L2 distance : ||x — c]|»
No. of Neighbors: k

* These parameters are problem dependent.

« How do we choose these hyperparameters?

I2DL: Prof. Niessner
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Machine Learning for
Classification
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Machine Learning

« How can we learn to perform image classification?

Task Experience

2Dl Prof. Niessner
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Machine Learning

. My(I) = {DOG, CAT}

t
/1IN0 \

Model Image Class Label

Model Params
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Machine Learning

« Mg(I) = {DOG, CAT} Given i images with train labels

/IN N\

Model Image Class Label

Model Params

0" = arggnin Y.i D(Mg(I;) — 1;)

‘Distance’ function {DOG, CAT}

AT e y i
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Basic Recipe for Machine Learning
« Split your data

00% 20% 207%

train validation

|

Find model params 6

Other splits are also possible (e.g., 80%/10%/10%)

I2DL: Prof. Niessner 20



Basic Recipe for Machine Learning
« Split your data

00% 20% 207%

train validation

\ )
I

Find your hyperparameters

Other splits are also possible (e.g., 80%/10%/10%)
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Basic Recipe for Machine Learning

A\ \

Test set is only used once!

\. J
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Machine Learning

« How can we learn to perform image classification?

Task Experience

Performance
measure

2Dl Prof. Niessner
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Machine Learning

Unsupervised learning Supervised learning

« Labels ortarget classes

[2DL: Prof. Niessner 24



Machine Learning

Unsupervised learning Supervised learning
CAT

VE r i
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Machine Learning

Unsupervised learning Supervised learning
CAT

« No label or target class

« Find out properties of
the structure of the
data

« Clustering (k-means,
PCA, etc)

I2DL: Prof. Niessner



Machine Learning

Unsupervised learning Supervised learning
CAT

OV N Nl
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Machine Learning

Unsupervised learning Supervised learning
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Machine Learning

Unsupervised learning Supervised learning

Reinforcement learning -

iNteraction .
s | Environment

2Dl Prof. Niessner
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Machine Learning

Unsupervised learning Supervised learning

Reinforcement learning -

reward .
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Machine Learning

Supervised learning
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LInear Decision

Boundaries

Let's start with a simple linear model!

I2DL: Prof. Niessner
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and cons for using
LInear decision
boundaries?
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L Inear Regression
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Linear Regression

«  Supervised learning

« Find a linear model that explains a target y given
iNputs x

I2DL: Prof. Niessner



Linear Regression
Training

(X in; > 0
Data poits ' Model parameters

Input (e.g., iImage,
measurement) Labels
(e.g. cat/dog)

2Dl Prof. Niessner -



Linear Regression

can be parameters of a

Training Neural Network
{xl:n’ yl:n} > 7,

Data points Model parameters

Xn+1,0 > Yn+1

Estimation

Testing

I2DL Prof. Niessner 36



LInear Prediction

« A linear model is expressed in the form

— Input dimension

Vi =

]T\

Input data, features

d
=1
welights (i.e., model parameters)

I2DL: Prof. Niessner
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LInear Prediction

« Alinear model is expressed in the form
d

yi = 90 + ZXUH] = HO + xi101 + x,;202 + et xl-de

> X

I2DL: Prof. Niessner 38



LInear Prediction
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LInear Prediction

V1 X11 X1d 0,
y X21 X2d 0
?’2 =0, + E 52
37,1 Xn1 Xnd ] | Hd ]
D% 1 X11 X1a 1[0
Yol |1 X21 X24 | | 64
L 5;11 _1 lel xnd _Hd
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LInear Prediction

y = X0 Input features
Prediction (one sample has d
\ / features)
_5;1- -1 xll coe xlcd- -90_
Vol _ |1 X21 - X2a | |01 T——
S I IR : : Model
L Vn 1 Xp1 - Xna 11041 parameters

(d weights and 1 bias)

I2DL: Prof. Niessner A1



LInear Prediction

@
Temperature b@& b@@g SMODEL
of the building ‘o) o & N - 0.2-
ST o
[ ] _ 25 50 2 50] '0
1 —10 50 (l) 1|O 1
- —0.14
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LInear Prediction

0&@ How do we
X ™ :
G @ 9d°  obtainthe
Q® N ©
& N model?
<9 A K
Temperature o
of the building O 2 {Q\\}@ Q
:@__ Q><O o X &
[ ] 25 50 2 50]
A o —_
o 1 10 50 0 10
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How to Obtain the Model?

Labels (ground truth)
y

Data pcﬂntg

‘ Optimization ‘

| 0SS
function

Model parameters Egﬂnann

6 )y
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How to Obtain the Model?

« Loss function: measures how good my estimation is
(how good my model is) and tells the optimization
method how to make it better.

« Optimization: changes the model in order to improve
the loss function (l.e., to iImprove my estimation).

12DL: Prof. Niessner



Linear Regression: Loss Function

y o
® @
o o Prediction:
Pe o J, Temperature
- ° of the building
> X

I2DL: Prof. Niessner 46



Linear Regression: Loss Function

A
y o
8
o o Prediction:
Pe o Temperature
1 ° of the building
> X
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Linear Regression: Loss Function

> X

L& Objective function
Minimizing J(6) = 52(% —¥1)? Energy
i=1

| Cost function
12DL: Prof. Niessner 48



Optimization: Linear Least Squares

* Linear least squares: an approach to fit a linear model
to the data

1 n
mgin J(8) = ;Zl:(f’i — yi)?

« Convex problem, there exists a closed-form solution
that is unique.

12DL: Prof. Niessner 49



Optimization: Linear Least Squares

min J(0) = EZ(%‘ —yi)° = EZ(Xie —¥i)
1= =1

/ |

n training samples The estimation comes
from the linear model

I2DL: Prof. Niessner
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Optimization: Linear Least Squares

min J(08) = EZ(%‘ —yi)° = EZ(Xie —¥i)
1= l=

min /(8) = (X6 —y)" (X0 — ) Matrix notation
n training samples, n labels
each input vector has
sized

I2DL: Prof. Niessner 51



Optimization: Linear Least Squares

min J(08) = EZ(% —yi)° = EZ(Xie —¥i)
1= l=

min /(8) = (X6 —y)" (X0 — ) Matrix notation

| More on matrix notation in the next exercise session |

I2DL: Prof. Niessner 52



Optimization: Linear Least Squares

13 1
min J(0) = E;(?i —y) = E;(Xie - ¥i)*
min /() = (X6 — ) (X0 —y)
l Convex
2y _,
00
Optimum  —)

I2DL: Prof. Niessner
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Optimization Details in the

exercise
session!

0](6)

2 — 2XTX0 — 2XTy = 0
96 y

o = (XTX)"1XTy

/ ™~

We have found True output

! aﬁalyticat Ir;puts: OLitgde Temperature of
solution to a emperature, the building
convex problem number of people,

12DL: Prof. Niessner 54



s this the best Estimate?

e |east squares estimate

1 n
J(08) = EZ(JAG' — ¥i)?
i=1

I2DL: Prof. Niessner
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Maximum Likelihood
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Maximum Likelihood Estimate

Paata(YIX) True underlying distribution

|

Pmoaet(Y1X,8)  Parametric family of distributions

\

Controlled by parameter(s)

I2DL: Prof. Niessner



Maximum Likelihood Estimate

« A method of estimating the parameters of a statistical
model given observations,

Pmodel (YlX; 9)

P

Observations from Paata (¥Y1X)

I2DL: Prof. Niessner 58



Maximum Likelihood Estimate

« A method of estimating the parameters of a statistical
model given observations, by finding the parameter
values that maximize the likelihood of making the
observations given the parameters.

Oy = arg meax pmodel(le» 0)

I2DL: Prof. Niessner



Maximum Likelihood Estimate

« MLE assumes that the training samples are
iIndependent and generated by the same probability
distribution

n
pmodel(lex 9) — 1_[ pmodel()’i |Xi» 9)

T i=1

'.1.d." assumption

I2DL: Prof. Niessner



Maximum Likelihood Estimate

n |
Oy = arg mgx Pmodel (VilXi, @)

i=1

n
Oy = arg max z log| Pmoder (VilXi, @)
i=1

Logarithmic property logab = loga + logb

I2DL: Prof. Niessner 61



Back to Linear Regression

n
Oy = arg max 2 logl Pmoder (VilXi, @)
=1

l

\What shape does our
orobability distribution
nave’

I2DL: Prof. Niessner



Back to Linear Regression

p(y;|x;,0)  What shape does our probability
distribution have?

I2DL: Prof. Niessner



Back to Linear Regression

Gaussian / Normal

p(Vilx;, @) distribution

Assuming  ¥i = N(x;0,0%) =x;0 + N'(0,0°)

mean
Gaussian.

() = e FO
J (2mo?)

I2DL: Prof. Niessner
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Back to Linear Regression

p(y;lx;,0) =7

Assuming  ¥i = N(x;0,0%) =x;0 + N'(0,0°)

1
mean
Gaussian. |
1 1,
.) = 2 2\Vi
PO = Ty ¢ Y v
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Back to Linear Regression

1 2
p(y;|x;,0) = 2nc?)~?e 202(3"

Assuming  ¥i = N(x;0,0%) =x;0 + N'(0,0°)

1
mean
Gaussian. |
1 _L( .
.) = 2 2\Vi
O S s
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Back to Linear Regression

EETP -
p(y;|x;, 8) =(2m0?)~1/2¢ 252 E

Original = i
optimization Omp = arg max z Pmodet VilXi, 0)
i=1

oroblem

I2DL: Prof. Niessner



Back to Linear Regression
zlog [(Zﬂaz) 7 o207 "‘9)2]

L= l Canceling log and e
n n
1 2 1 2
Z—Elog (2mo )+Z 53 (y; — x;0)
l= 1=

l Matrix notation

-2 log(2m0?) — —— (y — X6)' (y - X6)
> 08\ 4LTTO 262 y y
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Back to Linear Regression

n
Oy = arg max z log Pmoder (VilXi, @) >
i=1

— E108(27T02) — i (y —X0)'(y — X0)
2 202
Details in the 3/(0) B Ezvégt?%;z: (f)i?d
exercise session! W = thatan

0 =(XTX)"1XTy
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Linear Regression

« Maximum Likelihood Estimate (MLE) with a Gaussian
assumption leads to the Least Squares Estimation

« |ntroduced the concepts of loss function and
optimization to obtain the best model for regression

I2DL: Prof. Niessner



| \ |
Sl )b [

I N N

. 4

\ y A\

e A\

) I
eR")

I2DL: Prof. Niessner



Regression vs Classification

« Regression: predict a continuous output value (e.g.,
temperature of a room)

« (Classification: predict a discrete value
— Binary classification: output is either 0 or 1 _
— Multi-class classification: set of N classes

I2DL: Prof. Niessner
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|_ogistic Regression
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Sigmoid for Binary Predictions

1
14+e™

X o(x) =
1

Can be interpreted
as a probability

Vi =p(; = 1|x;,0)

I2DL: Prof. Niessner 74



Spoiler Alert: 1-Layer Neural Network
1
1+e ™

X0 o(x) =
1

Can be interpreted
as a probability

I2DL: Prof. Niessner 75



Logistic Regression: Max. leeUhood

 Probability of a binary output ,/3‘!

p(ylX,0) =y = ﬂyly‘(l P~y

¢ Maximum Likelihood Estimate Yi=pQ:i=1x;,0)

Oy = arg mglx v|X, )

I2DL: Prof. Niessner 76



L ogistic Regression: Loss Function

n
p(ylX,0) =y = Hyiyiﬂ — §)A-7
i=1
n
logp(y|X,0) = Z log (y{viu — yi)(l—yi))
i=1

n
Zylogyﬁ(l yi) log(1 — ;)
=1

(given that we have two classes)

I2DL: Prof. Niessner 77



L ogistic Regression: Loss Function

L, y) = —lyilogy; + (1 —y;) log(1 — ¥;)]

‘ Referred to as binary cross-entropy loss (BCE) ‘

« Related to the multi-class loss you will see in this
course (also called softmax [oss)

I2DL: Prof. Niessner 78



Logistic Regression: Optimization
« |Loss for each training sample:
L&, yi) = —[yilogd; + (1 —y;) log(1l — ¥;)]

e Overall loss

c(6) = ——z L(Siy)
/ yi = 0(x;0)
n

Minimization 1
= —;Z yilogy; + (1 —y;)log(1 -

I2DL: Prof. Niessner



Logistic Regression: Optimization

 No closed-Tform solution

« Make use of an iterative method = gradient descent

Gradient descent -
later on!

I2DL: Prof. Niessner



Insights from the first lecture

« \We can learn from experience
-> Intelligence, certain ability to infer the future!

« Even linear models are often pretty good for
complex phenomena: e.g., weather:

— Linear combination of day-time, day-year etc. Is often
oretty good

I2DL: Prof. Niessner



Next Lectures

« Next exercise session: Math Recap |

 Next Lecture: Lecture 3

— Jumping towards our first Neural Networks and
Computational Graphs

I2DL: Prof. Niessner



References for further Reading

« Cross validation:
— https.//medium.com/@zstern/k-fold-cross-validation-

explained-raebag0ebb?’

— https.//towardsdatascience.com/train-test-split-and-
cross-validation-in-python-80b61beca4b6

« General Machine Learning book:
— Pattern Recognition and Machine Learning. C. Bishop.

I2DL: Prof. Niessner


https://medium.com/@zstern/k-fold-cross-validation-explained-5aeba90ebb3
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6

TUTi

See you hext week ©
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