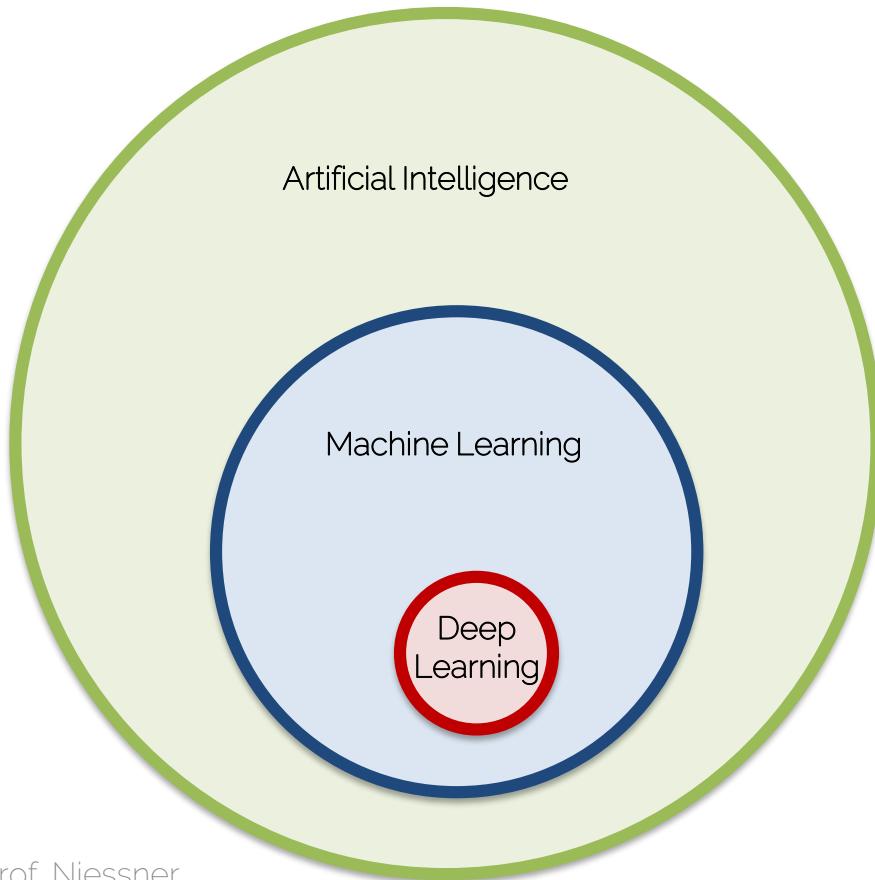


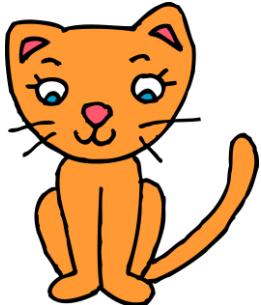
Machine Learning Basics

AI vs ML vs DL



A Simple Task: Image Classification

Image Classification



Task

Image Classification

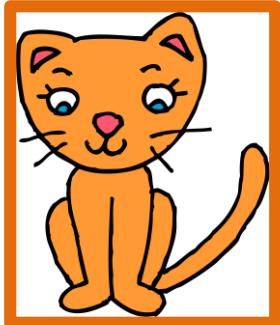
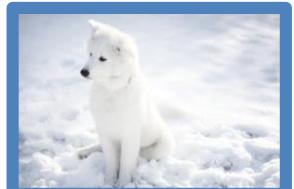
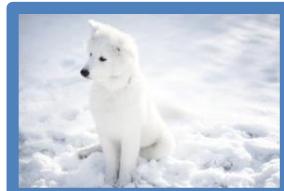


Image Classification

Occlusions

Image Classification

Background clutter



All

Images

Videos

News

Shopping

More

Settings

Tools

SafeSearch ▾

Cute

And Kittens

Clipart

Drawing

Cute Baby

White Cats And Kittens

Pose

Illumination

Appearance

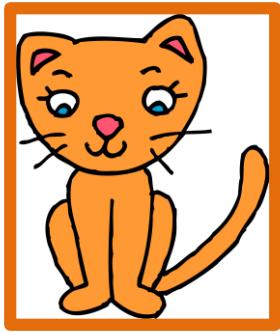
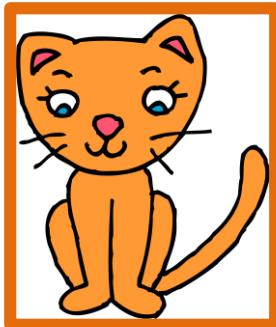
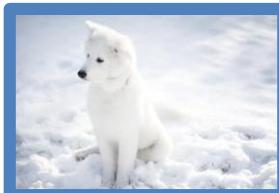


Image Classification

Representation

A Simple Classifier

Nearest Neighbor

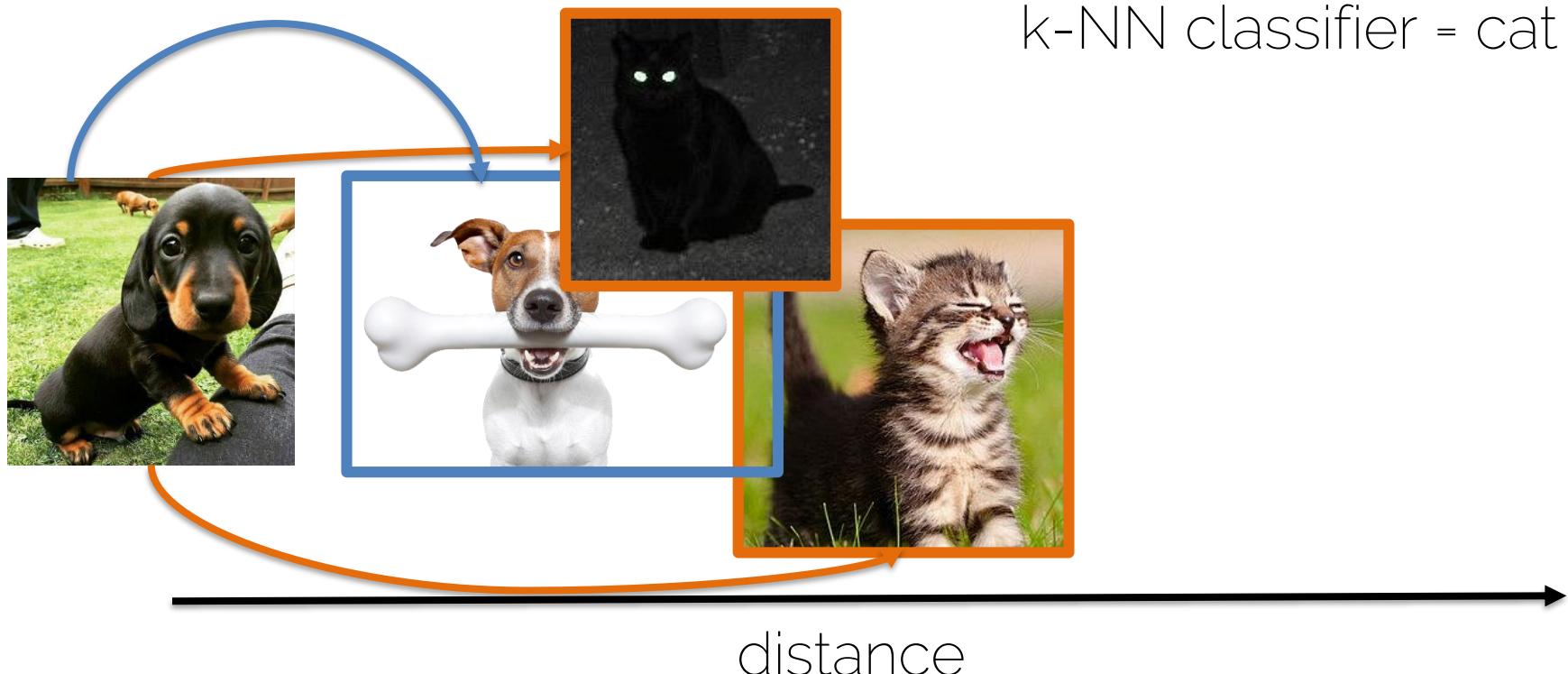


Nearest Neighbor

NN classifier = dog

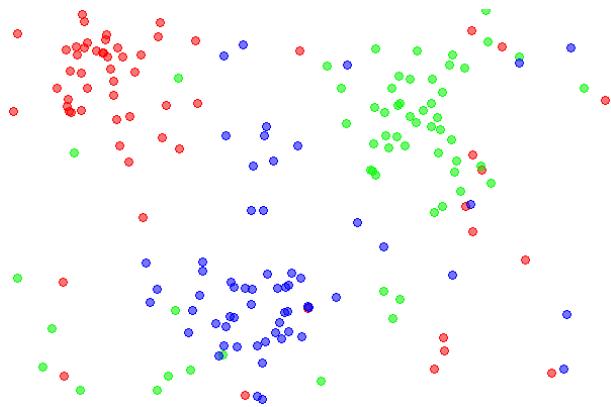
distance

Nearest Neighbor

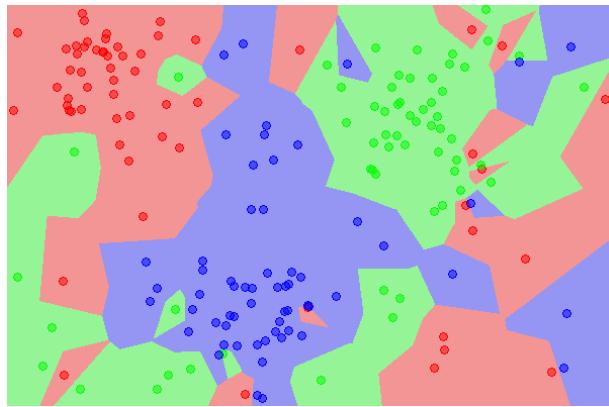


Nearest Neighbor

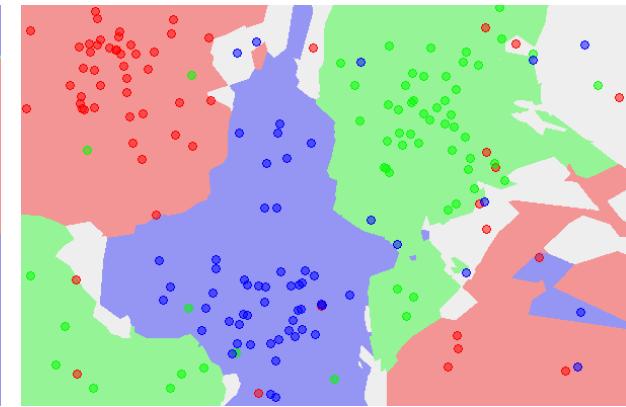
The Data



NN Classifier



5NN Classifier



How does the NN classifier perform on training data?

What classifier is more likely to perform best on test data?

What are we actually learning?

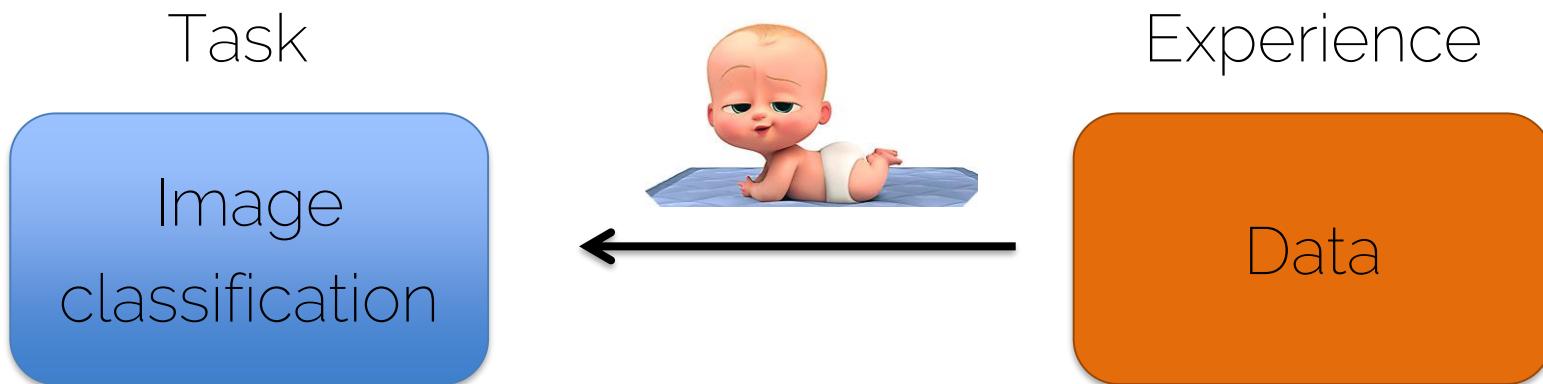
Nearest Neighbor

- Hyperparameters
 - L1 distance : $|x - c|$
 - L2 distance : $\|x - c\|_2$
 - No. of Neighbors: k
- These parameters are problem dependent.
- How do we choose these hyperparameters?

Machine Learning for Classification

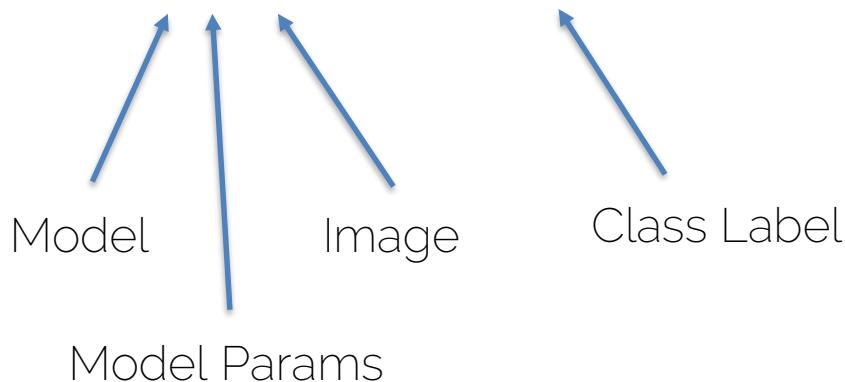
Machine Learning

- How can we learn to perform image classification?



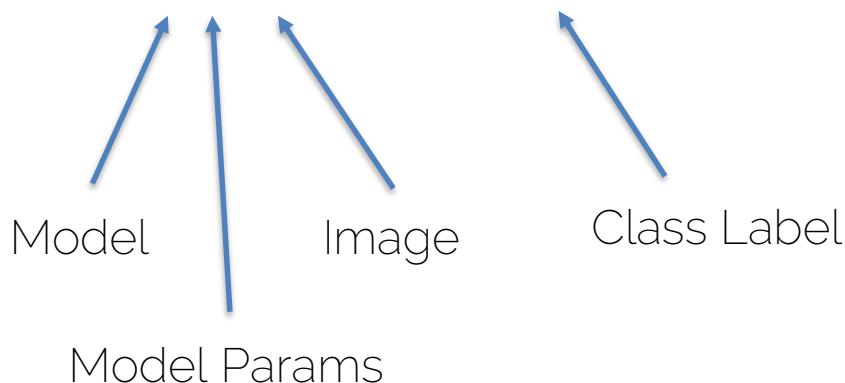
Machine Learning

- $M_{\theta}(I) = \{\text{DOG, CAT}\}$



Machine Learning

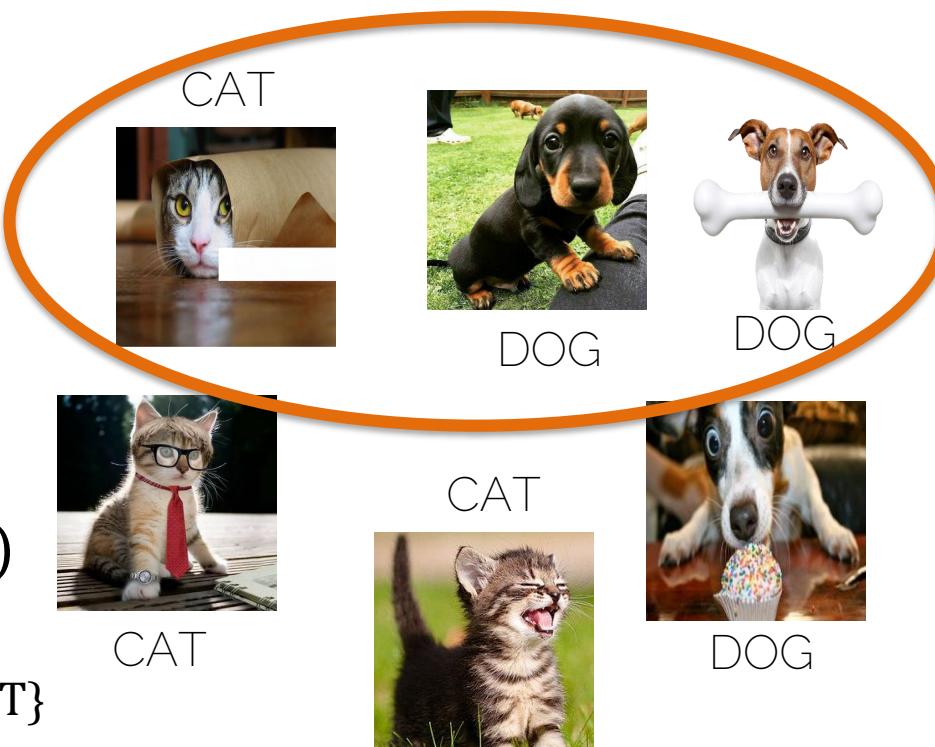
- $M_\theta(I) = \{\text{DOG, CAT}\}$



$$\theta^* = \operatorname{argmin}_\theta \sum_i D(M_\theta(I_i) - Y_i)$$

“Distance” function $\{ \text{DOG, CAT} \}$

Given i images with train labels



Basic Recipe for Machine Learning

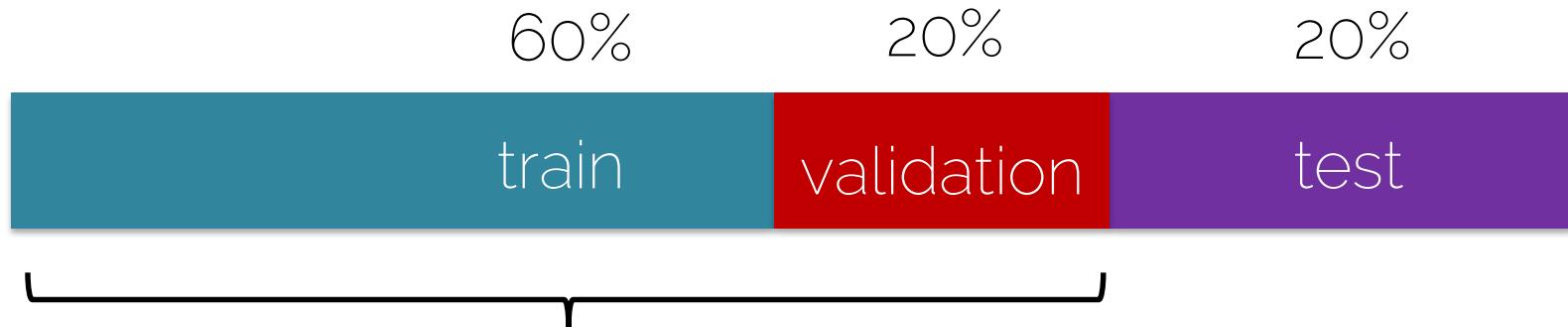
- Split your data

Find model params θ

Other splits are also possible (e.g., 80%/10%/10%)

Basic Recipe for Machine Learning

- Split your data

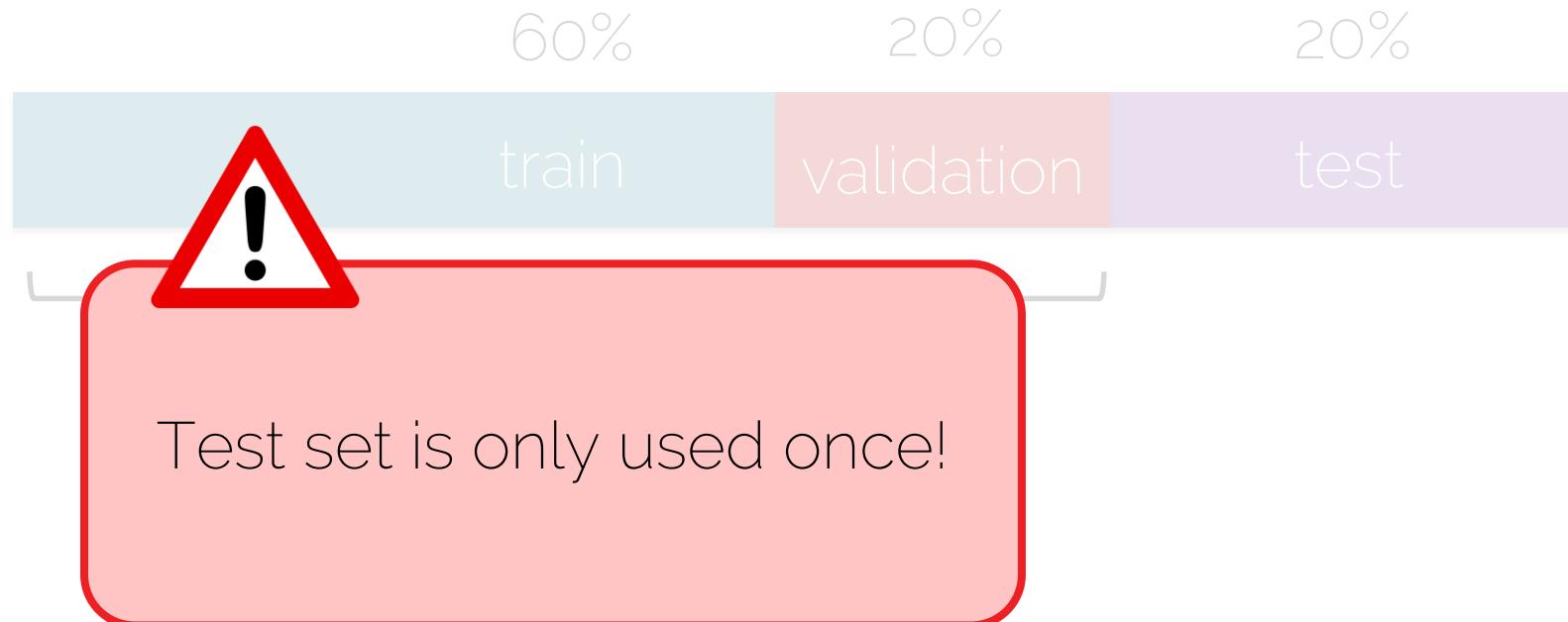


Find your hyperparameters

Other splits are also possible (e.g., 80%/10%/10%)

Basic Recipe for Machine Learning

- Split your data



Machine Learning

- How can we learn to perform image classification?

Task

Image
classification

Experience

Performance
measure

Accuracy

Data

Machine Learning

Unsupervised learning

Supervised learning

- Labels or target classes

Machine Learning

Unsupervised learning

Supervised learning

CAT

DOG

DOG

CAT

CAT

DOG

Machine Learning

Unsupervised learning

- No label or target class
- Find out properties of the structure of the data
- Clustering (k-means, PCA, etc.)

Supervised learning

CAT



DOG

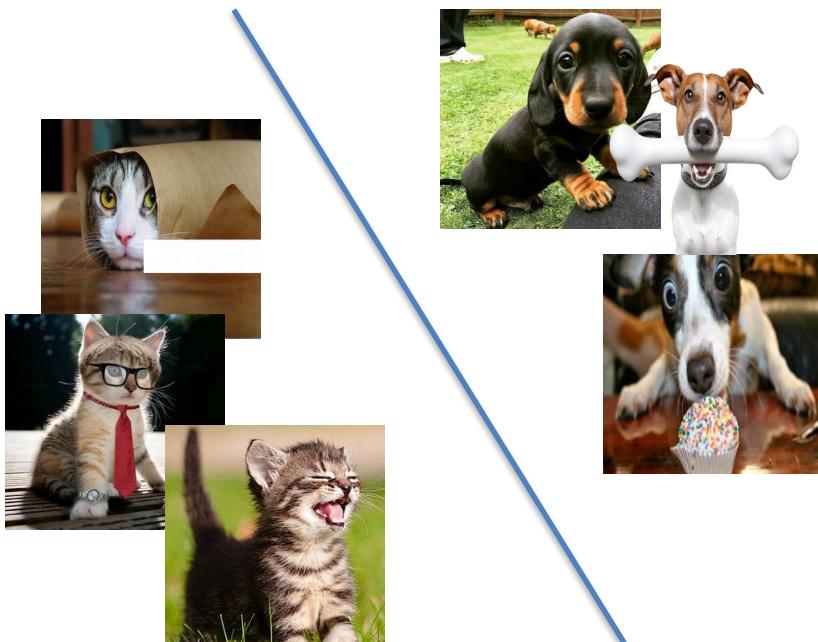
CAT

CAT

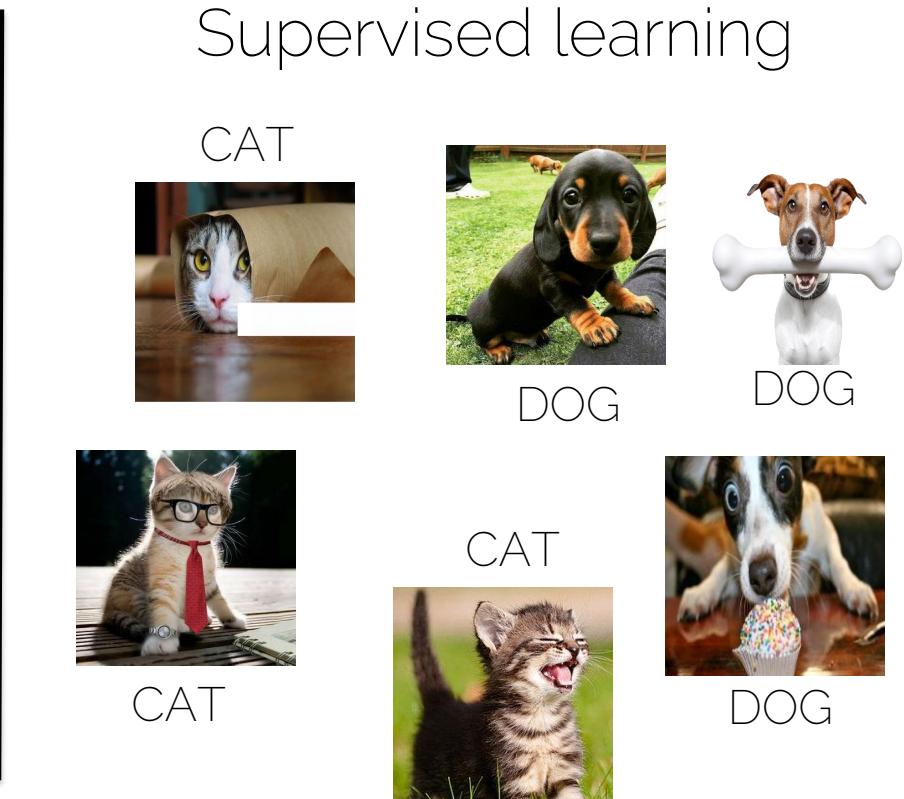
DOG

Machine Learning

Unsupervised learning

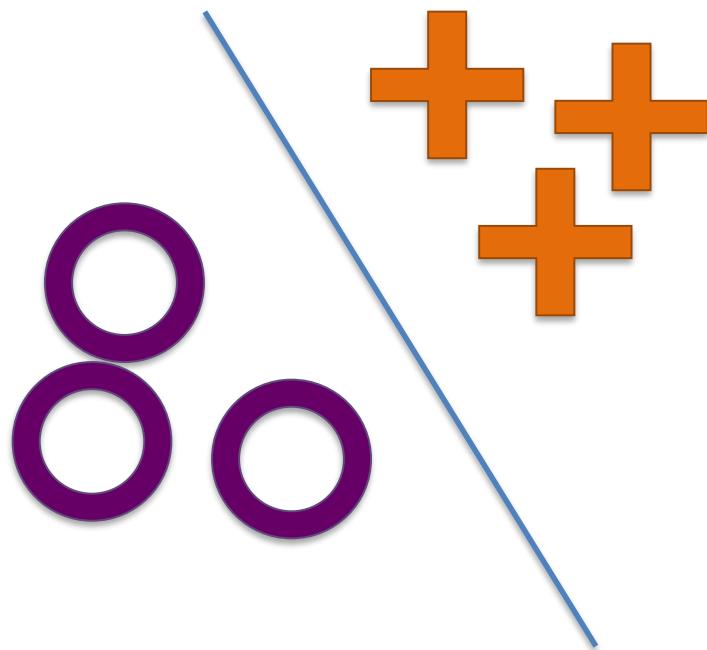


Supervised learning



Machine Learning

Unsupervised learning



Supervised learning



Machine Learning

Unsupervised learning

Supervised learning

Reinforcement learning

Machine Learning

Unsupervised learning

Supervised learning

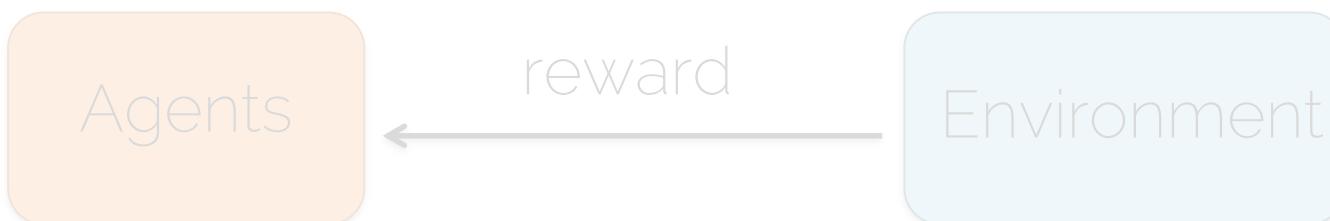
Reinforcement learning

Machine Learning

Unsupervised learning

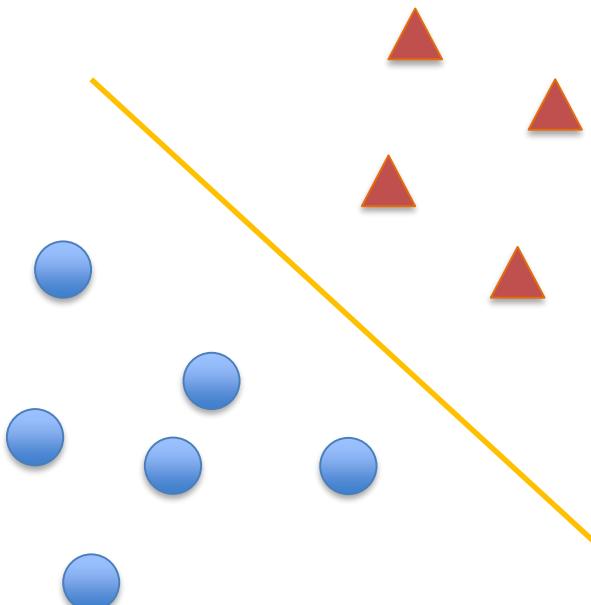
Supervised learning

Reinforcement learning



Linear Decision Boundaries

Let's start with a simple linear model!

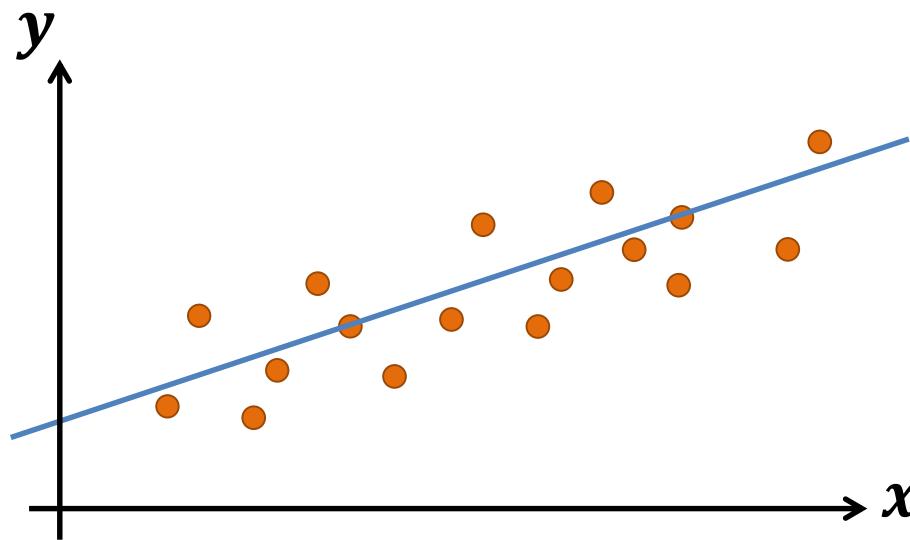


What are the pros and cons for using linear decision boundaries?

Linear Regression

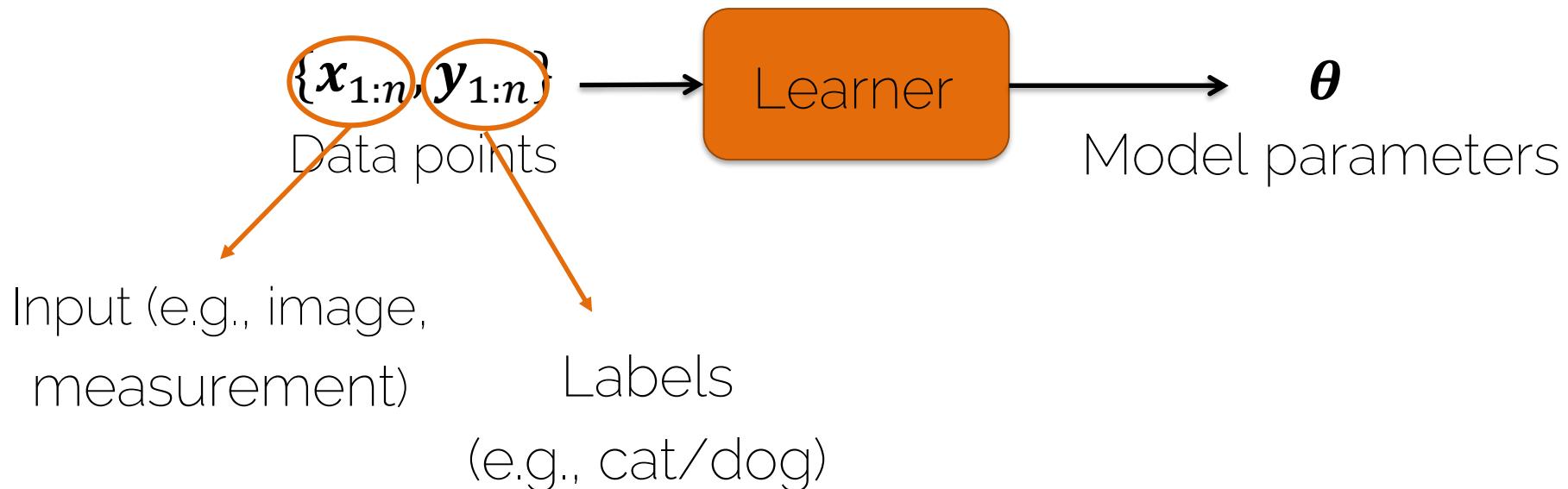
Linear Regression

- Supervised learning
- Find a linear model that explains a target \mathbf{y} given inputs \mathbf{x}



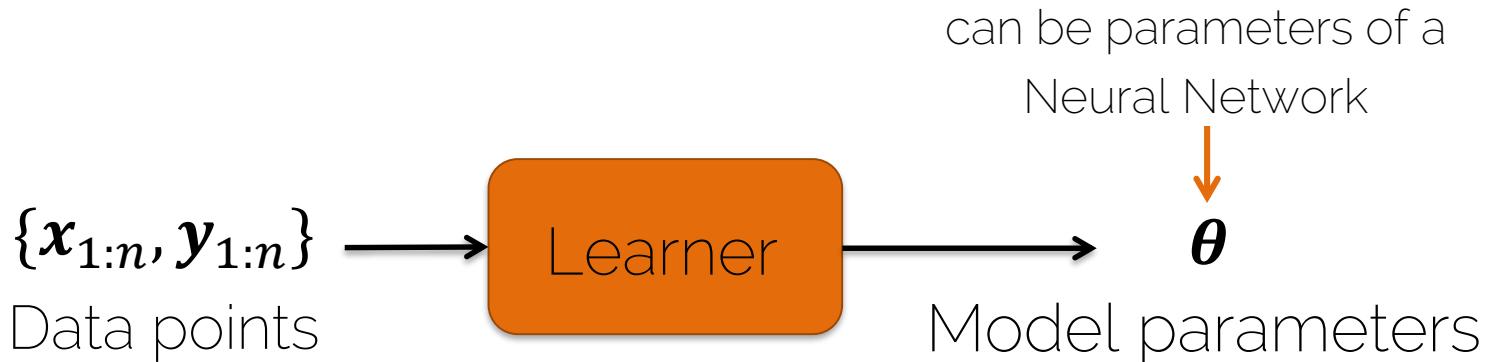
Linear Regression

Training



Linear Regression

Training



Testing

Linear Prediction

- A linear model is expressed in the form

$$\hat{y}_i = \sum_{j=1}^d x_{ij} \theta_j$$

input dimension

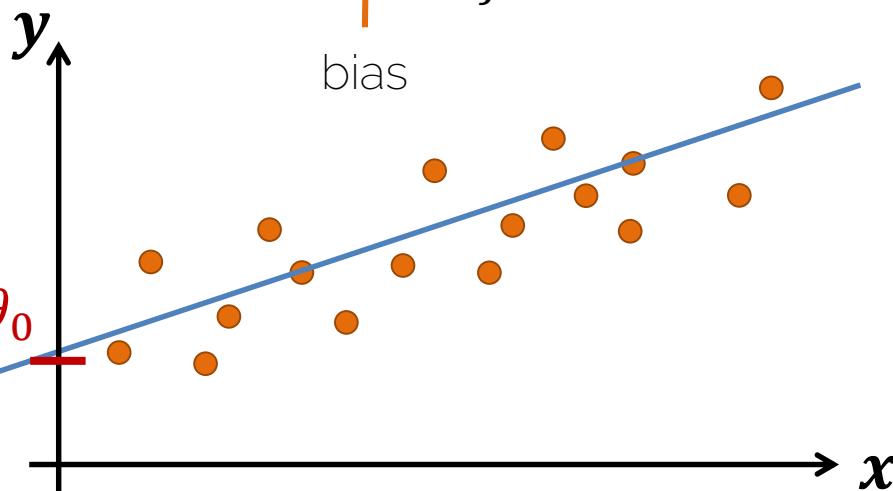
weights (i.e., model parameters)

Input data, features

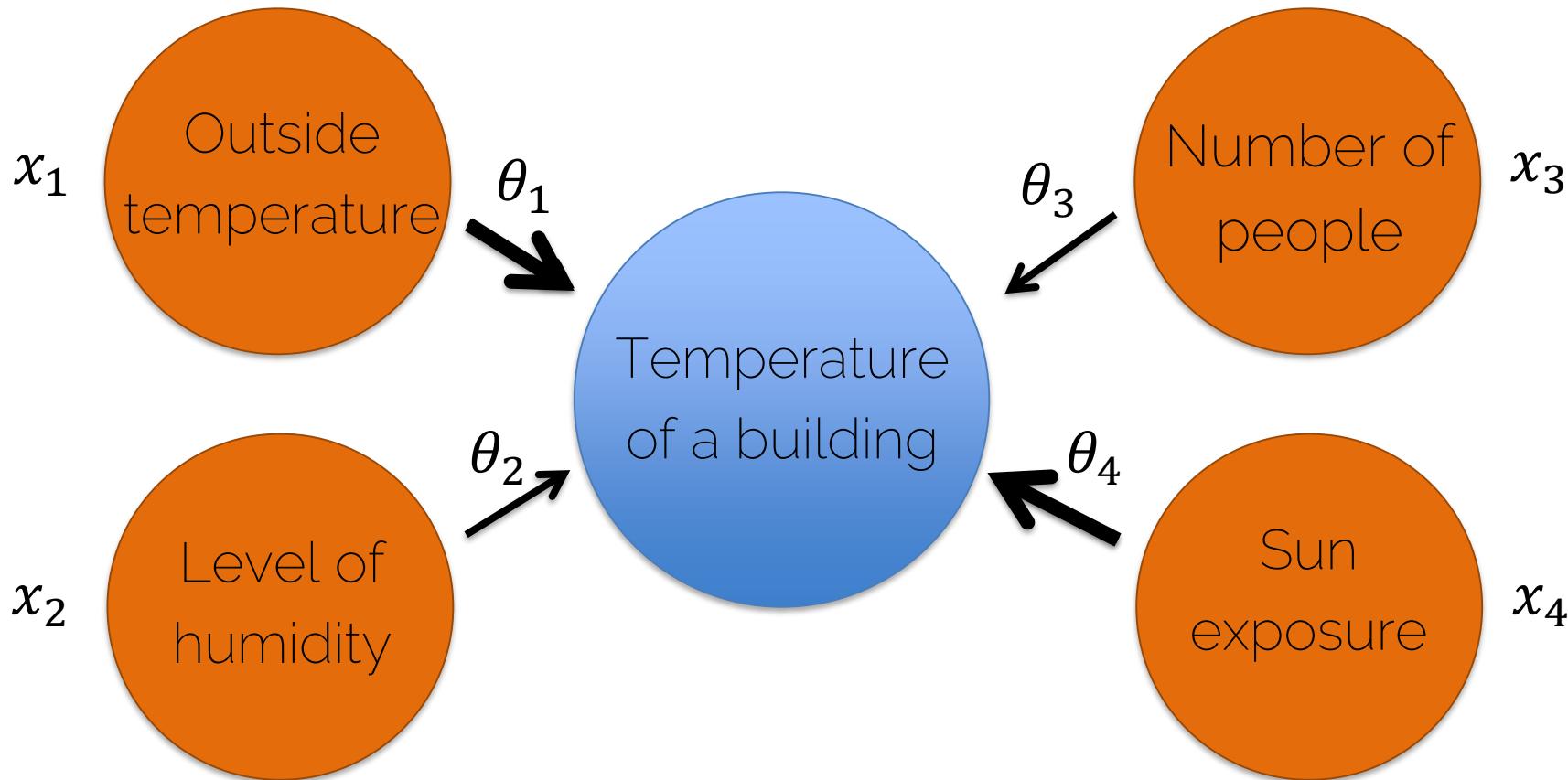
Linear Prediction

- A linear model is expressed in the form

$$\hat{y}_i = \boxed{\theta_0} + \sum_{j=1}^d x_{ij} \theta_j = \theta_0 + x_{i1} \theta_1 + x_{i2} \theta_2 + \dots + x_{id} \theta_d$$



Linear Prediction



Linear Prediction

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \theta_0 + \begin{bmatrix} x_{11} & \cdots & x_{1d} \\ x_{21} & \cdots & x_{2d} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nd} \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_d \end{bmatrix}$$

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ 1 & x_{21} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nd} \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \Rightarrow \hat{\mathbf{y}} = \mathbf{X}\theta$$

Linear Prediction

$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta}$$

Prediction

Input features
(one sample has d features)

Model parameters
(d weights and 1 bias)

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ 1 & x_{21} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nd} \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix}$$

Linear Prediction

Temperature
of the building

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \end{bmatrix} = \begin{bmatrix} 1 & 25 & 50 & 2 & 50 \\ 1 & -10 & 50 & 0 & 10 \end{bmatrix} \cdot \begin{bmatrix} 0.2 \\ 0.64 \\ 0 \\ 1 \\ 0.14 \end{bmatrix}$$

MODEL

Outside temperature
Humidity
Number people
Sun exposure (%)

Bias

Linear Prediction

Temperature
of the building

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \end{bmatrix} = \begin{bmatrix} 1 & 25 & 50 & 2 & 50 \\ 1 & -10 & 50 & 0 & 10 \end{bmatrix} \cdot \begin{bmatrix} 0.2 \\ 0.64 \\ 0 \\ 1 \\ 0.14 \end{bmatrix}$$

Bias Outside temperature Humidity Number people Sun exposure (%)

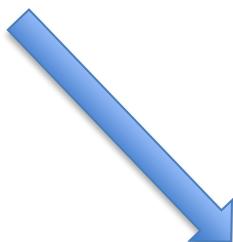
MODEL

How do we
obtain the
model?

How to Obtain the Model?

Data points

X



Optimization

Model parameters

θ

Labels (ground truth)

y

Loss
function

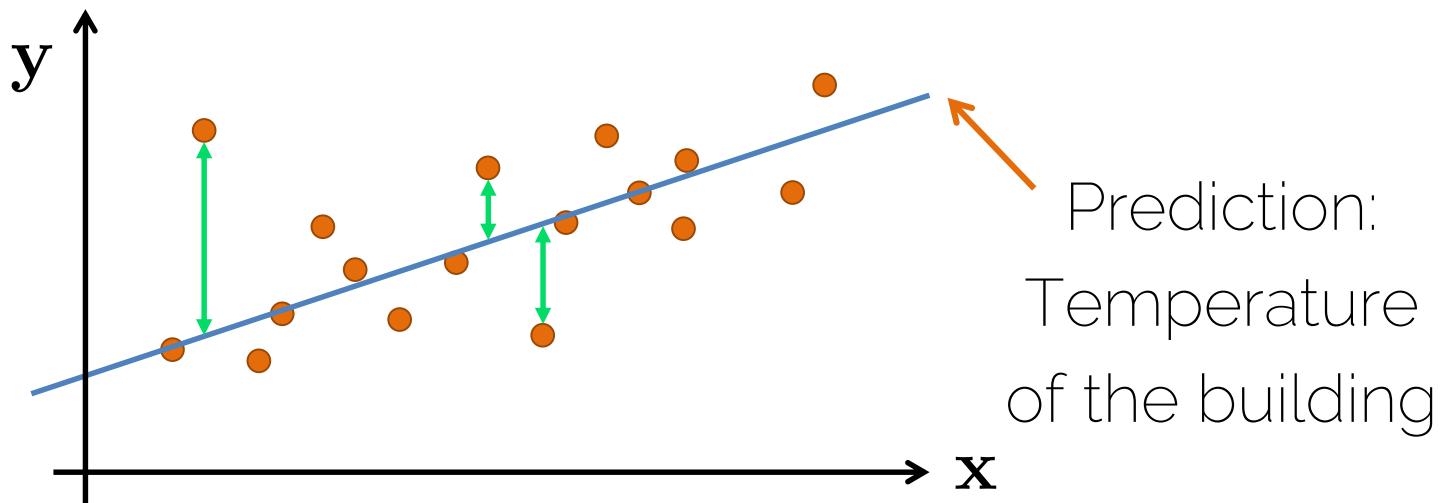
Estimation

\hat{y}

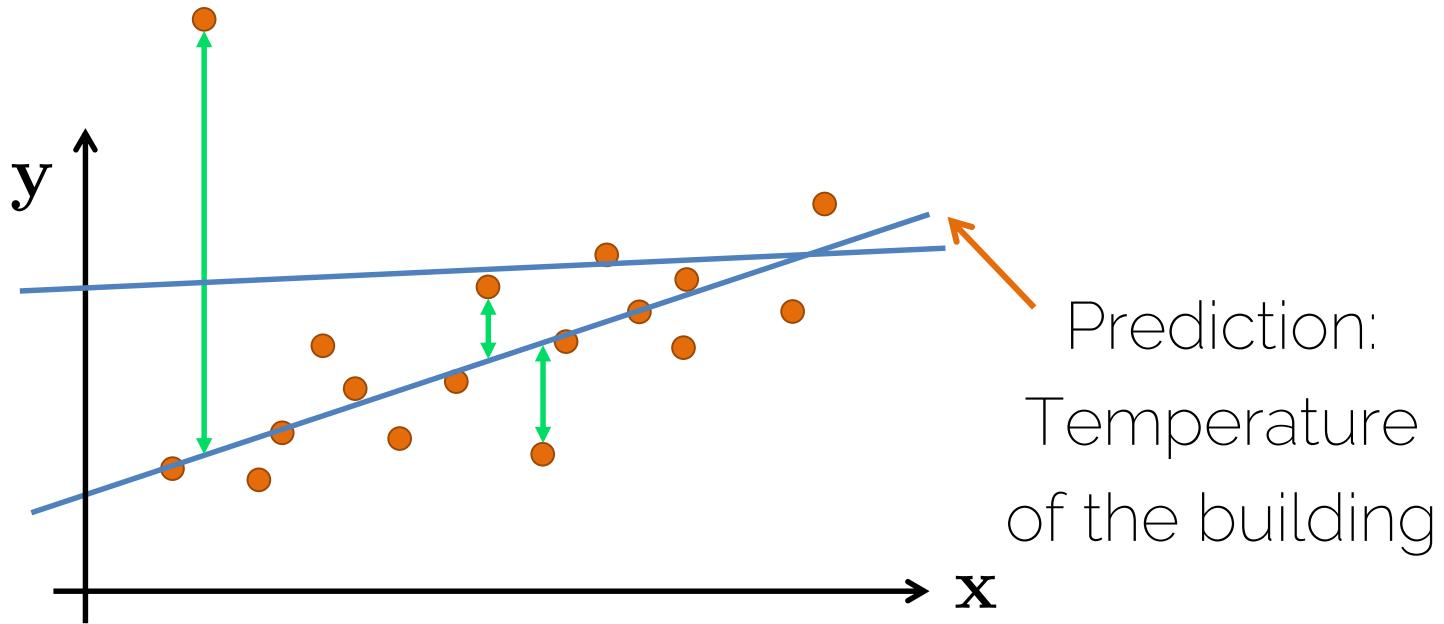
How to Obtain the Model?

- **Loss function:** measures how good my estimation is (how good my model is) and tells the optimization method how to make it better.
- **Optimization:** changes the model in order to improve the loss function (i.e., to improve my estimation).

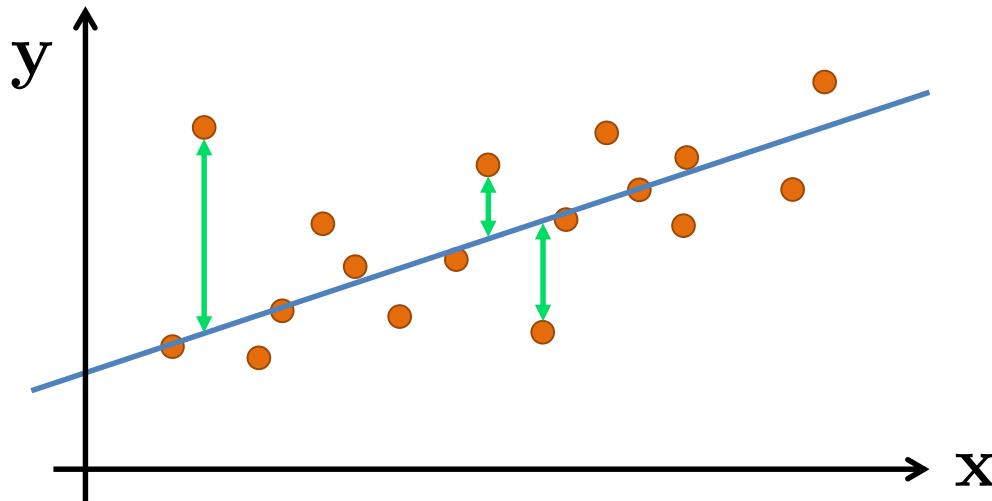
Linear Regression: Loss Function



Linear Regression: Loss Function



Linear Regression: Loss Function



Minimizing

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i)^2$$

Objective function
Energy
Cost function

Optimization: Linear Least Squares

- Linear least squares: an approach to fit a linear model to the data

$$\min_{\theta} J(\theta) = \frac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i)^2$$

- Convex problem, there exists a closed-form solution that is unique.

Optimization: Linear Least Squares

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i \boldsymbol{\theta} - y_i)^2$$

n training samples

The estimation comes
from the linear model

Optimization: Linear Least Squares

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i \boldsymbol{\theta} - y_i)^2$$

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

Matrix notation

n training samples,
each input vector has
size d

n labels

Optimization: Linear Least Squares

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i \boldsymbol{\theta} - y_i)^2$$

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y}) \quad \text{Matrix notation}$$

More on matrix notation in the next exercise session

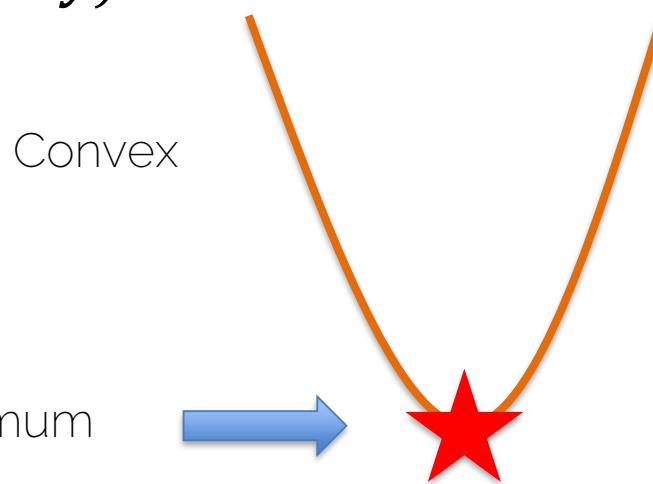
Optimization: Linear Least Squares

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i \boldsymbol{\theta} - y_i)^2$$

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0$$

Optimum



Optimization

$$\frac{\partial J(\theta)}{\partial \theta} = 2\mathbf{X}^T \mathbf{X} \theta - 2\mathbf{X}^T \mathbf{y} = 0$$

Details in the
exercise
session!

$$\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

We have found
an analytical
solution to a
convex problem

Inputs: Outside
temperature,
number of people,
...

True output:
Temperature of
the building

Is this the best Estimate?

- Least squares estimate

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i)^2$$

Maximum Likelihood

Maximum Likelihood Estimate

$$p_{data}(\mathbf{y}|\mathbf{X})$$

True underlying distribution

$$p_{model}(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$

Parametric family of distributions

Controlled by parameter(s)

Maximum Likelihood Estimate

- A method of estimating the parameters of a statistical model given observations,

$$p_{model}(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$

Observations from $p_{data}(\mathbf{y}|\mathbf{X})$

Maximum Likelihood Estimate

- A method of estimating the parameters of a statistical model given observations, by finding the parameter values that **maximize the likelihood** of making the observations given the parameters.

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} p_{model}(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$

Maximum Likelihood Estimate

- MLE assumes that the training samples are independent and generated by the same probability distribution

$$p_{model}(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^n p_{model}(y_i|\mathbf{x}_i, \boldsymbol{\theta})$$

“i.i.d.” assumption

Maximum Likelihood Estimate

$$\theta_{ML} = \arg \max_{\theta} \prod_{i=1}^n p_{model}(y_i | \mathbf{x}_i, \theta)$$

$$\theta_{ML} = \arg \max_{\theta} \sum_{i=1}^n \log p_{model}(y_i | \mathbf{x}_i, \theta)$$

Logarithmic property $\log ab = \log a + \log b$

Back to Linear Regression

$$\theta_{ML} = \arg \max_{\theta} \sum_{i=1}^n \log p_{model}(y_i | \mathbf{x}_i, \theta)$$

What shape does our probability distribution have?

Back to Linear Regression

$$p(y_i | \mathbf{x}_i, \boldsymbol{\theta})$$

What shape does our probability distribution have?

Back to Linear Regression

$$p(y_i | \mathbf{x}_i, \boldsymbol{\theta})$$

Gaussian / Normal distribution

Assuming $y_i = \mathcal{N}(\mathbf{x}_i \boldsymbol{\theta}, \sigma^2) = \mathbf{x}_i \boldsymbol{\theta} + \mathcal{N}(0, \sigma^2)$

mean

Gaussian:

$$p(y_i) = \frac{1}{\sqrt{(2\pi\sigma^2)}} e^{-\frac{1}{2\sigma^2}(y_i - \mu)^2}$$

$$y_i \sim \mathcal{N}(\mu, \sigma^2)$$

Back to Linear Regression

$$p(y_i | \mathbf{x}_i, \boldsymbol{\theta}) = ?$$

Assuming $y_i = \mathcal{N}(\mathbf{x}_i \boldsymbol{\theta}, \sigma^2) = \mathbf{x}_i \boldsymbol{\theta} + \mathcal{N}(0, \sigma^2)$

Gaussian:

$$p(y_i) = \frac{1}{\sqrt{(2\pi\sigma^2)}} e^{-\frac{1}{2\sigma^2}(y_i - \mu)^2}$$

$$y_i \sim \mathcal{N}(\mu, \sigma^2)$$

mean

Back to Linear Regression

$$p(y_i | \mathbf{x}_i, \boldsymbol{\theta}) = (2\pi\sigma^2)^{-1/2} e^{-\frac{1}{2\sigma^2}(y_i - \mathbf{x}_i \boldsymbol{\theta})^2}$$

Assuming $y_i = \mathcal{N}(\mathbf{x}_i \boldsymbol{\theta}, \sigma^2) = \mathbf{x}_i \boldsymbol{\theta} + \mathcal{N}(0, \sigma^2)$

Gaussian:

$$p(y_i) = \frac{1}{\sqrt{(2\pi\sigma^2)}} e^{-\frac{1}{2\sigma^2}(y_i - \mu)^2}$$

$$y_i \sim \mathcal{N}(\mu, \sigma^2)$$

mean

Back to Linear Regression

$$p(y_i | \mathbf{x}_i, \boldsymbol{\theta}) = (2\pi\sigma^2)^{-1/2} e^{-\frac{1}{2\sigma^2}(y_i - \mathbf{x}_i \boldsymbol{\theta})^2}$$

Original
optimization
problem

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p_{model}(y_i | \mathbf{x}_i, \boldsymbol{\theta})$$

Back to Linear Regression

$$\sum_{i=1}^n \log \left[(2\pi\sigma^2)^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^2}(y_i - \mathbf{x}_i \boldsymbol{\theta})^2} \right]$$

Canceling \log and e

$$\sum_{i=1}^n -\frac{1}{2} \log (2\pi\sigma^2) + \sum_{i=1}^n \left(-\frac{1}{2\sigma^2} \right) (y_i - \mathbf{x}_i \boldsymbol{\theta})^2$$

Matrix notation

$$-\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

Back to Linear Regression

$$\theta_{ML} = \arg \max_{\theta} \sum_{i=1}^n \log p_{model}(y_i | \mathbf{x}_i, \theta)$$

$$-\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta)$$

Details in the
exercise session!

$$\frac{\partial J(\theta)}{\partial \theta} = 0$$

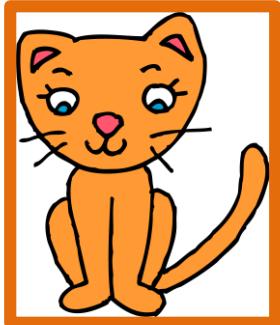
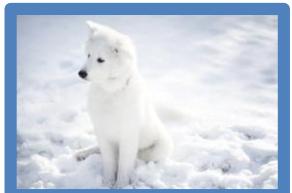
$$\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

How can we find
the estimate of
theta?

Linear Regression

- Maximum Likelihood Estimate (MLE) with a Gaussian assumption leads to the Least Squares Estimation
- Introduced the concepts of loss function and optimization to obtain the best model for regression

Image Classification



Regression vs Classification

- Regression: predict a continuous output value (e.g., temperature of a room)
- Classification: predict a discrete value
 - Binary classification: output is either 0 or 1
 - Multi-class classification: set of N classes

Logistic Regression

CAT classifier

Sigmoid for Binary Predictions

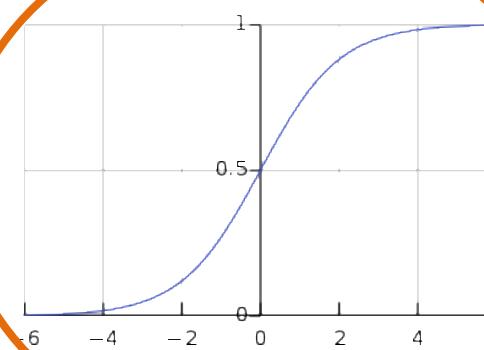
$$x_0 \quad x_1 \quad x_2$$

$$\theta_0$$

$$\theta_1$$

$$\theta_2$$

$$\Sigma$$



$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

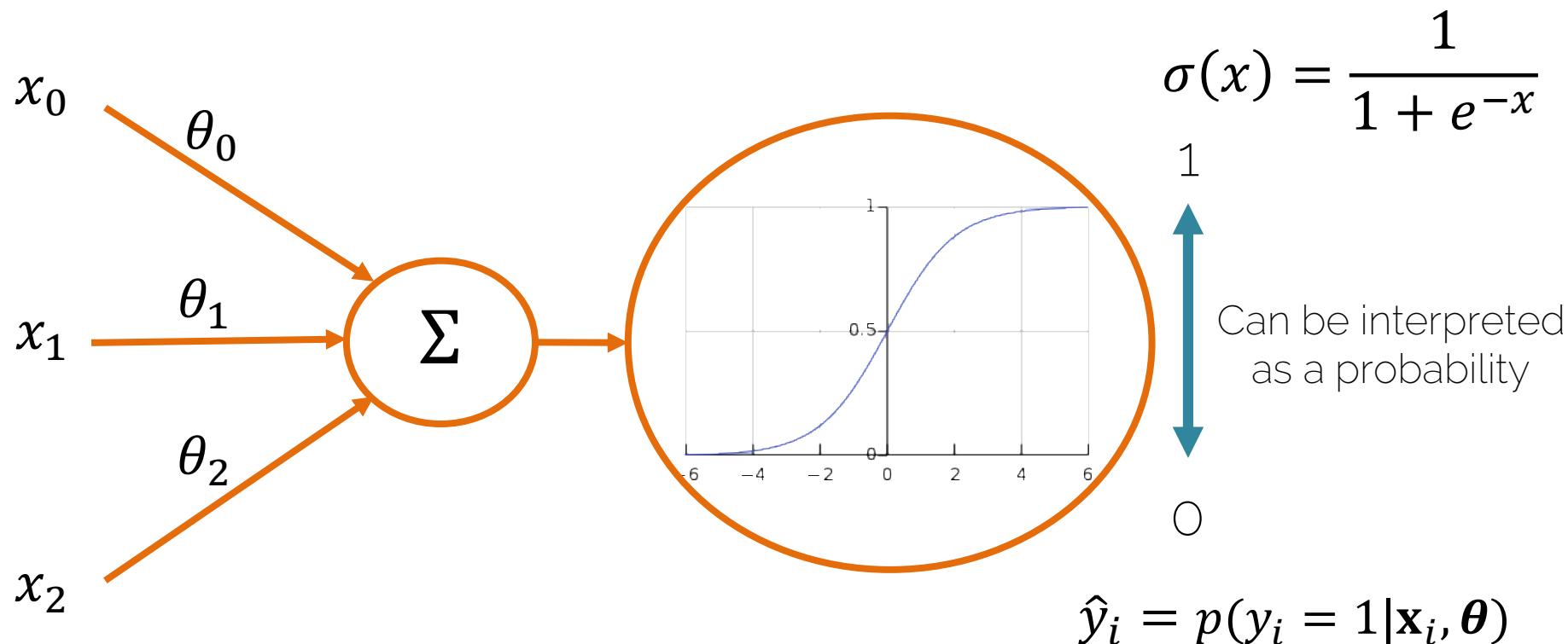
1

0

Can be interpreted as a probability

$$\hat{y}_i = p(y_i = 1 | \mathbf{x}_i, \boldsymbol{\theta})$$

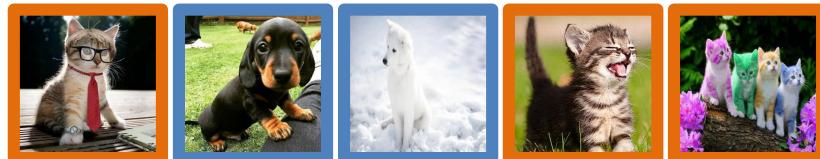
Spoiler Alert: 1-Layer Neural Network



Can be interpreted
as a probability

Logistic Regression: Max. Likelihood

- Probability of a binary output



$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \hat{\mathbf{y}} = \prod_{i=1}^n \hat{y}_i^{y_i} (1 - \hat{y}_i)^{(1-y_i)}$$

- Maximum Likelihood Estimate

$$\hat{y}_i = p(y_i = 1 | \mathbf{x}_i, \boldsymbol{\theta})$$

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$

Logistic Regression: Loss Function

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \hat{\mathbf{y}} = \prod_{i=1}^n \hat{y}_i^{y_i} (1 - \hat{y}_i)^{(1-y_i)}$$

$$\log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \sum_{i=1}^n \log \left(\hat{y}_i^{y_i} (1 - \hat{y}_i)^{(1-y_i)} \right)$$

$$= \sum_{i=1}^n y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)$$

(given that we have two classes)

Logistic Regression: Loss Function

$$\mathcal{L}(\hat{y}_i, y_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$

Referred to as *binary cross-entropy* loss (BCE)

- Related to the multi-class loss you will see in this course (also called *softmax loss*)

Logistic Regression: Optimization

- Loss for each training sample:

$$\mathcal{L}(\hat{y}_i, y_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$

- Overall loss

$$C(\theta) = -\frac{1}{n} \sum_{i=1}^n \mathcal{L}(\hat{y}_i, y_i)$$

Minimization

$$= -\frac{1}{n} \sum_{i=1}^n y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)$$

$$\hat{y}_i = \sigma(\mathbf{x}_i \theta)$$

Logistic Regression: Optimization

- No closed-form solution
- Make use of an iterative method → gradient descent

Gradient descent –
later on!

Insights from the first lecture

- We can learn from experience
 - > Intelligence, certain ability to infer the future!
- Even linear models are often pretty good for complex phenomena: e.g., weather:
 - Linear combination of day-time, day-year etc. is often pretty good

Next Lectures

- Next exercise session: Math Recap II
- Next Lecture: Lecture 3:
 - Jumping towards our first Neural Networks and Computational Graphs

References for further Reading

- Cross validation:
 - <https://medium.com/@zstern/k-fold-cross-validation-explained-5aebagoebb3>
 - <https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6>
- General Machine Learning book:
 - Pattern Recognition and Machine Learning. C. Bishop.

See you next week ☺