NetworkX Reference Release 1.10 Aric Hagberg, Dan Schult, Pieter Swart ## CONTENTS | 1 | Over | view 1 | |---|-------|---------------------------------| | | 1.1 | Who uses NetworkX? | | | 1.2 | Goals | | | 1.3 | The Python programming language | | | 1.4 | Free software | | | 1.5 | History | | 2 | Intro | eduction 3 | | _ | 2.1 | NetworkX Basics | | | 2.2 | Nodes and Edges | | 2 | | | | 3 | _ | oh types | | | 3.1 | Which graph class should I use? | | | 3.2 | Basic graph types | | 4 | Algo | rithms 129 | | | 4.1 | Approximation | | | 4.2 | Assortativity | | | 4.3 | Bipartite | | | 4.4 | Blockmodeling | | | 4.5 | Boundary | | | 4.6 | Centrality | | | 4.7 | Chordal | | | 4.8 | Clique | | | 4.9 | Clustering | | | 4.10 | Coloring | | | 4.11 | Communities | | | 4.12 | Components | | | 4.13 | Connectivity | | | 4.14 | Cores | | | 4.15 | Cycles | | | 4.16 | Directed Acyclic Graphs | | | 4.17 | Distance Measures | | | 4.18 | Distance-Regular Graphs | | | 4.19 | Dominance | | | 4.20 | Dominating Sets | | | 4.21 | Eulerian | | | 4.22 | Flows | | | 4.23 | Graphical degree sequence | | | 4.24 | Hierarchy | | | 4.25 | Hybrid | | | | | | | 4.26 | Isolates | 283 | |---|-------|--|-----| | | 4.27 | Isomorphism | 284 | | | 4.28 | Link Analysis | 296 | | | 4.29 | Link Prediction | 303 | | | 4.30 | Matching | 309 | | | 4.31 | Minors | 310 | | | 4.32 | Maximal independent set | | | | 4.33 | Minimum Spanning Tree | | | | 4.34 | Operators | | | | 4.35 | Rich Club | | | | 4.36 | Shortest Paths | | | | 4.37 | Simple Paths | | | | 4.38 | Swap | | | | 4.39 | Traversal | | | | 4.40 | Tree | | | | 4.41 | Triads | | | | | | | | | 4.42 | Vitality | 301 | | 5 | Func | tions | 363 | | 0 | 5.1 | Graph | | | | 5.2 | Nodes | | | | 5.3 | Edges | | | | 5.4 | Attributes | | | | | | | | | 5.5 | Freezing graph structure | 309 | | 6 | Gran | oh generators | 371 | | U | 6.1 | Atlas | | | | 6.2 | Classic | | | | 6.3 | Expanders | | | | 6.4 | Small | | | | 6.5 | Random Graphs | | | | 6.6 | Degree Sequence | | | | 6.7 | | 395 | | | 6.8 | Directed | | | | | | | | | 6.9 | Geometric | | | | 6.10 | Line Graph | | | | 6.11 | Ego Graph | | | | 6.12 | Stochastic | 404 | | | | Intersection | | | | 6.14 | Social Networks | | | | 6.15 | Community | | | | 6.16 | Non Isomorphic Trees | 411 | | 7 | Linos | ar algebra | 413 | | / | | | | | | 7.1 | 1 | 413 | | | 7.2 | T | 414 | | | 7.3 | | 417 | | | 7.4 | 8 | 418 | | | 7.5 | Attribute Matrices | 420 | | 0 | C- | anting to and from other data format | 425 | | 8 | | verting to and from other data formats | 425 | | | 8.1 | To NetworkX Graph | | | | 8.2 | Dictionaries | | | | 8.3 | Lists | | | | 8.4 | Numpy | 428 | | | | | | | | 8.5 Scipy | | |-----|-------------------------------------|------------| | | 8.6 Pandas | 434 | | 9 | Reading and writing graphs | 437 | | | 9.1 Adjacency List | 437 | | | 9.2 Multiline Adjacency List | 440 | | | 9.3 Edge List | 444 | | | 9.4 GEXF | 450 | | | 9.5 GML | 452 | | | 9.6 Pickle | 456 | | | 9.7 GraphML | 457 | | | 9.8 JSON | 460 | | | 9.9 LEDA | 464 | | | 9.10 YAML | 465 | | | 9.11 SparseGraph6 | | | | 9.12 Pajek | | | | 9.13 GIS Shapefile | | | | 7.15 GIS Shapenic | 473 | | 10 | Drawing | 477 | | 10 | 10.1 Matplotlib | | | | 10.2 Graphviz AGraph (dot) | | | | 10.3 Graphviz with pydot | | | | 10.4 Graph Layout | | | | 10.4 Graph Layout | 707 | | 11 | Exceptions | 493 | | | 11.1 Exceptions | 493 | | | | | | 12 | Utilities | 495 | | | 12.1 Helper Functions | 495 | | | 12.2 Data Structures and Algorithms | 496 | | | 12.3 Random Sequence Generators | 496 | | | 12.4 Decorators | 498 | | | 12.5 Cuthill-Mckee Ordering | 499 | | | 12.6 Context Managers | | | | | | | 13 | License | 503 | | 14 | Citing | 505 | | 1. | | 505 | | 15 | Credits | 507 | | | 15.1 Contributions | 507 | | | 15.2 Support | 509 | | 16 | Glossary | 511 | | Py | thon Module Index | 513 | | | | | | Ind | lex | 517 | **CHAPTER** ONE ## **OVERVIEW** NetworkX is a Python language software package for the creation, manipulation, and study of the structure, dynamics, and function of complex networks. With NetworkX you can load and store networks in standard and nonstandard data formats, generate many types of random and classic networks, analyze network structure, build network models, design new network algorithms, draw networks, and much more. ## 1.1 Who uses NetworkX? The potential audience for NetworkX includes mathematicians, physicists, biologists, computer scientists, and social scientists. Good reviews of the state-of-the-art in the science of complex networks are presented in Albert and Barabási [BA02], Newman [Newman03], and Dorogovtsev and Mendes [DM03]. See also the classic texts [Bollobas01], [Diestel97] and [West01] for graph theoretic results and terminology. For basic graph algorithms, we recommend the texts of Sedgewick, e.g. [Sedgewick01] and [Sedgewick02] and the survey of Brandes and Erlebach [BE05]. ## 1.2 Goals NetworkX is intended to provide - tools for the study of the structure and dynamics of social, biological, and infrastructure networks, - · a standard programming interface and graph implementation that is suitable for many applications, - a rapid development environment for collaborative, multidisciplinary projects, - an interface to existing numerical algorithms and code written in C, C++, and FORTRAN, - the ability to painlessly slurp in large nonstandard data sets. ## 1.3 The Python programming language Python is a powerful programming language that allows simple and flexible representations of networks, and clear and concise expressions of network algorithms (and other algorithms too). Python has a vibrant and growing ecosystem of packages that NetworkX uses to provide more features such as numerical linear algebra and drawing. In addition Python is also an excellent "glue" language for putting together pieces of software from other languages which allows reuse of legacy code and engineering of high-performance algorithms [Langtangen04]. Equally important, Python is free, well-supported, and a joy to use. In order to make the most out of NetworkX you will want to know how to write basic programs in Python. Among the many guides to Python, we recommend the documentation at http://www.python.org and the text by Alex Martelli [Martelli03]. ## 1.4 Free software NetworkX is free software; you can redistribute it and/or modify it under the terms of the BSD License. We welcome contributions from the community. Information on NetworkX development is found at the NetworkX Developer Zone at Github https://github.com/networkx/networkx ## 1.5 History NetworkX was born in May 2002. The original version was designed and written by Aric Hagberg, Dan Schult, and Pieter Swart in 2002 and 2003. The first public release was in April 2005. Many people have contributed to the success of NetworkX. Some of the contributors are listed in the credits. ## 1.5.1 What Next - A Brief Tour - Installing - Reference - Examples **CHAPTER** **TWO** ## INTRODUCTION The structure of NetworkX can be seen by the organization of its source code. The package provides classes for graph objects, generators to create standard graphs, IO routines for reading in existing datasets, algorithms to analyse the resulting networks and some basic drawing tools. Most of the NetworkX API is provided by functions which take a graph object as an argument. Methods of the graph object are limited to basic manipulation and reporting. This provides modularity of code and documentation. It also makes it easier for newcomers to learn about the package in stages. The source code for each module is meant to be easy to read and reading this Python code is actually a good way to learn more about network algorithms, but we have put a lot of effort into making the documentation sufficient and friendly. If you have suggestions or questions please contact us by joining the NetworkX Google group. Classes are named using CamelCase (capital letters at the start of each word). functions, methods and variable names are lower_case_underscore (lowercase with an underscore representing a space between words). ## 2.1 NetworkX Basics After starting Python, import the networkx module with (the recommended way) ``` >>> import networkx as nx ``` To save repetition, in the documentation we assume that NetworkX has been imported this way. If importing networkx fails, it means that Python cannot find the installed module. Check your installation and your PYTHONPATH. The following basic graph types are provided as Python classes: **Graph** This class implements an undirected graph. It ignores multiple edges between two nodes. It does allow self-loop edges between a node and itself. **DiGraph** Directed graphs, that is, graphs with directed edges. Operations common to directed graphs, (a subclass of Graph). **MultiGraph** A flexible graph class that allows multiple undirected edges between pairs of nodes. The additional flexibility leads to some degradation in performance, though usually not significant. MultiDiGraph A directed version of a MultiGraph. Empty graph-like objects are created with ``` >>> G=nx.Graph() >>> G=nx.DiGraph() >>> G=nx.MultiGraph() >>> G=nx.MultiDiGraph() ``` All graph classes allow any *hashable* object as a node. Hashable objects include strings, tuples, integers, and more. Arbitrary edge attributes such as weights and labels can be associated with an edge. The graph internal data structures are based on an adjacency list representation and implemented using Python *dictionary* datastructures. The graph adjaceny structure is implemented as a Python dictionary of dictionaries; the outer dictionary is keyed by nodes to values that are themselves dictionaries keyed by neighboring node to the edge attributes associated with that edge. This "dict-of-dicts" structure allows fast addition, deletion, and lookup of nodes and neighbors in large graphs. The underlying datastructure is accessed directly by methods (the
programming interface "API") in the class definitions. All functions, on the other hand, manipulate graph-like objects solely via those API methods and not by acting directly on the datastructure. This design allows for possible replacement of the 'dicts-of-dicts'-based datastructure with an alternative datastructure that implements the same methods. ## **2.1.1 Graphs** The first choice to be made when using NetworkX is what type of graph object to use. A graph (network) is a collection of nodes together with a collection of edges that are pairs of nodes. Attributes are often associated with nodes and/or edges. NetworkX graph objects come in different flavors depending on two main properties of the network: - Directed: Are the edges **directed**? Does the order of the edge pairs (u,v) matter? A directed graph is specified by the "Di" prefix in the class name, e.g. DiGraph(). We make this distinction because many classical graph properties are defined differently for directed graphs. - Multi-edges: Are multiple edges allowed between each pair of nodes? As you might imagine, multiple edges requires a different data structure, though tricky users could design edge data objects to support this functionality. We provide a standard data structure and interface for this type of graph using the prefix "Multi", e.g. MultiGraph(). The basic graph classes are named: Graph, DiGraph, MultiGraph, and MultiDiGraph ## 2.2 Nodes and Edges The next choice you have to make when specifying a graph is what kinds of nodes and edges to use. If the topology of the network is all you care about then using integers or strings as the nodes makes sense and you need not worry about edge data. If you have a data structure already in place to describe nodes you can simply use that structure as your nodes provided it is *hashable*. If it is not hashable you can use a unique identifier to represent the node and assign the data as a *node attribute*. Edges often have data associated with them. Arbitrary data can associated with edges as an *edge attribute*. If the data is numeric and the intent is to represent a *weighted* graph then use the 'weight' keyword for the attribute. Some of the graph algorithms, such as Dijkstra's shortest path algorithm, use this attribute name to get the weight for each edge. Other attributes can be assigned to an edge by using keyword/value pairs when adding edges. You can use any keyword except 'weight' to name your attribute and can then easily query the edge data by that attribute keyword. Once you've decided how to encode the nodes and edges, and whether you have an undirected/directed graph with or without multiedges you are ready to build your network. ## 2.2.1 Graph Creation NetworkX graph objects can be created in one of three ways: - Graph generators standard algorithms to create network topologies. - Importing data from pre-existing (usually file) sources. Adding edges and nodes explicitly. Explicit addition and removal of nodes/edges is the easiest to describe. Each graph object supplies methods to manipulate the graph. For example, ``` >>> import networkx as nx >>> G=nx.Graph() >>> G.add_edge(1,2) # default edge data=1 >>> G.add_edge(2,3,weight=0.9) # specify edge data ``` Edge attributes can be anything: ``` >>> import math >>> G.add_edge('y','x',function=math.cos) >>> G.add_node(math.cos) # any hashable can be a node ``` You can add many edges at one time: ``` >>> elist=[('a','b',5.0),('b','c',3.0),('a','c',1.0),('c','d',7.3)] >>> G.add_weighted_edges_from(elist) ``` See the /tutorial/index for more examples. Some basic graph operations such as union and intersection are described in the *Operators module* documentation. Graph generators such as binomial_graph and powerlaw_graph are provided in the Graph generators subpackage. For importing network data from formats such as GML, GraphML, edge list text files see the Reading and writing graphs subpackage. ## 2.2.2 Graph Reporting Class methods are used for the basic reporting functions neighbors, edges and degree. Reporting of lists is often needed only to iterate through that list so we supply iterator versions of many property reporting methods. For example edges() and nodes() have corresponding methods edges_iter() and nodes_iter(). Using these methods when you can will save memory and often time as well. The basic graph relationship of an edge can be obtained in two basic ways. One can look for neighbors of a node or one can look for edges incident to a node. We jokingly refer to people who focus on nodes/neighbors as node-centric and people who focus on edges as edge-centric. The designers of NetworkX tend to be node-centric and view edges as a relationship between nodes. You can see this by our avoidance of notation like G[u,v] in favor of G[u][v]. Most data structures for sparse graphs are essentially adjacency lists and so fit this perspective. In the end, of course, it doesn't really matter which way you examine the graph. G.edges() removes duplicate representations of each edge while G[u,v] is slightly faster but doesn't remove duplicates. Any properties that are more complicated than edges, neighbors and degree are provided by functions. For example nx.triangles(G,n) gives the number of triangles which include node n as a vertex. These functions are grouped in the code and documentation under the term *algorithms*. ## 2.2.3 Algorithms A number of graph algorithms are provided with NetworkX. These include shortest path, and breadth first search (see *traversal*), clustering and isomorphism algorithms and others. There are many that we have not developed yet too. If you implement a graph algorithm that might be useful for others please let us know through the NetworkX Google group or the Github Developer Zone. As an example here is code to use Dijkstra's algorithm to find the shortest weighted path: ``` >>> G=nx.Graph() >>> e=[('a','b',0.3),('b','c',0.9),('a','c',0.5),('c','d',1.2)] >>> G.add_weighted_edges_from(e) >>> print(nx.dijkstra_path(G,'a','d')) ['a', 'c', 'd'] ``` ## 2.2.4 Drawing While NetworkX is not designed as a network layout tool, we provide a simple interface to drawing packages and some simple layout algorithms. We interface to the excellent Graphviz layout tools like dot and neato with the (suggested) pygraphviz package or the pydot interface. Drawing can be done using external programs or the Matplotlib Python package. Interactive GUI interfaces are possible though not provided. The drawing tools are provided in the module *drawing*. The basic drawing functions essentially place the nodes on a scatterplot using the positions in a dictionary or computed with a layout function. The edges are then lines between those dots. ``` >>> G=nx.cubical_graph() >>> nx.draw(G) # default spring_layout >>> nx.draw(G,pos=nx.spectral_layout(G), nodecolor='r',edge_color='b') ``` See the examples for more ideas. #### 2.2.5 Data Structure NetworkX uses a "dictionary of dictionaries of dictionaries" as the basic network data structure. This allows fast lookup with reasonable storage for large sparse networks. The keys are nodes so G[u] returns an adjacency dictionary keyed by neighbor to the edge attribute dictionary. The expression G[u][v] returns the edge attribute dictionary itself. A dictionary of lists would have also been possible, but not allowed fast edge detection nor convenient storage of edge data Advantages of dict-of-dicts-of-dicts data structure: - Find edges and remove edges with two dictionary look-ups. - Prefer to "lists" because of fast lookup with sparse storage. - Prefer to "sets" since data can be attached to edge. - G[u][v] returns the edge attribute dictionary. - n in G tests if node n is in graph G. - for n in G: iterates through the graph. - for nbr in G[n]: iterates through neighbors. As an example, here is a representation of an undirected graph with the edges ('A','B'), ('B','C') ``` >>> G=nx.Graph() >>> G.add_edge('A', 'B') >>> G.add_edge('B', 'C') >>> print(G.adj) {'A': {'B': {}}, 'C': {'B': {}}, 'B': {'A': {}}, 'C': {}}} ``` The data structure gets morphed slightly for each base graph class. For DiGraph two dict-of-dicts structures are provided, one for successors and one for predecessors. For MultiGraph/MultiDiGraph we use a
dict-of-dicts- dicts-of-dicts ¹ where the third dictionary is keyed by an edge key identifier to the fourth dictionary which contains the edge attributes for that edge between the two nodes. Graphs use a dictionary of attributes for each edge. We use a dict-of-dicts-of-dicts data structure with the inner dictionary storing "name-value" relationships for that edge. ``` >>> G=nx.Graph() >>> G.add_edge(1,2,color='red',weight=0.84,size=300) >>> print(G[1][2]['size']) 300 ``` ¹ "It's dictionaries all the way down." ## **GRAPH TYPES** NetworkX provides data structures and methods for storing graphs. All NetworkX graph classes allow (hashable) Python objects as nodes. and any Python object can be assigned as an edge attribute. The choice of graph class depends on the structure of the graph you want to represent. ## 3.1 Which graph class should I use? | Graph Type | NetworkX Class | |---------------------|--------------------------| | Undirected Simple | Graph | | Directed Simple | DiGraph | | With Self-loops | Graph, DiGraph | | With Parallel edges | MultiGraph, MultiDiGraph | ## 3.2 Basic graph types ## 3.2.1 Graph – Undirected graphs with self loops #### Overview Graph (data=None, **attr) Base class for undirected graphs. A Graph stores nodes and edges with optional data, or attributes. Graphs hold undirected edges. Self loops are allowed but multiple (parallel) edges are not. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. Edges are represented as links between nodes with optional key/value attributes. #### **Parameters** - data (*input graph*) Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to graph as key=value pairs. #### See also: ``` DiGraph(), MultiGraph(), MultiDiGraph() ``` #### **Examples** Create an empty graph structure (a "null graph") with no nodes and no edges. ``` >>> G = nx.Graph() ``` G can be grown in several ways. #### **Nodes:** Add one node at a time: ``` >>> G.add_node(1) ``` Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). ``` >>> G.add_nodes_from([2,3]) >>> G.add_nodes_from(range(100,110)) >>> H=nx.Graph() >>> H.add_path([0,1,2,3,4,5,6,7,8,9]) >>> G.add_nodes_from(H) ``` In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. ``` >>> G.add_node(H) ``` #### **Edges:** G can also be grown by adding edges. Add one edge, ``` >>> G.add_edge(1, 2) ``` a list of edges, ``` >>> G.add_edges_from([(1,2),(1,3)]) ``` or a collection of edges, ``` >>> G.add_edges_from(H.edges()) ``` If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist. #### **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. ``` >>> G = nx.Graph(day="Friday") >>> G.graph {'day': 'Friday'} ``` Add node attributes using add_node(), add_nodes_from() or G.node ``` >>> G.add_node(1, time='5pm') >>> G.add_nodes_from([3], time='2pm') >>> G.node[1] {'time': '5pm'} >>> G.node[1]['room'] = 714 >>> del G.node[1]['room'] # remove attribute >>> G.nodes(data=True) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] ``` Warning: adding a node to G.node does not add it to the graph. Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge. ``` >>> G.add_edge(1, 2, weight=4.7) >>> G.add_edges_from([(3,4),(4,5)], color='red') >>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) >>> G[1][2]['weight'] = 4.7 >>> G.edge[1][2]['weight'] = 4 ``` #### **Shortcuts:** Many common graph features allow python syntax to speed reporting. ``` >>> 1 in G # check if node in graph True >>> [n for n in G if n<3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 ``` The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient. #### **Reporting:** Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges. For details on these and other miscellaneous methods, see below. #### **Subclasses (Advanced):** The Graph class uses a dict-of-dict data structure. The outer dict (node_dict) holds adjacency lists keyed by node. The next dict (adjlist) represents the adjacency list and holds edge data keyed by neighbor. The inner dict (edge_attr) represents the edge data and holds edge attribute values keyed by attribute names. Each of these three dicts can be replaced by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, adjlist_dict_factory and edge_attr_dict_factory. node_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict in the data structure that holds adjacency lists keyed by node. It should require no arguments and return a dict-like object. adjlist_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list dict which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object edge_attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict which holds attrbute values keyed by attribute name. It should require no arguments and return a dict-like object. #### **Examples** Create a graph object that tracks the order nodes are added. Create a graph object that tracks the order nodes are added and for each node track the order that neighbors are added. ``` >>> class OrderedGraph(nx.Graph): ... node_dict_factory = OrderedDict ... adjlist_dict_factory = OrderedDict >>> G = OrderedGraph() >>> G.add_nodes_from((2,1)) >>> G.nodes() [2, 1] >>> G.add_edges_from(((2,2), (2,1), (1,1))) >>> G.edges() [(2, 2), (2, 1), (1, 1)] ``` Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes. ``` >>> class ThinGraph(nx.Graph): ... all_edge_dict = {'weight': 1} ... def single_edge_dict(self): ... return self.all_edge_dict ... edge_attr_dict_factory = single_edge_dict >>> G = ThinGraph() >>> G.add_edge(2,1) >>> G.edges(data= True) [(1, 2, {'weight': 1})] >>> G.add_edge(2,2) >>> G[2][1] is G[2][2] True ``` ## Adding and removing nodes and edges | Graphinit([data]) | Initialize a graph with edges, name, graph attributes. | |--|--| | Graph.add_node(n[, attr_dict]) | Add a single node n and update node attributes. | | Graph.add_nodes_from(nodes, **attr) | Add multiple nodes. | | Graph.remove_node(n) | Remove node n. | | Graph.remove_nodes_from(nodes) | Remove multiple nodes. | | Graph.add_edge(u, v[, attr_dict]) | Add an edge between u and v. | | <pre>Graph.add_edges_from(ebunch[, attr_dict])</pre> | Add all the edges in ebunch. | | <pre>Graph.add_weighted_edges_from(ebunch[, weight])</pre> | Add all the edges in ebunch as weighted edges with specified weights | | Graph.remove_edge(u,v) | Remove the edge between u and v. | | Graph.remove_edges_from(ebunch) | Remove all edges specified in
ebunch. | | Graph.add_star(nodes, **attr) | Add a star. | | Graph.add_path(nodes, **attr) | Add a path. | | Graph.add_cycle(nodes, **attr) | Add a cycle. | | Graph.clear() | Remove all nodes and edges from the graph. | ## __init__ Graph.___init___(data=None, **attr) Initialize a graph with edges, name, graph attributes. #### **Parameters** - data (*input graph*) Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. - name (string, optional (default='')) An optional name for the graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to graph as key=value pairs. #### See also: convert() #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G = nx.Graph(name='my graph') >>> e = [(1,2),(2,3),(3,4)] # list of edges >>> G = nx.Graph(e) ``` Arbitrary graph attribute pairs (key=value) may be assigned ``` >>> G=nx.Graph(e, day="Friday") >>> G.graph {'day': 'Friday'} ``` #### add node ``` Graph.add_node (n, attr_dict=None, **attr) Add a single node n and update node attributes. ``` #### **Parameters** - **n** (*node*) A node can be any hashable Python object except None. - attr_dict (dictionary, optional (default= no attributes)) Dictionary of node attributes. Key/value pairs will update existing data associated with the node. - attr (*keyword arguments*, *optional*) Set or change attributes using key=value. #### See also: ``` add nodes from() ``` #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 ``` Use keywords set/change node attributes: ``` >>> G.add_node(1,size=10) >>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649)) ``` #### **Notes** A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. ## add_nodes_from ``` Graph.add_nodes_from(nodes, **attr) Add multiple nodes. ``` #### **Parameters** - **nodes** (*iterable container*) A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. - attr (keyword arguments, optional (default= no attributes)) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally. #### See also: ``` add_node() ``` #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(),key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] ``` Use keywords to update specific node attributes for every node. ``` >>> G.add_nodes_from([1,2], size=10) >>> G.add_nodes_from([3,4], weight=0.4) ``` Use (node, attrdict) tuples to update attributes for specific nodes. ``` >>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})]) >>> G.node[1]['size'] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.node[1]['size'] 11 ``` #### remove node #### Graph.remove_node(n) Remove node n. Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception. #### **Parameters** - **n** (*node*) A node in the graph - Raises - - ----- - **NetworkXError** If n is not in the graph. ### See also: ``` remove_nodes_from() ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.edges() [(0, 1), (1, 2)] >>> G.remove_node(1) >>> G.edges() [] ``` #### remove nodes from ``` Graph.remove_nodes_from (nodes) ``` Remove multiple nodes. **Parameters nodes** (*iterable container*) – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored. #### See also: ``` remove_node() ``` #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> e = G.nodes() >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> G.nodes() [] ``` #### add_edge ``` Graph.add_edge (u, v, attr_dict=None, **attr) ``` Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below. ## **Parameters** - **u**, **v** (nodes) Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. - attr_dict (dictionary, optional (default= no attributes)) Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge. - attr (keyword arguments, optional) Edge data (or labels or objects) can be assigned using keyword arguments. #### See also: ``` add_edges_from() add a collection of edges ``` #### **Notes** Adding an edge that already exists updates the edge data. Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to a keyword which by default is 'weight'. #### **Examples** The following all add the edge e=(1,2) to graph G: ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1,2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from([(1,2)]) # add edges from iterable container ``` Associate data to edges using keywords: ``` >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) ``` #### add edges from Graph.add_edges_from(ebunch, attr_dict=None, **attr) Add all the edges in ebunch. #### **Parameters** - **ebunch** (*container of edges*) Each edge given in the container will be added to the graph. The edges must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing edge data. - attr_dict (dictionary, optional (default= no attributes)) Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge. - attr (keyword arguments, optional) Edge data (or labels or objects) can be assigned using keyword arguments. #### See also: ``` add_edge() add a single edge add_weighted_edges_from() convenient way to add weighted edges ``` #### **Notes** Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges take precedence over attributes specified generally. #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples >>> e = zip(range(0,3),range(1,4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 ``` #### Associate data to edges ``` >>> G.add_edges_from([(1,2),(2,3)], weight=3) >>> G.add_edges_from([(3,4),(1,4)], label='WN2898') ``` #### add weighted edges from Graph.add_weighted_edges_from(ebunch, weight='weight', **attr) Add all the edges in ebunch as weighted edges with specified weights. #### **Parameters** - **ebunch** (*container of edges*) Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number. - weight (*string*, *optional* (*default*= 'weight')) The attribute name for the edge weights to be added. - attr (keyword arguments, optional (default= no attributes)) Edge attributes to add/update for all edges. #### See also: ``` add_edge() add a single edge add_edges_from() add multiple edges ``` #### **Notes** Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored. #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)]) ``` ## remove_edge ``` Graph.remove_edge (u, v) ``` Remove the edge between u and v. **Parameters u, v** (nodes) – Remove the edge between nodes u and v. **Raises** *NetworkXError* – If there is not an edge between u and v. ## See also: remove_edges_from() remove a collection of edges ``` >>> G = nx.Graph() # or DiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.remove_edge(0,1) >>> e = (1,2) >>> G.remove_edge(*e) # unpacks e from an edge tuple >>> e = (2,3,{'weight':7}) # an edge with attribute data >>> G.remove_edge(*e[:2]) # select first part of edge tuple ``` #### remove edges from ``` Graph.remove_edges_from(ebunch) ``` Remove all edges specified in ebunch. **Parameters ebunch** (*list or container of edge tuples*) – Each edge given in the list or container will be removed from the graph. The edges can be: - 2-tuples (u,v) edge between u and v. - 3-tuples (u,v,k) where k is ignored. #### See also: ``` remove_edge() remove a single edge ``` #### **Notes** Will fail silently if an edge in ebunch is not in the graph. #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> ebunch=[(1,2),(2,3)] >>> G.remove_edges_from(ebunch) ``` ## add_star ``` Graph.add_star(nodes, **attr) ``` Add a star. The first node in nodes is the middle of the star. It is connected to all other nodes. #### **Parameters** - nodes (iterable container) A container of nodes. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to every edge in star. #### See also: ``` add_path(), add_cycle() ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_star([0,1,2,3]) >>> G.add_star([10,11,12], weight=2) ``` #### add path ``` Graph.add_path (nodes, **attr) Add a path. ``` #### **Parameters** - **nodes** (*iterable container*) A container of
nodes. A path will be constructed from the nodes (in order) and added to the graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to every edge in path. #### See also: ``` add_star(), add_cycle() ``` ## **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.add_path([10,11,12], weight=7) ``` #### add cycle ``` Graph.add_cycle (nodes, **attr) Add a cycle. ``` #### **Parameters** - **nodes** (*iterable container*) A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to every edge in cycle. #### See also: ``` add_path(), add_star() ``` #### **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_cycle([0,1,2,3]) >>> G.add_cycle([10,11,12],weight=7) ``` #### clear ``` Graph.clear() ``` Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.clear() >>> G.nodes() [] >>> G.edges() [] ``` ## Iterating over nodes and edges | Graph.nodes([data]) | Return a list of the nodes in the graph. | |--|---| | Graph.nodes_iter([data]) | Return an iterator over the nodes. | | Graphiter() | Iterate over the nodes. | | Graph.edges([nbunch, data, default]) | Return a list of edges. | | <pre>Graph.edges_iter([nbunch, data, default])</pre> | Return an iterator over the edges. | | Graph.get_edge_data(u, v[, default]) | Return the attribute dictionary associated with edge (u,v). | | Graph.neighbors(n) | Return a list of the nodes connected to the node n. | | Graph.neighbors_iter(n) | Return an iterator over all neighbors of node n. | | Graphgetitem(n) | Return a dict of neighbors of node n. | | Graph.adjacency_list() | Return an adjacency list representation of the graph. | | Graph.adjacency_iter() | Return an iterator of (node, adjacency dict) tuples for all nodes. | | Graph.nbunch_iter([nbunch]) | Return an iterator of nodes contained in nbunch that are also in the graph. | #### nodes Graph.nodes (data=False) Return a list of the nodes in the graph. **Parameters data** (*boolean*, *optional* (*default=False*)) – If False return a list of nodes. If True return a two-tuple of node and node data dictionary **Returns nlist** – A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary). Return type list ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.nodes() [0, 1, 2] >>> G.add_node(1, time='5pm') >>> G.nodes(data=True) [(0, {}), (1, {'time': '5pm'}), (2, {})] ``` #### nodes_iter ``` Graph.nodes_iter(data=False) ``` Return an iterator over the nodes. **Parameters** data (*boolean*, *optional* (*default=False*)) – If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary **Returns niter** – An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary) Return type iterator #### **Notes** If the node data is not required it is simpler and equivalent to use the expression 'for n in G'. ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) ``` #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) ``` ``` >>> [d for n,d in G.nodes_iter(data=True)] [{}, {}, {}] ``` ## __iter__ ``` Graph.___iter___() ``` Iterate over the nodes. Use the expression 'for n in G'. **Returns** niter – An iterator over all nodes in the graph. **Return type** iterator ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) ``` #### edges ``` Graph.edges (nbunch=None, data=False, default=None) ``` Return a list of edges. Edges are returned as tuples with optional data in the order (node, neighbor, data). #### **Parameters** • **nbunch** (*iterable container, optional (default= all nodes*)) – A container of nodes. The container will be iterated through once. - data (bool, optional (default=False)) Return two tuples (u,v) (False) or three-tuples (u,v,data) (True). - Returns - - ------ - edge_list (list of edge tuples) Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified. #### See also: edges_iter() return an iterator over the edges #### **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.add_edge(2,3,weight=5) >>> G.edges() [(0, 1), (1, 2), (2, 3)] >>> G.edges(data=True) # default edge data is {} (empty dictionary) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges_iter(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> G.edges([0,3]) [(0, 1), (3, 2)] >>> G.edges(0) [(0, 1)] ``` #### edges iter Graph.edges_iter (nbunch=None, data=False, default=None) Return an iterator over the edges. Edges are returned as tuples with optional data in the order (node, neighbor, data). #### **Parameters** - **nbunch** (*iterable container, optional (default= all nodes*)) A container of nodes. The container will be iterated through once. - data (*string or bool, optional (default=False*)) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns** edge_iter – An iterator of (u,v) or (u,v,d) tuples of edges. **Return type** iterator See also: edges () return a list of edges #### **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. #### **Examples** ``` >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_path([0,1,2]) >>> G.add_edge(2,3,weight=5) >>> [e for e in G.edges_iter()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges_iter(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges_iter(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> list(G.edges_iter([0,3])) [(0, 1), (3, 2)] >>> list(G.edges_iter(0)) [(0, 1)] ``` #### get_edge_data Graph.get_edge_data(u, v, default=None) Return the attribute dictionary associated with edge (u,v). #### **Parameters** - u, v (nodes) - - **default** (any Python object (default=None)) Value to return if the edge (u,v) is not found. **Returns** edge_dict – The edge attribute dictionary. Return type dictionary #### **Notes** It is faster to use G[u][v]. ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G[0][1] {} ``` Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary, ``` >>> G[0][1]['weight'] = 7 >>> G[0][1]['weight'] 7 >>> G[1][0]['weight'] 7 ``` #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.get_edge_data(0,1) # default edge data is {} {} >>> e = (0,1) >>> G.get_edge_data(*e) # tuple form {} >>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0 0 ``` #### neighbors #### Graph.neighbors(n) Return a list of the nodes connected to the node n. **Parameters n** (*node*) – A node in the graph **Returns nlist** – A list of nodes that are adjacent to n. Return type list **Raises** *NetworkXError* – If the node n is not in the graph. #### **Notes** It is usually more convenient (and faster) to access the adjacency dictionary as G[n]: ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a','b',weight=7) >>> G['a'] {'b': {'weight': 7}} ``` #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.neighbors(0) [1] ``` #### neighbors_iter #### Graph.neighbors_iter(n) Return an iterator over all neighbors of node n. ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> [n for n in G.neighbors_iter(0)] [1] ``` #### **Notes** It is faster to use the idiom "in G[0]", e.g. ``` >>> G = nx.path_graph(4) >>> [n for n in G[0]] [1] ``` ### __getitem__ ``` Graph.\underline{}getitem\underline{}(n) ``` Return a dict of neighbors of node n. Use the expression 'G[n]'. **Parameters n** (*node*) – A node in the graph. **Returns** adj_dict – The adjacency dictionary for nodes connected to n. Return type dictionary #### **Notes** G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list. Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only. #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G[0] {1: {}} ``` #### adjacency_list ``` Graph.adjacency_list() ``` Return an adjacency list representation of the graph. The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included. **Returns** adj_list – The adjacency structure of the graph as a list of lists. **Return type** lists of lists #### See also: ``` adjacency_iter() ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.adjacency_list() # in order given by G.nodes() [[1], [0, 2], [1, 3], [2]] ``` #### adjacency_iter ``` Graph.adjacency_iter() ``` Return an iterator of (node, adjacency dict) tuples for all nodes. This is the fastest way to look at every edge. For
directed graphs, only outgoing adjacencies are included. **Returns** adj_iter – An iterator of (node, adjacency dictionary) for all nodes in the graph. Return type iterator #### See also: ``` adjacency_list() ``` #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()] [(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})] ``` #### nbunch iter #### Graph.nbunch_iter(nbunch=None) Return an iterator of nodes contained in nbunch that are also in the graph. The nodes in nbunch are checked for membership in the graph and if not are silently ignored. **Parameters nbunch** (*iterable container, optional* (*default=all nodes*)) – A container of nodes. The container will be iterated through once. **Returns niter** – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph. #### Return type iterator **Raises** NetworkXError – If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable. #### See also: ``` Graph.__iter__() ``` #### **Notes** When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted. To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine. If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised. ## Information about graph structure | Graph.has_node(n) | Return True if the graph contains the node n. | |--|--| | Graphcontains(n) | Return True if n is a node, False otherwise. | | Graph.has_edge(u, v) | Return True if the edge (u,v) is in the graph. | | Graph.order() | Return the number of nodes in the graph. | | Graph.number_of_nodes() | Return the number of nodes in the graph. | | Graphlen() | Return the number of nodes. | | Graph.degree([nbunch, weight]) | Return the degree of a node or nodes. | | <pre>Graph.degree_iter([nbunch, weight])</pre> | Return an iterator for (node, degree). | | Graph.size([weight]) | Return the number of edges. | | Graph.number_of_edges([u, v]) | Return the number of edges between two nodes. | | Graph.nodes_with_selfloops() | Return a list of nodes with self loops. | | <pre>Graph.selfloop_edges([data, default])</pre> | Return a list of selfloop edges. | | <pre>Graph.number_of_selfloops()</pre> | Return the number of selfloop edges. | ### has_node ``` Graph.has_node(n) ``` Return True if the graph contains the node n. Parameters n (node) - ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.has_node(0) True ``` It is more readable and simpler to use ``` >>> 0 in G True ``` ## __contains__ ``` Graph.__contains__(n) ``` Return True if n is a node, False otherwise. Use the expression 'n in G'. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> 1 in G True ``` ## has_edge ``` Graph.has_edge(u, v) ``` Return True if the edge (u,v) is in the graph. **Parameters u, v** (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. **Returns** edge_ind – True if edge is in the graph, False otherwise. Return type bool ### **Examples** Can be called either using two nodes u,v or edge tuple (u,v) ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.has_edge(0,1) # using two nodes True >>> e = (0,1) >>> G.has_edge(*e) # e is a 2-tuple (u,v) True >>> e = (0,1,{'weight':7}) >>> G.has_edge(*e[:2]) # e is a 3-tuple (u,v,data_dictionary) True ``` The following syntax are all equivalent: ``` >>> G.has_edge(0,1) True >>> 1 in G[0] # though this gives KeyError if 0 not in G True ``` #### order ``` Graph.order() ``` Return the number of nodes in the graph. **Returns** nnodes – The number of nodes in the graph. Return type int See also: ``` number_of_nodes(), __len__() ``` #### number of nodes ``` Graph.number_of_nodes() ``` Return the number of nodes in the graph. **Returns nnodes** – The number of nodes in the graph. Return type int See also: ``` order(),__len__() ``` #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> len(G) 3 ``` ``` __len__ ``` ``` Graph.___len__() ``` Return the number of nodes. Use the expression 'len(G)'. **Returns nnodes** – The number of nodes in the graph. Return type int ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> len(G) 4 ``` #### degree Graph.degree (nbunch=None, weight=None) Return the degree of a node or nodes. The node degree is the number of edges adjacent to that node. #### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd** – A dictionary with nodes as keys and degree as values or a number if a single node is specified. Return type dictionary, or number ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.degree(0) 1 >>> G.degree([0,1]) {0: 1, 1: 2} >>> list(G.degree([0,1]).values()) [1, 2] ``` #### degree iter ``` Graph.degree_iter(nbunch=None, weight=None) ``` Return an iterator for (node, degree). The node degree is the number of edges adjacent to the node. #### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd_iter** – The iterator returns two-tuples of (node, degree). Return type an iterator ### See also: ``` degree() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> list(G.degree_iter(0)) # node 0 with degree 1 [(0, 1)] >>> list(G.degree_iter([0,1])) [(0, 1), (1, 2)] ``` #### size ``` Graph.size(weight=None) ``` Return the number of edges. **Parameters weight** (*string or None, optional (default=None)*) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. **Returns** nedges – The number of edges or sum of edge weights in the graph. Return type int #### See also: ``` number_of_edges() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.size() 3 ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a','b',weight=2) >>> G.add_edge('b','c',weight=4) >>> G.size() 2 >>> G.size(weight='weight') 6.0 ``` ## number_of_edges ``` Graph.number_of_edges (u=None, v=None) ``` Return the number of edges between two nodes. **Parameters u, v** (*nodes, optional (default=all edges)*) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges. **Returns nedges** – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. Return type int #### See also: size() ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.number_of_edges() 3 >>> G.number_of_edges(0,1) 1 >>> e = (0,1) >>> G.number_of_edges(*e) 1 ``` # nodes_with_selfloops ``` Graph.nodes_with_selfloops() ``` Return a list of nodes with self loops. A node with a self loop has an edge with both ends adjacent to that node. **Returns nodelist** – A list of nodes with self loops. Return type list ``` selfloop_edges(), number_of_selfloops() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.nodes_with_selfloops() [1] ``` ## selfloop_edges ``` Graph.selfloop_edges (data=False, default=None) ``` Return a list of selfloop edges. A selfloop edge has the same node at both ends. #### **Parameters** - data (*string or bool, optional (default=False*)) Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname') - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns** edgelist – A list of all selfloop edges. Return type list of edge tuples ### See also: ``` nodes_with_selfloops(), number_of_selfloops() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.selfloop_edges() [(1, 1)] >>> G.selfloop_edges(data=True) [(1, 1, {})] ``` ## number_of_selfloops ``` Graph.number_of_selfloops() ``` Return the number of selfloop edges. A selfloop edge has the same node at both ends. **Returns nloops** – The number of selfloops. Return type int ``` nodes_with_selfloops(), selfloop_edges() ``` ## **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.number_of_selfloops() 1 ``` # Making copies and subgraphs | Graph.copy() | Return a copy of the graph. | |----------------------------------|---| | <pre>Graph.to_undirected()</pre> | Return an undirected copy of the graph. | | Graph.to_directed() | Return a directed
representation of the graph. | | Graph.subgraph(nbunch) | Return the subgraph induced on nodes in nbunch. | ### сору ``` Graph.copy() ``` Return a copy of the graph. **Returns** G - A copy of the graph. Return type Graph ## See also: to_directed() return a directed copy of the graph. # **Notes** This makes a complete copy of the graph including all of the node or edge attributes. # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> H = G.copy() ``` ## to_undirected ``` Graph.to_undirected() ``` Return an undirected copy of the graph. **Returns** G - A deepcopy of the graph. Return type Graph/MultiGraph ``` copy(), add_edge(), add_edges_from() ``` ### **Notes** This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. ## **Examples** ``` >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1), (1, 0)] >>> G2 = H.to_undirected() >>> G2.edges() [(0, 1)] ``` ### to directed ``` Graph.to_directed() ``` Return a directed representation of the graph. **Returns G** – A directed graph with the same name, same nodes, and with each edge (u,v,data) replaced by two directed edges (u,v,data) and (v,u,data). Return type DiGraph ### **Notes** This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Warning: If you have subclassed Graph to use dict-like objects in the data structure, those changes do not transfer to the DiGraph created by this method. ### **Examples** ``` >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1), (1, 0)] ``` If already directed, return a (deep) copy ``` >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1)] ``` ### subgraph ``` Graph.subgraph (nbunch) ``` Return the subgraph induced on nodes in nbunch. The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes. Parameters nbunch (list, iterable) - A container of nodes which will be iterated through once. **Returns** G - A subgraph of the graph with the same edge attributes. Return type Graph #### **Notes** The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will. To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch)) If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy() For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)]) ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> H = G.subgraph([0,1,2]) >>> H.edges() [(0, 1), (1, 2)] ``` # 3.2.2 DiGraph - Directed graphs with self loops #### Overview ``` DiGraph (data=None, **attr) ``` Base class for directed graphs. A DiGraph stores nodes and edges with optional data, or attributes. DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. Edges are represented as links between nodes with optional key/value attributes. ## Parameters - data (*input graph*) Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to graph as key=value pairs. ### See also: ``` Graph(), MultiGraph(), MultiDiGraph() ``` ## **Examples** Create an empty graph structure (a "null graph") with no nodes and no edges. ``` >>> G = nx.DiGraph() ``` G can be grown in several ways. #### **Nodes:** Add one node at a time: ``` >>> G.add_node(1) ``` Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). ``` >>> G.add_nodes_from([2,3]) >>> G.add_nodes_from(range(100,110)) >>> H=nx.Graph() >>> H.add_path([0,1,2,3,4,5,6,7,8,9]) >>> G.add_nodes_from(H) ``` In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. ``` >>> G.add_node(H) ``` ## **Edges:** G can also be grown by adding edges. Add one edge, ``` >>> G.add_edge(1, 2) ``` a list of edges, ``` >>> G.add_edges_from([(1,2),(1,3)]) ``` or a collection of edges, ``` >>> G.add_edges_from(H.edges()) ``` If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist. ### **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. ``` >>> G = nx.DiGraph(day="Friday") >>> G.graph {'day': 'Friday'} ``` Add node attributes using add_node(), add_nodes_from() or G.node ``` >>> G.add_node(1, time='5pm') >>> G.add_nodes_from([3], time='2pm') >>> G.node[1] {'time': '5pm'} >>> G.node[1]['room'] = 714 >>> del G.node[1]['room'] # remove attribute >>> G.nodes(data=True) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] ``` Warning: adding a node to G.node does not add it to the graph. Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge. ``` >>> G.add_edge(1, 2, weight=4.7) >>> G.add_edges_from([(3,4),(4,5)], color='red') >>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) >>> G[1][2]['weight'] = 4.7 >>> G.edge[1][2]['weight'] = 4 ``` ## **Shortcuts:** Many common graph features allow python syntax to speed reporting. ``` >>> 1 in G # check if node in graph True >>> [n for n in G if n<3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 ``` The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient. ## **Reporting:** Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges. For details on these and other miscellaneous methods, see below. ## **Subclasses (Advanced):** The Graph class uses a dict-of-dict data structure. The outer dict (node_dict) holds adjacency lists keyed by node. The next dict (adjlist) represents the adjacency list and holds edge data keyed by neighbor. The inner dict (edge_attr) represents the edge data and holds edge attribute values keyed by attribute names. Each of these three dicts can be replaced by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, adjlist_dict_factory and edge_attr_dict_factory. node_dict_factory [function, optional (default: dict)] Factory function to be used to create the outer-most dict in the data structure that holds adjacency lists keyed by node. It should require no arguments and return a dict-like object. adjlist_dict_factory [function, optional (default: dict)] Factory function to be used to create the adjacency list dict which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object **edge_attr_dict_factory** [function, optional (default: dict)] Factory function to be used to create the edge attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object. ### **Examples** Create a graph object that tracks the order nodes are added. Create a graph object that tracks the order nodes are added and for each node track the order that neighbors are added. Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes. ``` >>> class ThinGraph(nx.Graph): ... all_edge_dict = {'weight': 1} ... def single_edge_dict(self): ... return self.all_edge_dict ... edge_attr_dict_factory = single_edge_dict >>> G = ThinGraph() ``` ``` >>> G.add_edge(2,1) >>> G.edges(data= True) [(1, 2, {'weight': 1})] >>> G.add_edge(2,2) >>> G[2][1] is G[2][2] True ``` ## Adding and removing nodes and edges | DiGraphinit([data]) | Initialize a graph with edges, name, graph attributes. | |---|---| | DiGraph.add_node(n[, attr_dict]) | Add a single node n and update node attributes. | | DiGraph.add_nodes_from(nodes, **attr) | Add multiple nodes. | | DiGraph.remove_node(n) | Remove node n. | | DiGraph.remove_nodes_from(nbunch) | Remove multiple nodes. | | DiGraph.add_edge(u, v[, attr_dict]) | Add an edge between u and v. | | DiGraph.add_edges_from(ebunch[, attr_dict]) | Add all the edges in ebunch. | |
DiGraph.add_weighted_edges_from(ebunch[, weight]) | Add all the edges in ebunch as weighted edges with specified weighted | | DiGraph.remove_edge(u, v) | Remove the edge between u and v. | | DiGraph.remove_edges_from(ebunch) | Remove all edges specified in ebunch. | | DiGraph.add_star(nodes, **attr) | Add a star. | | DiGraph.add_path(nodes, **attr) | Add a path. | | DiGraph.add_cycle(nodes, **attr) | Add a cycle. | | DiGraph.clear() | Remove all nodes and edges from the graph. | # __init__ DiGraph.___init___(data=None, **attr) Initialize a graph with edges, name, graph attributes. ## **Parameters** - data (*input graph*) Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. - name (string, optional (default='')) An optional name for the graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to graph as key=value pairs. ### See also: convert() ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G = nx.Graph(name='my graph') >>> e = [(1,2),(2,3),(3,4)] # list of edges >>> G = nx.Graph(e) ``` Arbitrary graph attribute pairs (key=value) may be assigned ``` >>> G=nx.Graph(e, day="Friday") >>> G.graph {'day': 'Friday'} ``` #### add node ``` DiGraph.add_node (n, attr_dict=None, **attr) Add a single node n and update node attributes. ``` ### **Parameters** - **n** (*node*) A node can be any hashable Python object except None. - attr_dict (dictionary, optional (default= no attributes)) Dictionary of node attributes. Key/value pairs will update existing data associated with the node. - attr (*keyword arguments*, *optional*) Set or change attributes using key=value. ### See also: ``` add_nodes_from() ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 ``` Use keywords set/change node attributes: ``` >>> G.add_node(1,size=10) >>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649)) ``` ## Notes A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. ## add_nodes_from ``` DiGraph.add_nodes_from(nodes, **attr) Add multiple nodes. ``` ## **Parameters** • **nodes** (*iterable container*) – A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. • attr (keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally. ## See also: ``` add_node() ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(),key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] ``` Use keywords to update specific node attributes for every node. ``` >>> G.add_nodes_from([1,2], size=10) >>> G.add_nodes_from([3,4], weight=0.4) ``` Use (node, attrdict) tuples to update attributes for specific nodes. ``` >>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})]) >>> G.node[1]['size'] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.node[1]['size'] 11 ``` ## remove_node ``` DiGraph.remove_node(n) ``` Remove node n. Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception. #### **Parameters** - **n** (node) A node in the graph - Raises - - ----- - **NetworkXError** If n is not in the graph. ### See also: ``` remove_nodes_from() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.edges() ``` ``` [(0, 1), (1, 2)] >>> G.remove_node(1) >>> G.edges() [] ``` #### remove nodes from DiGraph.remove_nodes_from(nbunch) Remove multiple nodes. **Parameters nodes** (*iterable container*) – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored. ### See also: ``` remove node() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> e = G.nodes() >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> G.nodes() [] ``` ## add_edge ``` DiGraph.add_edge (u, v, attr_dict=None, **attr) ``` Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below. ### **Parameters** - **u**, **v** (nodes) Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. - attr_dict (dictionary, optional (default= no attributes)) Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge. - attr (keyword arguments, optional) Edge data (or labels or objects) can be assigned using keyword arguments. ``` add_edges_from() add a collection of edges ``` ### **Notes** Adding an edge that already exists updates the edge data. Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to a keyword which by default is 'weight'. ## **Examples** The following all add the edge e=(1,2) to graph G: ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1,2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from([(1,2)]) # add edges from iterable container ``` Associate data to edges using keywords: ``` >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) ``` ## add_edges_from DiGraph.add_edges_from(ebunch, attr_dict=None, **attr) Add all the edges in ebunch. ### **Parameters** - **ebunch** (*container of edges*) Each edge given in the container will be added to the graph. The edges must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing edge data. - attr_dict (dictionary, optional (default= no attributes)) Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge. - attr (keyword arguments, optional) Edge data (or labels or objects) can be assigned using keyword arguments. ## See also: ``` add_edge() add a single edge add_weighted_edges_from() convenient way to add weighted edges ``` ## **Notes** Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges take precedence over attributes specified generally. # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples >>> e = zip(range(0,3),range(1,4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 ``` ## Associate data to edges ``` >>> G.add_edges_from([(1,2),(2,3)], weight=3) >>> G.add_edges_from([(3,4),(1,4)], label='WN2898') ``` ## add_weighted_edges_from DiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr) Add all the edges in ebunch as weighted edges with specified weights. #### **Parameters** - **ebunch** (*container of edges*) Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number. - weight (*string*, *optional* (*default*= 'weight')) The attribute name for the edge weights to be added. - attr (keyword arguments, optional (default= no attributes)) Edge attributes to add/update for all edges. #### See also: ``` add_edge() add a single edge add_edges_from() add multiple edges ``` #### **Notes** Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)]) ``` ### remove edge ``` DiGraph.remove_edge(u, v) ``` Remove the edge between u and v. **Parameters** u, v (nodes) – Remove the edge between nodes u and v. **Raises** *NetworkXError* – If there is not an edge between u and v. #### See also: remove_edges_from() remove a collection of edges #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.remove_edge(0,1) >>> e = (1,2) >>> G.remove_edge(*e) # unpacks e from an edge tuple >>> e = (2,3,{'weight':7}) # an edge with attribute data >>> G.remove_edge(*e[:2]) # select first part of edge tuple ``` ## remove_edges_from DiGraph.remove_edges_from(ebunch) Remove all edges specified in ebunch. **Parameters ebunch** (*list or container of edge tuples*) – Each edge given in the list or container will be removed from the graph. The edges can be: - 2-tuples (u,v) edge between u and v. - 3-tuples (u,v,k) where k is ignored. ### See also: ``` remove_edge () remove a single edge ``` ### **Notes** Will fail silently if an edge in ebunch is not in the graph. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> ebunch=[(1,2),(2,3)] >>> G.remove_edges_from(ebunch) ``` ## add_star ``` DiGraph.add_star (nodes, **attr) ``` Add a star. The first node in nodes is the middle of the star. It is connected to all other nodes. ## **Parameters** - nodes (iterable container) A container of nodes. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to every edge in star. ``` add_path(), add_cycle() ``` ## **Examples** ``` >>> G =
nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_star([0,1,2,3]) >>> G.add_star([10,11,12], weight=2) ``` # add_path ``` DiGraph.add_path(nodes, **attr) Add a path. ``` #### **Parameters** - **nodes** (*iterable container*) A container of nodes. A path will be constructed from the nodes (in order) and added to the graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to every edge in path. ### See also: ``` add_star(), add_cycle() ``` ### **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.add_path([10,11,12],weight=7) ``` # add_cycle ``` DiGraph.add_cycle (nodes, **attr) Add a cycle. ``` ## **Parameters** - **nodes** (*iterable container*) A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to every edge in cycle. #### See also: ``` add_path(), add_star() ``` # **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_cycle([0,1,2,3]) >>> G.add_cycle([10,11,12],weight=7) ``` #### clear ``` DiGraph.clear() ``` Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.clear() >>> G.nodes() [] >>> G.edges() [] ``` # Iterating over nodes and edges | DiGraph.nodes([data]) | Return a list of the nodes in the graph. | |--|--| | DiGraph.nodes_iter([data]) | Return an iterator over the nodes. | | DiGraphiter() | Iterate over the nodes. | | DiGraph.edges([nbunch, data, default]) | Return a list of edges. | | DiGraph.edges_iter([nbunch, data, default]) | Return an iterator over the edges. | | DiGraph.out_edges([nbunch, data, default]) | Return a list of edges. | | <pre>DiGraph.out_edges_iter([nbunch, data, default])</pre> | Return an iterator over the edges. | | DiGraph.in_edges([nbunch, data]) | Return a list of the incoming edges. | | DiGraph.in_edges_iter([nbunch, data]) | Return an iterator over the incoming edges. | | DiGraph.get_edge_data(u, v[, default]) | Return the attribute dictionary associated with edge (u,v). | | DiGraph.neighbors(n) | Return a list of successor nodes of n. | | DiGraph.neighbors_iter(n) | Return an iterator over successor nodes of n. | | DiGraphgetitem(n) | Return a dict of neighbors of node n. | | DiGraph.successors(n) | Return a list of successor nodes of n. | | DiGraph.successors_iter(n) | Return an iterator over successor nodes of n. | | DiGraph.predecessors(n) | Return a list of predecessor nodes of n. | | DiGraph.predecessors_iter(n) | Return an iterator over predecessor nodes of n. | | DiGraph.adjacency_list() | Return an adjacency list representation of the graph. | | DiGraph.adjacency_iter() | Return an iterator of (node, adjacency dict) tuples for all nodes. | | DiGraph.nbunch_iter([nbunch]) | Return an iterator of nodes contained in nbunch that are also in the graph | | | | # nodes DiGraph.nodes (data=False) Return a list of the nodes in the graph. **Parameters data** (*boolean*, *optional* (*default=False*)) – If False return a list of nodes. If True return a two-tuple of node and node data dictionary **Returns nlist** – A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary). Return type list # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.nodes() [0, 1, 2] >>> G.add_node(1, time='5pm') >>> G.nodes(data=True) [(0, {}), (1, {'time': '5pm'}), (2, {})] ``` ## nodes_iter DiGraph.nodes_iter(data=False) Return an iterator over the nodes. **Parameters** data (*boolean*, *optional* (*default=False*)) – If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary **Returns niter** – An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary) Return type iterator ### **Notes** If the node data is not required it is simpler and equivalent to use the expression 'for n in G'. ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) ``` ``` >>> [d for n,d in G.nodes_iter(data=True)] [{}, {}, {}] ``` __iter__ DiGraph.__iter__() Iterate over the nodes. Use the expression 'for n in G'. **Returns** niter – An iterator over all nodes in the graph. Return type iterator # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) ``` #### edges ``` DiGraph.edges (nbunch=None, data=False, default=None) Return a list of edges. ``` Edges are returned as tuples with optional data in the order (node, neighbor, data). #### **Parameters** - **nbunch** (*iterable container, optional (default= all nodes*)) A container of nodes. The container will be iterated through once. - data (bool, optional (default=False)) Return two tuples (u,v) (False) or three-tuples (u,v,data) (True). - Returns - - ----- - edge_list (list of edge tuples) Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified. ### See also: ``` edges_iter() return an iterator over the edges ``` ### **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.add_edge(2,3,weight=5) >>> G.edges() [(0, 1), (1, 2), (2, 3)] >>> G.edges(data=True) # default edge data is {} (empty dictionary) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges_iter(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> G.edges([0,3]) [(0, 1), (3, 2)] >>> G.edges(0) [(0, 1)] ``` ### edges_iter ``` DiGraph.edges_iter(nbunch=None, data=False, default=None) ``` Return an iterator over the edges. Edges are returned as tuples with optional data in the order (node, neighbor, data). ### **Parameters** • **nbunch** (*iterable container, optional (default= all nodes*)) – A container of nodes. The container will be iterated through once. - data (*string or bool, optional (default=False*)) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns edge iter** – An iterator of (u,v) or (u,v,d) tuples of edges. Return type iterator ### See also: edges () return a list of edges #### **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ## **Examples** ``` >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.add_edge(2,3,weight=5) >>> [e for e in G.edges_iter()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges_iter(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges_iter(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> list(G.edges_iter([0,2])) [(0, 1), (2, 3)] >>> list(G.edges_iter(0)) [(0, 1)] ``` ## out_edges DiGraph.out_edges (nbunch=None, data=False, default=None) Return a list of edges. Edges are returned as tuples with optional data in the order (node, neighbor, data). #### **Parameters** - **nbunch** (*iterable container, optional (default= all nodes*)) A container of nodes. The container will be iterated through once. - data (bool, optional (default=False)) Return two tuples (u,v) (False) or three-tuples (u,v,data) (True). - Returns - - ----- - edge_list (*list of edge tuples*) Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified. edges_iter() return an iterator over the edges ### **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.add_edge(2,3,weight=5) >>> G.edges() [(0, 1), (1, 2), (2, 3)] >>> G.edges(data=True) # default edge data is {} (empty dictionary) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges_iter(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> G.edges([0,3]) [(0, 1), (3, 2)] >>> G.edges(0) [(0, 1)] ``` ## out_edges_iter DiGraph.out_edges_iter(nbunch=None, data=False, default=None) Return an iterator over the edges. Edges are returned as tuples with optional data in the order (node, neighbor, data). ## **Parameters** - **nbunch** (*iterable container, optional (default= all nodes*)) A container of nodes. The container will be iterated through once. - data (*string or bool, optional (default=False*)) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns edge_iter** – An iterator of (u,v) or (u,v,d) tuples of edges. Return type iterator ## See also: edges () return a list of edges ## **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ## **Examples** ``` >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.add_edge(2,3,weight=5) >>> [e for e in G.edges_iter()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges_iter(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}),
(2, 3, {'weight': 5})] >>> list(G.edges_iter(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> list(G.edges_iter([0,2])) [(0, 1), (2, 3)] >>> list(G.edges_iter(0)) [(0, 1)] ``` ## in_edges DiGraph.in_edges (nbunch=None, data=False) Return a list of the incoming edges. See also: edges () return a list of edges ## in_edges_iter DiGraph.in_edges_iter (nbunch=None, data=False) Return an iterator over the incoming edges. #### **Parameters** - **nbunch** (*iterable container, optional (default= all nodes*)) A container of nodes. The container will be iterated through once. - data (bool, optional (default=False)) If True, return edge attribute dict in 3-tuple (u,v,data). **Returns in_edge_iter** – An iterator of (u,v) or (u,v,d) tuples of incoming edges. Return type iterator See also: edges_iter() return an iterator of edges # get_edge_data ``` DiGraph.get_edge_data(u, v, default=None) ``` Return the attribute dictionary associated with edge (u,v). #### **Parameters** - u, v (nodes) - - **default** (any Python object (default=None)) Value to return if the edge (u,v) is not found. **Returns** edge_dict – The edge attribute dictionary. **Return type** dictionary ### **Notes** It is faster to use G[u][v]. ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G[0][1] {} ``` Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary, ``` >>> G[0][1]['weight'] = 7 >>> G[0][1]['weight'] 7 >>> G[1][0]['weight'] 7 ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.get_edge_data(0,1) # default edge data is {} {} {} >>> e = (0,1) >>> G.get_edge_data(*e) # tuple form {} >>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0 0 ``` ## neighbors ``` DiGraph.neighbors(n) ``` Return a list of successor nodes of n. neighbors() and successors() are the same function. ## neighbors_iter ``` DiGraph.neighbors_iter(n) ``` Return an iterator over successor nodes of n. neighbors_iter() and successors_iter() are the same. ### __getitem__ ``` DiGraph.___getitem___(n) ``` Return a dict of neighbors of node n. Use the expression 'G[n]'. **Parameters n** (*node*) – A node in the graph. **Returns** adj_dict – The adjacency dictionary for nodes connected to n. **Return type** dictionary ### **Notes** G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list. Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only. # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G[0] {1: {}} ``` #### successors ``` DiGraph.successors(n) ``` Return a list of successor nodes of n. neighbors() and successors() are the same function. ## successors_iter ``` DiGraph.successors_iter(n) ``` Return an iterator over successor nodes of n. neighbors_iter() and successors_iter() are the same. ## predecessors ``` DiGraph.predecessors(n) ``` Return a list of predecessor nodes of n. ## predecessors_iter ``` \texttt{DiGraph.predecessors_iter}(n) ``` Return an iterator over predecessor nodes of n. ## adjacency_list ``` DiGraph.adjacency_list() ``` Return an adjacency list representation of the graph. The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included. **Returns** adj_list – The adjacency structure of the graph as a list of lists. Return type lists of lists ### See also: ``` adjacency_iter() ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.adjacency_list() # in order given by G.nodes() [[1], [0, 2], [1, 3], [2]] ``` ## adjacency_iter ``` DiGraph.adjacency_iter() ``` Return an iterator of (node, adjacency dict) tuples for all nodes. This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included. **Returns** adj_iter – An iterator of (node, adjacency dictionary) for all nodes in the graph. Return type iterator #### See also: ``` adjacency_list() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()] [(0, {1: {}}), (1, {0: {}}, 2: {}}), (2, {1: {}}, 3: {}}), (3, {2: {}})] ``` ### nbunch iter ``` DiGraph.nbunch_iter(nbunch=None) ``` Return an iterator of nodes contained in nbunch that are also in the graph. The nodes in nbunch are checked for membership in the graph and if not are silently ignored. **Parameters nbunch** (*iterable container, optional (default=all nodes*)) – A container of nodes. The container will be iterated through once. **Returns niter** – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph. Return type iterator **Raises** NetworkXError – If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable. ``` Graph. iter () ``` ### **Notes** When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted. To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine. If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised. # Information about graph structure | DiGraph.has_node(n) | Return True if the graph contains the node n. | |--|--| | DiGraphcontains(n) | Return True if n is a node, False otherwise. | | DiGraph.has_edge(u, v) | Return True if the edge (u,v) is in the graph. | | DiGraph.order() | Return the number of nodes in the graph. | | DiGraph.number_of_nodes() | Return the number of nodes in the graph. | | DiGraphlen() | Return the number of nodes. | | DiGraph.degree([nbunch, weight]) | Return the degree of a node or nodes. | | DiGraph.degree_iter([nbunch, weight]) | Return an iterator for (node, degree). | | DiGraph.in_degree([nbunch, weight]) | Return the in-degree of a node or nodes. | | <pre>DiGraph.in_degree_iter([nbunch, weight])</pre> | Return an iterator for (node, in-degree). | | DiGraph.out_degree([nbunch, weight]) | Return the out-degree of a node or nodes. | | <pre>DiGraph.out_degree_iter([nbunch, weight])</pre> | Return an iterator for (node, out-degree). | | DiGraph.size([weight]) | Return the number of edges. | | DiGraph.number_of_edges([u, v]) | Return the number of edges between two nodes. | | DiGraph.nodes_with_selfloops() | Return a list of nodes with self loops. | | DiGraph.selfloop_edges([data, default]) | Return a list of selfloop edges. | | DiGraph.number_of_selfloops() | Return the number of selfloop edges. | | | | # has_node ``` DiGraph.has_node(n) ``` Return True if the graph contains the node n. Parameters n (node) - ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.has_node(0) True ``` It is more readable and simpler to use ``` >>> 0 in G True ``` ### contains ``` DiGraph.__contains__(n) ``` Return True if n is a node, False otherwise. Use the expression 'n in G'. ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> 1 in G True ``` ### has edge ``` DiGraph.has_edge (u, v) ``` Return True if the edge (u,v) is in the graph. **Parameters u, v** (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. **Returns** edge_ind – True if edge is in the graph, False otherwise. Return type bool # **Examples** Can be called either using two nodes u,v or edge tuple (u,v) ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.has_edge(0,1) # using two nodes True >>> e = (0,1) >>> G.has_edge(*e) # e is a 2-tuple (u,v) True >>> e = (0,1,{'weight':7}) >>> G.has_edge(*e[:2]) # e is a 3-tuple (u,v,data_dictionary) True ``` The following syntax are all equivalent: ``` >>> G.has_edge(0,1) True >>> 1 in G[0] # though this gives KeyError if 0 not in G True ``` ## order 58 ``` DiGraph.order() ``` Return the number of nodes in the graph. **Returns nnodes** – The number of nodes in the graph. Return type int ### See also: ``` number_of_nodes(),__len__() ``` ### number of nodes ``` DiGraph.number_of_nodes() ``` Return the number of nodes in the graph. **Returns** nnodes – The number of nodes in the graph. Return type int ### See also: ``` order(),__len__() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> len(G) 3 ``` ### __len__ ``` DiGraph.__len__() ``` Return the number of nodes. Use the expression 'len(G)'. **Returns** nnodes – The number of nodes in the graph. Return type int ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> len(G) 4 ``` ## degree DiGraph.degree(nbunch=None, weight=None) Return the degree of a node or nodes. The node degree is the number of edges adjacent to that node. ## **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd** – A dictionary with nodes as keys and degree as values or a number if a single node is specified. Return type dictionary, or number #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.degree(0) 1 >>> G.degree([0,1]) {0: 1, 1: 2} >>>
list(G.degree([0,1]).values()) [1, 2] ``` ## degree iter ``` DiGraph.degree_iter(nbunch=None, weight=None) ``` Return an iterator for (node, degree). The node degree is the number of edges adjacent to the node. #### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd_iter** – The iterator returns two-tuples of (node, degree). Return type an iterator #### See also: ``` degree(), in_degree(), out_degree(), in_degree_iter(), out_degree_iter() ``` ## **Examples** ``` >>> G = nx.DiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> list(G.degree_iter(0)) # node 0 with degree 1 [(0, 1)] >>> list(G.degree_iter([0,1])) [(0, 1), (1, 2)] ``` # in_degree ``` DiGraph.in_degree (nbunch=None, weight=None) ``` Return the in-degree of a node or nodes. The node in-degree is the number of edges pointing in to the node. ### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd** – A dictionary with nodes as keys and in-degree as values or a number if a single node is specified. Return type dictionary, or number ### See also: ``` degree(), out_degree(), in_degree_iter() ``` ## **Examples** ``` >>> G = nx.DiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> G.in_degree(0) 0 >>> G.in_degree([0,1]) {0: 0, 1: 1} >>> list(G.in_degree([0,1]).values()) [0, 1] ``` ### in degree iter ``` DiGraph.in_degree_iter(nbunch=None, weight=None) ``` Return an iterator for (node, in-degree). The node in-degree is the number of edges pointing in to the node. #### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd_iter** – The iterator returns two-tuples of (node, in-degree). Return type an iterator ### See also: ``` degree(), in_degree(), out_degree(), out_degree_iter() ``` # **Examples** ``` >>> G = nx.DiGraph() >>> G.add_path([0,1,2,3]) >>> list(G.in_degree_iter(0)) # node 0 with degree 0 ``` ``` [(0, 0)] >>> list(G.in_degree_iter([0,1])) [(0, 0), (1, 1)] ``` ## out_degree DiGraph.out_degree (nbunch=None, weight=None) Return the out-degree of a node or nodes. The node out-degree is the number of edges pointing out of the node. #### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd** – A dictionary with nodes as keys and out-degree as values or a number if a single node is specified. Return type dictionary, or number # **Examples** ``` >>> G = nx.DiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> G.out_degree(0) 1 >>> G.out_degree([0,1]) {0: 1, 1: 1} >>> list(G.out_degree([0,1]).values()) [1, 1] ``` ## out_degree_iter DiGraph.out_degree_iter(nbunch=None, weight=None) Return an iterator for (node, out-degree). The node out-degree is the number of edges pointing out of the node. ## **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd_iter** – The iterator returns two-tuples of (node, out-degree). Return type an iterator ### See also: ``` degree(), in_degree(), out_degree(), in_degree_iter() ``` ### **Examples** ``` >>> G = nx.DiGraph() >>> G.add_path([0,1,2,3]) >>> list(G.out_degree_iter(0)) # node 0 with degree 1 [(0, 1)] >>> list(G.out_degree_iter([0,1])) [(0, 1), (1, 1)] ``` #### size DiGraph.size(weight=None) Return the number of edges. **Parameters weight** (*string or None, optional (default=None)*) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. **Returns nedges** – The number of edges or sum of edge weights in the graph. Return type int ## See also: ``` number_of_edges() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.size() 3 ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a','b',weight=2) >>> G.add_edge('b','c',weight=4) >>> G.size() 2 >>> G.size(weight='weight') 6.0 ``` ## number_of_edges ``` DiGraph.number_of_edges(u=None, v=None) ``` Return the number of edges between two nodes. **Parameters u, v** (*nodes, optional (default=all edges)*) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges. **Returns nedges** – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. Return type int ### See also: ``` size() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.number_of_edges() 3 >>> G.number_of_edges(0,1) 1 >>> e = (0,1) >>> G.number_of_edges(*e) 1 ``` ## nodes with selfloops ``` DiGraph.nodes_with_selfloops() ``` Return a list of nodes with self loops. A node with a self loop has an edge with both ends adjacent to that node. **Returns nodelist** – A list of nodes with self loops. Return type list #### See also: ``` selfloop_edges(), number_of_selfloops() ``` # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.nodes_with_selfloops() [1] ``` ## selfloop_edges ``` DiGraph.selfloop_edges(data=False, default=None) ``` Return a list of selfloop edges. A selfloop edge has the same node at both ends. ## **Parameters** - data (*string or bool, optional (default=False*)) Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname') - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns** edgelist – A list of all selfloop edges. ## Return type list of edge tuples ## See also: ``` nodes_with_selfloops(), number_of_selfloops() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.selfloop_edges() [(1, 1)] >>> G.selfloop_edges(data=True) [(1, 1, {})] ``` # number_of_selfloops ``` DiGraph.number_of_selfloops() ``` Return the number of selfloop edges. A selfloop edge has the same node at both ends. **Returns nloops** – The number of selfloops. Return type int ### See also: ``` nodes_with_selfloops(), selfloop_edges() ``` # **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.number_of_selfloops() 1 ``` # Making copies and subgraphs | DiGraph.copy() | Return a copy of the graph. | |-------------------------------------|---| | DiGraph.to_undirected([reciprocal]) | Return an undirected representation of the digraph. | | DiGraph.to_directed() | Return a directed copy of the graph. | | DiGraph.subgraph(nbunch) | Return the subgraph induced on nodes in nbunch. | | DiGraph.reverse([copy]) | Return the reverse of the graph. | ## сору ``` DiGraph.copy() ``` Return a copy of the graph. **Returns** G - A copy of the graph. ### Return type *Graph* ### See also: to_directed() return a directed copy of the graph. #### **Notes** This makes a complete copy of the graph including all of the node or edge attributes. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> H = G.copy() ``` ## to undirected ``` DiGraph.to_undirected(reciprocal=False) ``` Return an undirected representation of the digraph. **Parameters** reciprocal (bool (optional)) – If True only keep edges that appear in both directions in the original digraph. **Returns G** – An undirected graph with the same name and nodes and with edge (u,v,data) if either (u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired. Return type Graph #### **Notes** If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge(). This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Warning: If you have
subclassed DiGraph to use dict-like objects in the data structure, those changes do not transfer to the Graph created by this method. ## to_directed ``` DiGraph.to_directed() ``` Return a directed copy of the graph. **Returns** G - A deepcopy of the graph. ## Return type DiGraph #### **Notes** This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. ### **Examples** ``` >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1), (1, 0)] ``` If already directed, return a (deep) copy ``` >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1)] ``` ## subgraph DiGraph.subgraph(nbunch) Return the subgraph induced on nodes in nbunch. The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes. Parameters nbunch (list, iterable) - A container of nodes which will be iterated through once. **Returns** G - A subgraph of the graph with the same edge attributes. **Return type** *Graph* ### **Notes** The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will. To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch)) If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy() For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)]) ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> H = G.subgraph([0,1,2]) >>> H.edges() [(0, 1), (1, 2)] ``` #### reverse DiGraph.reverse(copy=True) Return the reverse of the graph. The reverse is a graph with the same nodes and edges but with the directions of the edges reversed. **Parameters** copy (bool optional (default=True)) – If True, return a new DiGraph holding the reversed edges. If False, reverse the reverse graph is created using the original graph (this changes the original graph). # 3.2.3 MultiGraph - Undirected graphs with self loops and parallel edges ### Overview MultiGraph (data=None, **attr) An undirected graph class that can store multiedges. Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes. A MultiGraph holds undirected edges. Self loops are allowed. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. Edges are represented as links between nodes with optional key/value attributes. #### **Parameters** - data (*input graph*) Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to graph as key=value pairs. #### See also: ``` Graph(), DiGraph(), MultiDiGraph() ``` ### **Examples** Create an empty graph structure (a "null graph") with no nodes and no edges. ``` >>> G = nx.MultiGraph() ``` G can be grown in several ways. Nodes: Add one node at a time: ``` >>> G.add_node(1) ``` Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). ``` >>> G.add_nodes_from([2,3]) >>> G.add_nodes_from(range(100,110)) >>> H=nx.Graph() >>> H.add_path([0,1,2,3,4,5,6,7,8,9]) >>> G.add_nodes_from(H) ``` In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. ``` >>> G.add_node(H) ``` ### **Edges:** G can also be grown by adding edges. Add one edge, ``` >>> G.add_edge(1, 2) ``` a list of edges, ``` >>> G.add_edges_from([(1,2),(1,3)]) ``` or a collection of edges, ``` >>> G.add_edges_from(H.edges()) ``` If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists, an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused integer. ``` >>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))]) >>> G[4] {3: {0: {}}, 5: {0: {}}, 1: {'route': 282}, 2: {'route': 37}}} ``` # **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. ``` >>> G = nx.MultiGraph(day="Friday") >>> G.graph {'day': 'Friday'} ``` Add node attributes using add_node(), add_nodes_from() or G.node ``` >>> G.add_node(1, time='5pm') >>> G.add_nodes_from([3], time='2pm') >>> G.node[1] {'time': '5pm'} >>> G.node[1]['room'] = 714 >>> del G.node[1]['room'] # remove attribute >>> G.nodes(data=True) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] ``` Warning: adding a node to G.node does not add it to the graph. Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge. ``` >>> G.add_edge(1, 2, weight=4.7) >>> G.add_edges_from([(3,4),(4,5)], color='red') >>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) >>> G[1][2][0]['weight'] = 4.7 >>> G.edge[1][2][0]['weight'] = 4 ``` #### **Shortcuts:** Many common graph features allow python syntax to speed reporting. ``` >>> 1 in G # check if node in graph True >>> [n for n in G if n<3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 >>> G[1] # adjacency dict keyed by neighbor to edge attributes ... # Note: you should not change this dict manually! {2: {0: {'weight': 4}, 1: {'color': 'blue'}}} ``` The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient. ### **Reporting:** Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges. For details on these and other miscellaneous methods, see below. ### **Subclasses (Advanced):** The MultiGraph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency lists keyed by node. The next dict (adjlist) represents the adjacency list and holds edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr dict keyed by edge key. The inner dict (edge_attr) represents the edge data and holds edge attribute values keyed by attribute names. Each of these four dicts in the dict-of-dict-of-dict structure can be replaced by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, adjlist_dict_factory, edge_key_dict_factory and edge_attr_dict_factory. node_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict in the data structure that holds adjacency lists keyed by node. It should require no arguments and return a dict-like object. - adjlist_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list dict which holds multiedge key dicts keyed by neighbor. It should require no arguments and return a dict-like object. - **edge_key_dict_factory** [function, (default: dict)] Factory function to be used to create the edge key dict which holds edge data keyed by edge key. It should require no arguments and return a dict-like object. - **edge_attr_dict_factory** [function, (default: dict)] Factory function to be used to create the edge attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object. #### **Examples** Create a multigraph object that tracks the order nodes are added. Create a multgraph object that tracks the order nodes are added and for each node track the order that neighbors are added and for each neighbor tracks the order that multiedges are added. ### Adding and removing nodes and edges | MultiGraphinit([data]) | | |--|---| | MultiGraph.add_node(n[, attr_dict]) | Add a single node n and update node attributes. | | MultiGraph.add_nodes_from(nodes, **attr) | Add multiple nodes. | | MultiGraph.remove_node(n) | Remove node n. | | MultiGraph.remove_nodes_from(nodes) | Remove multiple nodes. | | MultiGraph.add_edge(u, v[, key, attr_dict]) | Add an edge between u and v. | | MultiGraph.add_edges_from(ebunch[, attr_dict]) | Add all the edges in ebunch. | | MultiGraph.add_weighted_edges_from(ebunch[,]) | Add all the edges in ebunch as weighted edges with specified weighted | | MultiGraph.remove_edge(u, v[, key]) | Remove an edge between u and v. | | | Continued on next p | Table 3.9 – continued from previous page | MultiGraph.remove_edges_from(ebunch) | Remove all edges specified in ebunch. | |---|--| | <pre>MultiGraph.add_star(nodes, **attr)</pre> | Add a star. | | MultiGraph.add_path(nodes, **attr) | Add a path. | | MultiGraph.add_cycle(nodes, **attr) | Add a cycle. | | MultiGraph.clear() | Remove all nodes and edges from the graph. | # __init__ ``` MultiGraph.__init__ (data=None, **attr) ``` #
add_node MultiGraph.add_node (n, attr_dict=None, **attr) Add a single node n and update node attributes. ### **Parameters** - **n** (*node*) A node can be any hashable Python object except None. - attr_dict (dictionary, optional (default= no attributes)) Dictionary of node attributes. Key/value pairs will update existing data associated with the node. - attr (keyword arguments, optional) Set or change attributes using key=value. #### See also: ``` add_nodes_from() ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 ``` Use keywords set/change node attributes: ``` >>> G.add_node(1,size=10) >>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649)) ``` #### **Notes** A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. #### add nodes from ``` MultiGraph.add_nodes_from (nodes, **attr) Add multiple nodes. ``` #### **Parameters** - nodes (*iterable container*) A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. - attr (keyword arguments, optional (default= no attributes)) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally. ### See also: ``` add node() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(),key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] ``` Use keywords to update specific node attributes for every node. ``` >>> G.add_nodes_from([1,2], size=10) >>> G.add_nodes_from([3,4], weight=0.4) ``` Use (node, attrdict) tuples to update attributes for specific nodes. ``` >>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})]) >>> G.node[1]['size'] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.node[1]['size'] 11 ``` ### remove_node ``` MultiGraph.remove_node(n) ``` Remove node n. Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception. #### Parameters - n (node) A node in the graph - Raises – - ----- - **NetworkXError** If n is not in the graph. #### See also: ``` remove_nodes_from() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.edges() [(0, 1), (1, 2)] >>> G.remove_node(1) >>> G.edges() [] ``` ### remove_nodes_from ``` MultiGraph.remove_nodes_from(nodes) ``` Remove multiple nodes. **Parameters nodes** (*iterable container*) – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored. #### See also: ``` remove_node() ``` #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> e = G.nodes() >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> G.nodes() [] ``` ### add edge ``` MultiGraph.add_edge (u, v, key=None, attr_dict=None, **attr) ``` Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below. #### **Parameters** - u, v (nodes) Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. - **key** (hashable identifier, optional (default=lowest unused integer)) Used to distinguish multiedges between a pair of nodes. - attr_dict (dictionary, optional (default= no attributes)) Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge. - attr (keyword arguments, optional) Edge data (or labels or objects) can be assigned using keyword arguments. ### See also: ``` add_edges_from() add a collection of edges ``` #### **Notes** To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge will be created. NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear how to handle multiedge weights. Convert to Graph using edge attribute 'weight' to enable weighted graph algorithms. ### **Examples** The following all add the edge e=(1,2) to graph G: ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1,2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from([(1,2)]) # add edges from iterable container ``` Associate data to edges using keywords: ``` >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0 >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) ``` ## add edges from ``` MultiGraph.add_edges_from(ebunch, attr_dict=None, **attr) Add all the edges in ebunch. ``` #### **Parameters** - **ebunch** (*container of edges*) Each edge given in the container will be added to the graph. The edges can be: - 2-tuples (u,v) or - 3-tuples (u,v,d) for an edge attribute dict d, or - 4-tuples (u,v,k,d) for an edge identified by key k - attr_dict (dictionary, optional (default= no attributes)) Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge. - attr (keyword arguments, optional) Edge data (or labels or objects) can be assigned using keyword arguments. #### See also: ``` add_edge() add a single edge add_weighted_edges_from() convenient way to add weighted edges ``` #### **Notes** Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges take precedence over attributes specified generally. # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples >>> e = zip(range(0,3),range(1,4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 ``` ### Associate data to edges ``` >>> G.add_edges_from([(1,2),(2,3)], weight=3) >>> G.add_edges_from([(3,4),(1,4)], label='WN2898') ``` #### add weighted edges from MultiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr) Add all the edges in ebunch as weighted edges with specified weights. ## **Parameters** - **ebunch** (*container of edges*) Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number. - weight (*string*, *optional* (*default= 'weight'*)) The attribute name for the edge weights to be added. - attr (keyword arguments, optional (default= no attributes)) Edge attributes to add/update for all edges. #### See also: ``` add_edge() add a single edge add_edges_from() add multiple edges ``` ### **Notes** Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)]) ``` #### remove edge ``` MultiGraph.remove_edge(u, v, key=None) ``` Remove an edge between u and v. #### **Parameters** - u, v (nodes) Remove an edge between nodes u and v. - **key** (*hashable identifier, optional (default=None)*) Used to distinguish multiple edges between a pair of nodes. If None remove a single (abritrary) edge between u and v. **Raises** NetworkXError – If there is not an edge between u and v, or if there is no edge with the specified key. #### See also: remove_edges_from() remove a collection of edges #### **Examples** ``` >>> G = nx.MultiGraph() >>> G.add_path([0,1,2,3]) >>> G.remove_edge(0,1) >>> e = (1,2) >>> G.remove_edge(*e) # unpacks e from an edge tuple ``` #### For multiple edges ``` >>> G = nx.MultiGraph() # or MultiDiGraph, etc >>> G.add_edges_from([(1,2),(1,2)]) >>> G.remove_edge(1,2) # remove a single (arbitrary) edge ``` # For edges with keys ``` >>> G = nx.MultiGraph() # or MultiDiGraph, etc >>> G.add_edge(1,2,key='first') >>> G.add_edge(1,2,key='second') >>> G.remove_edge(1,2,key='second') ``` ## remove edges from MultiGraph.remove_edges_from(ebunch) Remove all edges specified in ebunch. **Parameters ebunch** (*list or container of edge tuples*) – Each edge given in the list or container will be removed from the graph. The edges can be: - 2-tuples (u,v) All edges between u and v are removed. - 3-tuples (u,v,key) The edge identified by key is removed. - 4-tuples (u,v,key,data) where data is ignored. #### See also: remove_edge () remove a single edge #### **Notes** Will fail silently if an edge in ebunch is not in the graph. # **Examples** ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> ebunch=[(1,2),(2,3)] >>> G.remove_edges_from(ebunch) ``` ### Removing multiple copies of edges ``` >>> G = nx.MultiGraph() >>> G.add_edges_from([(1,2),(1,2),(1,2)]) >>> G.remove_edges_from([(1,2),(1,2)]) >>> G.edges() [(1, 2)] >>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy >>> G.edges() # now empty graph [] ``` # add_star ``` MultiGraph.add_star(nodes, **attr) Add a star. ``` The first node in nodes is the middle of the star. It is connected to all other nodes. #### **Parameters** - nodes (iterable container) A container of nodes. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to every edge in star. ### See also: ``` add_path(), add_cycle() ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_star([0,1,2,3]) >>> G.add_star([10,11,12],weight=2) ``` # add_path ``` MultiGraph.add_path (nodes, **attr) Add a path. ``` #### **Parameters** • **nodes**
(*iterable container*) – A container of nodes. A path will be constructed from the nodes (in order) and added to the graph. • attr (keyword arguments, optional (default= no attributes)) — Attributes to add to every edge in path. #### See also: ``` add_star(), add_cycle() ``` ### **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.add_path([10,11,12], weight=7) ``` ### add cycle ``` MultiGraph.add_cycle (nodes, **attr) Add a cycle. ``` #### **Parameters** - **nodes** (*iterable container*) A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to every edge in cycle. #### See also: ``` add_path(), add_star() ``` #### **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_cycle([0,1,2,3]) >>> G.add_cycle([10,11,12],weight=7) ``` ### clear ``` MultiGraph.clear() ``` Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.clear() >>> G.nodes() [] >>> G.edges() [] ``` ## Iterating over nodes and edges | MultiGraph.nodes([data]) | Return a list of the nodes in the graph. | |---|---| | MultiGraph.nodes_iter([data]) | Return an iterator over the nodes. | | MultiGraphiter() | Iterate over the nodes. | | MultiGraph.edges([nbunch, data, keys, default]) | Return a list of edges. | | <pre>MultiGraph.edges_iter([nbunch, data, keys,])</pre> | Return an iterator over the edges. | | MultiGraph.get_edge_data(u, v[, key, default]) | Return the attribute dictionary associated with edge (u,v). | | MultiGraph.neighbors(n) | Return a list of the nodes connected to the node n. | | MultiGraph.neighbors_iter(n) | Return an iterator over all neighbors of node n. | | MultiGraphgetitem(n) | Return a dict of neighbors of node n. | | MultiGraph.adjacency_list() | Return an adjacency list representation of the graph. | | MultiGraph.adjacency_iter() | Return an iterator of (node, adjacency dict) tuples for all nodes. | | MultiGraph.nbunch_iter([nbunch]) | Return an iterator of nodes contained in nbunch that are also in the graph. | #### nodes ``` MultiGraph.nodes (data=False) ``` Return a list of the nodes in the graph. **Parameters data** (*boolean*, *optional* (*default=False*)) – If False return a list of nodes. If True return a two-tuple of node and node data dictionary **Returns nlist** – A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary). Return type list # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.nodes() [0, 1, 2] >>> G.add_node(1, time='5pm') >>> G.nodes(data=True) [(0, {}), (1, {'time': '5pm'}), (2, {})] ``` # nodes_iter ``` MultiGraph.nodes_iter(data=False) ``` Return an iterator over the nodes. **Parameters** data (*boolean*, *optional* (*default=False*)) – If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary **Returns niter** – An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary) **Return type** iterator #### **Notes** If the node data is not required it is simpler and equivalent to use the expression 'for n in G'. ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) ``` #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) ``` ``` >>> [d for n,d in G.nodes_iter(data=True)] [{}, {}, {}] ``` ## __iter__ ``` MultiGraph.__iter__() ``` Iterate over the nodes. Use the expression 'for n in G'. **Returns** niter – An iterator over all nodes in the graph. **Return type** iterator ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) ``` ### edges MultiGraph.edges(nbunch=None, data=False, keys=False, default=None) Return a list of edges. Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data). #### **Parameters** - **nbunch** (*iterable container, optional (default= all nodes*)) A container of nodes. The container will be iterated through once. - data (bool, optional (default=False)) Return two tuples (u,v) (False) or three-tuples (u,v,data) (True). - **keys** (*bool*, *optional* (*default=False*)) Return two tuples (u,v) (False) or three-tuples (u,v,key) (True). - Returns - - ------ - edge_list (*list of edge tuples*) Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified. See also: edges_iter() return an iterator over the edges #### **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ### **Examples** ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_path([0,1,2]) >>> G.add_edge(2,3,weight=5) >>> G.edges() [(0, 1), (1, 2), (2, 3)] >>> G.edges(data=True) # default edge data is {} (empty dictionary) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges_iter(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> G.edges(keys=True) # default keys are integers [(0, 1, 0), (1, 2, 0), (2, 3, 0)] >>> G.edges(data=True, keys=True) # default keys are integers [(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})] >>> list(G.edges(data='weight',default=1,keys=True)) [(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)] >>> G.edges([0,3]) [(0, 1), (3, 2)] >>> G.edges (0) [(0, 1)] ``` # edges_iter MultiGraph.edges_iter (nbunch=None, data=False, keys=False, default=None) Return an iterator over the edges. Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data). #### **Parameters** - **nbunch** (*iterable container, optional (default= all nodes*)) A container of nodes. The container will be iterated through once. - data (*string or bool, optional (default=False*)) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. - **keys** (*bool*, *optional* (*default=False*)) If True, return edge keys with each edge. **Returns edge_iter** – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges. Return type iterator #### See also: edges () return a list of edges #### **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ## **Examples** ``` # or MultiDiGraph >>> G = nx.MultiGraph() >>> G.add_path([0,1,2]) >>> G.add_edge(2,3,weight=5) >>> [e for e in G.edges_iter()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges_iter(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges_iter(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> list(G.edges(keys=True)) # default keys are integers [(0, 1, 0), (1, 2, 0), (2, 3, 0)] >>> list(G.edges(data=True, keys=True)) # default keys are integers [(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})] >>> list(G.edges(data='weight',default=1,keys=True)) [(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)] >>> list(G.edges_iter([0,3])) [(0, 1), (3, 2)] >>> list(G.edges_iter(0)) [(0, 1)] ``` ### get edge data MultiGraph.get_edge_data (u, v, key=None, default=None)Return the attribute dictionary associated with edge (u,v). # **Parameters** - u, v (nodes) - - default (any Python object (default=None)) Value to return if the edge (u,v) is not found. - **key** (*hashable identifier, optional (default=None*)) Return data only for the edge with specified key. **Returns** edge_dict – The edge attribute dictionary. Return type dictionary # **Notes** It is faster to use G[u][v][key]. ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_edge(0,1,key='a',weight=7) >>> G[0][1]['a'] # key='a' {'weight': 7} ``` Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that dictionary, ``` >>> G[0][1]['a']['weight'] = 10 >>> G[0][1]['a']['weight'] 10 >>> G[1][0]['a']['weight'] 10 ``` ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> G.get_edge_data(0,1) {0: {}} >>> e = (0,1) >>> G.get_edge_data(*e) # tuple form {0: {}} >>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0 0 ``` ## neighbors ``` MultiGraph.neighbors(n) ``` Return a list of the nodes connected to the node n. **Parameters** n (node) – A node in the graph **Returns nlist** – A list of nodes that are adjacent to n. Return type list **Raises** *NetworkXError* – If the node n is not in the graph. #### **Notes** It is usually more convenient (and faster) to access the adjacency dictionary as G[n]: ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a','b',weight=7) >>> G['a'] {'b': {'weight': 7}} ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.neighbors(0) [1] ``` # neighbors_iter ``` MultiGraph.neighbors_iter(n) ``` Return an iterator over all neighbors of node n. ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> [n for n in G.neighbors_iter(0)] [1] ``` #### **Notes** It is faster to use the idiom "in G[0]", e.g. ``` >>> G = nx.path_graph(4) >>> [n for n in G[0]] [1] ``` ### __getitem__ ``` MultiGraph.__getitem__(n) ``` Return a dict of neighbors of node n. Use the expression 'G[n]'. **Parameters n** (*node*) – A node in the graph. **Returns** adj_dict – The adjacency dictionary for nodes connected
to n. Return type dictionary ### **Notes** G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list. Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only. # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G[0] {1: {}} ``` #### adjacency list ``` MultiGraph.adjacency_list() ``` Return an adjacency list representation of the graph. The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included. **Returns** adj_list – The adjacency structure of the graph as a list of lists. Return type lists of lists # See also: ``` adjacency_iter() ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.adjacency_list() # in order given by G.nodes() [[1], [0, 2], [1, 3], [2]] ``` # adjacency_iter ``` MultiGraph.adjacency_iter() ``` Return an iterator of (node, adjacency dict) tuples for all nodes. This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included. **Returns** adj_iter – An iterator of (node, adjacency dictionary) for all nodes in the graph. Return type iterator ### See also: ``` adjacency_list() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()] [(0, {1: {}}), (1, {0: {}}, 2: {}}), (2, {1: {}}, 3: {}}), (3, {2: {}})] ``` ## nbunch iter ``` MultiGraph.nbunch_iter(nbunch=None) ``` Return an iterator of nodes contained in nbunch that are also in the graph. The nodes in nbunch are checked for membership in the graph and if not are silently ignored. **Parameters nbunch** (*iterable container, optional* (*default=all nodes*)) – A container of nodes. The container will be iterated through once. **Returns niter** – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph. Return type iterator **Raises** NetworkXError – If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable. ## See also: ``` Graph.__iter__() ``` #### **Notes** When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted. To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine. If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised. # Information about graph structure | MultiGraph.has_node(n) | Return True if the graph contains the node n. | |--|---| | MultiGraphcontains(n) | Return True if n is a node, False otherwise. | | MultiGraph.has_edge(u, v[, key]) | Return True if the graph has an edge between nodes u and v. | | MultiGraph.order() | Return the number of nodes in the graph. | | MultiGraph.number_of_nodes() | Return the number of nodes in the graph. | | MultiGraphlen() | Return the number of nodes. | | MultiGraph.degree([nbunch, weight]) | Return the degree of a node or nodes. | | MultiGraph.degree_iter([nbunch, weight]) | Return an iterator for (node, degree). | | MultiGraph.size([weight]) | Return the number of edges. | | MultiGraph.number_of_edges([u, v]) | Return the number of edges between two nodes. | | MultiGraph.nodes_with_selfloops() | Return a list of nodes with self loops. | | MultiGraph.selfloop_edges([data, keys, default]) | Return a list of selfloop edges. | | MultiGraph.number_of_selfloops() | Return the number of selfloop edges. | ### has_node ``` MultiGraph.has_node(n) ``` Return True if the graph contains the node n. Parameters n (node) - # **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.has_node(0) True ``` It is more readable and simpler to use ``` >>> 0 in G True ``` ## __contains__ ``` MultiGraph.__contains__(n) ``` Return True if n is a node, False otherwise. Use the expression 'n in G'. ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> 1 in G True ``` #### has edge ``` MultiGraph.has_edge(u, v, key=None) ``` Return True if the graph has an edge between nodes u and v. ### **Parameters** - u, v (nodes) Nodes can be, for example, strings or numbers. - **key** (*hashable identifier, optional (default=None*)) If specified return True only if the edge with key is found. **Returns edge_ind** – True if edge is in the graph, False otherwise. Return type bool ## **Examples** Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key). ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> G.has_edge(0,1) # using two nodes True >>> e = (0,1) >>> G.has_edge(*e) # e is a 2-tuple (u,v) True >>> G.add_edge(*e) # e is a 2-tuple (u,v) True >>> G.add_edge(0,1,key='a') >>> G.has_edge(0,1,key='a') # specify key True >>> e = (0,1,'a') >>> G.has_edge(*e) # e is a 3-tuple (u,v,'a') True ``` The following syntax are equivalent: ``` >>> G.has_edge(0,1) True >>> 1 in G[0] # though this gives KeyError if 0 not in G True ``` # order ``` MultiGraph.order() ``` Return the number of nodes in the graph. **Returns nnodes** – The number of nodes in the graph. Return type int #### See also: ``` number_of_nodes(),__len__() ``` # number_of_nodes ``` MultiGraph.number_of_nodes() ``` Return the number of nodes in the graph. **Returns nnodes** – The number of nodes in the graph. Return type int ### See also: ``` order(),__len__() ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> len(G) 3 ``` ## __len__ ``` MultiGraph.___len___() ``` Return the number of nodes. Use the expression 'len(G)'. **Returns nnodes** – The number of nodes in the graph. Return type int ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> len(G) 4 ``` ### degree MultiGraph.degree(nbunch=None, weight=None) Return the degree of a node or nodes. The node degree is the number of edges adjacent to that node. ### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd** – A dictionary with nodes as keys and degree as values or a number if a single node is specified. Return type dictionary, or number ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.degree(0) 1 >>> G.degree([0,1]) {0: 1, 1: 2} >>> list(G.degree([0,1]).values()) [1, 2] ``` ### degree iter ``` MultiGraph.degree_iter(nbunch=None, weight=None) ``` Return an iterator for (node, degree). The node degree is the number of edges adjacent to the node. #### **Parameters** - **nbunch** (*iterable container, optional* (*default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd_iter** – The iterator returns two-tuples of (node, degree). Return type an iterator ## See also: degree() ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> list(G.degree_iter(0)) # node 0 with degree 1 [(0, 1)] >>> list(G.degree_iter([0,1])) [(0, 1), (1, 2)] ``` #### size MultiGraph.size(weight=None) Return the number of edges. **Parameters weight** (*string or None, optional (default=None)*) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. Returns nedges – The number of edges or sum of edge weights in the graph. Return type int #### See also: ``` number_of_edges() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.size() 3 ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a','b',weight=2) >>> G.add_edge('b','c',weight=4) >>> G.size() 2 >>> G.size(weight='weight') 6.0 ``` ## number_of_edges ``` MultiGraph.number_of_edges (u=None, v=None) ``` Return the number of edges between two nodes. **Parameters u, v** (*nodes, optional (default=all edges)*) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges. **Returns nedges** – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. Return type int # See also: ``` size() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.number_of_edges() 3 >>> G.number_of_edges(0,1) 1 >>> e = (0,1) >>> G.number_of_edges(*e) 1 ``` ### nodes with selfloops ``` MultiGraph.nodes_with_selfloops() ``` Return a list of nodes with self loops. A node with a self loop has an edge with both ends adjacent to that node. **Returns nodelist** – A list of nodes with self loops. Return type list ### See also: ``` selfloop_edges(), number_of_selfloops() ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.nodes_with_selfloops() [1] ``` ### selfloop_edges $\verb|MultiGraph.selfloop_edges| (\textit{data=False}, \textit{keys=False}, \textit{default=None})|$ Return a list of selfloop edges. A selfloop edge has the same node at
both ends. #### **Parameters** - data (bool, optional (default=False)) Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname') - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. - **keys** (*bool*, *optional* (*default=False*)) If True, return edge keys with each edge. **Returns** edgelist – A list of all selfloop edges. **Return type** list of edge tuples #### See also: ``` nodes_with_selfloops(), number_of_selfloops() ``` ### **Examples** ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.selfloop_edges() [(1, 1)] >>> G.selfloop_edges(data=True) [(1, 1, {})] >>> G.selfloop_edges(keys=True) [(1, 1, 0)] >>> G.selfloop_edges(keys=True, data=True) [(1, 1, 0, {})] ``` ### number of selfloops ``` MultiGraph.number_of_selfloops() ``` Return the number of selfloop edges. A selfloop edge has the same node at both ends. **Returns nloops** – The number of selfloops. Return type int #### See also: ``` nodes_with_selfloops(), selfloop_edges() ``` # **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.number_of_selfloops() 1 ``` # Making copies and subgraphs | MultiGraph.copy() | Return a copy of the graph. | |-----------------------------|---| | MultiGraph.to_undirected() | Return an undirected copy of the graph. | | MultiGraph.to_directed() | Return a directed representation of the graph. | | MultiGraph.subgraph(nbunch) | Return the subgraph induced on nodes in nbunch. | ## сору ``` MultiGraph.copy() ``` Return a copy of the graph. **Returns** G - A copy of the graph. Return type Graph ## See also: to_directed() return a directed copy of the graph. ### Notes This makes a complete copy of the graph including all of the node or edge attributes. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> H = G.copy() ``` #### to undirected ``` MultiGraph.to_undirected() ``` Return an undirected copy of the graph. **Returns G** – A deepcopy of the graph. Return type Graph/MultiGraph #### See also: ``` copy(), add_edge(), add_edges_from() ``` ### **Notes** This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. # **Examples** ``` >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1), (1, 0)] >>> G2 = H.to_undirected() >>> G2.edges() [(0, 1)] ``` #### to directed ``` MultiGraph.to_directed() ``` Return a directed representation of the graph. **Returns G** – A directed graph with the same name, same nodes, and with each edge (u,v,data) replaced by two directed edges (u,v,data) and (v,u,data). Return type MultiDiGraph #### **Notes** This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiDiGraph created by this method. ``` >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1), (1, 0)] ``` If already directed, return a (deep) copy ``` >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1)] ``` #### subgraph ``` MultiGraph.subgraph(nbunch) ``` Return the subgraph induced on nodes in nbunch. The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes. Parameters nbunch (list, iterable) - A container of nodes which will be iterated through once. **Returns** G - A subgraph of the graph with the same edge attributes. Return type Graph #### Notes The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will. To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch)) If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy() For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)]) ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> H = G.subgraph([0,1,2]) >>> H.edges() [(0, 1), (1, 2)] ``` # 3.2.4 MultiDiGraph - Directed graphs with self loops and parallel edges ## **Overview** ``` MultiDiGraph (data=None, **attr) ``` A directed graph class that can store multiedges. Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes. A MultiDiGraph holds directed edges. Self loops are allowed. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. Edges are represented as links between nodes with optional key/value attributes. #### **Parameters** - data (*input graph*) Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to graph as key=value pairs. ### See also: ``` Graph(), DiGraph(), MultiGraph() ``` ## **Examples** Create an empty graph structure (a "null graph") with no nodes and no edges. ``` >>> G = nx.MultiDiGraph() ``` G can be grown in several ways. ### Nodes: Add one node at a time: ``` >>> G.add_node(1) ``` Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). ``` >>> G.add_nodes_from([2,3]) >>> G.add_nodes_from(range(100,110)) >>> H=nx.Graph() >>> H.add_path([0,1,2,3,4,5,6,7,8,9]) >>> G.add_nodes_from(H) ``` In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. ``` >>> G.add_node(H) ``` ## **Edges:** G can also be grown by adding edges. Add one edge, ``` >>> G.add_edge(1, 2) ``` a list of edges, ``` >>> G.add_edges_from([(1,2),(1,3)]) ``` or a collection of edges, ``` >>> G.add_edges_from(H.edges()) ``` If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists, an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused integer. ``` >>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))]) >>> G[4] {5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}} ``` #### **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. ``` >>> G = nx.MultiDiGraph(day="Friday") >>> G.graph {'day': 'Friday'} ``` Add node attributes using add_node(), add_nodes_from() or G.node ``` >>> G.add_node(1, time='5pm') >>> G.add_nodes_from([3], time='2pm') >>> G.node[1] {'time': '5pm'} >>> G.node[1]['room'] = 714 >>> del G.node[1]['room'] # remove attribute >>> G.nodes(data=True) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] ``` Warning: adding a node to G.node does not add it to the graph. Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge. ``` >>> G.add_edge(1, 2, weight=4.7) >>> G.add_edges_from([(3,4),(4,5)], color='red') >>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) >>> G[1][2][0]['weight'] = 4.7 >>> G.edge[1][2][0]['weight'] = 4 ``` #### **Shortcuts:** Many common graph features allow python syntax to speed reporting. ``` >>> 1 in G # check if node in graph True >>> [n for n in G if n<3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 >>> G[1] # adjacency dict keyed by neighbor to edge attributes ... # Note: you should not change this dict manually! {2: {0: {'weight': 4}, 1: {'color': 'blue'}}} ``` The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient. ``` >>> for n,nbrsdict in G.adjacency_iter(): ... for nbr,keydict in nbrsdict.items(): ... for key,eattr in keydict.items(): ``` ### Reporting: Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges. For details on these and other miscellaneous methods, see below. ### **Subclasses (Advanced):** The MultiDiGraph class uses a dict-of-dict-of-dict structure. The outer dict (node_dict) holds adjacency lists keyed by node. The next dict (adjlist) represents the adjacency list and holds edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr dict keyed by edge key. The inner dict (edge_attr) represents the edge data and holds edge attribute values keyed by attribute names. Each of these four dicts in the dict-of-dict-of-dict structure can be replaced by a user defined dict-like object. In general, the dict-like features should be maintained but extra
features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, adjlist_dict_factory, edge_key_dict_factory and edge_attr_dict_factory. node_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict in the data structure that holds adjacency lists keyed by node. It should require no arguments and return a dict-like object. **adjlist_dict_factory** [function, (default: dict)] Factory function to be used to create the adjacency list dict which holds multiedge key dicts keyed by neighbor. It should require no arguments and return a dict-like object. **edge_key_dict_factory** [function, (default: dict)] Factory function to be used to create the edge key dict which holds edge data keyed by edge key. It should require no arguments and return a dict-like object. edge_attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict which holds attrbute values keyed by attribute name. It should require no arguments and return a dict-like object. # **Examples** Create a multigraph object that tracks the order nodes are added. Create a multdigraph object that tracks the order nodes are added and for each node track the order that neighbors are added and for each neighbor tracks the order that multiedges are added. ## Adding and Removing Nodes and Edges | MultiDiGraphinit([data]) | | |--|---| | MultiDiGraph.add_node(n[, attr_dict]) | Add a single node n and update node attributes. | | MultiDiGraph.add_nodes_from(nodes, **attr) | Add multiple nodes. | | MultiDiGraph.remove_node(n) | Remove node n. | | MultiDiGraph.remove_nodes_from(nbunch) | Remove multiple nodes. | | MultiDiGraph.add_edge(u, v[, key, attr_dict]) | Add an edge between u and v. | | MultiDiGraph.add_edges_from(ebunch[, attr_dict]) | Add all the edges in ebunch. | | MultiDiGraph.add_weighted_edges_from(ebunch) | Add all the edges in ebunch as weighted edges with specified weight | | MultiDiGraph.remove_edge(u,v[,key]) | Remove an edge between u and v. | | MultiDiGraph.remove_edges_from(ebunch) | Remove all edges specified in ebunch. | | MultiDiGraph.add_star(nodes, **attr) | Add a star. | | MultiDiGraph.add_path(nodes, **attr) | Add a path. | | MultiDiGraph.add_cycle(nodes, **attr) | Add a cycle. | | MultiDiGraph.clear() | Remove all nodes and edges from the graph. | # __init__ ``` MultiDiGraph.__init__(data=None, **attr) ``` # add_node MultiDiGraph.add_node (n, attr_dict=None, **attr) Add a single node n and update node attributes. ### **Parameters** - **n** (*node*) A node can be any hashable Python object except None. - attr_dict (dictionary, optional (default= no attributes)) Dictionary of node attributes. Key/value pairs will update existing data associated with the node. - attr (*keyword arguments*, *optional*) Set or change attributes using key=value. #### See also: ``` add_nodes_from() ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 ``` Use keywords set/change node attributes: ``` >>> G.add_node(1,size=10) >>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649)) ``` #### **Notes** A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. ### add nodes from ``` MultiDiGraph.add_nodes_from(nodes, **attr) Add multiple nodes. ``` ### **Parameters** - **nodes** (*iterable container*) A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. - attr (keyword arguments, optional (default= no attributes)) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally. ## See also: ``` add_node() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(),key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] ``` Use keywords to update specific node attributes for every node. ``` >>> G.add_nodes_from([1,2], size=10) >>> G.add_nodes_from([3,4], weight=0.4) ``` Use (node, attrdict) tuples to update attributes for specific nodes. ``` >>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})]) >>> G.node[1]['size'] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.node[1]['size'] 11 ``` ### remove_node ``` MultiDiGraph.remove_node(n) ``` Remove node n. Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception. #### **Parameters** - **n** (*node*) A node in the graph - Raises - - ----- - **NetworkXError** If n is not in the graph. # See also: ``` remove_nodes_from() ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.edges() [(0, 1), (1, 2)] >>> G.remove_node(1) >>> G.edges() [] ``` ### remove_nodes_from ``` MultiDiGraph.remove_nodes_from(nbunch) ``` Remove multiple nodes. **Parameters nodes** (*iterable container*) – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored. ### See also: ``` remove_node() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> e = G.nodes() >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> G.nodes() [] ``` ### add edge ``` MultiDiGraph.add_edge (u, v, key=None, attr_dict=None, **attr) Add an edge between u and v. ``` The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below. #### **Parameters** - **u**, **v** (nodes) Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. - **key** (hashable identifier, optional (default=lowest unused integer)) Used to distinguish multiedges between a pair of nodes. - attr_dict (dictionary, optional (default= no attributes)) Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge. - attr (keyword arguments, optional) Edge data (or labels or objects) can be assigned using keyword arguments. #### See also: ``` add_edges_from() add a collection of edges ``` ## **Notes** To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge will be created. NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear how to handle multiedge weights. Convert to Graph using edge attribute 'weight' to enable weighted graph algorithms. ### **Examples** The following all add the edge e=(1,2) to graph G: ``` >>> G = nx.MultiDiGraph() >>> e = (1,2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from([(1,2)]) # add edges from iterable container ``` Associate data to edges using keywords: ``` >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0 >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) ``` ## add_edges_from MultiDiGraph.add_edges_from(ebunch, attr_dict=None, **attr) Add all the edges in ebunch. #### **Parameters** - **ebunch** (*container of edges*) Each edge given in the container will be added to the graph. The edges can be: - 2-tuples (u,v) or - 3-tuples (u,v,d) for an edge attribute dict d, or - 4-tuples (u,v,k,d) for an edge identified by key k - attr_dict (dictionary, optional (default= no attributes)) Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge. - attr (*keyword arguments, optional*) Edge data (or labels or objects) can be assigned using keyword arguments. ## See also: ``` add_edge() add a single edge add_weighted_edges_from() convenient way to add weighted edges ``` #### **Notes** Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges take precedence over attributes specified generally. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples >>> e = zip(range(0,3),range(1,4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 ``` #### Associate data to edges ``` >>> G.add_edges_from([(1,2),(2,3)], weight=3) >>> G.add_edges_from([(3,4),(1,4)], label='WN2898') ``` ## add_weighted_edges_from ``` MultiDiGraph.add_weighted_edges_from (ebunch, weight='weight', **attr) Add all the edges in ebunch as weighted edges with specified weights. ``` #### **Parameters** - **ebunch** (*container of edges*) Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number. - weight (*string*, *optional* (*default*= 'weight')) The attribute name for the edge weights to be added. - attr (keyword arguments, optional (default= no attributes)) Edge attributes to add/update for all edges. #### See also: ``` add_edge() add a single edge add_edges_from() add multiple edges ``` #### **Notes** Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored. ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])
``` ## remove_edge ``` MultiDiGraph.remove_edge (u, v, key=None) Remove an edge between u and v. ``` #### **Parameters** - u, v (nodes) Remove an edge between nodes u and v. - **key** (*hashable identifier, optional (default=None)*) Used to distinguish multiple edges between a pair of nodes. If None remove a single (abritrary) edge between u and v. **Raises** NetworkXError – If there is not an edge between u and v, or if there is no edge with the specified key. #### See also: ``` remove_edges_from() remove a collection of edges ``` ### **Examples** ``` >>> G = nx.MultiDiGraph() >>> G.add_path([0,1,2,3]) >>> G.remove_edge(0,1) >>> e = (1,2) >>> G.remove_edge(*e) # unpacks e from an edge tuple ``` For multiple edges ``` >>> G = nx.MultiDiGraph() >>> G.add_edges_from([(1,2),(1,2)]) >>> G.remove_edge(1,2) # remove a single (arbitrary) edge ``` ## For edges with keys ``` >>> G = nx.MultiDiGraph() >>> G.add_edge(1,2,key='first') >>> G.add_edge(1,2,key='second') >>> G.remove_edge(1,2,key='second') ``` #### remove edges from MultiDiGraph.remove_edges_from(ebunch) Remove all edges specified in ebunch. **Parameters ebunch** (*list or container of edge tuples*) – Each edge given in the list or container will be removed from the graph. The edges can be: - 2-tuples (u,v) All edges between u and v are removed. - 3-tuples (u,v,key) The edge identified by key is removed. - 4-tuples (u,v,key,data) where data is ignored. #### See also: remove_edge() remove a single edge #### **Notes** Will fail silently if an edge in ebunch is not in the graph. ## **Examples** ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> ebunch=[(1,2),(2,3)] >>> G.remove_edges_from(ebunch) ``` ### Removing multiple copies of edges ``` >>> G = nx.MultiGraph() >>> G.add_edges_from([(1,2),(1,2)]) >>> G.remove_edges_from([(1,2),(1,2)]) >>> G.edges() [(1, 2)] >>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy >>> G.edges() # now empty graph [] ``` #### add star ``` MultiDiGraph.add_star(nodes, **attr) ``` The first node in nodes is the middle of the star. It is connected to all other nodes. #### **Parameters** - nodes (iterable container) A container of nodes. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to every edge in star. #### See also: ``` add_path(), add_cycle() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_star([0,1,2,3]) >>> G.add_star([10,11,12],weight=2) ``` ## add_path ``` MultiDiGraph.add_path (nodes, **attr) Add a path. ``` #### **Parameters** - **nodes** (*iterable container*) A container of nodes. A path will be constructed from the nodes (in order) and added to the graph. - attr (keyword arguments, optional (default= no attributes)) Attributes to add to every edge in path. ## See also: ``` add_star(), add_cycle() ``` ## **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.add_path([10,11,12],weight=7) ``` #### add_cycle ``` MultiDiGraph.add_cycle (nodes, **attr) Add a cycle. ``` #### **Parameters** • **nodes** (*iterable container*) – A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph. • attr (keyword arguments, optional (default= no attributes)) — Attributes to add to every edge in cycle. #### See also: ``` add_path(), add_star() ``` ## **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_cycle([0,1,2,3]) >>> G.add_cycle([10,11,12],weight=7) ``` #### clear ``` MultiDiGraph.clear() ``` Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.clear() >>> G.nodes() [] >>> G.edges() [] ``` ## Iterating over nodes and edges | Return a list of the nodes in the graph. | |-------------------------------------------------------------| | Return an iterator over the nodes. | | Iterate over the nodes. | | Return a list of edges. | | Return an iterator over the edges. | | Return a list of the outgoing edges. | | Return an iterator over the edges. | | Return a list of the incoming edges. | | Return an iterator over the incoming edges. | | Return the attribute dictionary associated with edge (u,v). | | Return a list of successor nodes of n. | | Return an iterator over successor nodes of n. | | Return a dict of neighbors of node n. | | Return a list of successor nodes of n. | | Return an iterator over successor nodes of n. | | Return a list of predecessor nodes of n. | | Return an iterator over predecessor nodes of n. | | Continued on next p | | | Table 3.14 – continued from previous page | MultiDiGraph.adjacency_list() | Return an adjacency list representation of the graph. | |------------------------------------|-------------------------------------------------------------------------| | MultiDiGraph.adjacency_iter() | Return an iterator of (node, adjacency dict) tuples for all nodes. | | MultiDiGraph.nbunch_iter([nbunch]) | Return an iterator of nodes contained in nbunch that are also in the gr | #### nodes MultiDiGraph.nodes (data=False) Return a list of the nodes in the graph. **Parameters data** (*boolean*, *optional* (*default=False*)) – If False return a list of nodes. If True return a two-tuple of node and node data dictionary **Returns nlist** – A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary). Return type list ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.nodes() [0, 1, 2] >>> G.add_node(1, time='5pm') >>> G.nodes(data=True) [(0, {}), (1, {'time': '5pm'}), (2, {})] ``` ## nodes iter MultiDiGraph.nodes_iter(data=False) Return an iterator over the nodes. **Parameters** data (*boolean*, *optional* (*default=False*)) – If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary **Returns niter** – An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary) Return type iterator #### **Notes** If the node data is not required it is simpler and equivalent to use the expression 'for n in G'. ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) ``` ``` >>> [d for n,d in G.nodes_iter(data=True)] [{}, {}, {}] ``` ### iter ``` MultiDiGraph.__iter__() ``` Iterate over the nodes. Use the expression 'for n in G'. Returns niter – An iterator over all nodes in the graph. **Return type** iterator #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) ``` #### edges ``` MultiDiGraph.edges (nbunch=None, data=False, keys=False, default=None) Return a list of edges. ``` Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data). ### **Parameters** - **nbunch** (*iterable container, optional (default= all nodes*)) A container of nodes. The container will be iterated through once. - data (bool, optional (default=False)) Return two tuples (u,v) (False) or three-tuples (u,v,data) (True). - **keys** (*bool*, *optional* (*default=False*)) Return two tuples (u,v) (False) or three-tuples (u,v,key) (True). - Returns - - ----- - **edge_list** (*list of edge tuples*) Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified. #### See also: edges_iter() return an iterator over the edges ### **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ## **Examples** ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_path([0,1,2]) >>> G.add_edge(2,3,weight=5) >>> G.edges() [(0, 1), (1, 2), (2, 3)] >>> G.edges(data=True) # default edge data is {} (empty dictionary) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges_iter(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> G.edges(keys=True) # default keys are integers [(0, 1, 0), (1, 2, 0), (2, 3, 0)] >>> G.edges(data=True, keys=True) # default keys are integers [(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})] >>> list(G.edges(data='weight',default=1,keys=True)) [(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)] >>> G.edges([0,3]) [(0, 1), (3, 2)] >>> G.edges(0) [(0, 1)] ``` #### edges_iter MultiDiGraph.edges_iter (nbunch=None, data=False, keys=False, default=None) Return an iterator over the edges. Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data). #### **Parameters** - **nbunch** (*iterable container, optional (default= all nodes*)) A container of nodes. The container will be iterated through once. - data (*string or bool, optional (default=False*)) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). - **keys** (*bool*, *optional* (*default=False*)) If True, return edge keys with each edge. - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns** edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges. Return type iterator #### See also: edges () return a list of edges ## **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ### **Examples** ``` >>> G = nx.MultiDiGraph() >>> G.add_path([0,1,2]) >>> G.add_edge(2,3,weight=5) >>> [e for e in G.edges_iter()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges_iter(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges_iter(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>>
list(G.edges(keys=True)) # default keys are integers [(0, 1, 0), (1, 2, 0), (2, 3, 0)] >>> list(G.edges(data=True, keys=True)) # default keys are integers [(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})] >>> list(G.edges(data='weight',default=1,keys=True)) [(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)] >>> list(G.edges_iter([0,2])) [(0, 1), (2, 3)] >>> list(G.edges_iter(0)) [(0, 1)] ``` #### out_edges MultiDiGraph.out_edges (nbunch=None, keys=False, data=False) Return a list of the outgoing edges. Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data). ### **Parameters** - **nbunch** (*iterable container, optional (default= all nodes*)) A container of nodes. The container will be iterated through once. - data (bool, optional (default=False)) If True, return edge attribute dict with each edge. - **keys** (*bool*, *optional* (*default=False*)) If True, return edge keys with each edge. **Returns out_edges** – An listr of (u,v), (u,v,d) or (u,v,key,d) tuples of edges. Return type list ### Notes Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs edges() is the same as out_edges(). #### See also: in edges () return a list of incoming edges ## out_edges_iter MultiDiGraph.out_edges_iter (nbunch=None, data=False, keys=False, default=None) Return an iterator over the edges. Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data). #### **Parameters** - **nbunch** (*iterable container, optional* (*default= all nodes*)) A container of nodes. The container will be iterated through once. - data (*string or bool, optional (default=False*)) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). - **keys** (*bool*, *optional* (*default=False*)) If True, return edge keys with each edge. - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. **Returns edge_iter** – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges. Return type iterator ### See also: edges () return a list of edges #### **Notes** Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. ## **Examples** ``` >>> G = nx.MultiDiGraph() >>> G.add_path([0,1,2]) >>> G.add_edge(2,3,weight=5) >>> [e for e in G.edges_iter()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges_iter(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges_iter(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> list(G.edges(keys=True)) # default keys are integers [(0, 1, 0), (1, 2, 0), (2, 3, 0)] >>> list(G.edges(data=True, keys=True)) # default keys are integers [(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})] >>> list(G.edges(data='weight',default=1,keys=True)) [(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)] >>> list(G.edges_iter([0,2])) [(0, 1), (2, 3)] >>> list(G.edges_iter(0)) [(0, 1)] ``` ## in_edges MultiDiGraph.in_edges (nbunch=None, keys=False, data=False) Return a list of the incoming edges. #### **Parameters** • **nbunch** (*iterable container, optional (default= all nodes*)) – A container of nodes. The container will be iterated through once. - data (bool, optional (default=False)) If True, return edge attribute dict with each edge. - **keys** (*bool*, *optional* (*default=False*)) If True, return edge keys with each edge. **Returns in_edges** – A list of (u,v), (u,v,d) or (u,v,key,d) tuples of edges. Return type list See also: out_edges() return a list of outgoing edges ### in edges iter MultiDiGraph.in_edges_iter(nbunch=None, data=False, keys=False) Return an iterator over the incoming edges. ## **Parameters** - **nbunch** (*iterable container, optional (default= all nodes*)) A container of nodes. The container will be iterated through once. - data (bool, optional (default=False)) If True, return edge attribute dict with each edge. - **keys** (*bool*, *optional* (*default=False*)) If True, return edge keys with each edge. **Returns in_edge_iter** – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges. Return type iterator See also: edges_iter() return an iterator of edges ## get edge data MultiDiGraph.get_edge_data(u, v, key=None, default=None) Return the attribute dictionary associated with edge (u,v). ## **Parameters** - **u**, **v** (nodes) – - **default** (any Python object (default=None)) Value to return if the edge (u,v) is not found. - **key** (hashable identifier, optional (default=None)) Return data only for the edge with specified key. **Returns** edge_dict – The edge attribute dictionary. **Return type** dictionary ## **Notes** It is faster to use G[u][v][key]. ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_edge(0,1,key='a',weight=7) >>> G[0][1]['a'] # key='a' {'weight': 7} ``` Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that dictionary, ``` >>> G[0][1]['a']['weight'] = 10 >>> G[0][1]['a']['weight'] 10 >>> G[1][0]['a']['weight'] 10 ``` ## **Examples** ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> G.get_edge_data(0,1) {0: {}} >>> e = (0,1) >>> G.get_edge_data(*e) # tuple form {0: {}} >>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0 0 ``` ## neighbors ``` MultiDiGraph.neighbors(n) ``` Return a list of successor nodes of n. neighbors() and successors() are the same function. ## neighbors_iter ``` MultiDiGraph.neighbors_iter(n) ``` Return an iterator over successor nodes of n. neighbors_iter() and successors_iter() are the same. ### getitem ``` MultiDiGraph.__getitem__(n) ``` Return a dict of neighbors of node n. Use the expression 'G[n]'. **Parameters n** (*node*) – A node in the graph. **Returns** adj_dict – The adjacency dictionary for nodes connected to n. Return type dictionary #### **Notes** G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list. Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G[0] {1: {}} ``` #### successors ``` MultiDiGraph.successors(n) ``` Return a list of successor nodes of n. neighbors() and successors() are the same function. ## successors_iter ``` MultiDiGraph.successors_iter(n) ``` Return an iterator over successor nodes of n. neighbors_iter() and successors_iter() are the same. ## predecessors ``` MultiDiGraph.predecessors(n) ``` Return a list of predecessor nodes of n. ## predecessors_iter ``` MultiDiGraph.predecessors_iter(n) ``` Return an iterator over predecessor nodes of n. ## adjacency_list ``` MultiDiGraph.adjacency_list() ``` Return an adjacency list representation of the graph. The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included. **Returns** adj_list – The adjacency structure of the graph as a list of lists. Return type lists of lists #### See also: ``` adjacency_iter() ``` ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.adjacency_list() # in order given by G.nodes() [[1], [0, 2], [1, 3], [2]] ``` ## adjacency iter ``` MultiDiGraph.adjacency_iter() ``` Return an iterator of (node, adjacency dict) tuples for all nodes. This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included. **Returns** adj_iter – An iterator of (node, adjacency dictionary) for all nodes in the graph. Return type iterator ## See also: ``` adjacency_list() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()] [(0, {1: {}}), (1, {0: {}}, 2: {}}), (2, {1: {}}, 3: {}}), (3, {2: {}})] ``` ## nbunch iter ``` MultiDiGraph.nbunch_iter(nbunch=None) ``` Return an iterator of nodes contained in nbunch that are also in the graph. The nodes in nbunch are checked for membership in the graph and if not are silently ignored. **Parameters nbunch** (*iterable container, optional* (*default=all nodes*)) – A container of nodes. The container will be iterated through once. **Returns niter** – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph. ### Return type iterator **Raises** NetworkXError – If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable. ## See also: ``` Graph.__iter__() ``` #### **Notes** When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted. To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine. If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised. ## Information about graph structure | MultiDiGraph.has_node(n) | Return True if the graph contains the node n. | |-----------------------------------------------------------|-------------------------------------------------------------| | MultiDiGraphcontains(n) | Return True if n is a node, False otherwise. | | MultiDiGraph.has_edge(u, v[, key]) | Return True if the graph has an edge between nodes u and v. | | MultiDiGraph.order() | Return the number of nodes in the graph. | | MultiDiGraph.number_of_nodes() | Return the number of nodes in the graph. | | MultiDiGraphlen() | Return the number of nodes. | | MultiDiGraph.degree([nbunch, weight]) | Return the degree of a node or nodes. | | MultiDiGraph.degree_iter([nbunch, weight]) | Return an iterator for (node, degree). | | MultiDiGraph.in_degree([nbunch, weight]) |
Return the in-degree of a node or nodes. | | <pre>MultiDiGraph.in_degree_iter([nbunch, weight])</pre> | Return an iterator for (node, in-degree). | | MultiDiGraph.out_degree([nbunch, weight]) | Return the out-degree of a node or nodes. | | <pre>MultiDiGraph.out_degree_iter([nbunch, weight])</pre> | Return an iterator for (node, out-degree). | | MultiDiGraph.size([weight]) | Return the number of edges. | | $ ext{MultiDiGraph.number_of_edges}([u,v])$ | Return the number of edges between two nodes. | | MultiDiGraph.nodes_with_selfloops() | Return a list of nodes with self loops. | | MultiDiGraph.selfloop_edges([data, keys,]) | Return a list of selfloop edges. | | MultiDiGraph.number_of_selfloops() | Return the number of selfloop edges. | ## has_node MultiDiGraph.has_node(n) Return True if the graph contains the node n. Parameters n (node) - ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.has_node(0) True ``` It is more readable and simpler to use ``` >>> 0 in G True ``` ## __contains__ ``` MultiDiGraph.__contains__(n) ``` Return True if n is a node, False otherwise. Use the expression 'n in G'. ### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> 1 in G True ``` #### has edge ``` MultiDiGraph.has_edge(u, v, key=None) ``` Return True if the graph has an edge between nodes u and v. #### **Parameters** - u, v (nodes) Nodes can be, for example, strings or numbers. - **key** (*hashable identifier, optional (default=None*)) If specified return True only if the edge with key is found. **Returns** edge_ind – True if edge is in the graph, False otherwise. Return type bool ## **Examples** Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key). ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> G.has_edge(0,1) # using two nodes True >>> e = (0,1) >>> G.has_edge(*e) # e is a 2-tuple (u,v) True >>> G.add_edge(*e) # e is a 2-tuple (u,v) True >>> G.add_edge(0,1,key='a') >>> G.has_edge(0,1,key='a') # specify key True >>> e=(0,1,'a') >>> G.has_edge(*e) # e is a 3-tuple (u,v,'a') True ``` The following syntax are equivalent: ``` >>> G.has_edge(0,1) True >>> 1 in G[0] # though this gives KeyError if 0 not in G True ``` #### order ``` MultiDiGraph.order() ``` Return the number of nodes in the graph. **Returns nnodes** – The number of nodes in the graph. Return type int #### See also: ``` number_of_nodes(),__len__() ``` #### number of nodes ``` MultiDiGraph.number_of_nodes() ``` Return the number of nodes in the graph. **Returns** nnodes – The number of nodes in the graph. Return type int #### See also: ``` order(),__len__() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> len(G) 3 ``` ### __len__ ``` MultiDiGraph.__len__() ``` Return the number of nodes. Use the expression 'len(G)'. **Returns** nnodes – The number of nodes in the graph. Return type int ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> len(G) 4 ``` ### degree MultiDiGraph.degree(nbunch=None, weight=None) Return the degree of a node or nodes. The node degree is the number of edges adjacent to that node. ## **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd** – A dictionary with nodes as keys and degree as values or a number if a single node is specified. Return type dictionary, or number #### **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.degree(0) 1 >>> G.degree([0,1]) {0: 1, 1: 2} >>> list(G.degree([0,1]).values()) [1, 2] ``` ## degree_iter ``` MultiDiGraph.degree_iter(nbunch=None, weight=None) ``` Return an iterator for (node, degree). The node degree is the number of edges adjacent to the node. #### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights. **Returns nd_iter** – The iterator returns two-tuples of (node, degree). Return type an iterator #### See also: ``` degree() ``` #### **Examples** ``` >>> G = nx.MultiDiGraph() >>> G.add_path([0,1,2,3]) >>> list(G.degree_iter(0)) # node 0 with degree 1 [(0, 1)] >>> list(G.degree_iter([0,1])) [(0, 1), (1, 2)] ``` ## in_degree ``` MultiDiGraph.in_degree (nbunch=None, weight=None) ``` Return the in-degree of a node or nodes. The node in-degree is the number of edges pointing in to the node. #### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd** – A dictionary with nodes as keys and in-degree as values or a number if a single node is specified. Return type dictionary, or number #### See also: ``` degree(), out_degree(), in_degree_iter() ``` ## **Examples** ``` >>> G = nx.DiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> G.in_degree(0) 0 >>> G.in_degree([0,1]) {0: 0, 1: 1} >>> list(G.in_degree([0,1]).values()) [0, 1] ``` #### in degree iter ``` MultiDiGraph.in_degree_iter (nbunch=None, weight=None) Return an iterator for (node, in-degree). ``` The node in-degree is the number of edges pointing in to the node. #### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd_iter** – The iterator returns two-tuples of (node, in-degree). Return type an iterator ## See also: ``` degree(), in_degree(), out_degree(), out_degree_iter() ``` ## **Examples** ``` >>> G = nx.MultiDiGraph() >>> G.add_path([0,1,2,3]) >>> list(G.in_degree_iter(0)) # node 0 with degree 0 ``` ``` [(0, 0)] >>> list(G.in_degree_iter([0,1])) [(0, 0), (1, 1)] ``` #### out degree MultiDiGraph.out_degree (nbunch=None, weight=None) Return the out-degree of a node or nodes. The node out-degree is the number of edges pointing out of the node. #### **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns nd** – A dictionary with nodes as keys and out-degree as values or a number if a single node is specified. Return type dictionary, or number ## **Examples** ``` >>> G = nx.DiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> G.out_degree(0) 1 >>> G.out_degree([0,1]) {0: 1, 1: 1} >>> list(G.out_degree([0,1]).values()) [1, 1] ``` ## out_degree_iter MultiDiGraph.out_degree_iter(nbunch=None, weight=None) Return an iterator for (node, out-degree). The node out-degree is the number of edges pointing out of the node. ## **Parameters** - **nbunch** (*iterable container, optional (default=all nodes*)) A container of nodes. The container will be iterated through once. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights. **Returns nd_iter** – The iterator returns two-tuples of (node, out-degree). Return type an iterator #### See also: ``` degree(), in_degree(), out_degree(), in_degree_iter() ``` ## **Examples** ``` >>> G = nx.MultiDiGraph() >>> G.add_path([0,1,2,3]) >>> list(G.out_degree_iter(0)) # node 0 with degree 1 [(0, 1)] >>> list(G.out_degree_iter([0,1])) [(0, 1), (1, 1)] ``` #### size MultiDiGraph.size(weight=None) Return the number of edges. **Parameters weight** (*string or None, optional (default=None)*) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. **Returns** nedges – The number of edges or sum of edge weights in the graph. Return type int ## See also: ``` number_of_edges() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.size() 3 ``` ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge('a','b',weight=2) >>> G.add_edge('b','c',weight=4) >>> G.size() 2 >>> G.size(weight='weight') 6.0 ``` ## number_of_edges MultiDiGraph.number_of_edges(u=None, v=None) Return the number of edges between two nodes. **Parameters u, v** (*nodes, optional (default=all edges)*) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges. **Returns nedges** – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. **Return type** int ### See also: ``` size() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.number_of_edges() 3 >>> G.number_of_edges(0,1) 1 >>> e = (0,1) >>> G.number_of_edges(*e) 1 ``` ### nodes with selfloops ```
MultiDiGraph.nodes_with_selfloops() ``` Return a list of nodes with self loops. A node with a self loop has an edge with both ends adjacent to that node. **Returns nodelist** – A list of nodes with self loops. Return type list #### See also: ``` selfloop_edges(), number_of_selfloops() ``` ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.nodes_with_selfloops() [1] ``` ## selfloop_edges ``` MultiDiGraph.selfloop_edges(data=False, keys=False, default=None) ``` Return a list of selfloop edges. A selfloop edge has the same node at both ends. ### **Parameters** - data (bool, optional (default=False)) Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname') - **default** (*value*, *optional* (*default=None*)) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. - **keys** (*bool*, *optional* (*default=False*)) If True, return edge keys with each edge. **Returns** edgelist – A list of all selfloop edges. **Return type** list of edge tuples ## See also: ``` nodes_with_selfloops(), number_of_selfloops() ``` #### **Examples** ``` >>> G = nx.MultiGraph() # or MultiDiGraph >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.selfloop_edges() [(1, 1)] >>> G.selfloop_edges(data=True) [(1, 1, {})] >>> G.selfloop_edges(keys=True) [(1, 1, 0)] >>> G.selfloop_edges(keys=True) [(1, 1, 0)] ``` ## number of selfloops ``` MultiDiGraph.number_of_selfloops() ``` Return the number of selfloop edges. A selfloop edge has the same node at both ends. **Returns nloops** – The number of selfloops. Return type int ## See also: ``` nodes_with_selfloops(), selfloop_edges() ``` ## **Examples** ``` >>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1,1) >>> G.add_edge(1,2) >>> G.number_of_selfloops() 1 ``` ## Making copies and subgraphs | MultiDiGraph.copy() | Return a copy of the graph. | |------------------------------------------|-----------------------------------------------------| | MultiDiGraph.to_undirected([reciprocal]) | Return an undirected representation of the digraph. | | MultiDiGraph.to_directed() | Return a directed copy of the graph. | | MultiDiGraph.subgraph(nbunch) | Return the subgraph induced on nodes in nbunch. | | MultiDiGraph.reverse([copy]) | Return the reverse of the graph. | ### copy ``` MultiDiGraph.copy() Return a copy of the graph. Returns G - A copy of the graph. Return type Graph ``` #### See also: to_directed() return a directed copy of the graph. #### **Notes** This makes a complete copy of the graph including all of the node or edge attributes. ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> H = G.copy() ``` #### to undirected MultiDiGraph.to_undirected(reciprocal=False) Return an undirected representation of the digraph. **Parameters** reciprocal (bool (optional)) – If True only keep edges that appear in both directions in the original digraph. **Returns G** – An undirected graph with the same name and nodes and with edge (u,v,data) if either (u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired. Return type MultiGraph ## Notes This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiDiGraph created by this method. #### to directed ``` MultiDiGraph.to_directed() ``` Return a directed copy of the graph. **Returns** G - A deepcopy of the graph. Return type MultiDiGraph #### **Notes** If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge(). This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. ## **Examples** ``` >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1), (1, 0)] ``` If already directed, return a (deep) copy ``` >>> G = nx.MultiDiGraph() >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1)] ``` ## subgraph ``` MultiDiGraph.subgraph (nbunch) ``` Return the subgraph induced on nodes in nbunch. The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes. Parameters nbunch (list, iterable) - A container of nodes which will be iterated through once. **Returns** G - A subgraph of the graph with the same edge attributes. Return type Graph #### **Notes** The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will. To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch)) If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy() For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([ n in G if n not in set(nbunch)]) ## **Examples** ``` >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> H = G.subgraph([0,1,2]) >>> H.edges() [(0, 1), (1, 2)] ``` #### reverse ``` MultiDiGraph.reverse(copy=True) ``` Return the reverse of the graph. The reverse is a graph with the same nodes and edges but with the directions of the edges reversed. **Parameters copy** (bool optional (default=True)) – If True, return a new DiGraph holding the reversed edges. If False, reverse the reverse graph is created using the original graph (this changes the original graph). **CHAPTER** ## **FOUR** ## **ALGORITHMS** # 4.1 Approximation ## 4.1.1 Connectivity Fast approximation for node connectivity | <pre>all_pairs_node_connectivity(G[, nbunch, cutoff])</pre> | Compute node connectivity between all pairs of nodes. | |-------------------------------------------------------------|-----------------------------------------------------------------------| | <pre>local_node_connectivity(G, source, target[,])</pre> | Compute node connectivity between source and target. | | $node_connectivity(G[,s,t])$ | Returns an approximation for node connectivity for a graph or digraph | ## all_pairs_node_connectivity ### all pairs node connectivity (G, nbunch=None, cutoff=None) Compute node connectivity between all pairs of nodes. Pairwise or local node connectivity between two distinct and nonadjacent nodes is the minimum number of nodes that must be removed (minimum separating cutset) to disconnect them. By Menger's theorem, this is equal to the number of node independent paths (paths that share no nodes other than source and target). Which is what we compute in this function. This algorithm is a fast approximation that gives an strict lower bound on the actual number of node independent paths between two nodes ¹. It works for both directed and undirected graphs. ## **Parameters** - **G** (NetworkX graph) – - **nbunch** (*container*) Container of nodes. If provided node connectivity will be computed only over pairs of nodes in nbunch. - **cutoff** (*integer*) Maximum node connectivity to consider. If None, the minimum degree of source or target is used as a cutoff in each pair of nodes. Default value None. **Returns K** – Dictionary, keyed by source and target, of pairwise node connectivity **Return type** dictionary ## See also: local_node_connectivity(), all_pairs_node_connectivity() ¹ White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 http://eclectic.ss.uci.edu/~drwhite/working.pdf #### References ## local_node_connectivity local_node_connectivity(G, source, target, cutoff=None) Compute node connectivity between source and target. Pairwise or local node connectivity between two distinct and nonadjacent nodes is the minimum number of nodes that must be removed (minimum separating cutset) to disconnect them. By Menger's theorem, this is equal to the number of node independent paths (paths that share no nodes other than source and target). Which is what we compute in this function. This algorithm is a fast approximation that gives an strict lower bound on the actual number of node independent paths between two nodes ². It works for both directed and undirected graphs. ### **Parameters** - **G** (NetworkX graph) – - **source** (*node*) Starting node for node connectivity - target (node) Ending node for node connectivity - **cutoff** (*integer*) Maximum node connectivity to consider. If None, the minimum degree of source or target is used as a cutoff. Default value None. **Returns** k – pairwise node connectivity Return type integer ## **Examples** ``` >>> # Platonic icosahedral graph has node connectivity 5 >>> # for each non adjacent node pair >>> from networkx.algorithms import approximation as approx >>> G = nx.icosahedral_graph() >>> approx.local_node_connectivity(G, 0, 6) 5 ``` ## **Notes** This algorithm ¹ finds node independents paths between two nodes by computing
their shortest path using BFS, marking the nodes of the path found as 'used' and then searching other shortest paths excluding the nodes marked as used until no more paths exist. It is not exact because a shortest path could use nodes that, if the path were longer, may belong to two different node independent paths. Thus it only guarantees an strict lower bound on node connectivity. Note that the authors propose a further refinement, losing accuracy and gaining speed, which is not implemented yet. #### See also: ``` all_pairs_node_connectivity(), node_connectivity() ``` ² White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 http://eclectic.ss.uci.edu/~drwhite/working.pdf #### References ## node_connectivity ``` node_connectivity(G, s=None, t=None) ``` Returns an approximation for node connectivity for a graph or digraph G. Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it trivial. By Menger's theorem, this is equal to the number of node independent paths (paths that share no nodes other than source and target). If source and target nodes are provided, this function returns the local node connectivity: the minimum number of nodes that must be removed to break all paths from source to target in G. This algorithm is based on a fast approximation that gives an strict lower bound on the actual number of node independent paths between two nodes ³. It works for both directed and undirected graphs. #### **Parameters** - G (NetworkX graph) Undirected graph - **s** (*node*) Source node. Optional. Default value: None. - t (node) Target node. Optional. Default value: None. **Returns K** – Node connectivity of G, or local node connectivity if source and target are provided. Return type integer ## **Examples** ``` >>> # Platonic icosahedral graph is 5-node-connected >>> from networkx.algorithms import approximation as approx >>> G = nx.icosahedral_graph() >>> approx.node_connectivity(G) 5 ``` ## **Notes** This algorithm ¹ finds node independents paths between two nodes by computing their shortest path using BFS, marking the nodes of the path found as 'used' and then searching other shortest paths excluding the nodes marked as used until no more paths exist. It is not exact because a shortest path could use nodes that, if the path were longer, may belong to two different node independent paths. Thus it only guarantees an strict lower bound on node connectivity. #### See also: ``` all_pairs_node_connectivity(), local_node_connectivity() ``` #### References ## 4.1.2 K-components Fast approximation for k-component structure ³ White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 http://eclectic.ss.uci.edu/~drwhite/working.pdf $k_components(G[, min_density])$ Returns the approximate k-component structure of a graph G. ## k_components $k_components(G, min_density=0.95)$ Returns the approximate k-component structure of a graph G. A k-component is a maximal subgraph of a graph G that has, at least, node connectivity k: we need to remove at least k nodes to break it into more components. k-components have an inherent hierarchical structure because they are nested in terms of connectivity: a connected graph can contain several 2-components, each of which can contain one or more 3-components, and so forth. This implementation is based on the fast heuristics to approximate the k-component sturcture of a graph 4 . Which, in turn, it is based on a fast approximation algorithm for finding good lower bounds of the number of node independent paths between two nodes 5 . #### **Parameters** - **G** (*NetworkX graph*) Undirected graph - min_density (Float) Density relaxation treshold. Default value 0.95 **Returns** k_components – Dictionary with connectivity level k as key and a list of sets of nodes that form a k-component of level k as values. Return type dict ## **Examples** ``` >>> # Petersen graph has 10 nodes and it is triconnected, thus all >>> # nodes are in a single component on all three connectivity levels >>> from networkx.algorithms import approximation as apxa >>> G = nx.petersen_graph() >>> k_components = apxa.k_components(G) ``` ## **Notes** The logic of the approximation algorithm for computing the k-component structure 1 is based on repeatedly applying simple and fast algorithms for k-cores and biconnected components in order to narrow down the number of pairs of nodes over which we have to compute White and Newman's approximation algorithm for finding node independent paths 2 . More formally, this algorithm is based on Whitney's theorem, which states an inclusion relation among node connectivity, edge connectivity, and minimum degree for any graph G. This theorem implies that every k-component is nested inside a k-edge-component, which in turn, is contained in a k-core. Thus, this algorithm computes node independent paths among pairs of nodes in each biconnected part of each k-core, and repeats this procedure for each k from 3 to the maximal core number of a node in the input graph. Because, in practice, many nodes of the core of level k inside a bicomponent actually are part of a component of level k, the auxiliary graph needed for the algorithm is likely to be very dense. Thus, we use a complement graph data structure (see AntiGraph) to save memory. AntiGraph only stores information of the edges that are ⁴ Torrents, J. and F. Ferraro (2015) Structural Cohesion: Visualization and Heuristics for Fast Computation, http://arxiv.org/pdf/1503.04476v1 ⁵ White, Douglas R., and Mark Newman (2001) A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 http://eclectic.ss.uci.edu/~drwhite/working.pdf *not* present in the actual auxiliary graph. When applying algorithms to this complement graph data structure, it behaves as if it were the dense version. #### See also: k_components() #### References # 4.1.3 Clique ## Cliques. | max_clique(G) | Find the Maximum Clique | |-------------------|-------------------------------------------| | clique_removal(G) | Repeatedly remove cliques from the graph. | ## max clique ## $max_clique(G)$ Find the Maximum Clique Finds the $O(|V|/(log|V|)^2)$ apx of maximum clique/independent set in the worst case. **Parameters G** (*NetworkX graph*) – Undirected graph #### Returns - **clique** (*set*) The apx-maximum clique of the graph - Notes - ___ - A clique in an undirected graph G = (V, E) is a subset of the vertex set - $C \subseteq V$ , such that for every two vertices in C, there exists an edge - connecting the two. This is equivalent to saying that the subgraph - induced by C is complete (in some cases, the term clique may also refer - to the subgraph). - A maximum clique is a clique of the largest possible size in a given graph. - The clique number $\omega(G)$ of a graph G is the number of - vertices in a maximum clique in G. The intersection number of - *G* is the smallest number of cliques that together cover all edges of *G*. - http (//en.wikipedia.org/wiki/Maximum_clique) ## References ## clique_removal ## ${\tt clique_removal}\,(G)$ Repeatedly remove cliques from the graph. Results in a $O(|V|/(\log |V|)^2)$ approximation of maximum clique & independent set. Returns the largest independent set found, along with found maximal cliques. **Parameters** G (NetworkX graph) – Undirected graph **Returns max_ind_cliques** – Maximal independent set and list of maximal cliques (sets) in the graph. Return type (set, list) tuple #### References ## 4.1.4 Clustering average_clustering(G[, trials]) Estimates the average clustering coefficient of G. ## average_clustering ## average_clustering(G, trials=1000) Estimates the average clustering coefficient of G. The local clustering of each node in G is the fraction of triangles that actually exist over all possible triangles in its neighborhood. The average clustering coefficient of a graph G is the mean of local clusterings. This function finds an approximate average clustering coefficient for G by repeating n times (defined in trials) the following experiment: choose a node at random, choose two of its neighbors at random, and check if they are connected. The approximate coefficient is the fraction of triangles found over the number of trials 6 . #### **Parameters** - **G** (NetworkX graph) – - trials (integer) Number of trials to perform (default 1000). **Returns** c – Approximated average clustering coefficient. Return type float #### References # 4.1.5 Dominating Set Functions for finding node and edge dominating sets. A 'dominating set'_[1] for an undirected graph *G with vertex set V and edge set E is a subset D of V such that every vertex not in D is adjacent to at least one member of D. An 'edge dominating set'_[2] is a subset *F of E such that every edge not in F is incident to an endpoint of at least one edge in F. min_weighted_dominating_set(G[, weight])Returns a dominating set that approximates the minimum weight node dominmin_edge_dominating_set(G)Return minimum cardinality edge dominating set. ⁶ Schank, Thomas, and Dorothea Wagner. Approximating clustering coefficient and transitivity. Universität Karlsruhe, Fakultät für Informatik, 2004. http://www.emis.ams.org/journals/JGAA/accepted/2005/SchankWagner2005.9.2.pdf ## min_weighted_dominating_set ## min_weighted_dominating_set(G, weight=None) Returns a dominating set that approximates the minimum weight node dominating set. #### **Parameters** - **G** (*NetworkX graph*) Undirected graph. - weight (*string*) The node attribute storing the weight of an edge. If provided, the node attribute with this key must be a number for each node. If not provided, each node is assumed to have weight one. **Returns** min_weight_dominating_set – A set of nodes, the sum of whose weights is no more than $(\log w(V))w(V^*)$ , where w(V) denotes the sum of the weights of each node
in the graph and $w(V^*)$ denotes the sum of the weights of each node in the minimum weight dominating set. Return type set #### **Notes** This algorithm computes an approximate minimum weighted dominating set for the graph G. The returned solution has weight $(\log w(V))w(V^*)$ , where w(V) denotes the sum of the weights of each node in the graph and $w(V^*)$ denotes the sum of the weights of each node in the minimum weight dominating set for the graph. This implementation of the algorithm runs in O(m) time, where m is the number of edges in the graph. #### References ## min edge dominating set #### min_edge_dominating_set(G) Return minimum cardinality edge dominating set. **Parameters G** (*NetworkX graph*) – Undirected graph **Returns min_edge_dominating_set** – Returns a set of dominating edges whose size is no more than 2 * OPT. Return type set ### **Notes** The algorithm computes an approximate solution to the edge dominating set problem. The result is no more than 2 * OPT in terms of size of the set. Runtime of the algorithm is O(|E|). ## 4.1.6 Independent Set ## Independent Set Independent set or stable set is a set of vertices in a graph, no two of which are adjacent. That is, it is a set I of vertices such that for every two vertices in I, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in I. The size of an independent set is the number of vertices it contains. A maximum independent set is a largest independent set for a given graph G and its size is denoted $\alpha(G)$ . The problem of finding such a set is called the maximum independent set problem and is an NP-hard optimization problem. As such, it is unlikely that there exists an efficient algorithm for finding a maximum independent set of a graph. http://en.wikipedia.org/wiki/Independent_set_(graph_theory) Independent set algorithm is based on the following paper: $O(|V|/(log|V|)^2)$ apx of maximum clique/independent set. Boppana, R., & Halldórsson, M. M. (1992). Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics, 32(2), 180–196. Springer. doi:10.1007/BF01994876 maximum_independent_set(G) Return an approximate maximum independent set. ## maximum independent set ## $maximum_independent_set(G)$ Return an approximate maximum independent set. **Parameters G** (*NetworkX graph*) – Undirected graph **Returns** iset – The apx-maximum independent set Return type Set #### **Notes** Finds the $O(|V|/(log|V|)^2)$ apx of independent set in the worst case. #### References ## 4.1.7 Matching #### **Graph Matching** Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent edges; that is, no two edges share a common vertex. http://en.wikipedia.org/wiki/Matching_(graph_theory) min maximal matching(G) Returns the minimum maximal matching of G. ### min maximal matching ### $min_maximal_matching(G)$ Returns the minimum maximal matching of G. That is, out of all maximal matchings of the graph G, the smallest is returned. Parameters G (NetworkX graph) – Undirected graph **Returns** min_maximal_matching – Returns a set of edges such that no two edges share a common endpoint and every edge not in the set shares some common endpoint in the set. Cardinality will be 2*OPT in the worst case. ### Return type set ## **Notes** The algorithm computes an approximate solution fo the minimum maximal cardinality matching problem. The solution is no more than 2 * OPT in size. Runtime is O(|E|). #### References ## 4.1.8 Ramsey Ramsey numbers. ramsey_R2(G) Approximately computes the Ramsey number R(2; s, t) for graph. ## ramsey_R2 ## ${\tt ramsey_R2}\;(G)$ Approximately computes the Ramsey number R(2; s, t) for graph. **Parameters G** (*NetworkX graph*) – Undirected graph **Returns** max_pair – Maximum clique, Maximum independent set. **Return type** (set, set) tuple ## 4.1.9 Vertex Cover #### **Vertex Cover** Given an undirected graph G = (V, E) and a function w assigning nonnegative weights to its vertices, find a minimum weight subset of V such that each edge in E is incident to at least one vertex in the subset. http://en.wikipedia.org/wiki/Vertex_cover min weighted vertex cover(G[, weight]) 2-OPT Local Ratio for Minimum Weighted Vertex Cover ## min_weighted_vertex_cover ## min_weighted_vertex_cover(G, weight=None) 2-OPT Local Ratio for Minimum Weighted Vertex Cover Find an approximate minimum weighted vertex cover of a graph. #### **Parameters** - **G** (NetworkX graph) Undirected graph - weight (*None or string, optional (default = None*)) If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1. Returns min_weighted_cover - Returns a set of vertices whose weight sum is no more than 2 * 4.1. Approximation OPT. ## Return type set #### **Notes** Local-Ratio algorithm for computing an approximate vertex cover. Algorithm greedily reduces the costs over edges and iteratively builds a cover. Worst-case runtime is O(|E|). #### References # 4.2 Assortativity ## 4.2.1 Assortativity | $degree_assortativity_coefficient(G[, x, y,])$ | Compute degree assortativity of graph. | |------------------------------------------------------------|------------------------------------------------------| | attribute_assortativity_coefficient(G, attribute) | Compute assortativity for node attributes. | | <pre>numeric_assortativity_coefficient(G, attribute)</pre> | Compute assortativity for numerical node attributes. | | $degree_pearson_correlation_coefficient(G[,])$ | Compute degree assortativity of graph. | ## degree assortativity coefficient **degree_assortativity_coefficient** (G, x='out', y='in', weight=None, nodes=None) Compute degree assortativity of graph. Assortativity measures the similarity of connections in the graph with respect to the node degree. ## **Parameters** - **G** (NetworkX graph) – - **x** (*string* ('*in*','*out*')) The degree type for source node (directed graphs only). - y (string ('in','out')) The degree type for target node (directed graphs only). - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. - nodes (list or iterable (optional)) Compute degree assortativity only for nodes in container. The default is all nodes. **Returns** $\mathbf{r}$ – Assortativity of graph by degree. Return type float ## **Examples** ``` >>> G=nx.path_graph(4) >>> r=nx.degree_assortativity_coefficient(G) ``` ``` >>> print("%3.1f"%r) -0.5 ``` #### See also: ``` attribute_assortativity_coefficient(), numeric_assortativity_coefficient(), neighbor_connectivity(), degree_mixing_dict(), degree_mixing_matrix() ``` #### **Notes** This computes Eq. (21) in Ref. ⁷, where e is the joint probability distribution (mixing matrix) of the degrees. If G is directed than the matrix e is the joint probability of the user-specified degree type for the source and target. #### References ## attribute_assortativity_coefficient ``` attribute_assortativity_coefficient (G, attribute, nodes=None) ``` Compute assortativity for node attributes. Assortativity measures the similarity of connections in the graph with respect to the given attribute. ## **Parameters** - **G** (NetworkX graph) – - attribute (string) Node attribute key - **nodes** (*list or iterable (optional)*) Compute attribute assortativity for nodes in container. The default is all nodes. **Returns** $\mathbf{r}$ – Assortativity of graph for given attribute Return type float ## **Examples** ``` >>> G=nx.Graph() >>> G.add_nodes_from([0,1],color='red') >>> G.add_nodes_from([2,3],color='blue') >>> G.add_edges_from([(0,1),(2,3)]) >>> print(nx.attribute_assortativity_coefficient(G,'color')) 1.0 ``` ## **Notes** This computes Eq. (2) in Ref. 8 , trace(M)-sum(M))/(1-sum(M), where M is the joint probability distribution (mixing matrix) of the specified attribute. 4.2. Assortativity 139 ⁷ M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003 ⁸ M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003 ## numeric assortativity coefficient ``` numeric_assortativity_coefficient(G, attribute, nodes=None) ``` Compute assortativity for numerical node attributes. Assortativity measures the similarity of connections in the graph with respect to the given numeric attribute. #### **Parameters** - **G** (NetworkX graph) – - attribute (string) Node attribute key - **nodes** (*list or iterable (optional)*) Compute numeric assortativity only for attributes of nodes in container. The default is all nodes. **Returns** $\mathbf{r}$ – Assortativity of graph for given attribute Return type float ### **Examples** ``` >>> G=nx.Graph() >>> G.add_nodes_from([0,1],size=2) >>> G.add_nodes_from([2,3],size=3) >>> G.add_edges_from([(0,1),(2,3)]) >>> print(nx.numeric_assortativity_coefficient(G,'size')) 1.0 ``` #### **Notes** This computes Eq. (21) in Ref. 9, for the mixing matrix of of the specified attribute. ### References ## degree pearson correlation coefficient ``` degree_pearson_correlation_coefficient (G, x='out', y='in', weight=None, nodes=None) Compute degree assortativity of graph. ``` Assortativity measures the similarity of connections in the graph with respect to the node degree. This is the same as degree_assortativity_coefficient but uses the potentially faster scipy.stats.pearsonr function. #### **Parameters** - **G** (NetworkX graph) – - **x** (*string* ('*in*','*out*')) The degree type for source node (directed graphs only). - y (string ('in','out')) The degree type for target node (directed graphs only). - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. ⁹ M. E. J. Newman, Mixing patterns in networks
Physical Review E, 67 026126, 2003 nodes (list or iterable (optional)) – Compute pearson correlation of degrees only for specified nodes. The default is all nodes. **Returns** $\mathbf{r}$ – Assortativity of graph by degree. Return type float ### **Examples** ``` >>> G=nx.path_graph(4) >>> r=nx.degree_pearson_correlation_coefficient(G) >>> print("%3.1f"%r) -0.5 ``` #### **Notes** This calls scipy.stats.pearsonr. #### References ## 4.2.2 Average neighbor degree average_neighbor_degree(G[, source, target, ...]) Returns the average degree of the neighborhood of each node. ## average neighbor degree **average_neighbor_degree** (*G*, *source='out'*, *target='out'*, *nodes=None*, *weight=None*) Returns the average degree of the neighborhood of each node. The average degree of a node i is $$k_{nn,i} = \frac{1}{|N(i)|} \sum_{j \in N(i)} k_j$$ where N(i) are the neighbors of node i and $k_j$ is the degree of node j which belongs to N(i). For weighted graphs, an analogous measure can be defined $i^{(0)}$ , $$k_{nn,i}^w = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j$$ where $s_i$ is the weighted degree of node i, $w_{ij}$ is the weight of the edge that links i and j and N(i) are the neighbors of node i. ## **Parameters** - G (NetworkX graph) - - **source** (*string* ("*in*"|"*out*")) Directed graphs only. Use "in"- or "out"-degree for source node. - target (string ("in"|"out")) Directed graphs only. Use "in"- or "out"-degree for target node 4.2. Assortativity 141 ¹⁰ A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, "The architecture of complex weighted networks". PNAS 101 (11): 3747–3752 (2004). • **nodes** (*list or iterable, optional*) – Compute neighbor degree for specified nodes. The default is all nodes in the graph. weight [string or None, optional (default=None)] The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. **Returns d** – A dictionary keyed by node with average neighbors degree value. Return type dict ## **Examples** ``` >>> G=nx.path_graph(4) >>> G.edge[0][1]['weight'] = 5 >>> G.edge[2][3]['weight'] = 3 ``` ``` >>> nx.average_neighbor_degree(G) {0: 2.0, 1: 1.5, 2: 1.5, 3: 2.0} >>> nx.average_neighbor_degree(G, weight='weight') {0: 2.0, 1: 1.1666666666666667, 2: 1.25, 3: 2.0} ``` ``` >>> G=nx.DiGraph() >>> G.add_path([0,1,2,3]) >>> nx.average_neighbor_degree(G, source='in', target='in') {0: 1.0, 1: 1.0, 2: 1.0, 3: 0.0} ``` ``` >>> nx.average_neighbor_degree(G, source='out', target='out') {0: 1.0, 1: 1.0, 2: 0.0, 3: 0.0} ``` ## **Notes** For directed graphs you can also specify in-degree or out-degree by passing keyword arguments. ### See also: ``` average_degree_connectivity() ``` #### References # 4.2.3 Average degree connectivity ``` average_degree_connectivity(G[, source, ...])Compute the average degree connectivity of graph.k_nearest_neighbors(G[, source, target, ...])Compute the average degree connectivity of graph. ``` #### average degree connectivity $\begin{tabular}{ll} \textbf{average_degree_connectivity} (G, source='in+out', target='in+out', nodes=None, weight=None) \\ \textbf{Compute the average degree connectivity of graph.} \end{tabular}$ The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted graphs, an analogous measure can be computed using the weighted average neighbors degree defined in ¹¹, for ¹¹ A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, "The architecture of complex weighted networks". PNAS 101 (11): a node i, as: $$k_{nn,i}^w = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j$$ where $s_i$ is the weighted degree of node i, $w_{ij}$ is the weight of the edge that links i and j, and N(i) are the neighbors of node i. #### **Parameters** - **G** (NetworkX graph) – - **source** ("in"|"out"|"in+out" (default:"in+out")) Directed graphs only. Use "in"- or "out"-degree for source node. - target ("in"|"out"|"in+out" (default:"in+out") Directed graphs only. Use "in"- or "out"-degree for target node. - **nodes** (*list or iterable (optional*)) Compute neighbor connectivity for these nodes. The default is all nodes. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. **Returns** $\mathbf{d}$ – A dictionary keyed by degree k with the value of average connectivity. Return type dict #### **Examples** ``` >>> G=nx.path_graph(4) >>> G.edge[1][2]['weight'] = 3 >>> nx.k_nearest_neighbors(G) {1: 2.0, 2: 1.5} >>> nx.k_nearest_neighbors(G, weight='weight') {1: 2.0, 2: 1.75} ``` #### See also: neighbors_average_degree() ## **Notes** This algorithm is sometimes called "k nearest neighbors" and is also available as k_nearest_neighbors. ### References ### k nearest neighbors **k_nearest_neighbors** (*G*, *source='in+out'*, *target='in+out'*, *nodes=None*, *weight=None*) Compute the average degree connectivity of graph. The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted graphs, an analogous measure can be computed using the weighted average neighbors degree defined in ¹², for 4.2. Assortativity 143 ^{3747-3752 (2004).} ¹² A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, "The architecture of complex weighted networks". PNAS 101 (11): 3747–3752 (2004). a node i, as: $$k_{nn,i}^w = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j$$ where $s_i$ is the weighted degree of node i, $w_{ij}$ is the weight of the edge that links i and j, and N(i) are the neighbors of node i. #### **Parameters** - **G** (NetworkX graph) – - **source** ("in"|"out"|"in+out" (default:"in+out")) Directed graphs only. Use "in"- or "out"-degree for source node. - target ("in"|"out"|"in+out" (default:"in+out") Directed graphs only. Use "in"- or "out"-degree for target node. - nodes (list or iterable (optional)) Compute neighbor connectivity for these nodes. The default is all nodes. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. **Returns** $\mathbf{d}$ – A dictionary keyed by degree k with the value of average connectivity. Return type dict #### **Examples** ``` >>> G=nx.path_graph(4) >>> G.edge[1][2]['weight'] = 3 >>> nx.k_nearest_neighbors(G) {1: 2.0, 2: 1.5} >>> nx.k_nearest_neighbors(G, weight='weight') {1: 2.0, 2: 1.75} ``` #### See also: neighbors_average_degree() ## **Notes** This algorithm is sometimes called "k nearest neighbors" and is also available as k_nearest_neighbors. ## References # **4.2.4 Mixing** | _attribute_mixing_matrix(G, attribute[,]) | Return mixing matrix for attribute. | |----------------------------------------------------------|------------------------------------------------------------------| | $degree_mixing_matrix(G[, x, y, weight,])$ | Return mixing matrix for attribute. | | <pre>degree_mixing_dict(G[, x, y, weight, nodes,])</pre> | Return dictionary representation of mixing matrix for degree. | | <pre>attribute_mixing_dict(G, attribute[, nodes,])</pre> | Return dictionary representation of mixing matrix for attribute. | ## attribute mixing matrix ### **Parameters** - **G** (graph) NetworkX graph object. - attribute (*string*) Node attribute key. - nodes (*list or iterable (optional*)) Use only nodes in container to build the matrix. The default is all nodes. - mapping (*dictionary, optional*) Mapping from node attribute to integer index in matrix. If not specified, an arbitrary ordering will be used. - normalized (bool (default=False)) Return counts if False or probabilities if True. **Returns** m – Counts or joint probability of occurrence of attribute pairs. Return type numpy array ## degree_mixing_matrix **degree_mixing_matrix** (G, x='out', y='in', weight=None, nodes=None, normalized=True) Return mixing matrix for attribute. #### **Parameters** - **G** (*graph*) NetworkX graph object. - **x** (*string* ('*in*','*out*')) The degree type for source node (directed graphs only). - y (string ('in','out')) The degree type for target node (directed graphs only). - nodes (list or iterable (optional)) Build the matrix using only nodes in container. The default is all nodes. - weight (string or None, optional (default=None)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. - **normalized** (*bool* (*default=False*)) Return counts if False or probabilities if True. **Returns** m – Counts, or joint probability, of occurrence of node degree. **Return type** numpy array ## degree_mixing_dict $degree_mixing_dict(G, x='out', y='in', weight=None, nodes=None, normalized=False)$ Return dictionary representation of mixing matrix for degree. ## **Parameters** - **G** (*graph*) NetworkX graph object. - **x** (*string* ('*in*','*out*')) The degree type for source node (directed graphs only). - y (string ('in','out')) The degree type for target node (directed graphs only). 4.2. Assortativity 145 - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. - normalized (bool (default=False)) Return counts if False or probabilities if True. **Returns d** – Counts or joint probability of occurrence of degree pairs. Return type dictionary ## attribute_mixing_dict ``` attribute_mixing_dict (G, attribute, nodes=None, normalized=False) Return dictionary representation of mixing matrix for attribute. ``` #### **Parameters** - **G** (graph) NetworkX graph object. - attribute (*string*) Node attribute key. - **nodes** (*list or iterable (optional)*) Unse nodes in container to build the dict. The default is all nodes. - normalized (bool (default=False)) Return counts if False or probabilities if True. ## **Examples** ``` >>> G=nx.Graph() >>>
G.add_nodes_from([0,1],color='red') >>> G.add_nodes_from([2,3],color='blue') >>> G.add_edge(1,3) >>> d=nx.attribute_mixing_dict(G,'color') >>> print(d['red']['blue']) 1 >>> print(d['blue']['red']) # d symmetric for undirected graphs 1 ``` **Returns d** – Counts or joint probability of occurrence of attribute pairs. Return type dictionary # 4.3 Bipartite This module provides functions and operations for bipartite graphs. Bipartite graphs B=(U,V,E) have two node sets U,V and edges in E that only connect nodes from opposite sets. It is common in the literature to use an spatial analogy referring to the two node sets as top and bottom nodes. The bipartite algorithms are not imported into the networkx namespace at the top level so the easiest way to use them is with: ``` >>> import networkx as nx >>> from networkx.algorithms import bipartite ``` NetworkX does not have a custom bipartite graph class but the Graph() or DiGraph() classes can be used to represent bipartite graphs. However, you have to keep track of which set each node belongs to, and make sure that there is no edge between nodes of the same set. The convention used in NetworkX is to use a node attribute named "bipartite" with values 0 or 1 to identify the sets each node belongs to. For example: ``` >>> B = nx.Graph() >>> B.add_nodes_from([1,2,3,4], bipartite=0) # Add the node attribute "bipartite" >>> B.add_nodes_from(['a','b','c'], bipartite=1) >>> B.add_edges_from([(1,'a'), (1,'b'), (2,'b'), (2,'c'), (3,'c'), (4,'a')]) ``` Many algorithms of the bipartite module of NetworkX require, as an argument, a container with all the nodes that belong to one set, in addition to the bipartite graph B. If B is connected, you can find the node sets using a two-coloring algorithm: ``` >>> nx.is_connected(B) True >>> bottom_nodes, top_nodes = bipartite.sets(B) ``` list(top_nodes) [1, 2, 3, 4] list(bottom_nodes) ['a', 'c', 'b'] However, if the input graph is not connected, there are more than one possible colorations. Thus, the following result is correct: ``` >>> B.remove_edge(2,'c') >>> nx.is_connected(B) False >>> bottom_nodes, top_nodes = bipartite.sets(B) ``` list(top_nodes) [1, 2, 4, 'c'] list(bottom_nodes) ['a', 3, 'b'] Using the "bipartite" node attribute, you can easily get the two node sets: ``` >>> top_nodes = set(n for n,d in B.nodes(data=True) if d['bipartite']==0) >>> bottom_nodes = set(B) - top_nodes ``` list(top_nodes) [1, 2, 3, 4] list(bottom_nodes) ['a', 'c', 'b'] So you can easily use the bipartite algorithms that require, as an argument, a container with all nodes that belong to one node set: ``` >>> print (round (bipartite.density (B, bottom_nodes), 2)) 0.42 >>> G = bipartite.projected_graph (B, top_nodes) >>> G.edges() [(1, 2), (1, 4)] ``` All bipartite graph generators in NetworkX build bipartite graphs with the "bipartite" node attribute. Thus, you can use the same approach: ``` >>> RB = bipartite.random_graph(5, 7, 0.2) >>> RB_top = set(n for n,d in RB.nodes(data=True) if d['bipartite']==0) >>> RB_bottom = set(RB) - RB_top >>> list(RB_top) [0, 1, 2, 3, 4] >>> list(RB_bottom) [5, 6, 7, 8, 9, 10, 11] ``` For other bipartite graph generators see the bipartite section of Graph generators. ## 4.3.1 Basic functions ## **Bipartite Graph Algorithms** | is_bipartite(G) | Returns True if graph G is bipartite, False if not. | |--------------------------------------------|-------------------------------------------------------------------| | <pre>is_bipartite_node_set(G, nodes)</pre> | Returns True if nodes and G/nodes are a bipartition of G. | | sets(G) | Returns bipartite node sets of graph G. | | color(G) | Returns a two-coloring of the graph. | | density(B, nodes) | Return density of bipartite graph B. | | degrees(B, nodes[, weight]) | Return the degrees of the two node sets in the bipartite graph B. | ## is_bipartite ## $is_bipartite(G)$ Returns True if graph G is bipartite, False if not. Parameters G (NetworkX graph) - #### **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) >>> print(bipartite.is_bipartite(G)) True ``` ### See also: ``` color(), is_bipartite_node_set() ``` ## is bipartite node set ## is_bipartite_node_set(G, nodes) Returns True if nodes and G/nodes are a bipartition of G. ## **Parameters** - **G** (NetworkX graph) – - nodes (list or container) Check if nodes are a one of a bipartite set. ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) >>> X = set([1,3]) >>> bipartite.is_bipartite_node_set(G,X) True ``` ### **Notes** For connected graphs the bipartite sets are unique. This function handles disconnected graphs. #### sets #### sets(G) Returns bipartite node sets of graph G. Raises an exception if the graph is not bipartite. Parameters G (NetworkX graph) - **Returns** (X,Y) – One set of nodes for each part of the bipartite graph. Return type two-tuple of sets ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) >>> X, Y = bipartite.sets(G) >>> list(X) [0, 2] >>> list(Y) [1, 3] ``` ### See also: ``` color() ``` ### color #### $\mathtt{color}(G)$ Returns a two-coloring of the graph. Raises an exception if the graph is not bipartite. Parameters G (NetworkX graph) - **Returns** color – A dictionary keyed by node with a 1 or 0 as data for each node color. Return type dictionary Raises NetworkXError if the graph is not two-colorable. - ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) >>> c = bipartite.color(G) >>> print(c) {0: 1, 1: 0, 2: 1, 3: 0} ``` You can use this to set a node attribute indicating the biparite set: ``` >>> nx.set_node_attributes(G, 'bipartite', c) >>> print(G.node[0]['bipartite']) 1 >>> print(G.node[1]['bipartite']) 0 ``` ## density ## density (B, nodes) Return density of bipartite graph B. #### **Parameters** - **G** (NetworkX graph) – - **nodes** (*list or container*) Nodes in one set of the bipartite graph. **Returns d** – The bipartite density Return type float ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.complete_bipartite_graph(3,2) >>> X=set([0,1,2]) >>> bipartite.density(G,X) 1.0 >>> Y=set([3,4]) >>> bipartite.density(G,Y) 1.0 ``` #### See also: color() ## degrees ``` degrees (B, nodes, weight=None) ``` Return the degrees of the two node sets in the bipartite graph B. ## **Parameters** - **G** (NetworkX graph) – - **nodes** (*list or container*) Nodes in one set of the bipartite graph. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. **Returns** (degX,degY) – The degrees of the two bipartite sets as dictionaries keyed by node. Return type tuple of dictionaries ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.complete_bipartite_graph(3,2) >>> Y=set([3,4]) >>> degX, degY=bipartite.degrees(G,Y) >>> degX {0: 2, 1: 2, 2: 2} ``` ### See also: ``` color(), density() ``` ## 4.3.2 Matching Provides functions for computing a maximum cardinality matching in a bipartite graph. If you don't care about the particular implementation of the maximum matching algorithm, simply use the maximum_matching(). If you do care, you can import one of the named maximum matching algorithms directly. For example, to find a maximum matching in the complete bipartite graph with two vertices on the left and three vertices on the right: ``` >>> import networkx as nx >>> G = nx.complete_bipartite_graph(2, 3) >>> left, right = nx.bipartite.sets(G) >>> list(left) [0, 1] >>> list(right) [2, 3, 4] >>> nx.bipartite.maximum_matching(G) {0: 2, 1: 3, 2: 0, 3: 1} ``` The dictionary returned by maximum_matching() includes a mapping for vertices in both the left and right vertex sets. | $eppstein_matching(G)$ | Returns the maximum cardinality matching of the bipartite graph $G$ . | |-----------------------------------------|-------------------------------------------------------------------------------------------| | $hopcroft_karp_matching(G)$ | Returns the maximum cardinality matching of the bipartite graph $G$ . | | <pre>to_vertex_cover(G, matching)</pre> | Returns the minimum vertex cover corresponding to the given maximum matching of the bipar | | | | ## eppstein_matching ## $eppstein_{matching}(G)$ Returns the maximum cardinality matching of the bipartite graph G. Parameters G (NetworkX graph) – Undirected bipartite graph #### Returns matches - The matching is returned as a dictionary, matches, such that matches [v] == w if node v is matched to node w. Unmatched nodes do not occur as a key in mate. **Return type** dictionary ### **Notes** This function is implemented with David Eppstein's version of the algorithm Hopcroft-Karp algorithm (see hopcroft_karp_matching()), which originally appeared in the Python Algorithms and Data Structures library (PADS). #### See also: ``` hopcroft_karp_matching() ``` ## hopcroft_karp_matching ## $hopcroft_karp_matching(G)$ Returns the maximum cardinality matching of the bipartite graph G. Parameters G (NetworkX graph) – Undirected bipartite graph #### Returns #### matches - The matching is returned as a dictionary, matches, such that matches [v] == w if node v is matched to node w. Unmatched nodes do not occur as a key in mate. Return type dictionary #### **Notes** This function is implemented with the Hopcroft-Karp matching algorithm for bipartite graphs. #### See also: ``` eppstein_matching() ``` #### References ## to vertex cover ## to_vertex_cover(G, matching) Returns the minimum vertex cover corresponding to the given maximum matching of the bipartite graph G. #### **Parameters** - **G** (NetworkX graph) Undirected bipartite graph - matching (dictionary) A dictionary whose keys are vertices in G and whose values are the distinct neighbors comprising the maximum matching for G, as returned by, for example, maximum_matching().
The dictionary must represent the maximum matching. #### Returns #### vertex cover - The minimum vertex cover in G. Return type set #### Notes This function is implemented using the procedure guaranteed by Konig's theorem, which proves an equivalence between a maximum matching and a minimum vertex cover in bipartite graphs. Since a minimum vertex cover is the complement of a maximum independent set for any graph, one can compute the maximum independent set of a bipartite graph this way: ``` >>> import networkx as nx >>> G = nx.complete_bipartite_graph(2, 3) >>> matching = nx.bipartite.maximum_matching(G) >>> vertex_cover = nx.bipartite.to_vertex_cover(G, matching) ``` ``` >>> independent_set = set(G) - vertex_cover >>> print(list(independent_set)) [2, 3, 4] ``` ## 4.3.3 Matrix ## **Biadjacency matrices** | biadjacency_matrix(G,row_order[,]) | Return the biadjacency matrix of the bipartite graph G. | |--------------------------------------------------------|--------------------------------------------------------------------------| | <pre>from_biadjacency_matrix(A[, create_using,])</pre> | Creates a new bipartite graph from a biadjacency matrix given as a SciPy | ## biadjacency matrix **biadjacency_matrix** (*G*, row_order, column_order=None, dtype=None, weight='weight', format='csr') Return the biadjacency matrix of the bipartite graph G. Let G=(U,V,E) be a bipartite graph with node sets $U=u_1,...,u_r$ and $V=v_1,...,v_s$ . The biadjacency matrix 13 is the $r \times s$ matrix B in which $b_{i,j}=1$ if, and only if, $(u_i,v_j) \in E$ . If the parameter weight is not None and matches the name of an edge attribute, its value is used instead of 1. #### **Parameters** - **G** (graph) A NetworkX graph - row_order (list of nodes) The rows of the matrix are ordered according to the list of nodes. - **column_order** (*list, optional*) The columns of the matrix are ordered according to the list of nodes. If column_order is None, then the ordering of columns is arbitrary. - **dtype** (*NumPy data-type, optional*) A valid NumPy dtype used to initialize the array. If None, then the NumPy default is used. - weight (*string or None, optional (default='weight'*)) The edge data key used to provide each value in the matrix. If None, then each edge has weight 1. - **format** (*str in {'bsr'*, '*csr'*, '*csc'*, '*coo'*, '*lil'*, '*dia'*, '*dok'}*) The type of the matrix to be returned (default 'csr'). For some algorithms different implementations of sparse matrices can perform better. See ¹⁴ for details. **Returns** M – Biadjacency matrix representation of the bipartite graph G. Return type SciPy sparse matrix #### **Notes** No attempt is made to check that the input graph is bipartite. For directed bipartite graphs only successors are considered as neighbors. To obtain an adjacency matrix with ones (or weight values) for both predecessors and successors you have to generate two biadjacency matrices where the rows of one of them are the columns of the other, and then add one to the transpose of the other. ### See also: ``` adjacency_matrix(), from_biadjacency_matrix() ``` $^{^{13}\} http://en.wikipedia.org/wiki/Adjacency_matrix\#Adjacency_matrix_of_a_bipartite_graph$ ¹⁴ Scipy Dev. References, "Sparse Matrices", http://docs.scipy.org/doc/scipy/reference/sparse.html ## from_biadjacency_matrix from_biadjacency_matrix (A, create_using=None, edge_attribute='weight') Creates a new bipartite graph from a biadjacency matrix given as a SciPy sparse matrix. #### **Parameters** - A (scipy sparse matrix) A biadjacency matrix representation of a graph - create_using (NetworkX graph) Use specified graph for result. The default is Graph() - **edge_attribute** (*string*) Name of edge attribute to store matrix numeric value. The data will have the same type as the matrix entry (int, float, (real,imag)). #### **Notes** The nodes are labeled with the attribute bipartite set to an integer 0 or 1 representing membership in part 0 or part 1 of the bipartite graph. If $create_u sing$ is an instance of networkx.MultiGraph or networkx.MultiDiGraph and the entries of A are of type int, then this function returns a multigraph (of the same type as $create_u sing$ ) with parallel edges. In this case, $edge_a ttribute$ will be ignored. #### See also: biadjacency_matrix(), from_numpy_matrix() #### References [1] http://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph ## 4.3.4 Projections One-mode (unipartite) projections of bipartite graphs. | <pre>projected_graph(B, nodes[, multigraph])</pre> | Returns the projection of B onto one of its node sets. | |--------------------------------------------------------|-----------------------------------------------------------------| | <pre>weighted_projected_graph(B, nodes[, ratio])</pre> | Returns a weighted projection of B onto one of its node sets. | | collaboration_weighted_projected_graph(B, nodes) | Newman's weighted projection of B onto one of its node sets. | | overlap_weighted_projected_graph(B, nodes[,]) | Overlap weighted projection of B onto one of its node sets. | | $generic_weighted_projected_graph(B, nodes[,])$ | Weighted projection of B with a user-specified weight function. | ## projected graph projected_graph (B, nodes, multigraph=False) Returns the projection of B onto one of its node sets. Returns the graph G that is the projection of the bipartite graph B onto the specified nodes. They retain their attributes and are connected in G if they have a common neighbor in B. #### **Parameters** • **B** (*NetworkX graph*) – The input graph should be bipartite. - nodes (list or iterable) Nodes to project onto (the "bottom" nodes). - multigraph (bool (default=False)) If True return a multigraph where the multiple edges represent multiple shared neighbors. They edge key in the multigraph is assigned to the label of the neighbor. **Returns** Graph – A graph that is the projection onto the given nodes. Return type NetworkX graph or multigraph ### **Examples** ``` >>> from networkx.algorithms import bipartite >>> B = nx.path_graph(4) >>> G = bipartite.projected_graph(B, [1,3]) >>> print(G.nodes()) [1, 3] >>> print(G.edges()) [(1, 3)] ``` If nodes a, and b are connected through both nodes 1 and 2 then building a multigraph results in two edges in the projection onto [a, b]: ``` >>> B = nx.Graph() >>> B.add_edges_from([('a', 1), ('b', 1), ('a', 2), ('b', 2)]) >>> G = bipartite.projected_graph(B, ['a', 'b'], multigraph=True) >>> print([sorted((u,v)) for u,v in G.edges()]) [['a', 'b'], ['a', 'b']] ``` No attempt is made to verify that the input graph B is bipartite. Returns a simple graph that is the projection of the bipartite graph B onto the set of nodes given in list nodes. If multigraph=True then a multigraph is returned with an edge for every shared neighbor. Directed graphs are allowed as input. The output will also then be a directed graph with edges if there is a directed path between the nodes. The graph and node properties are (shallow) copied to the projected graph. ### See also: ``` is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), collaboration_weighted_projected_graph(), overlap_weighted_projected_graph(), generic_weighted_projected_graph() ``` ## weighted projected graph ``` weighted_projected_graph (B, nodes, ratio=False) ``` Returns a weighted projection of B onto one of its node sets. The weighted projected graph is the projection of the bipartite network B onto the specified nodes with weights representing the number of shared neighbors or the ratio between actual shared neighbors and possible shared neighbors if ratio=True ¹⁵. The nodes retain their attributes and are connected in the resulting graph if they have an edge to a common node in the original graph. ### **Parameters** • **B** (*NetworkX graph*) – The input graph should be bipartite. ¹⁵ Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. - **nodes** (*list or iterable*) Nodes to project onto (the "bottom" nodes). - ratio (Bool (default=False)) If True, edge weight is the ratio between actual shared neighbors and possible shared neighbors. If False, edges weight is the number of shared neighbors. **Returns** Graph – A graph that is the projection onto the given nodes. Return type NetworkX graph ### **Examples** ``` >>> from networkx.algorithms import bipartite >>> B = nx.path_graph(4) >>> G = bipartite.weighted_projected_graph(B, [1,3]) >>> print(G.nodes()) [1, 3] >>> print(G.edges(data=True)) [(1, 3, {'weight': 1})] >>> G = bipartite.weighted_projected_graph(B, [1,3], ratio=True) >>> print(G.edges(data=True)) [(1, 3, {'weight': 0.5})] ``` No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph. #### See also: ## References ### collaboration weighted projected graph ### collaboration_weighted_projected_graph(B, nodes) Newman's weighted projection of B onto one of its node sets. The collaboration weighted projection is the projection of the bipartite network B onto the specified nodes with weights assigned using Newman's collaboration model ¹⁶: $$w_{v,u} = \sum_{k} \frac{\delta_v^w \delta_w^k}{k_w - 1}$$ where v and u are nodes from the same bipartite node set, and w is a node of the opposite node set. The value $k_w$ is the degree of node w in the bipartite network and $\delta_v^w$ is 1 if node v is linked to node w in the original bipartite graph or 0 otherwise. The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in the original bipartite graph. #### **Parameters** - **B** (*NetworkX graph*) The input graph should be bipartite. - **nodes** (*list or iterable*) Nodes to project onto (the "bottom" nodes). ¹⁶ Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, M. E. J. Newman, Phys.
Rev. E 64, 016132 (2001). **Returns** Graph – A graph that is the projection onto the given nodes. Return type NetworkX graph ### **Examples** ``` >>> from networkx.algorithms import bipartite >>> B = nx.path_graph(5) >>> B.add_edge(1,5) >>> G = bipartite.collaboration_weighted_projected_graph(B, [0, 2, 4, 5]) >>> print(G.nodes()) [0, 2, 4, 5] >>> for edge in G.edges(data=True): print(edge) ... (0, 2, {'weight': 0.5}) (0, 5, {'weight': 0.5}) (2, 4, {'weight': 1.0}) (2, 5, {'weight': 0.5}) ``` No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph. #### See also: ``` is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), overlap_weighted_projected_graph(), projected_graph() ``` ## References ## overlap_weighted_projected_graph ``` overlap weighted projected graph (B, nodes, jaccard=True) ``` Overlap weighted projection of B onto one of its node sets. The overlap weighted projection is the projection of the bipartite network B onto the specified nodes with weights representing the Jaccard index between the neighborhoods of the two nodes in the original bipartite network ¹⁷: $$w_{v,u} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$ or if the parameter 'jaccard' is False, the fraction of common neighbors by minimum of both nodes degree in the original bipartite graph ¹: $$w_{v,u} = \frac{|N(u) \cap N(v)|}{\min(|N(u)|, |N(v)|)}$$ The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in the original bipartite graph. #### **Parameters** - **B** (*NetworkX graph*) The input graph should be bipartite. - nodes (list or iterable) Nodes to project onto (the "bottom" nodes). ¹⁷ Borgatti, S.P. and Halgin, D. In press. Analyzing Affiliation Networks. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. • jaccard (Bool (default=True)) - **Returns** Graph – A graph that is the projection onto the given nodes. Return type NetworkX graph ### **Examples** ``` >>> from networkx.algorithms import bipartite >>> B = nx.path_graph(5) >>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4]) >>> print(G.nodes()) [0, 2, 4] >>> print(G.edges(data=True)) [(0, 2, {'weight': 0.5}), (2, 4, {'weight': 0.5})] >>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4], jaccard=False) >>> print(G.edges(data=True)) [(0, 2, {'weight': 1.0}), (2, 4, {'weight': 1.0})] ``` No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph. ### See also: ``` is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), collaboration_weighted_projected_graph(), generic_weighted_projected_graph(), projected_graph() ``` ### References ## generic_weighted_projected_graph ``` generic_weighted_projected_graph (B, nodes, weight_function=None) ``` Weighted projection of B with a user-specified weight function. The bipartite network B is projected on to the specified nodes with weights computed by a user-specified function. This function must accept as a parameter the neighborhood sets of two nodes and return an integer or a float. The nodes retain their attributes and are connected in the resulting graph if they have an edge to a common node in the original graph. #### **Parameters** - **B** (*NetworkX graph*) The input graph should be bipartite. - nodes (list or iterable) Nodes to project onto (the "bottom" nodes). - weight_function (function) This function must accept as parameters the same input graph that this function, and two nodes; and return an integer or a float. The default function computes the number of shared neighbors. **Returns** Graph – A graph that is the projection onto the given nodes. Return type NetworkX graph #### **Examples** ``` >>> from networkx.algorithms import bipartite >>> # Define some custom weight functions >>> def jaccard(G, u, v): unbrs = set(G[u]) vnbrs = set(G[v]) return float(len(unbrs & vnbrs)) / len(unbrs | vnbrs) . . . >>> def my_weight(G, u, v, weight='weight'): w = 0 . . . for nbr in set(G[u]) & set(G[v]): w += G.edge[u][nbr].get(weight, 1) + G.edge[v][nbr].get(weight, 1) return w . . . >>> # A complete bipartite graph with 4 nodes and 4 edges >>> B = nx.complete_bipartite_graph(2,2) >>> # Add some arbitrary weight to the edges >>> for i, (u,v) in enumerate(B.edges()): B.edge[u][v]['weight'] = i + 1 >>> for edge in B.edges(data=True): print (edge) . . . (0, 2, {'weight': 1}) (0, 3, {'weight': 2}) (1, 2, {'weight': 3}) (1, 3, {'weight': 4}) >>> # Without specifying a function, the weight is equal to # shared partners >>> G = bipartite.generic_weighted_projected_graph(B, [0, 1]) >>> print (G.edges (data=True)) [(0, 1, {'weight': 2})] >>> # To specify a custom weight function use the weight_function parameter >>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=jaccard) >>> print (G.edges (data=True)) [(0, 1, {'weight': 1.0})] >>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=my_weight) >>> print (G.edges (data=True)) [(0, 1, {'weight': 10})] ``` No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph. #### See also: ``` is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), collaboration_weighted_projected_graph(), overlap_weighted_projected_graph(), projected_graph() ``` ## 4.3.5 Spectral Spectral bipartivity measure. spectral_bipartivity(G[, nodes, weight]) Returns the spectral bipartivity. ## spectral bipartivity ``` spectral_bipartivity (G, nodes=None, weight='weight') ``` Returns the spectral bipartivity. ## **Parameters** - G (NetworkX graph) - - **nodes** (*list or container optional*(*default is all nodes*)) Nodes to return value of spectral bipartivity contribution. - weight (string or None optional (default = 'weight')) Edge data key to use for edge weights. If None, weights set to 1. **Returns** sb – A single number if the keyword nodes is not specified, or a dictionary keyed by node with the spectral bipartivity contribution of that node as the value. Return type float or dict ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) >>> bipartite.spectral_bipartivity(G) 1.0 ``` ## **Notes** This implementation uses Numpy (dense) matrices which are not efficient for storing large sparse graphs. #### See also: color() ## References # 4.3.6 Clustering | <pre>clustering(G[, nodes, mode])</pre> | Compute a bipartite clustering coefficient for nodes. | | |-------------------------------------------------|-------------------------------------------------------|--| | <pre>average_clustering(G[, nodes, mode])</pre> | Compute the average bipartite clustering coefficient. | | | <pre>latapy_clustering(G[, nodes, mode])</pre> | Compute a bipartite clustering coefficient for nodes. | | | $robins_alexander_clustering(G)$ | Compute the bipartite clustering of G. | | ## clustering ``` clustering(G, nodes=None, mode='dot') ``` Compute a bipartite clustering coefficient for nodes. The bipartie clustering coefficient is a measure of local density of connections defined as ¹⁸: $$c_u = \frac{\sum_{v \in N(N(v))} c_{uv}}{|N(N(u))|}$$ where N(N(u)) are the second order neighbors of u in G excluding u, and $c_{uv}$ is the pairwise clustering coefficient between nodes u and v. The mode selects the function for $c_{uv}$ which can be: dot: $$c_{uv} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$ min: $$c_{uv} = \frac{|N(u) \cap N(v)|}{\min(|N(u)|, |N(v)|)}$$ max: $$c_{uv} = \frac{|N(u) \cap N(v)|}{max(|N(u)|, |N(v)|)}$$ #### **Parameters** - **G** (*graph*) A bipartite graph - nodes (list or iterable (optional)) Compute bipartite clustering for these nodes. The default is all nodes in G. - **mode** (*string*) The pariwise bipartite clustering method to be used in the computation. It must be "dot", "max", or "min". Returns clustering – A dictionary keyed by node with the clustering coefficient value. Return type dictionary #### **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) # path graphs are bipartite >>> c = bipartite.clustering(G) >>> c[0] 0.5 >>> c = bipartite.clustering(G, mode='min') >>> c[0] 1.0 ``` ## See also: ``` robins_alexander_clustering(), square_clustering(), average_clustering() ``` ¹⁸ Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48. ## average_clustering average_clustering(G, nodes=None, mode='dot') Compute the average bipartite clustering coefficient. A clustering coefficient for the whole graph is the average, $$C = \frac{1}{n} \sum_{v \in G} c_v,$$ where n is the number of nodes in G. Similar measures for the two bipartite sets can be defined ¹⁹ $$C_X = \frac{1}{|X|} \sum_{v \in X} c_v,$$ where X is a bipartite set of G. #### **Parameters** - G(graph) a bipartite graph - **nodes** (*list or iterable, optional*) A container of nodes to use in computing the average. The nodes should be either the entire graph (the default) or one of the bipartite sets. - mode (string) The pariwise bipartite clustering method. It must be "dot", "max", or "min" **Returns** clustering – The average bipartite clustering for the given set of nodes or the entire graph if no nodes are specified. Return type float ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> G=nx.star_graph(3) # star graphs are bipartite >>> bipartite.average_clustering(G) 0.75 >>> X, Y=bipartite.sets(G) >>> bipartite.average_clustering(G, X) 0.0 >>> bipartite.average_clustering(G, Y) 1.0 ``` ## See also: clustering() ### Notes The container of nodes passed to this function must contain all of the nodes in one of the bipartite sets ("top" or "bottom") in order to compute the correct average bipartite clustering
coefficients. ¹⁹ Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48. ## latapy_clustering latapy_clustering(G, nodes=None, mode='dot') Compute a bipartite clustering coefficient for nodes. The bipartie clustering coefficient is a measure of local density of connections defined as ²⁰: $$c_u = \frac{\sum_{v \in N(N(v))} c_{uv}}{|N(N(u))|}$$ where N(N(u)) are the second order neighbors of u in G excluding u, and $c_{uv}$ is the pairwise clustering coefficient between nodes u and v. The mode selects the function for $c_{uv}$ which can be: dot: $$c_{uv} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$ min: $$c_{uv} = \frac{|N(u) \cap N(v)|}{\min(|N(u)|, |N(v)|)}$$ max: $$c_{uv} = \frac{|N(u) \cap N(v)|}{\max(|N(u)|, |N(v)|)}$$ ## **Parameters** - **G** (*graph*) A bipartite graph - **nodes** (*list or iterable (optional*)) Compute bipartite clustering for these nodes. The default is all nodes in G. - **mode** (*string*) The pariwise bipartite clustering method to be used in the computation. It must be "dot", "max", or "min". **Returns clustering** – A dictionary keyed by node with the clustering coefficient value. Return type dictionary ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) # path graphs are bipartite >>> c = bipartite.clustering(G) >>> c[0] 0.5 >>> c = bipartite.clustering(G, mode='min') >>> c[0] 1.0 ``` ### See also: ``` robins_alexander_clustering(), square_clustering(), average_clustering() ``` ²⁰ Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48. ## robins_alexander_clustering ## $robins_alexander_clustering(G)$ Compute the bipartite clustering of G. Robins and Alexander ²¹ defined bipartite clustering coefficient as four times the number of four cycles $C_4$ divided by the number of three paths $L_3$ in a bipartite graph: $$CC_4 = \frac{4 * C_4}{L_3}$$ **Parameters** G(graph) – a bipartite graph **Returns** clustering – The Robins and Alexander bipartite clustering for the input graph. Return type float ## **Examples** ``` >>> from networkx.algorithms import bipartite >>> G = nx.davis_southern_women_graph() >>> print(round(bipartite.robins_alexander_clustering(G), 3)) 0.468 ``` #### See also: latapy_clustering(), square_clustering() #### References ## 4.3.7 Redundancy Node redundancy for bipartite graphs. node_redundancy(G[, nodes]) Computes the node redundancy coefficients for the nodes in the bipartite graph G. ## node_redundancy #### node_redundancy (G, nodes=None) Computes the node redundancy coefficients for the nodes in the bipartite graph G. The redundancy coefficient of a node v is the fraction of pairs of neighbors of v that are both linked to other nodes. In a one-mode projection these nodes would be linked together even if v were not there. More formally, for any vertex v, the redundancy coefficient of 'v' is defined by $$rc(v) = \frac{|\{\{u, w\} \subseteq N(v), \ \exists v' \neq v, \ (v', u) \in E \text{ and } (v', w) \in E\}|}{\frac{|N(v)|(|N(v)|-1)}{2}},$$ where N(v) is the set of neighbors of v in G. ²¹ Robins, G. and M. Alexander (2004). Small worlds among interlocking directors: Network structure and distance in bipartite graphs. Computational & Mathematical Organization Theory 10(1), 69–94. ### **Parameters** - **G** (*graph*) A bipartite graph - nodes (*list or iterable (optional*)) Compute redundancy for these nodes. The default is all nodes in G. **Returns** redundancy – A dictionary keyed by node with the node redundancy value. Return type dictionary ## **Examples** Compute the redundancy coefficient of each node in a graph: ``` >>> import networkx as nx >>> from networkx.algorithms import bipartite >>> G = nx.cycle_graph(4) >>> rc = bipartite.node_redundancy(G) >>> rc[0] 1.0 ``` Compute the average redundancy for the graph: ``` >>> import networkx as nx >>> from networkx.algorithms import bipartite >>> G = nx.cycle_graph(4) >>> rc = bipartite.node_redundancy(G) >>> sum(rc.values()) / len(G) 1.0 ``` Compute the average redundancy for a set of nodes: ``` >>> import networkx as nx >>> from networkx.algorithms import bipartite >>> G = nx.cycle_graph(4) >>> rc = bipartite.node_redundancy(G) >>> nodes = [0, 2] >>> sum(rc[n] for n in nodes) / len(nodes) 1.0 ``` Raises NetworkXError – If any of the nodes in the graph (or in nodes, if specified) has (out)degree less than two (which would result in division by zero, according to the definition of the redundancy coefficient). #### References # 4.3.8 Centrality | <pre>closeness_centrality(G, nodes[, normalized])</pre> | Compute the closeness centrality for nodes in a bipartite network. | | |---------------------------------------------------------|--------------------------------------------------------------------|--| | $degree_centrality(G, nodes)$ | Compute the degree centrality for nodes in a bipartite network. | | | betweenness_centrality(G, nodes) | Compute betweenness centrality for nodes in a bipartite networ | | ### closeness centrality ## closeness_centrality(G, nodes, normalized=True) Compute the closeness centrality for nodes in a bipartite network. The closeness of a node is the distance to all other nodes in the graph or in the case that the graph is not connected to all other nodes in the connected component containing that node. ## **Parameters** - **G** (*graph*) A bipartite network - nodes (list or container) Container with all nodes in one bipartite node set. - normalized (bool, optional) If True (default) normalize by connected component size. Returns closeness – Dictionary keyed by node with bipartite closeness centrality as the value. Return type dictionary #### See also: betweenness_centrality(), degree_centrality(), sets(), is_bipartite() #### **Notes** The nodes input parameter must conatin all nodes in one bipartite node set, but the dictionary returned contains all nodes from both node sets. Closeness centrality is normalized by the minimum distance possible. In the bipartite case the minimum distance for a node in one bipartite node set is 1 from all nodes in the other node set and 2 from all other nodes in its own set 22 . Thus the closeness centrality for node v in the two bipartite sets U with n nodes and V with m nodes is $$c_v = \frac{m+2(n-1)}{d}$$ , for $v \in U$ , $c_v = \frac{n+2(m-1)}{d}$ , for $v \in V$ , where d is the sum of the distances from v to all other nodes. Higher values of closeness indicate higher centrality. As in the unipartite case, setting normalized=True causes the values to normalized further to n-1 / size(G)-1 where n is the number of nodes in the connected part of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness centrality for each connected part separately. ### References ## degree_centrality ## degree_centrality(G, nodes) Compute the degree centrality for nodes in a bipartite network. The degree centrality for a node v is the fraction of nodes connected to it. #### **Parameters** • **G** (*graph*) – A bipartite network ²² Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf • nodes (list or container) – Container with all nodes in one bipartite node set. **Returns centrality** – Dictionary keyed by node with bipartite degree centrality as the value. Return type dictionary ### See also: betweenness_centrality(), closeness_centrality(), sets(), is_bipartite() ### **Notes** The nodes input parameter must conatin all nodes in one bipartite node set, but the dictionary returned contains all nodes from both bipartite node sets. For unipartite networks, the degree centrality values are normalized by dividing by the maximum possible degree (which is n-1 where n is the number of nodes in G). In the bipartite case, the maximum possible degree of a node in a bipartite node set is the number of nodes in the opposite node set 23 . The degree centrality for a node v in the bipartite sets U with n nodes and V with m nodes is $$d_v = \frac{deg(v)}{m}, \text{for} v \in U,$$ $$d_v = \frac{deg(v)}{n}, \text{for} v \in V,$$ where deg(v) is the degree of node v. #### References ### betweenness centrality ## betweenness_centrality(G, nodes) Compute betweenness centrality for nodes in a bipartite network. Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest paths that pass through v. Values of betweenness are normalized by the maximum possible value which for bipartite graphs is limited by the relative size of the two node sets ²⁴. Let n be the number of nodes in the node set U and m be the number of nodes in the node set V, then nodes in U are normalized by dividing by $$\frac{1}{2}[m^2(s+1)^2 + m(s+1)(2t-s-1) - t(2s-t+3)],$$ where $$s = (n-1) \div m, t = (n-1) \mod m,$$ and nodes in V are normalized by dividing by $$\frac{1}{2}[n^2(p+1)^2 + n(p+1)(2r-p-1) - r(2p-r+3)],$$ ²³ Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf ²⁴ Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf where, $$p = (m-1) \div n, r = (m-1) \mod n.$$ #### **Parameters** - **G** (graph) A bipartite graph - nodes (list or container) Container with all nodes in one bipartite node set. Returns betweenness – Dictionary keyed by node with bipartite betweenness centrality as the value. Return type dictionary #### See also: ``` degree_centrality(),
closeness_centrality(), sets(), is_bipartite() ``` #### **Notes** The nodes input parameter must contain all nodes in one bipartite node set, but the dictionary returned contains all nodes from both node sets. #### References ## 4.3.9 Generators Generators and functions for bipartite graphs. | <pre>complete_bipartite_graph(n1, n2[, create_using])</pre> | Return the complete bipartite graph $K_{n_1,n_2}$ . | |-------------------------------------------------------------|----------------------------------------------------------------------| | <pre>configuration_model(aseq, bseq[,])</pre> | Return a random bipartite graph from two given degree sequences. | | havel_hakimi_graph(aseq, bseq[, create_using]) | Return a bipartite graph from two given degree sequences using a Ha | | reverse_havel_hakimi_graph(aseq, bseq[,]) | Return a bipartite graph from two given degree sequences using a Ha | | alternating_havel_hakimi_graph(aseq, bseq[,]) | Return a bipartite graph from two given degree sequences using an al | | <pre>preferential_attachment_graph(aseq, p[,])</pre> | Create a bipartite graph with a preferential attachment model from a | | random_graph(n, m, p[, seed, directed]) | Return a bipartite random graph. | | gnmk_random_graph(n, m, k[, seed, directed]) | Return a random bipartite graph G_{n,m,k}. | ## complete_bipartite_graph ``` complete_bipartite_graph (n1, n2, create_using=None) ``` Return the complete bipartite graph $K_{n_1,n_2}$ . Composed of two partitions with $n_1$ nodes in the first and $n_2$ nodes in the second. Each node in the first is connected to each node in the second. ## **Parameters** - n1 (integer) Number of nodes for node set A. - **n2** (*integer*) Number of nodes for node set B. - create_using (NetworkX graph instance, optional) Return graph of this type. Node labels are the integers 0 to $n_1 + n_2 - 1$ . The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to. ## configuration_model configuration_model (aseq, bseq, create_using=None, seed=None) Return a random bipartite graph from two given degree sequences. #### **Parameters** - **aseq** (*list*) Degree sequence for node set A. - **bseq** (*list*) Degree sequence for node set B. - **create_using** (*NetworkX graph instance, optional*) Return graph of this type. - **seed** (*integer*, *optional*) Seed for random number generator. - from the set A are connected to nodes in the set B by (Nodes) - - randomly from the possible free stubs, one in A and (choosing) - - in B. (one) - ## **Notes** The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact. The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to. This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. ## havel_hakimi_graph havel_hakimi_graph (aseq, bseq, create_using=None) Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction. Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the highest degree nodes in set B until all stubs are connected. #### **Parameters** - **aseq** (*list*) Degree sequence for node set A. - **bseq** (*list*) Degree sequence for node set B. - create_using (NetworkX graph instance, optional) Return graph of this type. This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact. The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to. ## reverse_havel_hakimi_graph ## reverse_havel_hakimi_graph (aseq, bseq, create_using=None) Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction. Nodes from set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the lowest degree nodes in set B until all stubs are connected. #### **Parameters** - **aseq** (*list*) Degree sequence for node set A. - **bseq** (*list*) Degree sequence for node set B. - create_using (NetworkX graph instance, optional) Return graph of this type. #### **Notes** This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact. The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to. ## alternating_havel_hakimi_graph ## alternating_havel_hakimi_graph (aseq, bseq, create_using=None) Return a bipartite graph from two given degree sequences using an alternating Havel-Hakimi style construction. Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to alternatively the highest and the lowest degree nodes in set B until all stubs are connected. ## **Parameters** - **aseq** (*list*) Degree sequence for node set A. - **bseq** (*list*) Degree sequence for node set B. - create using (*NetworkX graph instance, optional*) Return graph of this type. This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact. The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to. ## preferential_attachment_graph preferential_attachment_graph (aseq, p, create_using=None, seed=None) Create a bipartite graph with a preferential attachment model from a given single degree sequence. #### **Parameters** - **aseq** (*list*) Degree sequence for node set A. - **p** (*float*) Probability that a new bottom node is added. - create_using (NetworkX graph instance, optional) Return graph of this type. - **seed** (*integer*, *optional*) Seed for random number generator. #### References #### **Notes** This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. ## random_graph random_graph (n, m, p, seed=None, directed=False) Return a bipartite random graph. This is a bipartite version of the binomial (Erdős-Rényi) graph. ## **Parameters** - **n** (*int*) The number of nodes in the first bipartite set. - m (int) The number of nodes in the second bipartite set. - p (*float*) Probability for edge creation. - **seed** (*int*, *optional*) Seed for random number generator (default=None). - directed (bool, optional (default=False)) If True return a directed graph This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. The bipartite random graph algorithm chooses each of the n*m (undirected) or 2*nm (directed) possible edges with probability p. This algorithm is O(n+m) where m is the expected number of edges. The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to. #### See also: ``` gnp_random_graph(), configuration_model() ``` #### References ## gnmk_random_graph ``` gnmk_random_graph(n, m, k, seed=None, directed=False) ``` Return a random bipartite graph G_{n,m,k}. Produces a bipartite graph chosen randomly out of the set of all graphs with n top nodes, m bottom nodes, and k edges. ## **Parameters** - **n** (*int*) The number of nodes in the first bipartite set. - m (int) The number of nodes in the second bipartite set. - $\mathbf{k}$ (*int*) The number of edges - **seed** (*int*, *optional*) Seed for random number generator (default=None). - directed (bool, optional (default=False)) If True return a directed graph ## **Examples** from networkx.algorithms import bipartite $G = bipartite.gnmk_random_graph(10,20,50)$ ### See also: ``` gnm_random_graph() ``` ### **Notes** This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package. If k > m * n then a complete bipartite graph is returned. This graph is a bipartite version of the $G_{nm}$ random graph model. # 4.4 Blockmodeling Functions for creating network blockmodels from node partitions. Created by Drew Conway <a href="mailto:conway@nyu.edu">conway@nyu.edu</a> Copyright (c) 2010. All rights reserved. blockmodel(G, partitions[, multigraph]) Returns a reduced graph constructed using the generalized block modeling technique. ## 4.4.1 blockmodel **blockmodel** (*G*, partitions, multigraph=False) Returns a reduced graph constructed using the generalized block modeling technique. The blockmodel technique collapses nodes into blocks based on a given partitioning of the node set. Each partition of nodes (block) is represented as a single node in the reduced graph. Edges between nodes in the block graph are added according to the edges in the original graph. If the parameter multigraph is False (the default) a single edge is added with a weight equal to the sum of the edge weights between nodes in the original graph The default is a weight of 1 if weights are not specified. If the parameter multigraph is True then multiple edges are added each with
the edge data from the original graph. #### **Parameters** - **G** (graph) A networkx Graph or DiGraph - partitions (*list of lists, or list of sets*) The partition of the nodes. Must be non-overlapping. - multigraph (bool, optional) If True return a MultiGraph with the edge data of the original graph applied to each corresponding edge in the new graph. If False return a Graph with the sum of the edge weights, or a count of the edges if the original graph is unweighted. ## Returns blockmodel Return type a Networkx graph object #### **Examples** ``` >>> G=nx.path_graph(6) >>> partition=[[0,1],[2,3],[4,5]] >>> M=nx.blockmodel(G,partition) ``` ### References # 4.5 Boundary Routines to find the boundary of a set of nodes. Edge boundaries are edges that have only one end in the set of nodes. Node boundaries are nodes outside the set of nodes that have an edge to a node in the set. | edge_boundary(G, nbunch1[, nbunch2]) | Return the edge boundary. | |-------------------------------------------------|---------------------------| | <pre>node_boundary(G, nbunch1[, nbunch2])</pre> | Return the node boundary. | 4.5. Boundary 173 ## 4.5.1 edge boundary edge_boundary (G, nbunch1, nbunch2=None) Return the edge boundary. Edge boundaries are edges that have only one end in the given set of nodes. #### **Parameters** - **G** (graph) A networkx graph - nbunch1 (list, container) Interior node set - nbunch2 (list, container) Exterior node set. If None then it is set to all of the nodes in G not in nbunch1. Returns elist – List of edges Return type list ### **Notes** Nodes in nbunch1 and nbunch2 that are not in G are ignored. nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not required here. ## 4.5.2 node_boundary node_boundary (G, nbunch1, nbunch2=None) Return the node boundary. The node boundary is all nodes in the edge boundary of a given set of nodes that are in the set. ### **Parameters** - **G** (*graph*) A networkx graph - nbunch1 (list, container) Interior node set - nbunch2 (list, container) Exterior node set. If None then it is set to all of the nodes in G not in nbunch1. **Returns nlist** – List of nodes. Return type list ### **Notes** Nodes in nbunch1 and nbunch2 that are not in G are ignored. nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not required here. # 4.6 Centrality # 4.6.1 Degree | degree_centrality(G) | Compute the degree centrality for nodes. | |-------------------------------------|----------------------------------------------| | $in_degree_centrality(G)$ | Compute the in-degree centrality for nodes. | | <pre>out_degree_centrality(G)</pre> | Compute the out-degree centrality for nodes. | ## degree_centrality ## $degree_centrality(G)$ Compute the degree centrality for nodes. The degree centrality for a node v is the fraction of nodes it is connected to. **Parameters** G (graph) – A networkx graph **Returns** nodes – Dictionary of nodes with degree centrality as the value. Return type dictionary #### See also: betweenness_centrality(), load_centrality(), eigenvector_centrality() #### **Notes** The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G. For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree centrality greater than 1 are possible. ### in degree centrality ### $in_degree_centrality(G)$ Compute the in-degree centrality for nodes. The in-degree centrality for a node v is the fraction of nodes its incoming edges are connected to. Parameters G (graph) – A NetworkX graph **Returns nodes** – Dictionary of nodes with in-degree centrality as values. Return type dictionary Raises NetworkXError – If the graph is undirected. ## See also: ``` degree_centrality(), out_degree_centrality() ``` ## Notes The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G. For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree centrality greater than 1 are possible. ## out_degree_centrality ## $\mathtt{out_degree_centrality}\left(G\right)$ Compute the out-degree centrality for nodes. The out-degree centrality for a node v is the fraction of nodes its outgoing edges are connected to. **Parameters** G (graph) – A NetworkX graph **Returns** nodes – Dictionary of nodes with out-degree centrality as values. Return type dictionary Raises NetworkXError – If the graph is undirected. #### See also: ``` degree_centrality(), in_degree_centrality() ``` #### **Notes** The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G. For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree centrality greater than 1 are possible. ## 4.6.2 Closeness closeness centrality(G[, u, distance, ...]) Compute closeness centrality for nodes. ## closeness centrality closeness centrality (G, u=None, distance=None, normalized=True) Compute closeness centrality for nodes. Closeness centrality 25 of a node u is the reciprocal of the sum of the shortest path distances from u to all n-1 other nodes. Since the sum of distances depends on the number of nodes in the graph, closeness is normalized by the sum of minimum possible distances n-1. $$C(u) = \frac{n-1}{\sum_{v=1}^{n-1} d(v, u)},$$ where d(v, u) is the shortest-path distance between v and u, and n is the number of nodes in the graph. Notice that higher values of closeness indicate higher centrality. #### **Parameters** - **G** (graph) A NetworkX graph - **u** (node, optional) Return only the value for node u - **distance** (*edge attribute key, optional (default=None)*) Use the specified edge attribute as the edge distance in shortest path calculations ²⁵ Linton C. Freeman: Centrality in networks: I. Conceptual clarification. Social Networks 1:215-239, 1979. http://leonidzhukov.ru/hse/2013/socialnetworks/papers/freeman79-centrality.pdf • **normalized** (*bool*, *optional*) – If True (default) normalize by the number of nodes in the connected part of the graph. **Returns** nodes – Dictionary of nodes with closeness centrality as the value. Return type dictionary #### See also: ``` betweenness_centrality(), load_centrality(), eigenvector_centrality(), degree centrality() ``` #### **Notes** The closeness centrality is normalized to (n-1)/(|G|-1) where n is the number of nodes in the connected part of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness centrality for each connected part separately. If the 'distance' keyword is set to an edge attribute key then the shortest-path length will be computed using Dijkstra's algorithm with that edge attribute as the edge weight. #### References ## 4.6.3 Betweenness | $betweenness_centrality(G[, k, normalized,])$ | Compute the shortest-path betweenness centrality for nodes. | |------------------------------------------------|-------------------------------------------------------------| | $edge_betweenness_centrality(G[,k,])$ | Compute betweenness centrality for edges. | ## betweenness_centrality **betweenness_centrality** (G, k=None, normalized=True, weight=None, endpoints=False, seed=None) Compute the shortest-path betweenness centrality for nodes. Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest paths that pass through v: $$c_B(v) = \sum_{s,t \in V} \frac{\sigma(s,t|v)}{\sigma(s,t)}$$ where V is the set of nodes, $\sigma(s,t)$ is the number of shortest (s,t)-paths, and $\sigma(s,t|v)$ is the number of those paths passing through some node v other than s,t. If s=t, $\sigma(s,t)=1$ , and if $v\in s$ , t, $\sigma(s,t|v)=0$ . #### **Parameters** - **G** (graph) A NetworkX graph - **k** (*int*, *optional* (*default=None*)) If k is not None use k node samples to estimate betweenness. The value of k <= n where n is the number of nodes in the graph. Higher values give better approximation. - normalized (bool, optional) If True the betweenness values are normalized by 2/((n-1)(n-2)) for graphs, and 1/((n-1)(n-2)) for directed graphs where n is the number of nodes in G. ²⁶ Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf - weight (None or string, optional) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. - endpoints (bool, optional) If True include the endpoints in the shortest path counts. **Returns** nodes – Dictionary of nodes with betweenness centrality as the value. **Return type** dictionary #### See also: ``` edge_betweenness_centrality(), load_centrality() ``` #### **Notes** The algorithm is from Ulrik Brandes ²⁷. See ²⁸ for the original first published version and ² for details on algorithms for variations and related metrics. For approximate betweenness calculations set k=#samples to use k nodes ("pivots") to estimate the betweenness values. For an estimate of the number of pivots needed see ²⁹. For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes. #### References ## edge betweenness centrality $\verb|edge_betweenness_centrality| (G, k=None, normalized=True, weight=None, seed=None)|$ Compute betweenness centrality for edges. Betweenness centrality of an edge e is the sum of the fraction of all-pairs shortest paths that pass through e: $$c_B(e) = \sum_{s,t \in V} \frac{\sigma(s,t|e)}{\sigma(s,t)}$$ where V is the set of nodes, 'sigma(s, t)' is the number of shortest (s,t)-paths, and $\sigma(s,t|e)$ is the number of those paths passing
through edge $e^{30}$ . ## **Parameters** - G (graph) A NetworkX graph - **k** (*int*, *optional* (*default=None*)) If k is not None use k node samples to estimate betweenness. The value of k <= n where n is the number of nodes in the graph. Higher values give better approximation. - normalized (bool, optional) If True the betweenness values are normalized by 2/(n(n-1)) for graphs, and 1/(n(n-1)) for directed graphs where n is the number of nodes in G. - **weight** (*None or string, optional*) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. ²⁷ Ulrik Brandes: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf ²⁸ Linton C. Freeman: A set of measures of centrality based on betweenness. Sociometry 40: 35–41, 1977 http://moreno.ss.uci.edu/23.pdf ²⁹ Ulrik Brandes and Christian Pich: Centrality Estimation in Large Networks. International Journal of Bifurcation and Chaos 17(7):2303-2318, 2007. http://www.inf.uni-konstanz.de/algo/publications/bp-celn-06.pdf ³⁰ Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf Returns edges – Dictionary of edges with betweenness centrality as the value. Return type dictionary #### See also: ``` betweenness_centrality(), edge_load() ``` #### **Notes** The algorithm is from Ulrik Brandes ³¹. For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes. #### References ## 4.6.4 Current Flow Closeness current_flow_closeness_centrality(G[, ...]) Compute current-flow closeness centrality for nodes. ## current_flow_closeness_centrality **current_flow_closeness_centrality** (*G*, weight='weight', dtype=<type 'float'>, solver='lu') Compute current-flow closeness centrality for nodes. Current-flow closeness centrality is variant of closeness centrality based on effective resistance between nodes in a network. This metric is also known as information centrality. #### **Parameters** - **G** (*graph*) A NetworkX graph - **dtype** (*data type* (*float*)) Default data type for internal matrices. Set to np.float32 for lower memory consumption. - **solver** (*string* (*default='lu'*)) Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory). **Returns nodes** – Dictionary of nodes with current flow closeness centrality as the value. Return type dictionary ### See also: ``` closeness_centrality() ``` ## Notes The algorithm is from Brandes ³². ³¹ A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf ³² Ulrik Brandes and Daniel Fleischer, Centrality Measures Based on Current Flow. Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf See also ³³ for the original definition of information centrality. #### References ## 4.6.5 Current-Flow Betweenness | $ extit{current_flow_betweenness_centrality}(G[,])$ | Compute current-flow betweenness centrality for nodes. | |--------------------------------------------------------|--------------------------------------------------------| | $edge_current_flow_betweenness_centrality(G)$ | Compute current-flow betweenness centrality for edges. | | approximate_current_flow_betweenness_centrality(G) | Compute the approximate current-flow betweenness cent | ## current flow betweenness centrality Compute current-flow betweenness centrality for nodes. Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness centrality which uses shortest paths. Current-flow betweenness centrality is also known as random-walk betweenness centrality ³⁴. #### **Parameters** - **G** (*graph*) A NetworkX graph - **normalized** (*bool*, *optional* (*default=True*)) If True the betweenness values are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G. - weight (*string or None, optional (default='weight'*)) Key for edge data used as the edge weight. If None, then use 1 as each edge weight. - **dtype** (*data type* (*float*)) Default data type for internal matrices. Set to np.float32 for lower memory consumption. - **solver** (*string* (*default='lu'*)) Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory). Returns nodes – Dictionary of nodes with betweenness centrality as the value. Return type dictionary #### See also: ``` approximate_current_flow_betweenness_centrality(), betweenness_centrality(), edge_betweenness_centrality(), edge_current_flow_betweenness_centrality() ``` ## Notes Current-flow betweenness can be computed in $O(I(n-1) + mn \log n)$ time ³⁵, where I(n-1) is the time needed to compute the inverse Laplacian. For a full matrix this is $O(n^3)$ but using sparse methods you can achieve $O(nm\sqrt{k})$ where k is the Laplacian matrix condition number. $^{^{33}}$ Karen Stephenson and Marvin Zelen: Rethinking centrality: Methods and examples. Social Networks 11(1):1-37, 1989. http://dx.doi.org/10.1016/0378-8733(89)90016-6 ³⁴ A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005). ³⁵ Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf The space required is O(nw) where w is the width of the sparse Laplacian matrix. Worse case is w=n for $O(n^2)$ . If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1. #### References ## edge_current_flow_betweenness_centrality Compute current-flow betweenness centrality for edges. Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness centrality which uses shortest paths. Current-flow betweenness centrality is also known as random-walk betweenness centrality ³⁶. #### **Parameters** - **G** (graph) A NetworkX graph - normalized (*bool*, *optional* (*default=True*)) If True the betweenness values are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G. - weight (*string or None, optional (default='weight'*)) Key for edge data used as the edge weight. If None, then use 1 as each edge weight. - **dtype** (*data type* (*float*)) Default data type for internal matrices. Set to np.float32 for lower memory consumption. - **solver** (*string* (*default='lu'*)) Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory). **Returns** nodes – Dictionary of edge tuples with betweenness centrality as the value. **Return type** dictionary ## See also: ## **Notes** Current-flow betweenness can be computed in $O(I(n-1) + mn \log n)$ time ³⁷, where I(n-1) is the time needed to compute the inverse Laplacian. For a full matrix this is $O(n^3)$ but using sparse methods you can achieve $O(nm\sqrt{k})$ where k is the Laplacian matrix condition number. The space required is O(nw)where'w is the width of the sparse Laplacian matrix. Worse case is w=n for $O(n^2)$ . If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1 ³⁶ A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005). ³⁷ Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf #### References ## approximate_current_flow_betweenness_centrality Compute the approximate current-flow betweenness centrality for nodes. Approximates the current-flow betweenness centrality within absolute error of epsilon with high probability ³⁸. #### **Parameters** - **G** (*graph*) A NetworkX graph - **normalized** (*bool*, *optional* (*default=True*)) If True the betweenness values are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G. - weight (*string or None, optional (default='weight'*)) Key for edge data used as the edge weight. If None, then use 1 as each edge weight. - **dtype** (*data type* (*float*)) Default data type for internal matrices. Set to np.float32 for lower memory consumption. - **solver** (*string* (*default='lu'*)) Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory). - **epsilon** (*float*) Absolute error tolerance. - kmax (int) Maximum number of sample node pairs to use for approximation. Returns nodes – Dictionary of nodes with betweenness centrality as the value. Return type dictionary #### See also: ``` current_flow_betweenness_centrality() ``` ## **Notes** The running time is $O((1/\epsilon^2)m\sqrt{k}\log n)$ and the space required is O(m) for n nodes and m edges. If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1. #### References ## 4.6.6 Eigenvector | eigenvector_centrality(G[, max_iter, tol,]) | Compute the eigenvector centrality for the graph G. | |---------------------------------------------------------|-----------------------------------------------------------| | eigenvector_centrality_numpy(G[, weight]) |
Compute the eigenvector centrality for the graph G. | | <pre>katz_centrality(G[, alpha, beta, max_iter,])</pre> | Compute the Katz centrality for the nodes of the graph G. | | katz_centrality_numpy(G[, alpha, beta,]) | Compute the Katz centrality for the graph G. | ³⁸ Ulrik Brandes and Daniel Fleischer: Centrality Measures Based on Current Flow. Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf ## eigenvector centrality **eigenvector_centrality** (*G*, *max_iter=100*, *tol=1e-06*, *nstart=None*, *weight='weight'*) Compute the eigenvector centrality for the graph G. Eigenvector centrality computes the centrality for a node based on the centrality of its neighbors. The eigenvector centrality for node i is $$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$ where A is the adjacency matrix of the graph G with eigenvalue $\lambda$ . By virtue of the Perron–Frobenius theorem, there is a unique and positive solution if $\lambda$ is the largest eigenvalue associated with the eigenvector of the adjacency matrix A ( 39 ). ### **Parameters** - **G** (*graph*) A networkx graph - max_iter (integer, optional) Maximum number of iterations in power method. - tol (float, optional) Error tolerance used to check convergence in power method iteration. - nstart (dictionary, optional) Starting value of eigenvector iteration for each node. - **weight** (*None or string, optional*) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. **Returns** nodes – Dictionary of nodes with eigenvector centrality as the value. Return type dictionary #### **Examples** ``` >>> G = nx.path_graph(4) >>> centrality = nx.eigenvector_centrality(G) >>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality]) ['0 0.37', '1 0.60', '2 0.60', '3 0.37'] ``` ### See also: ``` eigenvector_centrality_numpy(), pagerank(), hits(), Notes(), -----(), The(), The(),no(),iterations(),reached.(),For(),to(),first() ``` #### References ## eigenvector centrality numpy ``` eigenvector_centrality_numpy (G, weight='weight') ``` Compute the eigenvector centrality for the graph G. Eigenvector centrality computes the centrality for a node based on the centrality of its neighbors. The eigenvector centrality for node i is $$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$ where A is the adjacency matrix of the graph G with eigenvalue $\lambda$ . By virtue of the Perron–Frobenius theorem, there is a unique and positive solution if $\lambda$ is the largest eigenvalue associated with the eigenvector of the adjacency matrix A ( 40 ). ³⁹ Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, pp. 169. ⁴⁰ Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, pp. 169. #### **Parameters** - **G** (graph) A networkx graph - **weight** (*None or string, optional*) The name of the edge attribute used as weight. If None, all edge weights are considered equal. **Returns** nodes – Dictionary of nodes with eigenvector centrality as the value. Return type dictionary #### **Examples** ``` >>> G = nx.path_graph(4) >>> centrality = nx.eigenvector_centrality_numpy(G) >>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality]) ['0 0.37', '1 0.60', '2 0.60', '3 0.37'] ``` #### See also: ``` eigenvector_centrality(), pagerank(), hits(), Notes(), -----(), The(), This(), find(), For(), to(), first() ``` #### References ## katz_centrality Compute the Katz centrality for the nodes of the graph G. Katz centrality computes the centrality for a node based on the centrality of its neighbors. It is a generalization of the eigenvector centrality. The Katz centrality for node i is $$x_i = \alpha \sum_j A_{ij} x_j + \beta,$$ where A is the adjacency matrix of the graph G with eigenvalues $\lambda$ . The parameter $\beta$ controls the initial centrality and $$\alpha < \frac{1}{\lambda_{max}}.$$ Katz centrality computes the relative influence of a node within a network by measuring the number of the immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under consideration through these immediate neighbors. Extra weight can be provided to immediate neighbors through the parameter $\beta$ . Connections made with distant neighbors are, however, penalized by an attenuation factor $\alpha$ which should be strictly less than the inverse largest eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More information is provided in 41 . #### **Parameters** - **G** (graph) A NetworkX graph - alpha (float) Attenuation factor ⁴¹ Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, p. 720. - **beta** (*scalar or dictionary, optional (default=1.0)*) Weight attributed to the immediate neighborhood. If not a scalar, the dictionary must have an value for every node. - max_iter (integer, optional (default=1000)) Maximum number of iterations in power method. - tol (*float*, *optional* (*default=1.0e-6*)) Error tolerance used to check convergence in power method iteration. - **nstart** (*dictionary*, *optional*) Starting value of Katz iteration for each node. - normalized (bool, optional (default=True)) If True normalize the resulting values. - weight (*None or string, optional*) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. **Returns nodes** – Dictionary of nodes with Katz centrality as the value. Return type dictionary Raises NetworkXError-If the parameter beta is not a scalar but lacks a value for at least one node ## **Examples** #### See also: ``` katz_centrality_numpy(), eigenvector_centrality(), eigenvector_centrality_numpy(), pagerank(), hits() ``` ## Notes Katz centrality was introduced by ⁴². This algorithm it uses the power method to find the eigenvector corresponding to the largest eigenvalue of the adjacency matrix of G. The constant alpha should be strictly less than the inverse of largest eigenvalue of the adjacency matrix for the algorithm to converge. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached. When $\alpha = 1/\lambda_{max}$ and $\beta = 0$ , Katz centrality is the same as eigenvector centrality. For directed graphs this finds "left" eigenvectors which corresponds to the in-edges in the graph. For out-edges Katz centrality first reverse the graph with G.reverse(). ⁴² Leo Katz: A New Status Index Derived from Sociometric Index. Psychometrika 18(1):39–43, 1953 http://phya.snu.ac.kr/~dkim/PRL87278701.pdf #### References ## katz centrality numpy $\texttt{katz_centrality_numpy}$ (G, alpha=0.1, beta=1.0, normalized=True, weight='weight') Compute the Katz centrality for the graph G. Katz centrality computes the centrality for a node based on the centrality of its neighbors. It is a generalization of the eigenvector centrality. The Katz centrality for node i is $$x_i = \alpha \sum_j A_{ij} x_j + \beta,$$ where A is the adjacency matrix of the graph G with eigenvalues $\lambda$ . The parameter $\beta$ controls the initial centrality and $$\alpha < \frac{1}{\lambda_{max}}$$ . Katz centrality computes the relative influence of a node within a network by measuring the number of the immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under consideration through these immediate neighbors. Extra weight can be provided to immediate neighbors through the parameter $\beta$ . Connections made with distant neighbors are, however, penalized by an attenuation factor $\alpha$ which should be strictly less than the inverse largest eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More information is provided in 43 . #### **Parameters** - **G** (graph) A NetworkX graph - alpha (float) Attenuation factor - **beta** (*scalar or dictionary, optional (default=1.0)*) Weight attributed to the immediate neighborhood. If not a scalar the dictionary must have an value for every node. - normalized (bool) If True normalize the resulting values. - **weight** (*None or string, optional*) If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. **Returns nodes** – Dictionary of nodes with Katz centrality as the value. Return type dictionary Raises NetworkXError – If the parameter beta is not a scalar but lacks a value for at least one node ## **Examples** ``` >>> import math >>> G = nx.path_graph(4) >>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix >>> centrality = nx.katz_centrality_numpy(G,1/phi) >>> for n,c in sorted(centrality.items()): ... print("%d %0.2f"%(n,c)) ``` ⁴³ Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, p. 720. | 0 0.37 | | | |--------|--|--| | 1 0.60 | | | | 2 0.60 | | | | 3 0.37 | | | #### See also: katz_centrality_eigenvector_centrality_numpy eigenvector_centrality_pagerank hits Katz centrality was introduced by 44. This algorithm uses a direct linear solver to solve the above equation. The constant alpha should be strictly less than the inverse of largest eigenvalue of the adjacency matrix for there to be a solution. When $\alpha=1/\lambda_{max}$ and $\beta=0$ , Katz centrality is the same as eigenvector centrality. For directed graphs this finds "left" eigenvectors which corresponds to the in-edges in the graph. For out-edges Katz centrality first reverse the graph with G.reverse(). #### References ## 4.6.7 Communicability | communicability(G) | Return communicability between all pairs of nodes in G. | |--------------------------------------------------|-----------------------------------------------------------------| | ${\it communicability_exp}(G)$ | Return communicability between all pairs of nodes in G. | | ${\it
communicability_centrality}(G)$ | Return communicability centrality for each node in G. | | $ extit{communicability_centrality_exp(G)}$ | Return the communicability centrality for each node of G | | $communicability_betweenness_centrality(G[,])$ | Return communicability betweenness for all pairs of nodes in G. | | estrada_index(G) | Return the Estrada index of a the graph G. | ## communicability ## communicability(G) Return communicability between all pairs of nodes in G. The communicability between pairs of nodes in G is the sum of closed walks of different lengths starting at node u and ending at node v. Parameters G (graph) - **Returns comm** – Dictionary of dictionaries keyed by nodes with communicability as the value. Return type dictionary of dictionaries **Raises** NetworkXError – If the graph is not undirected and simple. ## See also: communicability_centrality_exp() Communicability centrality for each node of G using matrix exponential. communicability_centrality() Communicability centrality for each node in G using spectral decomposition. communicability() Communicability between pairs of nodes in G. ⁴⁴ Leo Katz: A New Status Index Derived from Sociometric Index. Psychometrika 18(1):39–43, 1953 http://phya.snu.ac.kr/~dkim/PRL87278701.pdf #### **Notes** This algorithm uses a spectral decomposition of the adjacency matrix. Let G=(V,E) be a simple undirected graph. Using the connection between the powers of the adjacency matrix and the number of walks in the graph, the communicability between nodes u and v based on the graph spectrum is 45 $$C(u,v) = \sum_{j=1}^{n} \phi_j(u)\phi_j(v)e^{\lambda_j},$$ where $\phi_j(u)$ is the uth element of the jth orthonormal eigenvector of the adjacency matrix associated with the eigenvalue $\lambda_j$ . #### References ## **Examples** ``` >>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)]) >>> c = nx.communicability(G) ``` ## communicability_exp ## $communicability_exp(G)$ Return communicability between all pairs of nodes in G. Communicability between pair of node (u,v) of node in G is the sum of closed walks of different lengths starting at node u and ending at node v. Parameters G (graph) - **Returns comm** – Dictionary of dictionaries keyed by nodes with communicability as the value. **Return type** dictionary of dictionaries Raises NetworkXError – If the graph is not undirected and simple. #### See also: communicability_centrality_exp() Communicability centrality for each node of G using matrix exponential. communicability_centrality() Communicability centrality for each node in G using spectral decomposition. communicability_exp() Communicability between all pairs of nodes in G using spectral decomposition. ### **Notes** This algorithm uses matrix exponentiation of the adjacency matrix. Let G=(V,E) be a simple undirected graph. Using the connection between the powers of the adjacency matrix and the number of walks in the graph, the communicability between nodes u and v is ⁴⁶, $$C(u, v) = (e^A)_{uv},$$ where A is the adjacency matrix of G. ⁴⁵ Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756 ⁴⁶ Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756 #### References ## **Examples** ``` >>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)]) >>> c = nx.communicability_exp(G) ``` ## communicability_centrality ### $communicability_centrality(G)$ Return communicability centrality for each node in G. Communicability centrality, also called subgraph centrality, of a node n is the sum of closed walks of all lengths starting and ending at node n. Parameters G (graph) - **Returns** nodes – Dictionary of nodes with communicability centrality as the value. Return type dictionary Raises NetworkXError – If the graph is not undirected and simple. #### See also: communicability() Communicability between all pairs of nodes in G. communicability_centrality() Communicability centrality for each node of G. #### **Notes** This version of the algorithm computes eigenvalues and eigenvectors of the adjacency matrix. Communicability centrality of a node u in G can be found using a spectral decomposition of the adjacency matrix 47 48 , $$SC(u) = \sum_{j=1}^{N} (v_j^u)^2 e^{\lambda_j},$$ where $v_i$ is an eigenvector of the adjacency matrix A of G corresponding corresponding to the eigenvalue $\lambda_i$ . ## **Examples** ``` >>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)]) >>> sc = nx.communicability_centrality(G) ``` ⁴⁷ Ernesto Estrada, Juan A. Rodriguez-Velazquez, "Subgraph centrality in complex networks", Physical Review E 71, 056103 (2005). http://arxiv.org/abs/cond-mat/0504730 ⁴⁸ Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756 #### References ## communicability centrality exp ## $communicability_centrality_exp(G)$ Return the communicability centrality for each node of G Communicability centrality, also called subgraph centrality, of a node n is the sum of closed walks of all lengths starting and ending at node n. **Parameters** G (graph) – **Returns** nodes – Dictionary of nodes with communicability centrality as the value. Return type dictionary **Raises** NetworkXError – If the graph is not undirected and simple. #### See also: communicability () Communicability between all pairs of nodes in G. communicability_centrality() Communicability centrality for each node of G. ### **Notes** This version of the algorithm exponentiates the adjacency matrix. The communicability centrality of a node u in G can be found using the matrix exponential of the adjacency matrix of G 49 50 , $$SC(u) = (e^A)_{uu}.$$ ## References ## **Examples** ``` >>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)]) >>> sc = nx.communicability_centrality_exp(G) ``` ## communicability betweenness centrality ## communicability_betweenness_centrality(G, normalized=True) Return communicability betweenness for all pairs of nodes in G. Communicability betweenness measure makes use of the number of walks connecting every pair of nodes as the basis of a betweenness centrality measure. Parameters G (graph) - **Returns** nodes – Dictionary of nodes with communicability betweenness as the value. Return type dictionary **Raises** NetworkXError – If the graph is not undirected and simple. ⁴⁹ Ernesto Estrada, Juan A. Rodriguez-Velazquez, "Subgraph centrality in complex networks", Physical Review E 71, 056103 (2005). http://arxiv.org/abs/cond-mat/0504730 ⁵⁰ Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756 #### See also: communicability () Communicability between all pairs of nodes in G. communicability_centrality() Communicability centrality for each node of G using matrix exponential. communicability_centrality_exp() Communicability centrality for each node in G using spectral decomposition. #### **Notes** Let G = (V, E) be a simple undirected graph with n nodes and m edges, and A denote the adjacency matrix of G. Let G(r) = (V, E(r)) be the graph resulting from removing all edges connected to node r but not the node itself. The adjacency matrix for G(r) is A + E(r), where E(r) has nonzeros only in row and column r. The communicability betweenness of a node r is 51 $$\omega_r = \frac{1}{C} \sum_{p} \sum_{q} \frac{G_{prq}}{G_{pq}}, p \neq q, q \neq r,$$ where $G_{prq} = (e_{pq}^A - (e^{A+E(r)})_{pq})$ is the number of walks involving node r, $G_{pq} = (e^A)_{pq}$ is the number of closed walks starting at node p and ending at node q, and $C = (n-1)^2 - (n-1)$ is a normalization factor equal to the number of terms in the sum. The resulting $\omega_r$ takes values between zero and one. The lower bound cannot be attained for a connected graph, and the upper bound is attained in the star graph. #### References ### **Examples** ``` >>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)]) >>> cbc = nx.communicability_betweenness_centrality(G) ``` ### estrada index ### estrada index(G) Return the Estrada index of a the graph G. Parameters G (graph) - Returns estrada index Return type float Raises NetworkXError – If the graph is not undirected and simple. ### See also: ``` estrada_index_exp() ``` ⁵¹ Ernesto Estrada, Desmond J. Higham, Naomichi Hatano, "Communicability Betweenness in Complex Networks" Physica A 388 (2009) 764-774. http://arxiv.org/abs/0905.4102 #### **Notes** Let G = (V, E) be a simple undirected graph with n nodes and let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be a non-increasing ordering of the eigenvalues of its adjacency matrix A. The Estrada index is $$EE(G) = \sum_{j=1}^{n} e^{\lambda_j}.$$ #### References ## **Examples** ``` >>> G=nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)]) >>> ei=nx.estrada_index(G) ``` ## 4.6.8 Load | load_centrality(G[, v, cutoff, normalized,]) | Compute load centrality for nodes. | |----------------------------------------------|------------------------------------| | edge_load(G[, nodes, cutoff]) | Compute edge load. | ## load_centrality **load_centrality** (*G*, *v=None*, *cutoff=None*, *normalized=True*, *weight=None*) Compute load centrality for nodes. The load centrality of a node is the fraction of all shortest paths that pass through that node. ## **Parameters** - **G** (*graph*) A networkx graph - **normalized** (*bool*, *optional*) If True the betweenness values are normalized by b=b/(n-1)(n-2) where n is the number of nodes in G. - weight (*None or string, optional*) If None, edge weights are ignored. Otherwise holds the name of the edge attribute used as weight. - **cutoff** (*bool*, *optional*) If specified, only consider paths of length <= cutoff. **Returns** nodes – Dictionary of nodes with centrality as the value. Return type dictionary ### See
also: betweenness_centrality() #### **Notes** Load centrality is slightly different than betweenness. It was originally introduced by ⁵². For this load algorithm see ⁵³. #### References ## edge load edge_load (G, nodes=None, cutoff=False) Compute edge load. WARNING: This module is for demonstration and testing purposes. ## 4.6.9 Dispersion dispersion(G[, u, v, normalized, alpha, b, c]) Calculate dispersion between u and v in G. ## dispersion **dispersion** (G, u=None, v=None, normalized=True, alpha=1.0, b=0.0, c=0.0) Calculate dispersion between u and v in G. A link between two actors (u and v) has a high dispersion when their mutual ties (s and t) are not well connected with each other. #### **Parameters** - **G** (*graph*) A NetworkX graph. - u (node, optional) The source for the dispersion score (e.g. ego node of the network). - v (node, optional) The target of the dispersion score if specified. - **normalized** (*bool*) If True (default) normalize by the embeddeness of the nodes (u and v). **Returns nodes** – If u (v) is specified, returns a dictionary of nodes with dispersion score for all "target" ("source") nodes. If neither u nor v is specified, returns a dictionary of dictionaries for all nodes 'u' in the graph with a dispersion score for each node 'v'. Return type dictionary #### **Notes** This implementation follows Lars Backstrom and Jon Kleinberg ⁵⁴. Typical usage would be to run dispersion on the ego network $G_u$ if u were specified. Running dispersion() with neither u nor v specified can take ⁵² Kwang-Il Goh, Byungnam Kahng and Doochul Kim Universal behavior of Load Distribution in Scale-Free Networks. Physical Review Letters 87(27):1–4, 2001. http://phya.snu.ac.kr/~dkim/PRL87278701.pdf ⁵³ Mark E. J. Newman: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E 64, 016132, 2001. http://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.016132 ⁵⁴ Romantic Partnerships and the Dispersion of Social Ties: A Network Analysis of Relationship Status on Facebook. Lars Backstrom, Jon Kleinberg. http://arxiv.org/pdf/1310.6753v1.pdf some time to complete. #### References ## 4.7 Chordal Algorithms for chordal graphs. A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the cycle). http://en.wikipedia.org/wiki/Chordal_graph | is_chordal(G) | Checks whether G is a chordal graph. | |------------------------------------------------|-----------------------------------------------------------| | chordal_graph_cliques(G) | Returns the set of maximal cliques of a chordal graph. | | chordal_graph_treewidth(G) | Returns the treewidth of the chordal graph G. | | find_induced_nodes(G, s, t[, treewidth_bound]) | Returns the set of induced nodes in the path from s to t. | ## 4.7.1 is_chordal ### is chordal(G) Checks whether G is a chordal graph. A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the cycle). **Parameters G** (*graph*) – A NetworkX graph. **Returns** chordal – True if G is a chordal graph and False otherwise. Return type bool **Raises** NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDi-Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised. ## **Examples** ``` >>> import networkx as nx >>> e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)] >>> G=nx.Graph(e) >>> nx.is_chordal(G) True ``` ## Notes The routine tries to go through every node following maximum cardinality search. It returns False when it finds that the separator for any node is not a clique. Based on the algorithms in ⁵⁵. 4.7. Chordal 195 ⁵⁵ R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984), pp. 566–579. #### References ## 4.7.2 chordal_graph_cliques ### chordal_graph_cliques(G) Returns the set of maximal cliques of a chordal graph. The algorithm breaks the graph in connected components and performs a maximum cardinality search in each component to get the cliques. Parameters G (graph) – A NetworkX graph Returns cliques **Return type** A set containing the maximal cliques in G. Raises NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDi-Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised. ## **Examples** ``` >>> import networkx as nx >>> e= [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)] >>> G = nx.Graph(e) >>> G.add_node(9) >>> setlist = nx.chordal_graph_cliques(G) ``` ## 4.7.3 chordal_graph_treewidth #### chordal_graph_treewidth(G) Returns the treewidth of the chordal graph G. Parameters G (graph) – A NetworkX graph **Returns treewidth** – The size of the largest clique in the graph minus one. Return type int Raises NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDi-Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised. ## **Examples** ``` >>> import networkx as nx >>> e = [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)] >>> G = nx.Graph(e) >>> G.add_node(9) >>> nx.chordal_graph_treewidth(G) 3 ``` #### References ## 4.7.4 find induced nodes **find_induced_nodes** (*G*, *s*, *t*, *treewidth_bound=9223372036854775807*) Returns the set of induced nodes in the path from s to t. #### **Parameters** - G (graph) A chordal NetworkX graph - **s** (node) Source node to look for induced nodes - t (node) Destination node to look for induced nodes - **treewith_bound** (*float*) Maximum treewidth acceptable for the graph H. The search for induced nodes will end as soon as the treewidth_bound is exceeded. Returns I – The set of induced nodes in the path from s to t in G Return type Set of nodes Raises NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDi-Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised. ## **Examples** ``` >>> import networkx as nx >>> G=nx.Graph() >>> G = nx.generators.classic.path_graph(10) >>> I = nx.find_induced_nodes(G,1,9,2) >>> list(I) [1, 2, 3, 4, 5, 6, 7, 8, 9] ``` #### **Notes** G must be a chordal graph and (s,t) an edge that is not in G. If a treewidth_bound is provided, the search for induced nodes will end as soon as the treewidth_bound is exceeded. The algorithm is inspired by Algorithm 4 in ⁵⁶. A formal definition of induced node can also be found on that reference. #### References # 4.8 Clique ## 4.8.1 Cliques Find and manipulate cliques of graphs. 4.8. Clique 197 ⁵⁶ Learning Bounded Treewidth Bayesian Networks. Gal Elidan, Stephen Gould; JMLR, 9(Dec):2699–2731, 2008. http://jmlr.csail.mit.edu/papers/volume9/elidan08a/elidan08a.pdf Note that finding the largest clique of a graph has been shown to be an NP-complete problem; the algorithms here could take a long time to run. http://en.wikipedia.org/wiki/Clique problem | enumerate_all_cliques(G) | Returns all cliques in an undirected graph. | |---------------------------------------------------------|---------------------------------------------------------------------------| | find_cliques(G) | Search for all maximal cliques in a graph. | | $make_max_clique_graph(G[, create_using, name])$ | Create the maximal clique graph of a graph. | | $make_clique_bipartite(G[, fpos,])$ | Create a bipartite clique graph from a graph G. | | <pre>graph_clique_number(G[, cliques])</pre> | Return the clique number (size of the largest clique) for G. | | <pre>graph_number_of_cliques(G[, cliques])</pre> | Returns the number of maximal cliques in G. | | $node_clique_number(G[, nodes, cliques])$ | Returns the size of the largest maximal clique containing each given node | | <pre>number_of_cliques(G[, nodes, cliques])</pre> | Returns the number of maximal cliques for each node. | | <pre>cliques_containing_node(G[, nodes, cliques])</pre> | Returns a list of cliques containing the given node. | ## 4.8.2 enumerate_all_cliques #### enumerate_all_cliques(G) Returns all cliques in an undirected graph. This method returns cliques of size (cardinality) k = 1, 2, 3, ..., maxDegree - 1. Where maxDegree is the maximal degree of any node in the graph. Parameters G (undirected graph) - **Returns** generator of lists **Return type** generator of list for each clique. ### **Notes** To obtain a list of all cliques, use list (enumerate all cliques (G)). Based on the algorithm published by Zhang et al. (2005) ⁵⁷ and adapted to output all cliques discovered. This algorithm is not applicable on directed graphs. This algorithm ignores self-loops and parallel edges as clique is not conventionally defined with such edges. There are often many cliques in graphs. This algorithm however, hopefully, does not run out of memory since it only keeps candidate sublists in memory and continuously removes exhausted sublists. #### References ## 4.8.3 find_cliques ## $find_cliques(G)$ Search for all maximal cliques in a graph. Maximal cliques are the largest complete subgraph containing a given node. The largest maximal clique is sometimes called the maximum clique. ⁵⁷ Yun Zhang, Abu-Khzam, F.N., Baldwin, N.E., Chesler, E.J., Langston, M.A., Samatova, N.F., Genome-Scale Computational Approaches to Memory-Intensive Applications in Systems Biology. Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference, pp. 12, 12-18 Nov. 2005. doi: 10.1109/SC.2005.29.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1559964&isnumber=33129 #### Returns generator of lists Return type genetor of member list for each maximal clique ### See also: ``` find_cliques_recursive(), A() ``` #### **Notes** To obtain a list of cliques, use list(find_cliques(G)). Based on the algorithm published by Bron & Kerbosch (1973) ⁵⁸ as adapted by Tomita, Tanaka and Takahashi (2006) ⁵⁹ and discussed in Cazals and Karande (2008) ⁶⁰. The method essentially unrolls the recursion used in the references to avoid issues of recursion stack depth. This algorithm is not suitable for directed graphs. This algorithm ignores self-loops and parallel edges as clique is not conventionally defined with such edges. There are often many cliques in graphs. This algorithm can run out of memory for large graphs. #### References ## 4.8.4 make_max_clique_graph make_max_clique_graph (G, create_using=None, name=None) Create the maximal clique graph of a graph. Finds the maximal cliques and treats these as nodes. The nodes are connected if they have common members in the original graph. Theory has done a lot with clique graphs, but I haven't seen much on maximal clique graphs. ## **Notes** This should be the same as make_clique_bipartite followed by project_up, but it saves all the intermediate steps. ## 4.8.5 make_clique_bipartite make_clique_bipartite(G, fpos=None, create_using=None, name=None) Create a bipartite clique graph from a graph G. Nodes of G are retained as the "bottom nodes" of B and cliques of G become "top nodes" of B. Edges are present if a bottom node belongs to the clique represented by the top node. Returns a Graph with additional attribute dict B.node_type which is keyed by nodes to "Bottom" or "Top" appropriately. if fpos is not None, a second additional attribute dict B.pos is created to hold the position tuple of each node for viewing the bipartite graph. 4.8. Clique 199 Se Bron, C. and Kerbosch, J. 1973. Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16, 9 (Sep. 1973), 575-577. http://portal.acm.org/citation.cfm?doid=362342.362367 Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi, The worst-case time complexity for generating all maximal cliques and computational exper- ⁵⁹ Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi, The worst-case time complexity for generating all maximal cliques and computational experiments, Theoretical Computer Science, Volume 363, Issue 1, Computing and Combinatorics, 10th Annual International Conference on Computing and Combinatorics (COCOON 2004), 25 October 2006, Pages 28-42 http://dx.doi.org/10.1016/j.tcs.2006.06.015 ⁶⁰ F. Cazals, C. Karande, A note on the problem of reporting maximal cliques, Theoretical Computer Science, Volume 407, Issues 1-3, 6 November 2008, Pages 564-568, http://dx.doi.org/10.1016/j.tcs.2008.05.010 ## 4.8.6 graph_clique_number ## graph_clique_number(G, cliques=None) Return the clique number (size of the largest clique) for G. An optional list of cliques can be input if already computed. ## 4.8.7 graph number of cliques ## graph_number_of_cliques(G, cliques=None) Returns the number of maximal cliques in G. An optional list of cliques can be input if already computed. ## 4.8.8 node clique number ## node_clique_number(G, nodes=None, cliques=None) Returns the size of the largest maximal clique containing each given node. Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed. ## 4.8.9 number of cliques ## number_of_cliques (G, nodes=None, cliques=None) Returns the number of maximal cliques for each node. Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed. ## 4.8.10 cliques containing node ## cliques_containing_node(G, nodes=None, cliques=None) Returns a list of cliques containing the given node. Returns a single list or list of lists depending on input nodes. Optional list of cliques can be input if already computed. # 4.9 Clustering Algorithms to characterize the number of triangles in a graph. | triangles(G[, nodes]) | Compute the number of triangles. | |----------------------------------------------------|----------------------------------------------------------------------------------| | transitivity(G) | Compute graph transitivity, the fraction of all possible triangles present in G. | | <pre>clustering(G[, nodes, weight])</pre> | Compute the clustering coefficient for nodes. | | <pre>average_clustering(G[, nodes, weight,])</pre> | Compute the average clustering coefficient for the graph G. | | $square_clustering(G[, nodes])$ | Compute the squares clustering coefficient for nodes. | # 4.9.1 triangles ## triangles (G, nodes=None) Compute the number of triangles. Finds the number of triangles that include a node as one vertex. ## **Parameters** - **G** (*graph*) A networkx graph - nodes (container of nodes, optional (default= all nodes in G)) Compute triangles for nodes in this container. **Returns out** – Number of triangles keyed by node label. Return type dictionary #### **Examples** ``` >>> G=nx.complete_graph(5) >>> print(nx.triangles(G,0)) 6 >>> print(nx.triangles(G)) {0: 6, 1: 6, 2: 6, 3: 6, 4: 6} >>> print(list(nx.triangles(G,(0,1)).values())) [6, 6] ``` #### **Notes** When computing triangles for the entire graph each triangle is counted three times, once at each node. Self loops are ignored. ## 4.9.2 transitivity ## transitivity(G) Compute graph transitivity, the fraction of all possible triangles present in G. Possible triangles are identified by the number of "triads" (two edges with a shared vertex). The transitivity is $$T = 3 \frac{\#triangles}{\#triads}.$$ Parameters G (graph) - **Returns out** – Transitivity Return type float ## **Examples** ``` >>> G = nx.complete_graph(5) >>> print(nx.transitivity(G)) 1.0 ``` 4.9. Clustering 201 ## 4.9.3 clustering clustering(G, nodes=None, weight=None) Compute the clustering coefficient for nodes. For unweighted graphs, the clustering of a node u is the fraction of possible triangles through that node that exist, $$c_u = \frac{2T(u)}{deg(u)(deg(u) - 1)},$$ where T(u) is the number of triangles through node u and deg(u) is the degree of u. For weighted graphs, the clustering is defined as the geometric average of the subgraph edge weights ⁶¹, $$c_u = \frac{1}{deg(u)(deg(u) - 1)} \sum_{uv} (\hat{w}_{uv} \hat{w}_{uw} \hat{w}_{vw})^{1/3}.$$ The edge weights $\hat{w}_{uv}$ are normalized by the maximum weight in the network $\hat{w}_{uv} = w_{uv}/\max(w)$ . The value of $c_u$ is assigned to 0 if deg(u) < 2. #### **Parameters** - **G** (graph) – - nodes (container of nodes, optional (default=all nodes in G)) Compute clustering for nodes in this container. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. Returns out – Clustering coefficient at specified nodes Return type float, or dictionary #### **Examples** ``` >>> G=nx.complete_graph(5) >>> print(nx.clustering(G,0)) 1.0 >>> print(nx.clustering(G)) {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0} ``` ## **Notes** Self loops are ignored. ### References ## 4.9.4 average_clustering **average_clustering** (*G*, nodes=None, weight=None, count_zeros=True) Compute the average clustering coefficient for the graph G. ⁶¹ Generalizations of the clustering coefficient to weighted complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007). http://jponnela.com/web_documents/a9.pdf The clustering coefficient for the graph is the average, $$C = \frac{1}{n} \sum_{v \in G} c_v,$$ where n is the number of nodes in G. #### **Parameters** - **G** (graph) – - **nodes** (*container of nodes, optional (default=all nodes in G)*) Compute average clustering for nodes in this container. - weight (*string or None, optional (default=None*)) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. - **count_zeros** (*bool*) If False include only the nodes with nonzero clustering in the average. **Returns** avg – Average clustering Return type float ## **Examples** ``` >>> G=nx.complete_graph(5) >>> print(nx.average_clustering(G)) 1.0 ``` #### **Notes** This is a space saving routine; it might be faster to use the clustering function to get a list and then take the average. Self loops are ignored. #### References ## 4.9.5 square_clustering square_clustering(G, nodes=None) Compute the squares clustering coefficient for nodes. For each node return the fraction of possible squares that exist at the node ⁶² $$C_4(v) = \frac{\sum_{u=1}^{k_v} \sum_{w=u+1}^{k_v} q_v(u, w)}{\sum_{u=1}^{k_v} \sum_{w=u+1}^{k_v} [a_v(u, w) + q_v(u, w)]},$$ where $q_v(u, w)$ are the number of common neighbors of u and w other than v (ie squares), and $a_v(u, w) = (k_u - (1 + q_v(u, w) + \theta_{uv}))(k_w - (1 + q_v(u, w) + \theta_{uw}))$ , where $\theta_{uw} = 1$ if u and w are connected and 0 otherwise. #### Parameters 4.9. Clustering 203 ⁶² Pedro G. Lind, Marta C. González, and Hans J. Herrmann. 2005 Cycles and clustering in bipartite networks. Physical Review E (72) 056127. - **G** (graph) – - nodes (container of nodes, optional (default=all nodes in G)) Compute clustering for nodes in this container. **Returns** c4 – A dictionary keyed by node with the square clustering coefficient value. **Return type** dictionary ## **Examples** ``` >>> G=nx.complete_graph(5) >>> print(nx.square_clustering(G,0)) 1.0 >>> print(nx.square_clustering(G)) {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0} ``` #### **Notes** While $C_3(v)$ (triangle clustering) gives the probability that two neighbors of node v are connected with each other, $C_4(v)$ is the probability that two neighbors of node v share a common neighbor different from v. This algorithm can be applied to both bipartite and unipartite networks. #### References # 4.10 Coloring greedy_color(G[, strategy, interchange])
Color a graph using various strategies of greedy graph coloring. ## 4.10.1 greedy_color **greedy_color** (*G*, *strategy=*<*function strategy_largest_first*>, *interchange=False*) Color a graph using various strategies of greedy graph coloring. The strategies are described in ⁶³. Attempts to color a graph using as few colors as possible, where no neighbours of a node can have same color as the node itself. #### **Parameters** - **G** (NetworkX graph) – - **strategy** (*function*(*G*, *colors*)) A function that provides the coloring strategy, by returning nodes in the ordering they should be colored. G is the graph, and colors is a dict of the currently assigned colors, keyed by nodes. You can pass your own ordering function, or use one of the built in: - strategy_largest_first - strategy_random_sequential - strategy_smallest_last ⁶³ Adrian Kosowski, and Krzysztof Manuszewski, Classical Coloring of Graphs, Graph Colorings, 2-19, 2004. ISBN 0-8218-3458-4. - strategy_independent_set - strategy_connected_sequential_bfs - strategy_connected_sequential_dfs - strategy_connected_sequential_bfs) - strategy saturation largest first (also known as DSATUR) - **interchange** (*bool*) Will use the color interchange algorithm described by ⁶⁴ if set to true. Note that saturation largest first and independent set do not work with interchange. Furthermore, if you use interchange with your own strategy function, you cannot rely on the values in the colors argument. #### Returns - A dictionary with keys representing nodes and values representing - corresponding coloring. ## **Examples** ``` >>> G = nx.cycle_graph(4) >>> d = nx.coloring.greedy_color(G, strategy=nx.coloring.strategy_largest_first) >>> d in [{0: 0, 1: 1, 2: 0, 3: 1}, {0: 1, 1: 0, 2: 1, 3: 0}] True ``` ## References ## 4.11 Communities ## 4.11.1 K-Clique k_clique_communities(G, k[, cliques]) Find k-clique communities in graph using the percolation method. ## k clique communities ## k_clique_communities (G, k, cliques=None) Find k-clique communities in graph using the percolation method. A k-clique community is the union of all cliques of size k that can be reached through adjacent (sharing k-1 nodes) k-cliques. ### **Parameters** - **G** (NetworkX graph) – - **k** (*int*) Size of smallest clique - cliques (list or generator) Precomputed cliques (use networkx.find_cliques(G)) #### Returns 4.11. Communities 205 ⁶⁴ Maciej M. Syslo, Marsingh Deo, Janusz S. Kowalik, Discrete Optimization Algorithms with Pascal Programs, 415-424, 1983. ISBN 0-486-45353-7. **Return type** Yields sets of nodes, one for each k-clique community. ## **Examples** ``` >>> G = nx.complete_graph(5) >>> K5 = nx.convert_node_labels_to_integers(G, first_label=2) >>> G.add_edges_from(K5.edges()) >>> c = list(nx.k_clique_communities(G, 4)) >>> list(c[0]) [0, 1, 2, 3, 4, 5, 6] >>> list(nx.k_clique_communities(G, 6)) [] ``` #### References # 4.12 Components ## 4.12.1 Connectivity Connected components. | is_connected(G) | Return True if the graph is connected, false otherwise. | |----------------------------------------------|---------------------------------------------------------------| | $number_connected_components(G)$ | Return the number of connected components. | | connected_components(G) | Generate connected components. | | $connected_component_subgraphs(G[, copy])$ | Generate connected components as subgraphs. | | node_connected_component(G, n) | Return the nodes in the component of graph containing node n. | ## is_connected ## $is_connected(G)$ Return True if the graph is connected, false otherwise. **Parameters G** (*NetworkX Graph*) – An undirected graph. **Returns connected** – True if the graph is connected, false otherwise. Return type bool ## **Examples** ``` >>> G = nx.path_graph(4) >>> print(nx.is_connected(G)) True ``` ## See also: ``` connected_components() ``` ## **Notes** For undirected graphs only. ## number_connected_components ## $number_connected_components(G)$ Return the number of connected components. **Parameters** G (NetworkX graph) – An undirected graph. **Returns n** – Number of connected components Return type integer ## See also: ``` connected_components() ``` #### **Notes** For undirected graphs only. ## connected_components ## $connected_components(G)$ Generate connected components. **Parameters** G (NetworkX graph) – An undirected graph **Returns** comp – A generator of sets of nodes, one for each component of G. Return type generator of sets ## **Examples** Generate a sorted list of connected components, largest first. ``` >>> G = nx.path_graph(4) >>> G.add_path([10, 11, 12]) >>> [len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)] [4, 3] ``` If you only want the largest connected component, it's more efficient to use max instead of sort. ``` >>> largest_cc = max(nx.connected_components(G), key=len) ``` #### See also: ``` strongly_connected_components() ``` #### **Notes** For undirected graphs only. ## connected component subgraphs ``` connected_component_subgraphs(G, copy=True) ``` Generate connected components as subgraphs. #### **Parameters** - **G** (*NetworkX graph*) An undirected graph. - copy (bool (default=True)) If True make a copy of the graph attributes **Returns** comp – A generator of graphs, one for each connected component of G. Return type generator ## **Examples** ``` >>> G = nx.path_graph(4) >>> G.add_edge(5,6) >>> graphs = list(nx.connected_component_subgraphs(G)) ``` If you only want the largest connected component, it's more efficient to use max than sort. ``` >>> Gc = max(nx.connected_component_subgraphs(G), key=len) ``` #### See also: ``` connected_components() ``` ## **Notes** For undirected graphs only. Graph, node, and edge attributes are copied to the subgraphs by default. ## node connected component ``` node_connected_component(G, n) ``` Return the nodes in the component of graph containing node n. ## **Parameters** - **G** (*NetworkX Graph*) An undirected graph. - n (node label) A node in G **Returns** comp – A set of nodes in the component of G containing node n. Return type set ### See also: ``` connected_components() ``` #### **Notes** For undirected graphs only. ## 4.12.2 Strong connectivity Strongly connected components. | is_strongly_connected(G) | Test directed graph for strong connectivity. | |-------------------------------------------------------|-----------------------------------------------------------| | $number_strongly_connected_components(G)$ | Return number of strongly connected components in graph. | | $strongly_connected_components(G)$ | Generate nodes in strongly connected components of graph. | | $strongly_connected_component_subgraphs(G[,copy])$ | Generate strongly connected components as subgraphs. | | $strongly_connected_components_recursive$ (G) | Generate nodes in strongly connected components of graph. | | $kosaraju_strongly_connected_components(G[,])$ | Generate nodes in strongly connected components of graph. | | condensation(G[,scc]) | Returns the condensation of G. | ## is_strongly_connected ### $is_strongly_connected(G)$ Test directed graph for strong connectivity. **Parameters G** (*NetworkX Graph*) – A directed graph. **Returns connected** – True if the graph is strongly connected, False otherwise. Return type bool #### See also: strongly_connected_components() #### **Notes** For directed graphs only. ## number_strongly_connected_components ## number_strongly_connected_components(G) Return number of strongly connected components in graph. **Parameters** G (*NetworkX graph*) – A directed graph. **Returns n** – Number of strongly connected components Return type integer ## See also: connected_components() ## **Notes** For directed graphs only. ## strongly_connected_components ## $strongly_connected_components(G)$ Generate nodes in strongly connected components of graph. 4.12. Components 209 **Parameters** G (*NetworkX Graph*) – An directed graph. **Returns** comp – A generator of sets of nodes, one for each strongly connected component of G. Return type generator of sets Raises NetworkXNotImplemented - If G is undirected. #### **Examples** Generate a sorted list of strongly connected components, largest first. If you only want the largest component, it's more efficient to use max instead of sort. ``` >>> largest = max(nx.strongly_connected_components(G), key=len) ``` #### See also: ``` connected_components(), weakly_connected_components() ``` #### **Notes** Uses Tarjan's algorithm with Nuutila's modifications. Nonrecursive version of algorithm. ### References ## strongly connected component subgraphs ``` strongly_connected_component_subgraphs(G, copy=True) ``` Generate strongly connected components as subgraphs. #### **Parameters** - **G** (*NetworkX Graph*) A directed graph. - copy (boolean, optional) if copy is True, Graph, node, and edge attributes are copied to the subgraphs. **Returns** comp – A generator of graphs, one for each strongly connected component of G. Return type generator of graphs ## **Examples** Generate a sorted list of strongly connected components, largest first. 211 If you only want the largest component, it's more efficient to use max instead of sort. ``` >>> Gc = max(nx.strongly_connected_component_subgraphs(G), key=len) ``` #### See also: ``` connected_component_subgraphs(), weakly_connected_component_subgraphs() ``` # strongly_connected_components_recursive # $strongly_connected_components_recursive(G)$ Generate nodes in strongly connected components of graph. Recursive version of algorithm. Parameters G (NetworkX Graph) - An directed graph. Returns comp – A generator of sets of nodes, one for each strongly connected component of G. Return type generator of sets Raises NetworkXNotImplemented - If G is undirected # **Examples** Generate a sorted list of strongly connected components, largest first. If you only want the largest component, it's more efficient to use max instead of sort. ``` >>> largest = max(nx.strongly_connected_components_recursive(G),
key=len) ``` # See also: ``` connected_components() ``` ### **Notes** Uses Tarjan's algorithm with Nuutila's modifications. #### References # kosaraju_strongly_connected_components # $\verb|kosaraju_strongly_connected_components| (\textit{G}, \textit{source=None})$ Generate nodes in strongly connected components of graph. **Parameters** G (*NetworkX Graph*) – An directed graph. Returns comp – A genrator of sets of nodes, one for each strongly connected component of G. Return type generator of sets 4.12. Components Raises NetworkXNotImplemented - If G is undirected. # **Examples** Generate a sorted list of strongly connected components, largest first. If you only want the largest component, it's more efficient to use max instead of sort. ``` >>> largest = max(nx.kosaraju_strongly_connected_components(G), key=len) ``` #### See also: ``` connected_components(), weakly_connected_components() ``` #### **Notes** Uses Kosaraju's algorithm. #### condensation ``` condensation(G, scc=None) ``` Returns the condensation of G. The condensation of G is the graph with each of the strongly connected components contracted into a single node. #### **Parameters** - **G** (NetworkX DiGraph) A directed graph. - **scc** (*list or generator* (*optional, default=None*)) Strongly connected components. If provided, the elements in *scc* must partition the nodes in *G*. If not provided, it will be calculated as scc=nx.strongly_connected_components(G). **Returns** C – The condensation graph C of G. The node labels are integers corresponding to the index of the component in the list of strongly connected components of G. C has a graph attribute named 'mapping' with a dictionary mapping the original nodes to the nodes in C to which they belong. Each node in C also has a node attribute 'members' with the set of original nodes in G that form the SCC that the node in C represents. # Return type NetworkX DiGraph Raises NetworkXNotImplemented - If G is not directed #### **Notes** After contracting all strongly connected components to a single node, the resulting graph is a directed acyclic graph. # 4.12.3 Weak connectivity # Weakly connected components. | is_weakly_connected(G) | Test directed graph for weak connectivity. | |-----------------------------------------------------|--------------------------------------------------------| | $number_weakly_connected_components(G)$ | Return the number of weakly connected components in G. | | weakly_connected_components $(G)$ | Generate weakly connected components of G. | | $weakly_connected_component_subgraphs(G[,copy])$ | Generate weakly connected components as subgraphs. | # is weakly connected # $is_weakly_connected(G)$ Test directed graph for weak connectivity. A directed graph is weakly connected if, and only if, the graph is connected when the direction of the edge between nodes is ignored. **Parameters G** (*NetworkX Graph*) – A directed graph. **Returns** connected – True if the graph is weakly connected, False otherwise. Return type bool #### See also: is_strongly_connected(),is_semiconnected(),is_connected() #### **Notes** For directed graphs only. # number_weakly_connected_components ### number_weakly_connected_components(G) Return the number of weakly connected components in G. Parameters G (NetworkX graph) – A directed graph. **Returns** n – Number of weakly connected components Return type integer # See also: connected_components() ### Notes For directed graphs only. # weakly_connected_components # $weakly_connected_components(G)$ Generate weakly connected components of G. 4.12. Components 213 Parameters G (NetworkX graph) - A directed graph Returns comp – A generator of sets of nodes, one for each weakly connected component of G. Return type generator of sets # **Examples** Generate a sorted list of weakly connected components, largest first. If you only want the largest component, it's more efficient to use max instead of sort. ``` >>> largest_cc = max(nx.weakly_connected_components(G), key=len) ``` #### See also: ``` strongly_connected_components() ``` #### **Notes** For directed graphs only. # weakly_connected_component_subgraphs ``` weakly_connected_component_subgraphs (G, copy=True) ``` Generate weakly connected components as subgraphs. ### **Parameters** - **G** (*NetworkX graph*) A directed graph. - **copy** (*bool* (*default=True*)) If True make a copy of the graph attributes **Returns** comp – A generator of graphs, one for each weakly connected component of G. Return type generator #### **Examples** Generate a sorted list of weakly connected components, largest first. If you only want the largest component, it's more efficient to use max instead of sort. ``` >>> Gc = max(nx.weakly_connected_component_subgraphs(G), key=len) ``` # See also: ``` strongly_connected_components(), connected_components() ``` #### **Notes** For directed graphs only. Graph, node, and edge attributes are copied to the subgraphs by default. # 4.12.4 Attracting components # Attracting components. | is_attracting_component(G) | Returns True if $G$ consists of a single attracting component. | |-------------------------------------------|----------------------------------------------------------------| | $number_attracting_components(G)$ | Returns the number of attracting components in $G$ . | | attracting_components(G) | Generates a list of attracting components in $G$ . | | attracting_component_subgraphs(G[, copy]) | Generates a list of attracting component subgraphs from $G$ . | # is_attracting_component # $is_attracting_component(G)$ Returns True if G consists of a single attracting component. **Parameters** G (*DiGraph*, *MultiDiGraph*) – The graph to be analyzed. **Returns** attracting – True if G has a single attracting component. Otherwise, False. Return type bool # See also: ``` attracting_components(), attracting_component_subgraphs() number_attracting_components(), ``` # number attracting components #### number_attracting_components(G) Returns the number of attracting components in G. **Parameters** G (*DiGraph*, *MultiDiGraph*) – The graph to be analyzed. **Returns** n – The number of attracting components in G. Return type int # See also: ``` attracting_components(), is_attracting_component(), attracting_component_subgraphs() ``` # attracting_components ### attracting_components(G) Generates a list of attracting components in G. An attracting component in a directed graph G is a strongly connected component with the property that a random walker on the graph will never leave the component, once it enters the component. 4.12. Components 215 The nodes in attracting components can also be thought of as recurrent nodes. If a random walker enters the attractor containing the node, then the node will be visited infinitely often. **Parameters** G (*DiGraph*, *MultiDiGraph*) – The graph to be analyzed. Returns attractors – A generator of sets of nodes, one for each attracting component of G. **Return type** generator of sets #### See also: # attracting_component_subgraphs ``` attracting_component_subgraphs (G, copy=True) ``` Generates a list of attracting component subgraphs from G. **Parameters** G (*DiGraph*, *MultiDiGraph*) – The graph to be analyzed. #### Returns - subgraphs (list) A list of node-induced subgraphs of the attracting components of G. - copy (bool) If copy is True, graph, node, and edge attributes are copied to the subgraphs. #### See also: # 4.12.5 Biconnected components Biconnected components and articulation points. | is_biconnected(G) | Return True if the graph is biconnected, False otherwise. | |-----------------------------------------------|----------------------------------------------------------------------------| | biconnected_components(G) | Return a generator of sets of nodes, one set for each biconnected | | biconnected_component_edges(G) | Return a generator of lists of edges, one list for each biconnected compor | | $biconnected_component_subgraphs(G[,copy])$ | Return a generator of graphs, one graph for each biconnected component | | $articulation_points(G)$ | Return a generator of articulation points, or cut vertices, of a graph. | # is biconnected # $\verb|is_biconnected|(G)$ Return True if the graph is biconnected, False otherwise. A graph is biconnected if, and only if, it cannot be disconnected by removing only one node (and all edges incident on that node). If removing a node increases the number of disconnected components in the graph, that node is called an articulation point, or cut vertex. A biconnected graph has no articulation points. Parameters G (NetworkX Graph) – An undirected graph. **Returns** biconnected – True if the graph is biconnected, False otherwise. Return type bool **Raises** NetworkXNotImplemented – If the input graph is not undirected. ### **Examples** ``` >>> G = nx.path_graph(4) >>> print(nx.is_biconnected(G)) False >>> G.add_edge(0, 3) >>> print(nx.is_biconnected(G)) True ``` #### See also: biconnected_components(), articulation_points(), biconnected_component_edges(), biconnected_component_subgraphs() #### **Notes** The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points. #### References # biconnected components #### biconnected components (G) Return a generator of sets of nodes, one set for each biconnected component of the graph Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of
more than one biconnected component. Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number of connected components of the graph. Notice that by convention a dyad is considered a biconnected component. **Parameters** G (*NetworkX Graph*) – An undirected graph. Returns nodes – Generator of sets of nodes, one set for each biconnected component. Return type generator Raises NetworkXNotImplemented - If the input graph is not undirected. #### **Examples** ``` >>> G = nx.lollipop_graph(5, 1) >>> print(nx.is_biconnected(G)) False >>> bicomponents = list(nx.biconnected_components(G)) >>> len(bicomponents) 2 >>> G.add_edge(0, 5) >>> print(nx.is_biconnected(G)) ``` 4.12. Components 217 ``` True >>> bicomponents = list(nx.biconnected_components(G)) >>> len(bicomponents) 1 ``` You can generate a sorted list of biconnected components, largest first, using sort. ``` >>> G.remove_edge(0, 5) >>> [len(c) for c in sorted(nx.biconnected_components(G), key=len, reverse=True)] [5, 2] ``` If you only want the largest connected component, it's more efficient to use max instead of sort. ``` >>> Gc = max(nx.biconnected_components(G), key=len) ``` #### See also: ``` is_biconnected(), articulation_points(), biconnected_component_edges(), biconnected_component_subgraphs() ``` #### **Notes** The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points. ### References #### biconnected component edges #### biconnected_component_edges (G) Return a generator of lists of edges, one list for each biconnected component of the input graph. Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component. Those nodes are articulation points, or cut vertices. However, each edge belongs to one, and only one, biconnected component. Notice that by convention a dyad is considered a biconnected component. Parameters G (NetworkX Graph) - An undirected graph. Returns edges – Generator of lists of edges, one list for each bicomponent. Return type generator of lists Raises NetworkXNotImplemented - If the input graph is not undirected. #### **Examples** ``` >>> G = nx.barbell_graph(4, 2) >>> print(nx.is_biconnected(G)) False ``` ``` >>> bicomponents_edges = list(nx.biconnected_component_edges(G)) >>> len(bicomponents_edges) 5 >>> G.add_edge(2, 8) >>> print(nx.is_biconnected(G)) True >>> bicomponents_edges = list(nx.biconnected_component_edges(G)) >>> len(bicomponents_edges) 1 ``` #### See also: ``` is_biconnected(), biconnected_components(), articulation_points(), biconnected_component_subgraphs() ``` #### **Notes** The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points. #### References # biconnected component subgraphs ``` biconnected_component_subgraphs(G, copy=True) ``` Return a generator of graphs, one graph for each biconnected component of the input graph. Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component. Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number of connected components of the graph. Notice that by convention a dyad is considered a biconnected component. **Parameters** G (*NetworkX Graph*) – An undirected graph. **Returns** graphs – Generator of graphs, one graph for each biconnected component. Return type generator Raises NetworkXNotImplemented - If the input graph is not undirected. # **Examples** ``` >>> G = nx.lollipop_graph(5, 1) >>> print(nx.is_biconnected(G)) False >>> bicomponents = list(nx.biconnected_component_subgraphs(G)) >>> len(bicomponents) 2 >>> G.add_edge(0, 5) >>> print(nx.is_biconnected(G)) ``` 4.12. Components 219 ``` True >>> bicomponents = list(nx.biconnected_component_subgraphs(G)) >>> len(bicomponents) 1 ``` You can generate a sorted list of biconnected components, largest first, using sort. If you only want the largest connected component, it's more efficient to use max instead of sort. ``` >>> Gc = max(nx.biconnected_component_subgraphs(G), key=len) ``` #### See also: ``` is_biconnected(), articulation_points(), biconnected_component_edges(), biconnected_components() ``` #### **Notes** The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points. Graph, node, and edge attributes are copied to the subgraphs. #### References ### articulation points ### $articulation_points(G)$ Return a generator of articulation points, or cut vertices, of a graph. An articulation point or cut vertex is any node whose removal (along with all its incident edges) increases the number of connected components of a graph. An undirected connected graph without articulation points is biconnected. Articulation points belong to more than one biconnected component of a graph. Notice that by convention a dyad is considered a biconnected component. **Parameters** G (*NetworkX Graph*) – An undirected graph. **Returns articulation points** – generator of nodes **Return type** generator Raises NetworkXNotImplemented - If the input graph is not undirected. # **Examples** 221 ``` >>> G = nx.barbell_graph(4, 2) >>> print(nx.is_biconnected(G)) False >>> len(list(nx.articulation_points(G))) 4 >>> G.add_edge(2, 8) >>> print(nx.is_biconnected(G)) True >>> len(list(nx.articulation_points(G))) 0 ``` #### See also: is_biconnected(), biconnected_components(), biconnected_component_edges(), biconnected_component_subgraphs() ### **Notes** The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points. #### References # 4.12.6 Semiconnectedness Semiconnectedness. is_semiconnected(G) Return True if the graph is semiconnected, False otherwise. # is semiconnected # $is_semiconnected(G)$ Return True if the graph is semiconnected, False otherwise. A graph is semiconnected if, and only if, for any pair of nodes, either one is reachable from the other, or they are mutually reachable. **Parameters** G (NetworkX graph) – A directed graph. **Returns** semiconnected – True if the graph is semiconnected, False otherwise. Return type bool # Raises - NetworkXNotImplemented If the input graph is not directed. - $\bullet$ NetworkXPointlessConcept If the graph is empty. ### **Examples** ``` >>> G=nx.path_graph(4,create_using=nx.DiGraph()) >>> print(nx.is_semiconnected(G)) True >>> G=nx.DiGraph([(1, 2), (3, 2)]) >>> print(nx.is_semiconnected(G)) False ``` #### See also: is_strongly_connected(), is_weakly_connected() # 4.13 Connectivity Connectivity and cut algorithms # 4.13.1 K-node-components Moody and White algorithm for k-components $k_components(G[, flow_func])$ Returns the k-component structure of a graph G. # k components # k_components(G, flow_func=None) Returns the k-component structure of a graph G. A k-component is a maximal subgraph of a graph G that has, at least, node connectivity k: we need to remove at least k nodes to break it into more components. k-components have an inherent hierarchical structure because they are nested in terms of connectivity: a connected graph can contain several 2-components, each of which can contain one or more 3-components, and so forth. ### **Parameters** - G (NetworkX graph) - - flow_func (function) Function to perform the underlying flow computations. Default value edmonds_karp(). This function performs better in sparse graphs with right tailed degree distributions. shortest_augmenting_path() will perform better in denser graphs. **Returns** k_components – Dictionary with all connectivity levels k in the input Graph as keys and a list of sets of nodes that form a k-component of level k as values. # Return type dict Raises NetworkXNotImplemented - If the input graph is directed. #### **Examples** ``` >>> # Petersen graph
has 10 nodes and it is triconnected, thus all >>> # nodes are in a single component on all three connectivity levels ``` ``` >>> G = nx.petersen_graph() >>> k_components = nx.k_components(G) ``` #### **Notes** Moody and White ⁶⁵ (appendix A) provide an algorithm for identifying k-components in a graph, which is based on Kanevsky's algorithm ⁶⁶ for finding all minimum-size node cut-sets of a graph (implemented in all_node_cuts() function): - 1. Compute node connectivity, k, of the input graph G. - 2.Identify all k-cutsets at the current level of connectivity using Kanevsky's algorithm. - 3.Generate new graph components based on the removal of these cutsets. Nodes in a cutset belong to both sides of the induced cut. - 4.If the graph is neither complete nor trivial, return to 1; else end. This implementation also uses some heuristics (see ⁶⁷ for details) to speed up the computation. #### See also: ``` node_connectivity(), all_node_cuts() ``` #### References # 4.13.2 K-node-cutsets Kanevsky all minimum node k cutsets algorithm. ``` all_node_cuts(G[, k, flow_func]) Returns all minimum k cutsets of an undirected graph G. ``` # all node cuts # all_node_cuts (G, k=None, flow_func=None) Returns all minimum k cutsets of an undirected graph G. This implementation is based on Kanevsky's algorithm ⁶⁸ for finding all minimum-size node cut-sets of an undirected graph G; ie the set (or sets) of nodes of cardinality equal to the node connectivity of G. Thus if removed, would break G into two or more connected components. #### **Parameters** - **G** (NetworkX graph) Undirected graph - **k** (*Integer*) Node connectivity of the input graph. If k is None, then it is computed. Default value: None. ⁶⁵ Moody, J. and D. White (2003). Social cohesion and embeddedness: A hierarchical conception of social groups. American Sociological Review 68(1), 103–28. http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf ⁶⁶ Kanevsky, A. (1993). Finding all minimum-size separating vertex sets in a graph. Networks 23(6), 533–541. http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract ⁶⁷ Torrents, J. and F. Ferraro (2015). Structural Cohesion: Visualization and Heuristics for Fast Computation. http://arxiv.org/pdf/1503.04476v1 68 Kanevsky, A. (1993). Finding all minimum-size separating vertex sets in a graph. Networks 23(6), 533–541. http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract • **flow_func** (function) – Function to perform the underlying flow computations. Default value edmonds_karp. This function performs better in sparse graphs with right tailed degree distributions. shortest_augmenting_path will perform better in denser graphs. **Returns** cuts – Each node cutset has cardinality equal to the node connectivity of the input graph. Return type a generator of node cutsets ### **Examples** ``` >>> # A two-dimensional grid graph has 4 cutsets of cardinality 2 >>> G = nx.grid_2d_graph(5, 5) >>> cutsets = list(nx.all_node_cuts(G)) >>> len(cutsets) 4 >>> all(2 == len(cutset) for cutset in cutsets) True >>> nx.node_connectivity(G) 2 ``` #### **Notes** This implementation is based on the sequential algorithm for finding all minimum-size separating vertex sets in a graph ¹. The main idea is to compute minimum cuts using local maximum flow computations among a set of nodes of highest degree and all other non-adjacent nodes in the Graph. Once we find a minimum cut, we add an edge between the high degree node and the target node of the local maximum flow computation to make sure that we will not find that minimum cut again. # See also: ``` node_connectivity(), edmonds_karp(), shortest_augmenting_path() ``` #### References # 4.13.3 Flow-based Connectivity Flow based connectivity algorithms | $average_node_connectivity(G[,flow_func])$ | Returns the average connectivity of a graph G. | |-----------------------------------------------|------------------------------------------------------------| | all_pairs_node_connectivity(G[, nbunch,]) | Compute node connectivity between all pairs of nodes of G. | | $edge_connectivity(G[, s, t, flow_func])$ | Returns the edge connectivity of the graph or digraph G. | | $local_edge_connectivity(G, u, v[,])$ | Returns local edge connectivity for nodes s and t in G. | | $local_node_connectivity(G, s, t[,])$ | Computes local node connectivity for nodes s and t. | | $node_connectivity(G[, s, t, flow_func])$ | Returns node connectivity for a graph or digraph G. | # average_node_connectivity ``` average_node_connectivity(G, flow_func=None) ``` Returns the average connectivity of a graph G. The average connectivity $\bar{\kappa}$ of a graph G is the average of local node connectivity over all pairs of nodes of G 69 ⁶⁹ Beineke, L., O. Oellermann, and R. Pippert (2002). The average connectivity of a graph. Discrete mathematics 252(1-3), 31-45. . $$\bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_G(u,v)}{\binom{n}{2}}$$ #### **Parameters** - **G** (*NetworkX graph*) Undirected graph - **flow_func** (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See <code>local_node_connectivity()</code> for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. **Returns** K – Average node connectivity Return type float #### See also: #### References # all pairs node connectivity **all_pairs_node_connectivity** (*G*, *nbunch=None*, *flow_func=None*) Compute node connectivity between all pairs of nodes of G. # **Parameters** - G (NetworkX graph) Undirected graph - **nbunch** (*container*) Container of nodes. If provided node connectivity will be computed only over pairs of nodes in nbunch. - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. **Returns all_pairs** – A dictionary with node connectivity between all pairs of nodes in G, or in nbunch if provided. Return type dict ### See also: ``` local_node_connectivity(), \quad edge_connectivity(), \quad local_edge_connectivity(), \\ maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` http://www.sciencedirect.com/science/article/pii/S0012365X01001807 # edge connectivity ``` edge_connectivity(G, s=None, t=None, flow_func=None) ``` Returns the edge connectivity of the graph or digraph G. The edge connectivity is equal to the minimum number of edges that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local edge connectivity: the minimum number of edges that must be removed to break all paths from source to target in G. #### **Parameters** - **G** (*NetworkX graph*) Undirected or directed graph - **s** (*node*) Source node. Optional. Default value: None. - t (node) Target node. Optional. Default value: None. - **flow_func** (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. **Returns** K – Edge connectivity for G, or local edge connectivity if source and target were provided **Return type** integer # **Examples** ``` >>> # Platonic icosahedral graph is 5-edge-connected >>> G = nx.icosahedral_graph() >>> nx.edge_connectivity(G) 5 ``` You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> nx.edge_connectivity(G, flow_func=shortest_augmenting_path) 5 ``` If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge connectivity. ``` >>> nx.edge_connectivity(G, 3, 7) 5 ``` If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See <code>local_edge_connectivity()</code> for details. #### **Notes** This is a flow based implementation of global edge connectivity. For undirected graphs the algorithm works by finding a 'small' dominating set of nodes of G (see algorithm 7 in 70 ) and computing local maximum flow (see $local_edge_connectivity()$ ) between an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in 1 . For directed graphs, the algorithm does n calls to the maximum flow function. This is an implementation of algorithm 8 in 1 . #### See also: ``` local_edge_connectivity(), local_node_connectivity(), node_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` #### References ### local edge connectivity **local_edge_connectivity** $(G, u, v, flow_func=None, auxiliary=None,
residual=None, cutoff=None)$ Returns local edge connectivity for nodes s and t in G. Local edge connectivity for two nodes s and t is the minimum number of edges that must be removed to disconnect them. This is a flow based implementation of edge connectivity. We compute the maximum flow on an auxiliary digraph build from the original network (see below for details). This is equal to the local edge connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem) ⁷¹. ### **Parameters** - **G** (NetworkX graph) Undirected or directed graph - **s** (*node*) Source node - t (node) Target node - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. - **auxiliary** (*NetworkX DiGraph*) Auxiliary digraph for computing flow based edge connectivity. If provided it will be reused instead of recreated. Default value: None. - **residual** (*NetworkX DiGraph*) Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None. - **cutoff** (*integer*, *float*) If specified, the maximum flow algorithm will terminate when the flow value reaches or exceeds the cutoff. This is only for the algorithms that support the cutoff parameter: edmonds_karp() and shortest_augmenting_path(). Other algorithms will ignore this parameter. Default value: None. **Returns** K – local edge connectivity for nodes s and t. #### **Return type** integer ⁷⁰ Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf ⁷¹ Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf ### **Examples** This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package: ``` >>> from networkx.algorithms.connectivity import local_edge_connectivity ``` We use in this example the platonic icosahedral graph, which has edge connectivity 5. ``` >>> G = nx.icosahedral_graph() >>> local_edge_connectivity(G, 0, 6) 5 ``` If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for edge connectivity, and the residual network for the underlying maximum flow computation. Example of how to compute local edge connectivity among all pairs of nodes of the platonic icosahedral graph reusing the data structures. ``` >>> import itertools >>> # You also have to explicitly import the function for >>> # building the auxiliary digraph from the connectivity package >>> from networkx.algorithms.connectivity import ( build_auxiliary_edge_connectivity) >>> H = build_auxiliary_edge_connectivity(G) >>> # And the function for building the residual network from the >>> # flow package >>> from networkx.algorithms.flow import build residual_network >>> # Note that the auxiliary digraph has an edge attribute named capacity >>> R = build_residual_network(H, 'capacity') >>> result = dict.fromkeys(G, dict()) >>> # Reuse the auxiliary digraph and the residual network by passing them >>> # as parameters >>> for u, v in itertools.combinations(G, 2): k = local_edge_connectivity(G, u, v, auxiliary=H, residual=R) result[u][v] = k >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2)) True ``` You can also use alternative flow algorithms for computing edge connectivity. For instance, in dense networks the algorithm <code>shortest_augmenting_path()</code> will usually perform better than the default <code>edmonds_karp()</code> which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path) 5 ``` #### **Notes** This is a flow based implementation of edge connectivity. We compute the maximum flow using, by default, the edmonds_karp() algorithm on an auxiliary digraph build from the original input graph: If the input graph is undirected, we replace each edge (u, v) with two reciprocal arcs (u, v) and (v, u) and then we set the attribute 'capacity' for each arc to 1. If the input graph is directed we simply add the 'capacity' attribute. This is an implementation of algorithm 1 in 1 . The maximum flow in the auxiliary network is equal to the local edge connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem). #### See also: ``` edge_connectivity(), local_node_connectivity(), node_connectivity(), maximum_flow(),edmonds_karp(),preflow_push(),shortest_augmenting_path() ``` #### References # local node connectivity $local_node_connectivity$ (G, s, t, $flow_func=None$ , auxiliary=None, residual=None, cutoff=None) Computes local node connectivity for nodes s and t. Local node connectivity for two non adjacent nodes s and t is the minimum number of nodes that must be removed (along with their incident edges) to disconnect them. This is a flow based implementation of node connectivity. We compute the maximum flow on an auxiliary digraph build from the original input graph (see below for details). #### **Parameters** - **G** (*NetworkX graph*) Undirected graph - **s** (node) Source node - t (node) Target node - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. - **auxiliary** (*NetworkX DiGraph*) Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None. - **residual** (*NetworkX DiGraph*) Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None. - **cutoff** (*integer*, *float*) If specified, the maximum flow algorithm will terminate when the flow value reaches or exceeds the cutoff. This is only for the algorithms that support the cutoff parameter: <code>edmonds_karp()</code> and <code>shortest_augmenting_path()</code>. Other algorithms will ignore this parameter. Default value: None. Returns K – local node connectivity for nodes s and t Return type integer #### **Examples** This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package: ``` >>> from networkx.algorithms.connectivity import local_node_connectivity ``` We use in this example the platonic icosahedral graph, which has node connectivity 5. ``` >>> G = nx.icosahedral_graph() >>> local_node_connectivity(G, 0, 6) 5 ``` If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity, and the residual network for the underlying maximum flow computation. Example of how to compute local node connectivity among all pairs of nodes of the platonic icosahedral graph reusing the data structures. ``` >>> import itertools >>> # You also have to explicitly import the function for >>> # building the auxiliary digraph from the connectivity package >>> from networkx.algorithms.connectivity import ( build_auxiliary_node_connectivity) >>> H = build_auxiliary_node_connectivity(G) >>> # And the function for building the residual network from the >>> # flow package >>> from networkx.algorithms.flow import build_residual_network >>> # Note that the auxiliary digraph has an edge attribute named capacity >>> R = build_residual_network(H, 'capacity') >>> result = dict.fromkeys(G, dict()) >>> # Reuse the auxiliary digraph and the residual network by passing them >>> # as parameters >>> for u, v in itertools.combinations(G, 2): k = local_node_connectivity(G, u, v, auxiliary=H, residual=R) result[u][v] = k . . . >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2)) ``` You can also use alternative flow algorithms for computing node connectivity. For instance, in dense networks the algorithm <code>shortest_augmenting_path()</code> will usually perform better than the default <code>edmonds_karp()</code> which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path) 5 ``` # **Notes** This is a flow based implementation of node connectivity. We compute the maximum flow using, by default, the edmonds_karp() algorithm (see: maximum_flow()) on an auxiliary digraph build from the original input graph: For an undirected graph G having n nodes and m edges we derive a directed graph H with 2n nodes and 2m+n arcs by replacing each original node v with two nodes $v_A$ , $v_B$ linked by an (internal) arc in H. Then for each edge (u,v) in G we add
two arcs $(u_B,v_A)$ and $(v_B,u_A)$ in H. Finally we set the attribute capacity = 1 for each arc in H 72 . ⁷² Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and Erlebach, 'Network Analysis: Method- For a directed graph G having n nodes and m arcs we derive a directed graph H with 2n nodes and m + n arcs by replacing each original node v with two nodes $v_A$ , $v_B$ linked by an (internal) arc $(v_A, v_B)$ in H. Then for each arc (u, v) in G we add one arc $(u_B, v_A)$ in H. Finally we set the attribute capacity = 1 for each arc in H. This is equal to the local node connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut. #### See also: #### References # node connectivity ``` node_connectivity (G, s=None, t=None, flow_func=None) Returns node connectivity for a graph or digraph G. ``` Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local node connectivity: the minimum number of nodes that must be removed to break all paths from source to target in G. #### **Parameters** - **G** (*NetworkX graph*) Undirected graph - **s** (*node*) Source node. Optional. Default value: None. - t (node) Target node. Optional. Default value: None. - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. **Returns K** – Node connectivity of G, or local node connectivity if source and target are provided. **Return type** integer #### **Examples** ``` >>> # Platonic icosahedral graph is 5-node-connected >>> G = nx.icosahedral_graph() >>> nx.node_connectivity(G) 5 ``` You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ological Foundations', Lecture Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> nx.node_connectivity(G, flow_func=shortest_augmenting_path) 5 ``` If you specify a pair of nodes (source and target) as parameters, this function returns the value of local node connectivity. ``` >>> nx.node_connectivity(G, 3, 7) 5 ``` If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See <code>local_node_connectivity()</code> for details. #### **Notes** This is a flow based implementation of node connectivity. The algorithm works by solving $O((n-\delta-1+\delta(\delta-1)/2))$ maximum flow problems on an auxiliary digraph. Where $\delta$ is the minimum degree of G. For details about the auxiliary digraph and the computation of local node connectivity see $local_node_connectivity()$ . This implementation is based on algorithm 11 in 73 . #### See also: #### References # 4.13.4 Flow-based Minimum Cuts Flow based cut algorithms | $minimum_edge_cut(G[, s, t, flow_func])$ | Returns a set of edges of minimum cardinality that disconnects G. | |---------------------------------------------------|----------------------------------------------------------------------------------| | <pre>minimum_node_cut(G[, s, t, flow_func])</pre> | Returns a set of nodes of minimum cardinality that disconnects G. | | minimum_st_edge_cut(G, s, t[, flow_func,]) | Returns the edges of the cut-set of a minimum (s, t)-cut. | | minimum_st_node_cut(G, s, t[, flow_func,]) | Returns a set of nodes of minimum cardinality that disconnect source from target | # minimum_edge_cut ``` minimum_edge_cut (G, s=None, t=None, flow_func=None) ``` Returns a set of edges of minimum cardinality that disconnects G. If source and target nodes are provided, this function returns the set of edges of minimum cardinality that, if removed, would break all paths among source and target in G. If not, it returns a set of edges of minimum cardinality that disconnects G. # **Parameters** - **G** (NetworkX graph) – - **s** (*node*) Source node. Optional. Default value: None. - t (node) Target node. Optional. Default value: None. ⁷³ Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf • **flow_func** (function) – A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. **Returns cutset** – Set of edges that, if removed, would disconnect G. If source and target nodes are provided, the set contians the edges that if removed, would destroy all paths between source and target. Return type set ### **Examples** ``` >>> # Platonic icosahedral graph has edge connectivity 5 >>> G = nx.icosahedral_graph() >>> len(nx.minimum_edge_cut(G)) 5 ``` You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> len(nx.minimum_edge_cut(G, flow_func=shortest_augmenting_path)) 5 ``` If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge connectivity. ``` >>> nx.edge_connectivity(G, 3, 7) 5 ``` If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See local_edge_connectivity() for details. #### **Notes** This is a flow based implementation of minimum edge cut. For undirected graphs the algorithm works by finding a 'small' dominating set of nodes of G (see algorithm 7 in 74 ) and computing the maximum flow between an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in 1 . For directed graphs, the algorithm does n calls to the max flow function. It is an implementation of algorithm 8 in 1 . #### See also: ⁷⁴ Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf #### References # minimum_node_cut ``` minimum_node_cut(G, s=None, t=None, flow_func=None) ``` Returns a set of nodes of minimum cardinality that disconnects G. If source and target nodes are provided, this function returns the set of nodes of minimum cardinality that, if removed, would destroy all paths among source and target in G. If not, it returns a set of nodes of minimum cardinality that disconnects G. ### **Parameters** - **G** (NetworkX graph) – - **s** (*node*) Source node. Optional. Default value: None. - **t** (*node*) Target node. Optional. Default value: None. - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. **Returns cutset** – Set of nodes that, if removed, would disconnect G. If source and target nodes are provided, the set contians the nodes that if removed, would destroy all paths between source and target. Return type set ### **Examples** ``` >>> # Platonic icosahedral graph has node connectivity 5 >>> G = nx.icosahedral_graph() >>> node_cut = nx.minimum_node_cut(G) >>> len(node_cut) 5 ``` You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> node_cut == nx.minimum_node_cut(G, flow_func=shortest_augmenting_path) True ``` If you specify a pair of nodes (source and target) as parameters, this function returns a local st node cut. ``` >>> len(nx.minimum_node_cut(G, 3, 7)) 5 ``` If you need to perform several local st cuts among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See <code>minimum_st_node_cut()</code> for details. #### **Notes** This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of maximum flow computations to determine the capacity of the minimum cut on an auxiliary
directed network that corresponds to the minimum node cut of G. It handles both directed and undirected graphs. This implementation is based on algorithm 11 in ⁷⁵. #### See also: ``` minimum_st_node_cut(), minimum_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` #### References ### minimum_st_edge_cut ``` minimum_st_edge_cut(G, s, t, flow_func=None, auxiliary=None, residual=None) Returns the edges of the cut-set of a minimum (s, t)-cut. ``` This function returns the set of edges of minimum cardinality that, if removed, would destroy all paths among source and target in G. Edge weights are not considered #### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - t (node) Sink node for the flow. - auxiliary (NetworkX DiGraph) Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None. - **flow_func** (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See node_connectivity() for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. - residual (*NetworkX DiGraph*) Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None. Returns cutset – Set of edges that, if removed from the graph, will disconnect it. Return type set # See also: ⁷⁵ Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf ### **Examples** This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package: ``` >>> from networkx.algorithms.connectivity import minimum_st_edge_cut ``` We use in this example the platonic icosahedral graph, which has edge connectivity 5. ``` >>> G = nx.icosahedral_graph() >>> len(minimum_st_edge_cut(G, 0, 6)) 5 ``` If you need to compute local edge cuts on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for edge connectivity, and the residual network for the underlying maximum flow computation. Example of how to compute local edge cuts among all pairs of nodes of the platonic icosahedral graph reusing the data structures. ``` >>> import itertools >>> # You also have to explicitly import the function for >>> # building the auxiliary digraph from the connectivity package >>> from networkx.algorithms.connectivity import ( build_auxiliary_edge_connectivity) >>> H = build_auxiliary_edge_connectivity(G) >>> # And the function for building the residual network from the >>> # flow package >>> from networkx.algorithms.flow import build residual_network >>> # Note that the auxiliary digraph has an edge attribute named capacity >>> R = build_residual_network(H, 'capacity') >>> result = dict.fromkeys(G, dict()) >>> # Reuse the auxiliary digraph and the residual network by passing them >>> # as parameters >>> for u, v in itertools.combinations(G, 2): k = len(minimum_st_edge_cut(G, u, v, auxiliary=H, residual=R)) result[u][v] = k >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2)) True ``` You can also use alternative flow algorithms for computing edge cuts. For instance, in dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp() which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> len(minimum_st_edge_cut(G, 0, 6, flow_func=shortest_augmenting_path)) 5 ``` # minimum_st_node_cut ``` minimum_st_node_cut (G, s, t, flow_func=None, auxiliary=None, residual=None) ``` Returns a set of nodes of minimum cardinality that disconnect source from target in G. This function returns the set of nodes of minimum cardinality that, if removed, would destroy all paths among source and target in G. # **Parameters** - **G** (NetworkX graph) – - **s** (*node*) Source node. - t (node) Target node. - flow_func (function) A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. - auxiliary (*NetworkX DiGraph*) Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None. - residual (NetworkX DiGraph) Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None. **Returns cutset** – Set of nodes that, if removed, would destroy all paths between source and target in G. Return type set ### **Examples** This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package: ``` >>> from networkx.algorithms.connectivity import minimum_st_node_cut ``` We use in this example the platonic icosahedral graph, which has node connectivity 5. ``` >>> G = nx.icosahedral_graph() >>> len(minimum_st_node_cut(G, 0, 6)) 5 ``` If you need to compute local st cuts between several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity and node cuts, and the residual network for the underlying maximum flow computation. Example of how to compute local st node cuts reusing the data structures: ``` >>> # You also have to explicitly import the function for >>> # building the auxiliary digraph from the connectivity package >>> from networkx.algorithms.connectivity import ( ... build_auxiliary_node_connectivity(G) >>> H = build_auxiliary_node_connectivity(G) >>> # And the function for building the residual network from the >>> # flow package >>> from networkx.algorithms.flow import build_residual_network >>> # Note that the auxiliary digraph has an edge attribute named capacity >>> R = build_residual_network(H, 'capacity') >>> # Reuse the auxiliary digraph and the residual network by passing them >>> # as parameters >>> len(minimum_st_node_cut(G, 0, 6, auxiliary=H, residual=R)) ``` You can also use alternative flow algorithms for computing minimum st node cuts. For instance, in dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp() which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> len(minimum_st_node_cut(G, 0, 6, flow_func=shortest_augmenting_path)) 5 ``` #### **Notes** This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of maximum flow computations to determine the capacity of the minimum cut on an auxiliary directed network that corresponds to the minimum node cut of G. It handles both directed and undirected graphs. This implementation is based on algorithm 11 in ⁷⁶. #### See also: ``` minimum_node_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` #### References # 4.13.5 Stoer-Wagner minimum cut Stoer-Wagner minimum cut algorithm. stoer_wagner(G[, weight, heap]) Returns the weighted minimum edge cut using the Stoer-Wagner algorithm. ### stoer wagner ``` stoer_wagner (G, weight='weight', heap=<class 'networkx.utils.heaps.BinaryHeap'>) Returns the weighted minimum edge cut using the Stoer-Wagner algorithm. ``` Determine the minimum edge cut of a connected graph using the Stoer-Wagner algorithm. In weighted cases, all weights must be nonnegative. The running time of the algorithm depends on the type of heaps used: | Type of heap | Running time | |----------------|-------------------------------------------| | Binary heap | $O(n(m+n)\log n)$ | | Fibonacci heap | $O(nm + n^2 \log n)$ | | Pairing heap | $O(2^{2\sqrt{\log\log n}}nm + n^2\log n)$ | # **Parameters** • **G** (*NetworkX graph*) – Edges of the graph are expected to have an attribute named by the weight parameter below. If this attribute is not present, the edge is considered to have unit weight. ⁷⁶ Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf - weight (*string*) Name of the weight attribute of the edges. If the attribute is not present, unit weight is assumed. Default value: 'weight'. - heap (class) Type of heap to be used in the algorithm. It should be a subclass of MinHeap or implement a compatible interface. If a stock heap implementation is to be used, BinaryHeap is recommeded over PairingHeap for Python implementations without
optimized attribute accesses (e.g., CPython) despite a slower asymptotic running time. For Python implementations with optimized attribute accesses (e.g., PyPy), PairingHeap provides better performance. Default value: BinaryHeap. #### Returns - **cut_value** (*integer or float*) The sum of weights of edges in a minimum cut. - partition (pair of node lists) A partitioning of the nodes that defines a minimum cut. #### Raises - NetworkXNotImplemented If the graph is directed or a multigraph. - NetworkXError If the graph has less than two nodes, is not connected or has a negative-weighted edge. ### **Examples** ``` >>> G = nx.Graph() >>> G.add_edge('x', 'a', weight=3) >>> G.add_edge('x', 'b', weight=1) >>> G.add_edge('a','c', weight=3) >>> G.add_edge('b','c', weight=5) >>> G.add_edge('b','d', weight=4) >>> G.add_edge('d','e', weight=2) >>> G.add_edge('c','y', weight=2) >>> G.add_edge('e','y', weight=3) >>> cut_value, partition = nx.stoer_wagner(G) >>> cut_value ``` # 4.13.6 Utils for flow-based connectivity Utilities for connectivity package ``` build_auxiliary_edge_connectivity(G) Auxiliary digraph for computing flow based edge connectivity build_auxiliary_node_connectivity(G) Creates a directed graph D from an undirected graph G to compute flow based ``` # build_auxiliary_edge_connectivity # $\verb|build_auxiliary_edge_connectivity|(G)$ Auxiliary digraph for computing flow based edge connectivity If the input graph is undirected, we replace each edge (u, v) with two reciprocal arcs (u, v) and (v, u) and then we set the attribute 'capacity' for each arc to 1. If the input graph is directed we simply add the 'capacity' attribute. Part of algorithm 1 in 77. Abdol-Hossein Esfahanian. Connectivity Algorithms. (this is a chapter, look for the reference of the book). #### References # build_auxiliary_node_connectivity # $build_auxiliary_node_connectivity(G)$ Creates a directed graph D from an undirected graph G to compute flow based node connectivity. For an undirected graph G having n nodes and m edges we derive a directed graph D with 2n nodes and 2m+n arcs by replacing each original node v with two nodes vA, vB linked by an (internal) arc in D. Then for each edge (u,v) in G we add two arcs (uB,vA) and (vB,uA) in D. Finally we set the attribute capacity = 1 for each arc in D 78 . For a directed graph having n nodes and m arcs we derive a directed graph D with 2n nodes and m+n arcs by replacing each original node v with two nodes vA, vB linked by an (internal) arc (vA, vB) in D. Then for each arc (u, v) in G we add one arc (uB, vA) in D. Finally we set the attribute capacity = 1 for each arc in D. A dictionary with a mapping between nodes in the original graph and the auxiliary digraph is stored as a graph attribute: H.graph['mapping']. #### References # **4.14 Cores** Find the k-cores of a graph. The k-core is found by recursively pruning nodes with degrees less than k. See the following reference for details: An O(m) Algorithm for Cores Decomposition of Networks Vladimir Batagelj and Matjaz Zaversnik, 2003. http://arxiv.org/abs/cs.DS/0310049 | core_number(G) | Return the core number for each vertex. | |----------------------------------|-----------------------------------------| | $k_core(G[, k, core_number])$ | Return the k-core of G. | | $k_shell(G[, k, core_number])$ | Return the k-shell of G. | | k_crust(G[, k, core_number]) | Return the k-crust of G. | | k_corona(G, k[, core_number]) | Return the k-corona of G. | # 4.14.1 core_number # $core_number(G)$ Return the core number for each vertex. A k-core is a maximal subgraph that contains nodes of degree k or more. The core number of a node is the largest value k of a k-core containing that node. Parameters G (NetworkX graph) - A graph or directed graph **Returns core_number** – A dictionary keyed by node to the core number. $http://www.cse.msu.edu/\sim\!cse835/Papers/Graph_connectivity_revised.pdf$ ⁷⁸ Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and Erlebach, 'Network Analysis: Methodological Foundations', Lecture Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf # Return type dictionary Raises NetworkXError - The k-core is not defined for graphs with self loops or parallel edges. #### **Notes** Not implemented for graphs with parallel edges or self loops. For directed graphs the node degree is defined to be the in-degree + out-degree. #### References # 4.14.2 k core **k_core** (*G*, *k=None*, *core_number=None*) Return the k-core of G. A k-core is a maximal subgraph that contains nodes of degree k or more. #### **Parameters** - G (NetworkX graph) A graph or directed graph - **k** (int, optional) The order of the core. If not specified return the main core. - core_number (dictionary, optional) Precomputed core numbers for the graph G. **Returns** G – The k-core subgraph Return type NetworkX graph Raises NetworkXError – The k-core is not defined for graphs with self loops or parallel edges. # **Notes** The main core is the core with the largest degree. Not implemented for graphs with parallel edges or self loops. For directed graphs the node degree is defined to be the in-degree + out-degree. Graph, node, and edge attributes are copied to the subgraph. # See also: ``` core_number() ``` # References # 4.14.3 k_shell # $\textbf{k_shell} \; (\textit{G}, \textit{k=None}, \textit{core_number=None}) \\$ Return the k-shell of G. The k-shell is the subgraph of nodes in the k-core but not in the (k+1)-core. ### **Parameters** • **G** (*NetworkX graph*) – A graph or directed graph. 4.14. Cores 241 - **k** (*int*, *optional*) The order of the shell. If not specified return the main shell. - core_number (dictionary, optional) Precomputed core numbers for the graph G. **Returns** G – The k-shell subgraph Return type NetworkX graph Raises NetworkXError - The k-shell is not defined for graphs with self loops or parallel edges. # **Notes** This is similar to k_corona but in that case only neighbors in the k-core are considered. Not implemented for graphs with parallel edges or self loops. For directed graphs the node degree is defined to be the in-degree + out-degree. Graph, node, and edge attributes are copied to the subgraph. #### See also: ``` core_number(), k_corona() ``` #### References # 4.14.4 k crust **k_crust** (*G*, *k=None*, *core_number=None*) Return the k-crust of G. The k-crust is the graph G with the k-core removed. ### **Parameters** - **G** (*NetworkX graph*) A graph or directed graph. - **k** (*int*, *optional*) The order of the shell. If not specified return the main crust. - core number (dictionary, optional) Precomputed core numbers for the graph G. **Returns G** – The k-crust subgraph Return type NetworkX graph Raises NetworkXError - The k-crust is not defined for graphs with self loops or parallel edges. #### **Notes** This definition of k-crust is different than the definition in 79 . The k-crust in 1 is equivalent to the k+1 crust of this algorithm. Not implemented for graphs with parallel edges or self loops. For directed graphs the node degree is defined to be the in-degree + out-degree. Graph, node, and edge attributes are copied to the subgraph. # See also: ⁷⁹ A model of Internet topology using k-shell decomposition Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154 http://www.pnas.org/content/104/27/11150.full ``` core_number() ``` # References # 4.14.5 k corona # **k_corona** (*G*, *k*, *core_number=None*) Return the k-corona of G. The k-corona is the subgraph of nodes in the k-core which have exactly k neighbours in the k-core. ### Parameters - G (NetworkX graph) A graph or directed graph - **k** (*int*) The order of the corona. - core_number (dictionary, optional) Precomputed core numbers for the graph G. **Returns** G – The k-corona subgraph Return type NetworkX graph Raises NetworkXError - The k-cornoa is not defined for graphs with self loops or parallel edges. #### **Notes** Not implemented for graphs with parallel edges or self loops. For directed graphs the node degree is defined to be the in-degree + out-degree. Graph, node, and edge attributes are copied to the subgraph. # See also: ``` core_number() ``` #### References # 4.15 Cycles # 4.15.1 Cycle finding algorithms | cycle_basis(G[, root]) | Returns a list of cycles which form a basis for cycles of G. | |--------------------------------------|---------------------------------------------------------------------------| | simple_cycles(G) | Find simple cycles (elementary circuits) of a directed graph. | | find_cycle(G[, source, orientation]) | Returns the edges of a cycle found via a directed, depth-first traversal. | # 4.15.2 cycle_basis # cycle_basis(G, root=None) Returns a list of cycles which form a basis for cycles of G. A basis for cycles of a network is a minimal collection of cycles such that any cycle in the network can be written as a sum of cycles in the basis. Here summation of cycles is defined as "exclusive or" of the edges. Cycle bases are useful, e.g. when deriving equations for electric circuits using Kirchhoff's Laws. 4.15. Cycles 243 #### **Parameters** - **G** (NetworkX Graph) – - root (node, optional) Specify starting node for basis. ### Returns - A list of cycle lists. Each cycle list is a list of nodes - which forms a cycle (loop) in G. # **Examples** ``` >>> G=nx.Graph() >>> G.add_cycle([0,1,2,3]) >>> G.add_cycle([0,3,4,5]) >>> print(nx.cycle_basis(G,0)) [[3, 4, 5, 0], [1, 2, 3, 0]] ``` #### **Notes** This is adapted from algorithm CACM 491 80. #### References #### See also: ``` simple_cycles() ``` # 4.15.3 simple_cycles ### $simple_cycles(G)$ Find simple cycles (elementary circuits) of a directed graph. An simple cycle, or elementary circuit, is a closed path where no node appears twice, except that the first and last node are the same. Two elementary circuits are distinct if they
are not cyclic permutations of each other. This is a nonrecursive, iterator/generator version of Johnson's algorithm ⁸¹. There may be better algorithms for some cases ⁸² ⁸³. Parameters G (NetworkX DiGraph) – A directed graph **Returns cycle_generator** – A generator that produces elementary cycles of the graph. Each cycle is a list of nodes with the first and last nodes being the same. #### **Return type** generator ⁸⁰ Paton, K. An algorithm for finding a fundamental set of cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518. $^{^{81}}$ Finding all the elementary circuits of a directed graph. D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975. http://dx.doi.org/10.1137/0204007 ⁸² Enumerating the cycles of a digraph: a new preprocessing strategy. G. Loizou and P. Thanish, Information Sciences, v. 27, 163-182, 1982. ⁸³ A search strategy for the elementary cycles of a directed graph. J.L. Szwarcfiter and P.E. Lauer, BIT NUMERICAL MATHEMATICS, v. 16, no. 2, 192-204, 1976. ### **Examples** ``` >>> G = nx.DiGraph([(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]) >>> len(list(nx.simple_cycles(G))) 5 ``` To filter the cycles so that they don't include certain nodes or edges, copy your graph and eliminate those nodes or edges before calling ``` >>> copyG = G.copy() >>> copyG.remove_nodes_from([1]) >>> copyG.remove_edges_from([(0, 1)]) >>> len(list(nx.simple_cycles(copyG))) 3 ``` #### **Notes** The implementation follows pp. 79-80 in ¹. The time complexity is O((n+e)(c+1)) for n nodes, e edges and c elementary circuits. #### References # See also: cycle_basis() # 4.15.4 find_cycle find_cycle (G, source=None, orientation='original') Returns the edges of a cycle found via a directed, depth-first traversal. ### **Parameters** - **G** (graph) A directed/undirected graph/multigraph. - **source** (*node*, *list of nodes*) The node from which the traversal begins. If None, then a source is chosen arbitrarily and repeatedly until all edges from each node in the graph are searched. - **orientation** ('original' | 'reverse' | 'ignore') For directed graphs and directed multigraphs, edge traversals need not respect the original orientation of the edges. When set to 'reverse', then every edge will be traversed in the reverse direction. When set to 'ignore', then each directed edge is treated as a single undirected edge that can be traversed in either direction. For undirected graphs and undirected multigraphs, this parameter is meaningless and is not consulted by the algorithm. Returns edges – A list of directed edges indicating the path taken for the loop. If no cycle is found, then edges will be an empty list. For graphs, an edge is of the form (u, v) where u and v are the tail and head of the edge as determined by the traversal. For multigraphs, an edge is of the form (u, v, key), where key is the key of the edge. When the graph is directed, then u and v are always in the order of the actual directed edge. If orientation is 'ignore', then an edge takes the form (u, v, key, direction) where direction indicates if the edge was followed in the forward (tail to head) or reverse (head to tail) direction. When the direction is forward, the value of direction is 'forward'. When the direction is reverse, the value of direction is 'reverse'. 4.15. Cycles 245 # Return type directed edges # **Examples** In this example, we construct a DAG and find, in the first call, that there are no directed cycles, and so an exception is raised. In the second call, we ignore edge orientations and find that there is an undirected cycle. Note that the second call finds a directed cycle while effectively traversing an undirected graph, and so, we found an "undirected cycle". This means that this DAG structure does not form a directed tree (which is also known as a polytree). ``` >>> import networkx as nx >>> G = nx.DiGraph([(0,1), (0,2), (1,2)]) >>> try: ... find_cycle(G, orientation='original') ... except: ... pass ... >>> list(find_cycle(G, orientation='ignore')) [(0, 1, 'forward'), (1, 2, 'forward'), (0, 2, 'reverse')] ``` # 4.16 Directed Acyclic Graphs | ancestors(G, source) | Return all nodes having a path to <i>source</i> in G. | |--------------------------------------------------|-----------------------------------------------------------------------| | descendants(G, source) | Return all nodes reachable from <i>source</i> in G. | | topological_sort(G[, nbunch, reverse]) | Return a list of nodes in topological sort order. | | topological_sort_recursive(G[, nbunch, reverse]) | Return a list of nodes in topological sort order. | | is_directed_acyclic_graph(G) | Return True if the graph G is a directed acyclic graph (DAG) or False | | is_aperiodic(G) | Return True if G is aperiodic. | | transitive_closure(G) | Returns transitive closure of a directed graph | | antichains(G) | Generates antichains from a DAG. | | $dag_longest_path(G)$ | Returns the longest path in a DAG | | $dag_longest_path_length$ (G) | Returns the longest path length in a DAG | # 4.16.1 ancestors ``` ancestors(G, source) ``` Return all nodes having a path to source in G. # **Parameters** - **G** (NetworkX DiGraph) – - source(node in G) - **Returns** ancestors – The ancestors of source in G Return type set() # 4.16.2 descendants ``` descendants (G, source) ``` Return all nodes reachable from source in G. #### **Parameters** - **G** (NetworkX DiGraph) – - source (node in G) - Returns des – The descendants of source in G Return type set() ## 4.16.3 topological sort topological_sort(G, nbunch=None, reverse=False) Return a list of nodes in topological sort order. A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears before v in the topological sort order. #### **Parameters** - G (NetworkX digraph) A directed graph - nbunch (container of nodes (optional)) Explore graph in specified order given in nbunch - reverse (bool, optional) Return postorder instead of preorder if True. Reverse mode is a bit more efficient. #### Raises - NetworkXError Topological sort is defined for directed graphs only. If the graph G is undirected, a NetworkXError is raised. - NetworkXUnfeasible If G is not a directed acyclic graph (DAG) no topological sort exists and a NetworkXUnfeasible exception is raised. #### **Notes** This algorithm is based on a description and proof in The Algorithm Design Manual 84 . ## See also: ``` is_directed_acyclic_graph() ``` ### References ## 4.16.4 topological sort recursive topological_sort_recursive(G, nbunch=None, reverse=False) Return a list of nodes in topological sort order. A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears before v in the topological sort order. #### **Parameters** - **G** (NetworkX digraph) – - nbunch (container of nodes (optional)) Explore graph in specified order given in nbunch ⁸⁴ Skiena, S. S. The Algorithm Design Manual (Springer-Verlag, 1998). http://www.amazon.com/exec/obidos/ASIN/0387948600/ref=ase_thealgorithmrepo/ • reverse (bool, optional) – Return postorder instead of preorder if True. Reverse mode is a bit more efficient. #### Raises - NetworkXError Topological sort is defined for directed graphs only. If the graph G is undirected, a NetworkXError is raised. - NetworkXUnfeasible If G is not a directed acyclic graph (DAG) no topological sort exists and a NetworkXUnfeasible exception is raised. #### **Notes** This is a recursive version of topological sort. #### See also: ``` topological_sort(), is_directed_acyclic_graph() ``` ## 4.16.5 is directed acyclic graph ### $is_directed_acyclic_graph(G)$ Return True if the graph G is a directed acyclic graph (DAG) or False if not. **Parameters** G (NetworkX graph) – A graph **Returns** is_dag – True if G is a DAG, false otherwise Return type bool ## 4.16.6 is aperiodic ### $is_aperiodic(G)$ Return True if G is aperiodic. A directed graph is aperiodic if there is no integer k > 1 that divides the length of every cycle in the graph. Parameters G (NetworkX DiGraph) – Graph **Returns** aperiodic – True if the graph is aperiodic False otherwise Return type boolean Raises NetworkXError - If G is not directed ## **Notes** This uses the method outlined in ⁸⁵, which runs in O(m) time given m edges in G. Note that a graph is not aperiodic if it is acyclic as every integer trivial divides length 0 cycles. ⁸⁵ Jarvis, J. P.; Shier, D. R. (1996), Graph-theoretic analysis of finite Markov chains, in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling: A Multidisciplinary Approach, CRC Press. #### References ## 4.16.7 transitive closure ### $transitive_closure(G)$ Returns transitive closure of a directed graph The transitive closure of G = (V,E) is a graph G + = (V,E+) such that for all v,w in V there is an edge (v,w) in E+ if and only if there is a non-null path from v to w in G. Parameters G (NetworkX DiGraph) – Graph Returns TC - Graph **Return type** NetworkX DiGraph Raises NetworkXNotImplemented - If G is not directed #### References ### 4.16.8 antichains #### antichains(G) Generates antichains from a DAG. An antichain is a subset of a partially ordered set such that any two elements in the subset are incomparable. Parameters G (NetworkX DiGraph) – Graph Returns antichain Return type generator object Raises - NetworkXNotImplemented If G is not directed - NetworkXUnfeasible If G contains a cycle #### Notes This function was originally developed by Peter Jipsen and Franco Saliola for the SAGE project. It's included in NetworkX with permission from the authors. Original SAGE code at: https://sage.informatik.uni-goettingen.de/src/combinat/posets/hasse_diagram.py #### References ## 4.16.9 dag longest path ## $dag_longest_path(G)$ Returns the longest path in a DAG **Parameters** G (NetworkX DiGraph) – Graph **Returns** path – Longest path Return type list Raises NetworkXNotImplemented - If G is not directed See also: dag_longest_path_length() ## 4.16.10
dag_longest_path_length ## $dag_longest_path_length(G)$ Returns the longest path length in a DAG Parameters G (NetworkX DiGraph) – Graph Returns path_length - Longest path length Return type int Raises NetworkXNotImplemented - If G is not directed See also: dag_longest_path() ## 4.17 Distance Measures Graph diameter, radius, eccentricity and other properties. | center(G[,e]) | Return the center of the graph G. | |--------------------------|----------------------------------------| | diameter(G[,e]) | Return the diameter of the graph G. | | eccentricity(G[, v, sp]) | Return the eccentricity of nodes in G. | | periphery(G[,e]) | Return the periphery of the graph G. | | radius(G[,e]) | Return the radius of the graph G. | ## 4.17.1 center center(G, e=None) Return the center of the graph G. The center is the set of nodes with eccentricity equal to radius. ### **Parameters** - **G** (NetworkX graph) A graph - e (eccentricity dictionary, optional) A precomputed dictionary of eccentricities. **Returns** c – List of nodes in center Return type list ### 4.17.2 diameter diameter(G, e=None) Return the diameter of the graph G. The diameter is the maximum eccentricity. #### **Parameters** - **G** (NetworkX graph) A graph - e (eccentricity dictionary, optional) A precomputed dictionary of eccentricities. Returns d – Diameter of graph Return type integer #### See also: eccentricity() ## 4.17.3 eccentricity ``` eccentricity(G, v=None, sp=None) ``` Return the eccentricity of nodes in G. The eccentricity of a node v is the maximum distance from v to all other nodes in G. #### **Parameters** - **G** (NetworkX graph) A graph - **v** (node, optional) Return value of specified node - sp (dict of dicts, optional) All pairs shortest path lengths as a dictionary of dictionaries **Returns** ecc – A dictionary of eccentricity values keyed by node. Return type dictionary ## 4.17.4 periphery ``` periphery(G, e=None) ``` Return the periphery of the graph G. The periphery is the set of nodes with eccentricity equal to the diameter. ### Parameters - **G** (*NetworkX graph*) A graph - **e** (*eccentricity dictionary, optional*) A precomputed dictionary of eccentricities. **Returns p** – List of nodes in periphery Return type list ## 4.17.5 radius ``` radius(G, e=None) ``` Return the radius of the graph G. The radius is the minimum eccentricity. ### **Parameters** - **G** (*NetworkX graph*) A graph - **e** (*eccentricity dictionary, optional*) A precomputed dictionary of eccentricities. **Returns** $\mathbf{r}$ – Radius of graph Return type integer # 4.18 Distance-Regular Graphs ## 4.18.1 Distance-regular graphs | is_distance_regular(G) | Returns True if the graph is distance regular, False otherwise. | |----------------------------|-----------------------------------------------------------------| | $intersection_array(G)$ | Returns the intersection array of a distance-regular graph. | | $global_parameters(b, c)$ | Return global parameters for a given intersection array. | ## 4.18.2 is distance regular ## $is_distance_regular(G)$ Returns True if the graph is distance regular, False otherwise. A connected graph G is distance-regular if for any nodes x,y and any integers i,j=0,1,...,d (where d is the graph diameter), the number of vertices at distance i from x and distance j from y depends only on i,j and the graph distance between x and y, independently of the choice of x and y. **Parameters** G (Networkx graph (undirected)) – Returns True if the graph is Distance Regular, False otherwise Return type bool ## **Examples** ``` >>> G=nx.hypercube_graph(6) >>> nx.is_distance_regular(G) True ``` ### See also: ``` intersection_array(), global_parameters() ``` #### **Notes** For undirected and simple graphs only References ## 4.18.3 intersection array #### $intersection_array(G)$ Returns the intersection array of a distance-regular graph. Given a distance-regular graph G with integers $b_i$ , $c_i$ , i = 0,...,d such that for any 2 vertices x,y in G at a distance i=d(x,y), there are exactly $c_i$ neighbors of y at a distance of i-1 from x and $b_i$ neighbors of y at a distance of i+1 from x. A distance regular graph's intersection array is given by, [b_0,b_1,....b_{d-1};c_1,c_2,....c_d] **Parameters** G (Networkx graph (undirected)) – Returns b.c Return type tuple of lists ## **Examples** ``` >>> G=nx.icosahedral_graph() >>> nx.intersection_array(G) ([5, 2, 1], [1, 2, 5]) ``` #### References ### See also: global_parameters() ## 4.18.4 global_parameters ## $global_parameters(b, c)$ Return global parameters for a given intersection array. Given a distance-regular graph G with integers $b_i$ , $c_i$ , i = 0,...,d such that for any 2 vertices x,y in G at a distance i=d(x,y), there are exactly $c_i$ neighbors of y at a distance of i-1 from x and $b_i$ neighbors of y at a distance of i+1 from x. Thus, a distance regular graph has the global parameters, $[[c_0,a_0,b_0],[c_1,a_1,b_1],....,[c_d,a_d,b_d]]$ for the intersection array $[b_0,b_1,....b_{d-1};c_1,c_2,....c_d]$ where $a_i+b_i+c_i=k$ , k=degree of every vertex. Parameters b, c (tuple of lists) - Returns p **Return type** list of three-tuples ## **Examples** ``` >>> G=nx.dodecahedral_graph() >>> b,c=nx.intersection_array(G) >>> list(nx.global_parameters(b,c)) [(0, 0, 3), (1, 0, 2), (1, 1, 1), (1, 1, 1), (2, 0, 1), (3, 0, 0)] ``` #### References ### See also: intersection_array() ## 4.19 Dominance Dominance algorithms. | <pre>immediate_dominators(G, start)</pre> | Returns the immediate dominators of all nodes of a directed graph. | |-------------------------------------------|--------------------------------------------------------------------| | dominance_frontiers(G, start) | Returns the dominance frontiers of all nodes of a directed graph. | ## 4.19.1 immediate dominators ### immediate_dominators(G, start) Returns the immediate dominators of all nodes of a directed graph. #### **Parameters** - **G** (a DiGraph or MultiDiGraph) The graph where dominance is to be computed. - **start** (*node*) The start node of dominance computation. Returns idom - A dict containing the immediate dominators of each node reachable from start. **Return type** dict keyed by nodes #### Raises - $\bullet$ NetworkXNotImplemented If G is undirected. - NetworkXError If start is not in G. ## **Notes** Except for start, the immediate dominators are the parents of their corresponding nodes in the dominator tree. ### **Examples** ``` >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)]) >>> sorted(nx.immediate_dominators(G, 1).items()) [(1, 1), (2, 1), (3, 1), (4, 3), (5, 1)] ``` ## References ## 4.19.2 dominance frontiers ## dominance_frontiers(G, start) Returns the dominance frontiers of all nodes of a directed graph. #### **Parameters** - **G** (a DiGraph or MultiDiGraph) The graph where dominance is to be computed. - **start** (*node*) The start node of dominance computation. **Returns** df – A dict containing the dominance frontiers of each node reachable from start as lists. **Return type** dict keyed by nodes Raises - NetworkXNotImplemented If G is undirected. - NetworkXError If start is not in G. ### **Examples** ``` >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)]) >>> sorted((u, sorted(df)) for u, df in nx.dominance_frontiers(G, 1).items()) [(1, []), (2, [5]), (3, [5]), (4, [5]), (5, [])] ``` #### References # 4.20 Dominating Sets | <pre>dominating_set(G[, start_with])</pre> | Finds a dominating set for the graph G. | |--------------------------------------------|-------------------------------------------------------| | <pre>is_dominating_set(G, nbunch)</pre> | Checks if nodes in nbunch are a dominating set for G. | ## 4.20.1 dominating_set ### dominating_set (G, start_with=None) Finds a dominating set for the graph G. A dominating set for a graph G=(V,E) is a node subset D of V such that every node not in D is adjacent to at least one member of D ⁸⁶. #### **Parameters** - **G** (NetworkX graph) – - **start_with** (*Node* (*default=None*)) Node to use as a starting point for the algorithm. **Returns** D - A dominating set for G. Return type set ### **Notes** This function is an implementation of algorithm 7 in ⁸⁷ which finds some dominating set, not necessarily the smallest one. ## See also: ``` is_dominating_set() ``` ### References ## 4.20.2 is dominating set #### is_dominating_set(G, nbunch) Checks if nodes in nbunch are a dominating set for G. ⁸⁶ http://en.wikipedia.org/wiki/Dominating_set ⁸⁷ Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf A dominating set for a graph G=(V,E) is a node subset D of V such that every node not in D is adjacent to at least one member of D ⁸⁸. #### **Parameters** - **G** (NetworkX graph) – - nbunch (Node container) - ### See also: ``` dominating_set() ``` #### References ## 4.21 Eulerian Eulerian circuits and graphs. | is_eulerian(G) | Return True if G is an Eulerian graph, False otherwise. | |------------------------------------------|---------------------------------------------------------| | <pre>eulerian_circuit(G[, source])</pre> | Return the edges of an Eulerian circuit in G. | ## 4.21.1 is eulerian #### $is_eulerian(G)$ Return True if G is an Eulerian graph, False otherwise. An Eulerian graph is a graph with an Eulerian circuit. Parameters G (graph) – A NetworkX Graph ### **Examples** ``` >>> nx.is_eulerian(nx.DiGraph({0:[3], 1:[2], 2:[3], 3:[0, 1]})) True >>> nx.is_eulerian(nx.complete_graph(5)) True >>> nx.is_eulerian(nx.petersen_graph()) False ``` #### **Notes** This implementation requires the graph to be connected (or strongly connected for directed graphs). ## 4.21.2 eulerian circuit ``` eulerian_circuit (G, source=None) ``` Return the edges of an Eulerian circuit in G. An Eulerian circuit is a path that crosses every edge in G exactly once and finishes at the starting node. ⁸⁸ http://en.wikipedia.org/wiki/Dominating_set #### **Parameters** - G (NetworkX Graph or DiGraph) A directed
or undirected graph - source (node, optional) Starting node for circuit. **Returns** edges – A generator that produces edges in the Eulerian circuit. Return type generator Raises NetworkXError – If the graph is not Eulerian. #### See also: ``` is_eulerian() ``` #### **Notes** Linear time algorithm, adapted from ⁸⁹. General information about Euler tours ⁹⁰. #### References ### **Examples** ``` >>> G=nx.complete_graph(3) >>> list(nx.eulerian_circuit(G)) [(0, 2), (2, 1), (1, 0)] >>> list(nx.eulerian_circuit(G, source=1)) [(1, 2), (2, 0), (0, 1)] >>> [u for u, v in nx.eulerian_circuit(G)] # nodes in circuit [0, 2, 1] ``` ## **4.22 Flows** ## 4.22.1 Maximum Flow | <pre>maximum_flow(G, s, t[, capacity, flow_func])</pre> | Find a maximum single-commodity flow. | |--------------------------------------------------------------|-------------------------------------------------------------------| | $maximum_flow_value(G, s, t[, capacity,])$ | Find the value of maximum single-commodity flow. | | <pre>minimum_cut(G, s, t[, capacity, flow_func])</pre> | Compute the value and the node partition of a minimum (s, t)-cut. | | <pre>minimum_cut_value(G, s, t[, capacity, flow_func])</pre> | Compute the value of a minimum (s, t)-cut. | ## maximum_flow ``` maximum_flow (G, s, t, capacity='capacity', flow_func=None, **kwargs) Find a maximum single-commodity flow. ``` ## **Parameters** • **G** (*NetworkX graph*) – Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. ⁸⁹ J. Edmonds, E. L. Johnson. Matching, Euler tours and the Chinese postman. Mathematical programming, Volume 5, Issue 1 (1973), 111-114. ⁹⁰ <a href="http://en.wikipedia.org/wiki/Eulerian_path">http://en.wikipedia.org/wiki/Eulerian_path</a> - **s** (*node*) Source node for the flow. - t (node) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **flow_func** (function) A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None. - **kwargs** (Any other keyword parameter is passed to the function that) computes the maximum flow. #### Returns - flow_value (integer, float) Value of the maximum flow, i.e., net outflow from the source. - flow_dict (dict) A dictionary containing the value of the flow that went through each edge. #### Raises - NetworkXError The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised. - NetworkXUnbounded If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded. #### See also: maximum_flow_value(), minimum_cut(), minimum_cut_value(), edmonds_karp(), preflow_push(), shortest_augmenting_path() #### **Notes** The function used in the flow func paramter has to return a residual network that follows NetworkX conventions: The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. Specific algorithms may store extra data in R. The function should supports an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined. #### **Examples** ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity=3.0) >>> G.add_edge('x','b', capacity=1.0) >>> G.add_edge('a','c', capacity=3.0) >>> G.add_edge('b','c', capacity=5.0) >>> G.add_edge('b','d', capacity=4.0) >>> G.add_edge('d','e', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('e','y', capacity=3.0) ``` maximum flow returns both the value of the maximum flow and a dictionary with all flows. ``` >>> flow_value, flow_dict = nx.maximum_flow(G, 'x', 'y') >>> flow_value 3.0 >>> print(flow_dict['x']['b']) 1.0 ``` You can also use alternative algorithms for computing the maximum flow by using the flow_func parameter. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> flow_value == nx.maximum_flow(G, 'x', 'y', ... flow_func=shortest_augmenting_path)[0] True ``` ### maximum_flow_value ``` maximum_flow_value(G, s, t, capacity='capacity', flow_func=None, **kwargs) Find the value of maximum single-commodity flow. ``` #### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - t (node) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **flow_func** (function) A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None. - kwargs (Any other keyword parameter is passed to the function that) computes the maximum flow. **Returns** flow_value – Value of the maximum flow, i.e., net outflow from the source. Return type integer, float #### Raises - NetworkXError The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised. - NetworkXUnbounded If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded. #### See also: ``` maximum_flow(), minimum_cut(), minimum_cut_value(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` #### **Notes** The function used in the flow func paramter has to return a residual network that follows NetworkX conventions: The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. Specific algorithms may store extra data in R. The function should supports an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined. ### **Examples** ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity=3.0) >>> G.add_edge('x','b', capacity=1.0) >>> G.add_edge('a','c', capacity=3.0) >>> G.add_edge('b','c', capacity=5.0) >>> G.add_edge('b','d', capacity=4.0) >>> G.add_edge('d','e', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('e','y', capacity=3.0) ``` maximum flow value computes only the value of the maximum flow: ``` >>> flow_value = nx.maximum_flow_value(G, 'x', 'y') >>> flow_value 3.0 ``` You can also use alternative algorithms for computing the maximum flow by using the flow_func parameter. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> flow_value == nx.maximum_flow_value(G, 'x', 'y', ... flow_func=shortest_augmenting_path) True ``` ## minimum cut **minimum_cut** (G, s, t, capacity = 'capacity', $flow_func = None$ , **kwargs) Compute the value and the node partition of a minimum (s, t)-cut. Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a maximum flow. #### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. -
**s** (*node*) Source node for the flow. - t (node) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **flow_func** (function) A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None. - kwargs (Any other keyword parameter is passed to the function that) computes the maximum flow. #### Returns - **cut_value** (*integer*, *float*) Value of the minimum cut. - partition (pair of node sets) A partitioning of the nodes that defines a minimum cut. **Raises** NetworkXUnbounded – If the graph has a path of infinite capacity, all cuts have infinite capacity and the function raises a NetworkXError. #### See also: ``` maximum_flow(), maximum_flow_value(), minimum_cut_value(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` ### Notes The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions: The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. Specific algorithms may store extra data in R. The function should supports an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined. ## **Examples** ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity = 3.0) >>> G.add_edge('x','b', capacity = 1.0) >>> G.add_edge('a','c', capacity = 3.0) >>> G.add_edge('b','c', capacity = 5.0) >>> G.add_edge('b','d', capacity = 4.0) >>> G.add_edge('d','e', capacity = 2.0) >>> G.add_edge('c','y', capacity = 2.0) >>> G.add_edge('e','y', capacity = 3.0) ``` minimum_cut computes both the value of the minimum cut and the node partition: ``` >>> cut_value, partition = nx.minimum_cut(G, 'x', 'y') >>> reachable, non_reachable = partition ``` 'partition' here is a tuple with the two sets of nodes that define the minimum cut. You can compute the cut set of edges that induce the minimum cut as follows: ``` >>> cutset = set() >>> for u, nbrs in ((n, G[n]) for n in reachable): ... cutset.update((u, v) for v in nbrs if v in non_reachable) >>> print(sorted(cutset)) [('c', 'y'), ('x', 'b')] >>> cut_value == sum(G.edge[u][v]['capacity'] for (u, v) in cutset) True ``` You can also use alternative algorithms for computing the minimum cut by using the flow func parameter. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> cut_value == nx.minimum_cut(G, 'x', 'y', ... flow_func=shortest_augmenting_path)[0] True ``` ### minimum cut value ``` minimum_cut_value (G, s, t, capacity='capacity', flow_func=None, **kwargs) Compute the value of a minimum (s, t)-cut. ``` Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a maximum flow. #### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - t (node) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **flow_func** (function) A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None. - **kwargs** (Any other keyword parameter is passed to the function that) computes the maximum flow. **Returns cut value** – Value of the minimum cut. Return type integer, float **Raises** NetworkXUnbounded – If the graph has a path of infinite capacity, all cuts have infinite capacity and the function raises a NetworkXError. #### See also: ``` maximum_flow(), maximum_flow_value(), minimum_cut(), edmonds_karp(), preflow_push(), shortest_augmenting_path() ``` ### **Notes** The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions: The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. Specific algorithms may store extra data in R. The function should supports an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined. #### **Examples** ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity = 3.0) >>> G.add_edge('x','b', capacity = 1.0) >>> G.add_edge('a','c', capacity = 3.0) >>> G.add_edge('b','c', capacity = 5.0) >>> G.add_edge('b','d', capacity = 4.0) >>> G.add_edge('b','d', capacity = 2.0) >>> G.add_edge('c','y', capacity = 2.0) >>> G.add_edge('e','y', capacity = 3.0) ``` minimum cut value computes only the value of the minimum cut: ``` >>> cut_value = nx.minimum_cut_value(G, 'x', 'y') >>> cut_value 3.0 ``` You can also use alternative algorithms for computing the minimum cut by using the flow_func parameter. ``` >>> from networkx.algorithms.flow import shortest_augmenting_path >>> cut_value == nx.minimum_cut_value(G, 'x', 'y', ... flow_func=shortest_augmenting_path) True ``` ## 4.22.2 Edmonds-Karp edmonds_karp(G, s, t[, capacity, residual, ...]) Find a maximum single-commodity flow using the Edmonds-Karp algorithm. ### edmonds karp **edmonds_karp** (*G*, *s*, *t*, *capacity='capacity'*, *residual=None*, *value_only=False*, *cutoff=None*) Find a maximum single-commodity flow using the Edmonds-Karp algorithm. This function returns the residual network resulting after computing the maximum flow. See below for details about the conventions NetworkX uses for defining residual networks. This algorithm has a running time of $O(nm^2)$ for n nodes and m edges. #### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - t (node) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **residual** (*NetworkX graph*) Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None. - **value_only** (*bool*) If True compute only the value of the maximum flow. This parameter will be ignored by this algorithm because it is not applicable. • **cutoff** (*integer*, *float*) – If specified, the algorithm will terminate when the flow value reaches or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum cut. Default value: None. **Returns R** – Residual network after computing the maximum flow. Return type NetworkX DiGraph #### Raises - NetworkXError The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised. - NetworkXUnbounded If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded. #### See also: ``` maximum_flow(), minimum_cut(), preflow_push(), shortest_augmenting_path() ``` #### **Notes** The residual
network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If cutoff is not specified, reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. ### **Examples** ``` >>> import networkx as nx >>> from networkx.algorithms.flow import edmonds_karp ``` The functions that implement flow algorithms and output a residual network, such as this one, are not imported to the base NetworkX namespace, so you have to explicitly import them from the flow package. ``` >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity=3.0) >>> G.add_edge('x','b', capacity=1.0) >>> G.add_edge('a','c', capacity=3.0) >>> G.add_edge('b','c', capacity=5.0) >>> G.add_edge('b','d', capacity=4.0) >>> G.add_edge('d','e', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('c','y', capacity=3.0) >>> G.add_edge('e','y', capacity=3.0) >>> R = edmonds_karp(G, 'x', 'y') >>> flow_value = nx.maximum_flow_value(G, 'x', 'y') >>> flow_value 3.0 ``` ``` >>> flow_value == R.graph['flow_value'] True ``` ## 4.22.3 Shortest Augmenting Path shortest_augmenting_path(G, s, t[, ...]) Find a maximum single-commodity flow using the shortest augmenting path algorithms. ## shortest augmenting path Find a maximum single-commodity flow using the shortest augmenting path algorithm. This function returns the residual network resulting after computing the maximum flow. See below for details about the conventions NetworkX uses for defining residual networks. This algorithm has a running time of $O(n^2m)$ for n nodes and m edges. #### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - t (node) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **residual** (*NetworkX graph*) Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None. - **value_only** (*bool*) If True compute only the value of the maximum flow. This parameter will be ignored by this algorithm because it is not applicable. - two_phase (bool) If True, a two-phase variant is used. The two-phase variant improves the running time on unit-capacity networks from O(nm) to $O(\min(n^{2/3}, m^{1/2})m)$ . Default value: False. - **cutoff** (*integer*, *float*) If specified, the algorithm will terminate when the flow value reaches or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum cut. Default value: None. **Returns R** – Residual network after computing the maximum flow. Return type NetworkX DiGraph ## Raises - NetworkXError The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised. - NetworkXUnbounded If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded. ### See also: maximum_flow(), minimum_cut(), edmonds_karp(), preflow_push() #### **Notes** The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If cutoff is not specified, reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. ### **Examples** ``` >>> import networkx as nx >>> from networkx.algorithms.flow import shortest_augmenting_path ``` The functions that implement flow algorithms and output a residual network, such as this one, are not imported to the base NetworkX namespace, so you have to explicitly import them from the flow package. ``` >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity=3.0) >>> G.add_edge('x','b', capacity=1.0) >>> G.add_edge('a','c', capacity=3.0) >>> G.add_edge('b','c', capacity=5.0) >>> G.add_edge('b','d', capacity=4.0) >>> G.add_edge('b','d', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('c','y', capacity=3.0) >>> R = shortest_augmenting_path(G, 'x', 'y') >>> flow_value = nx.maximum_flow_value(G, 'x', 'y') >>> flow_value 3.0 >>> flow_value = R.graph['flow_value'] True ``` ## 4.22.4 Preflow-Push preflow_push(G, s, t[, capacity, residual, ...]) Find a maximum single-commodity flow using the highest-label preflow-push algorithms are similar to the highest-label preflow and the highest-label preflow are similar to the highest-label preflow and the highest-label preflow are similar to the highest-label preflow and the highest-label preflow are similar to the highest-label preflow and the highest-label preflow are similar to the highest-label preflow and the highest-label preflow are similar to the highest-label preflow are similar to the highest-label preflow and the highest-label preflow are similar to the highest-label preflow and the highest-label preflow are similar to the highest-label preflow and the highest-label preflow are similar to the highest-label preflow and the highest-label preflow are similar to the highest-label preflow and the highest-label preflow are similar to the highest-label preflow and the highest-label preflow are similar to the highest-label preflow are similar to the highest and the highest-label preflow are similar to the highest-label preflow and the highest-label preflow are similar to the highest are similar to the highest-label preflow are similar to the highest are similar to the highest-label preflow are similar to the highest ## preflow_push **preflow_push** (*G*, *s*, *t*, *capacity='capacity'*, *residual=None*, *global_relabel_freq=1*, *value_only=False*) Find a maximum single-commodity flow using the highest-label preflow-push algorithm. This function returns the residual network resulting after computing the maximum flow. See below for details about the conventions NetworkX uses for defining residual networks. This algorithm has a running time of $O(n^2\sqrt{m})$ for n nodes and m edges. ### **Parameters** - **G** (*NetworkX graph*) Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. - **s** (*node*) Source node for the flow. - t (node) Sink node for the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **residual** (*NetworkX graph*) Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None. - **global_relabel_freq** (*integer*, *float*) Relative frequency of applying the global relabeling heuristic to speed up the algorithm. If it is None, the heuristic is disabled. Default value: 1. - **value_only** (*bool*) If False, compute a maximum flow; otherwise, compute a maximum preflow which is enough for computing the maximum flow value. Default value: False. **Returns R** – Residual network after computing the maximum flow. Return type NetworkX DiGraph #### Raises - NetworkXError The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised. - NetworkXUnbounded If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded. ## See also: maximum_flow(), minimum_cut(), edmonds_karp(), shortest_augmenting_path() ### **Notes** The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each node u in R, R. node [u] ['excess'] represents the difference between flow into u and flow out of u. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value'].
Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. #### **Examples** ``` >>> import networkx as nx >>> from networkx.algorithms.flow import preflow_push ``` The functions that implement flow algorithms and output a residual network, such as this one, are not imported to the base NetworkX namespace, so you have to explicitly import them from the flow package. ``` >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity=3.0) >>> G.add_edge('x','b', capacity=1.0) >>> G.add_edge('a','c', capacity=3.0) >>> G.add_edge('b','c', capacity=5.0) >>> G.add_edge('b','d', capacity=4.0) >>> G.add_edge('d','e', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('e','y', capacity=3.0) >>> R = preflow_push(G, 'x', 'y') >>> flow_value = nx.maximum_flow_value(G, 'x', 'y') >>> flow_value == R.graph['flow_value'] True >>> # preflow_push also stores the maximum flow value >>> # in the excess attribute of the sink node t >>> flow_value == R.node['y']['excess'] >>> # For some problems, you might only want to compute a >>> # maximum preflow. >>> R = preflow_push(G, 'x', 'y', value_only=True) >>> flow_value == R.graph['flow_value'] >>> flow_value == R.node['y']['excess'] ``` ### 4.22.5 Utils build_residual_network(G, capacity) Build a residual network and initialize a zero flow. ## build_residual_network ## build_residual_network(G, capacity) Build a residual network and initialize a zero flow. The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow']. The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If cutoff is not specified, reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut. ## 4.22.6 Network Simplex | network_simplex(G[, demand, capacity, weight]) | Find a minimum cost flow satisfying all demands in digraph G. | |--------------------------------------------------------------|------------------------------------------------------------------------| | <pre>min_cost_flow_cost(G[, demand, capacity, weight])</pre> | Find the cost of a minimum cost flow satisfying all demands in digraph | | min_cost_flow(G[, demand, capacity, weight]) | Return a minimum cost flow satisfying all demands in digraph G. | | $cost_of_flow(G, flowDict[, weight])$ | Compute the cost of the flow given by flowDict on graph G. | | <pre>max_flow_min_cost(G, s, t[, capacity, weight])</pre> | Return a maximum (s, t)-flow of minimum cost. | ## network_simplex $\verb"network_simplex" (G, demand='demand', capacity='capacity', weight='weight')$ Find a minimum cost flow satisfying all demands in digraph G. This is a primal network simplex algorithm that uses the leaving arc rule to prevent cycling. G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node. #### **Parameters** - **G** (*NetworkX graph*) DiGraph on which a minimum cost flow satisfying all demands is to be found. - **demand** (*string*) Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - weight (*string*) Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. ## Returns - flowCost (integer, float) Cost of a minimum cost flow satisfying all demands. - **flowDict** (*dictionary*) Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v). ### Raises - NetworkXError This exception is raised if the input graph is not directed, not connected or is a multigraph. - NetworkXUnfeasible This exception is raised in the following situations: - The sum of the demands is not zero. Then, there is no flow satisfying all demands. - There is no flow satisfying all demand. - NetworkXUnbounded This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below. #### **Notes** This algorithm is not guaranteed to work if edge weights are floating point numbers (overflows and roundoff errors can cause problems). #### See also: ``` cost_of_flow(), max_flow_min_cost(), min_cost_flow(), min_cost_flow_cost() ``` #### **Examples** A simple example of a min cost flow problem. ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_node('a', demand=-5) >>> G.add_node('d', demand=5) >>> G.add_edge('a', 'b', weight=3, capacity=4) >>> G.add_edge('a', 'c', weight=6, capacity=10) >>> G.add_edge('b', 'd', weight=1, capacity=9) >>> G.add_edge('c', 'd', weight=2, capacity=5) >>> flowCost, flowDict = nx.network_simplex(G) >>> flowCost 24 >>> flowDict {'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}} ``` The mincost flow algorithm can also be used to solve shortest path problems. To find the shortest path between two nodes u and v, give all edges an infinite capacity, give node u a demand of -1 and node v a demand a 1. Then run the network simplex. The value of a min cost flow will be the distance between u and v and edges carrying positive flow will indicate the path. It is possible to change the name of the attributes used for the algorithm. ``` >>> G = nx.DiGraph() >>> G.add_node('p', spam=-4) >>> G.add_node('q', spam=2) >>> G.add_node('a', spam=-2) >>> G.add_node('d', spam=-1) >>> G.add_node('t', spam=2) >>> G.add_node('t', spam=3) >>> G.add_edge('p', 'q', cost=7, vacancies=5) ``` #### References #### min cost flow cost min_cost_flow_cost (*G*, demand='demand', capacity='capacity', weight='weight') Find the cost of a minimum cost flow satisfying all demands in digraph G. G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node. #### **Parameters** - G (NetworkX graph) DiGraph on which a minimum cost flow satisfying all demands is to be found. - **demand** (*string*) Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **weight** (*string*) Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. **Returns** flowCost – Cost of a minimum cost flow satisfying all demands. **Return type** integer, float #### Raises - NetworkXError This exception is raised if the input graph is not directed or not connected. - NetworkXUnfeasible This exception is raised in the following situations: - The sum of the demands is not zero. Then, there is no flow satisfying all demands. - There is no flow satisfying all demand. • NetworkXUnbounded – This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below. ### See also: ``` cost_of_flow(), max_flow_min_cost(), min_cost_flow(), network_simplex() ``` #### **Examples** A simple example of a min cost flow problem. ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_node('a', demand = -5) >>> G.add_node('d', demand = 5) >>> G.add_edge('a', 'b', weight = 3, capacity = 4) >>> G.add_edge('a', 'c', weight = 6, capacity = 10) >>> G.add_edge('b', 'd', weight = 1, capacity = 9) >>> G.add_edge('c', 'd', weight = 2, capacity = 5) >>> flowCost = nx.min_cost_flow_cost(G) >>> flowCost 24 ``` ## min_cost_flow min_cost_flow (*G*, demand='demand', capacity='capacity', weight='weight') Return a minimum cost flow satisfying all demands in digraph G. G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the
net flow into each node is equal to the demand of that node. #### **Parameters** - G (NetworkX graph) DiGraph on which a minimum cost flow satisfying all demands is to be found. - **demand** (*string*) Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - weight (*string*) Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. **Returns** flowDict – Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v). **Return type** dictionary Raises - NetworkXError This exception is raised if the input graph is not directed or not connected. - NetworkXUnfeasible This exception is raised in the following situations: - The sum of the demands is not zero. Then, there is no flow satisfying all demands. - There is no flow satisfying all demand. - NetworkXUnbounded This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below. #### See also: ``` cost_of_flow(), max_flow_min_cost(), min_cost_flow_cost(), network_simplex() ``` ### **Examples** A simple example of a min cost flow problem. ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_node('a', demand = -5) >>> G.add_node('d', demand = 5) >>> G.add_edge('a', 'b', weight = 3, capacity = 4) >>> G.add_edge('a', 'c', weight = 6, capacity = 10) >>> G.add_edge('b', 'd', weight = 1, capacity = 9) >>> G.add_edge('c', 'd', weight = 2, capacity = 5) >>> flowDict = nx.min_cost_flow(G) ``` ## cost_of_flow ``` cost_of_flow(G, flowDict, weight='weight') ``` Compute the cost of the flow given by flowDict on graph G. Note that this function does not check for the validity of the flow flowDict. This function will fail if the graph G and the flow don't have the same edge set. #### **Parameters** - **G** (*NetworkX graph*) DiGraph on which a minimum cost flow satisfying all demands is to be found. - weight (*string*) Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. - **flowDict** (*dictionary*) Dictionary of dictionaries keyed by nodes such that flow-Dict[u][v] is the flow edge (u, v). **Returns** cost – The total cost of the flow. This is given by the sum over all edges of the product of the edge's flow and the edge's weight. Return type Integer, float #### See also: ``` max_flow_min_cost(), min_cost_flow(), min_cost_flow_cost(), network_simplex() ``` ## max_flow_min_cost ``` max_flow_min_cost (G, s, t, capacity='capacity', weight='weight') Return a maximum (s, t)-flow of minimum cost. ``` G is a digraph with edge costs and capacities. There is a source node s and a sink node t. This function finds a maximum flow from s to t whose total cost is minimized. #### **Parameters** - G (NetworkX graph) DiGraph on which a minimum cost flow satisfying all demands is to be found. - **s** (*node label*) Source of the flow. - t (node label) Destination of the flow. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - weight (*string*) Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. **Returns** flowDict – Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v). ### **Return type** dictionary #### Raises - NetworkXError This exception is raised if the input graph is not directed or not connected. - NetworkXUnbounded This exception is raised if there is an infinite capacity path from s to t in G. In this case there is no maximum flow. This exception is also raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow is unbounded below. #### See also: ``` cost_of_flow(), min_cost_flow(), min_cost_flow_cost(), network_simplex() ``` ### **Examples** ## 4.22.7 Capacity Scaling Minimum Cost Flow capacity_scaling(G[, demand, capacity, ...]) Find a minimum cost flow satisfying all demands in digraph G. ### capacity_scaling capacity_scaling(G, demand='demand', capacity='capacity', weight='weight', heap=<class 'networkx.utils.heaps.BinaryHeap'>) Find a minimum cost flow satisfying all demands in digraph G. This is a capacity scaling successive shortest augmenting path algorithm. G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node. #### **Parameters** - **G** (*NetworkX graph*) DiGraph or MultiDiGraph on which a minimum cost flow satisfying all demands is to be found. - **demand** (*string*) Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'. - **capacity** (*string*) Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. - **weight** (*string*) Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. - **heap** (*class*) Type of heap to be used in the algorithm. It should be a subclass of MinHeap or implement a compatible interface. If a stock heap implementation is to be used, BinaryHeap is recommeded over PairingHeap for Python implementations without optimized attribute accesses (e.g., CPython) despite a slower asymptotic running time. For Python implementations with optimized attribute accesses (e.g., PyPy), PairingHeap provides better performance. Default value: BinaryHeap. #### Returns - flowCost (integer) Cost of a minimum cost flow satisfying all demands. - **flowDict** (*dictionary*) Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v) if G is a digraph. Dictionary of dictionaries of dictionaries keyed by nodes such that flowDict[u][v][key] is the flow edge (u, v, key) if G is a multidigraph. #### Raises - NetworkXError This exception is raised if the input graph is not directed, not connected. - NetworkXUnfeasible This exception is raised in the following situations: - The sum of the demands is not zero. Then, there is no flow satisfying all demands. - There is no flow satisfying all demand. - NetworkXUnbounded This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below. #### **Notes** This algorithm does not work if edge weights are floating-point numbers. #### See also: ``` network simplex() ``` ## **Examples** A simple example of a min cost flow problem. ``` >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_node('a', demand = -5) >>> G.add_node('d', demand = 5) >>> G.add_edge('a', 'b', weight = 3, capacity = 4) >>> G.add_edge('a', 'c', weight = 6, capacity = 10) >>> G.add_edge('b', 'd', weight = 1, capacity = 9) >>> G.add_edge('c', 'd', weight = 2, capacity = 5) >>> flowCost, flowDict = nx.capacity_scaling(G) >>> flowCost 24 >>> flowDict {'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}} ``` It is possible to change the name of the attributes used for the algorithm. ``` >>> G = nx.DiGraph() >>> G.add_node('p', spam = -4) >>> G.add_node('q', spam = 2) >>> G.add_node('a', spam = -2) >>> G.add_node('d', spam = -1) >>> G.add_node('t', spam = 2) >>> G.add_node('t', spam = 3) >>> G.add_node('w', spam = 3) >>> G.add_edge('p', 'q', cost = 7, vacancies = 5) >>> G.add_edge('p', 'a', cost = 1, vacancies = 4) ``` # 4.23 Graphical degree sequence Test sequences for graphiness. | <pre>is_graphical(sequence[, method])</pre> | Returns True if sequence is a valid degree sequence. | |------------------------------------------------------|---------------------------------------------------------------------------| | <pre>is_digraphical(in_sequence, out_sequence)</pre> | Returns True if some directed graph can realize the in- and out-degree so | | is_multigraphical(sequence) | Returns True if some multigraph can realize the sequence. | | is_pseudographical(sequence) | Returns True if some pseudograph can realize the sequence. | | is_valid_degree_sequence_havel_hakimi() | Returns True if deg_sequence can be realized by a simple graph. | | is_valid_degree_sequence_erdos_gallai() | Returns True if deg_sequence can be realized by a simple graph. | ## 4.23.1 is graphical ``` is_graphical (sequence, method='eg') ``` Returns True if sequence is
a valid degree sequence. A degree sequence is valid if some graph can realize it. Parameters sequence (list or iterable container) - A sequence of integer node degrees **method** ["eg" | "hh"] The method used to validate the degree sequence. "eg" corresponds to the Erdős-Gallai algorithm, and "hh" to the Havel-Hakimi algorithm. **Returns** valid – True if the sequence is a valid degree sequence and False if not. Return type bool ### **Examples** ``` >>> G = nx.path_graph(4) >>> sequence = G.degree().values() >>> nx.is_valid_degree_sequence(sequence) True ``` ### References Erdős-Gallai [EG1960], [choudum1986] Havel-Hakimi [havel1955], [hakimi1962], [CL1996] ## 4.23.2 is_digraphical ## is_digraphical (in_sequence, out_sequence) Returns True if some directed graph can realize the in- and out-degree sequences. #### **Parameters** - in_sequence (list or iterable container) A sequence of integer node in-degrees - out_sequence (list or iterable container) A sequence of integer node out-degrees **Returns** valid – True if in and out-sequences are digraphic False if not. Return type bool #### **Notes** This algorithm is from Kleitman and Wang 91 . The worst case runtime is O(s * log n) where s and n are the sum and length of the sequences respectively. #### References ## 4.23.3 is multigraphical ## is_multigraphical(sequence) Returns True if some multigraph can realize the sequence. Parameters deg_sequence (list) - A list of integers **Returns** valid – True if deg_sequence is a multigraphic degree sequence and False if not. Return type bool ## **Notes** The worst-case run time is O(n) where n is the length of the sequence. ### References ## 4.23.4 is pseudographical #### is_pseudographical(sequence) Returns True if some pseudograph can realize the sequence. Every nonnegative integer sequence with an even sum is pseudographical (see ⁹²). Parameters sequence (list or iterable container) – A sequence of integer node degrees Returns valid – True if the sequence is a pseudographic degree sequence and False if not. ⁹¹ D.J. Kleitman and D.L. Wang Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors, Discrete Mathematics, 6(1), pp. 79-88 (1973) ⁹² F. Boesch and F. Harary. "Line removal algorithms for graphs and their degree lists", IEEE Trans. Circuits and Systems, CAS-23(12), pp. 778-782 (1976). #### Return type bool ### **Notes** The worst-case run time is O(n) where n is the length of the sequence. #### References ## 4.23.5 is valid degree sequence havel hakimi ### is_valid_degree_sequence_havel_hakimi (deg_sequence) Returns True if deg_sequence can be realized by a simple graph. The validation proceeds using the Havel-Hakimi theorem. Worst-case run time is: O(s) where s is the sum of the sequence. **Parameters** deg_sequence (*list*) – A list of integers where each element specifies the degree of a node in a graph. **Returns** valid – True if deg_sequence is graphical and False if not. Return type bool #### **Notes** The ZZ condition says that for the sequence d if $$|d| > = \frac{(\max(d) + \min(d) + 1)^2}{4 * \min(d)}$$ then d is graphical. This was shown in Theorem 6 in ⁹³. ### References [havel1955], [hakimi1962], [CL1996] ## 4.23.6 is valid degree sequence erdos gallai ## is_valid_degree_sequence_erdos_gallai(deg_sequence) Returns True if deg_sequence can be realized by a simple graph. The validation is done using the Erdős-Gallai theorem [EG1960]. Parameters deg_sequence (list) - A list of integers **Returns valid** – True if deg sequence is graphical and False if not. Return type bool ⁹³ I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992). #### **Notes** This implementation uses an equivalent form of the Erdős-Gallai criterion. Worst-case run time is: O(n) where n is the length of the sequence. Specifically, a sequence d is graphical if and only if the sum of the sequence is even and for all strong indices k in the sequence, $$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{j=k+1}^{n} \min(d_i, k) = k(n-1) - (k \sum_{j=0}^{k-1} n_j - \sum_{j=0}^{k-1} j n_j)$$ A strong index k is any index where $d_k \ge k$ and the value $n_j$ is the number of occurrences of j in d. The maximal strong index is called the Durfee index. This particular rearrangement comes from the proof of Theorem 3 in ⁹⁴. The ZZ condition says that for the sequence d if $$|d| > = \frac{(\max(d) + \min(d) + 1)^2}{4 * \min(d)}$$ then d is graphical. This was shown in Theorem 6 in ². #### References [EG1960], [choudum1986] # 4.24 Hierarchy Flow Hierarchy. flow_hierarchy(G[, weight]) Returns the flow hierarchy of a directed network. ## 4.24.1 flow hierarchy flow_hierarchy (G, weight=None) Returns the flow hierarchy of a directed network. Flow hierarchy is defined as the fraction of edges not participating in cycles in a directed graph 95. #### **Parameters** - G (DiGraph or MultiDiGraph) A directed graph - weight (key, optional (default=None)) Attribute to use for node weights. If None the weight defaults to 1. **Returns** h – Flow heirarchy value 4.24. Hierarchy 281 ⁹⁴ I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992). ⁹⁵ Luo, J.; Magee, C.L. (2011), Detecting evolving patterns of self-organizing networks by flow hierarchy measurement, Complexity, Volume 16 Issue 6 53-61. DOI: 10.1002/cplx.20368 http://web.mit.edu/~cmagee/www/documents/28-DetectingEvolvingPatterns_FlowHierarchy.pdf ## Return type float #### **Notes** The algorithm described in 1 computes the flow hierarchy through exponentiation of the adjacency matrix. This function implements an alternative approach that finds strongly connected components. An edge is in a cycle if and only if it is in a strongly connected component, which can be found in O(m) time using Tarjan's algorithm. #### References # 4.25 Hybrid Provides functions for finding and testing for locally (k, l)-connected graphs. | kl_connected_subgraph(G, k, l[, low_memory,]) | Returns the maximum locally $(k,l)$ -connected subgraph of ${\sf G}.$ | |-----------------------------------------------|-----------------------------------------------------------------------| | $is_kl_connected(G, k, l[, low_memory])$ | Returns True if and only if G is locally $(k, l)$ -connected. | ## 4.25.1 kl connected subgraph **k1_connected_subgraph** (G, k, l, $low_memory$ =False, $same_as_graph$ =False) Returns the maximum locally (k, l)-connected subgraph of G. A graph is locally (k, l)-connected if for each edge (u, v) in the graph there are at least l edge-disjoint paths of length at most k joining u to v. ## **Parameters** - **G** $(NetworkX\ graph)$ The graph in which to find a maximum locally (k,l)-connected subgraph. - **k** (*integer*) The maximum length of paths to consider. A higher number means a looser connectivity requirement. - 1 (*integer*) The number of edge-disjoint paths. A higher number means a stricter connectivity requirement. - **low_memory** (*bool*) If this is True, this function uses an algorithm that uses slightly more time but less memory. - same_as_graph (bool) If this is True then return a tuple of the form (H, is_same), where H is the maximum locally (k,l)-connected subgraph and is_same is a Boolean representing whether G is locally (k,l)-connected (and hence, whether H is simply a copy of the input graph G). **Returns** If same_as_graph is True, then this function returns a two-tuple as described above. Otherwise, it returns only the maximum locally (k,l)-connected subgraph. **Return type** NetworkX graph or two-tuple #### See also: ``` is_kl_connected() ``` # 4.25.2 is kl connected ## is_kl_connected(G, k, l, low_memory=False) Returns True if and only if G is locally (k, l)-connected. A graph is locally (k, l)-connected if for each edge (u, v) in the graph there are at least l edge-disjoint paths of length at most k joining u to v. #### **Parameters** - **G** (NetworkX graph) The graph to test for local (k, l)-connectedness. - **k** (*integer*) The maximum length of paths to consider. A higher number means a looser connectivity requirement. - 1 (*integer*) The number of edge-disjoint paths. A higher number means a stricter connectivity requirement. - **low_memory** (*bool*) If this is True, this function uses an algorithm that uses slightly more time but less memory. **Returns** Whether the graph is locally (k, l)-connected subgraph. Return type bool #### See also: kl_connected_subgraph() References # 4.26 Isolates Functions for identifying isolate (degree zero) nodes. | is_isolate(G, n) | Determine of node n is an isolate (degree zero). | |------------------|--------------------------------------------------| | isolates(G) | Return list of isolates in the graph. | # 4.26.1 is isolate #### $is_isolate(G, n)$ Determine of node n is an isolate (degree zero). # **Parameters** - **G** (*graph*) A networkx graph - n (node) A node in G **Returns** isolate – True if n has no neighbors, False otherwise. Return type bool 4.26. Isolates 283 #### **Examples** ``` >>> G=nx.Graph() >>> G.add_edge(1,2) >>> G.add_node(3) >>> nx.is_isolate(G,2) False >>> nx.is_isolate(G,3) True ``` # **4.26.2** isolates #### isolates(G) Return list of isolates in the graph. Isolates are nodes with no neighbors (degree zero). **Parameters G** (*graph*) – A networkx graph Returns isolates – List of isolate nodes. Return type list ## **Examples** ``` >>> G = nx.Graph() >>> G.add_edge(1,2) >>> G.add_node(3) >>> nx.isolates(G) [3] ``` To remove all isolates in the graph use >>> G.remove_nodes_from(nx.isolates(G)) >>> G.nodes() [1, 2] For digraphs isolates have zero in-degree and zero out_degre >>> $G = nx.DiGraph([(0,1),(1,2)]) >>> G.add_node(3) >>> nx.isolates(G) [3]$ # 4.27 Isomorphism | is_isomorphic(G1, G2[, node_match, edge_match]) | Returns True if the graphs G1 and G2 are isomorphic and False otherwise | |-------------------------------------------------
-------------------------------------------------------------------------| | could_be_isomorphic(G1, G2) | Returns False if graphs are definitely not isomorphic. | | $fast_could_be_isomorphic(G1,G2)$ | Returns False if graphs are definitely not isomorphic. | | faster_could_be_isomorphic(G1, G2) | Returns False if graphs are definitely not isomorphic. | # 4.27.1 is isomorphic $is_isomorphic(G1, G2, node_match=None, edge_match=None)$ Returns True if the graphs G1 and G2 are isomorphic and False otherwise. - **G2** (G1,) The two graphs G1 and G2 must be the same type. - node_match (callable) A function that returns True if node n1 in G1 and n2 in G2 should be considered equal during the isomorphism test. If node_match is not specified then node attributes are not considered. The function will be called like ``` node_match(G1.node[n1], G2.node[n2]). ``` That is, the function will receive the node attribute dictionaries for n1 and n2 as inputs. • edge_match (callable) – A function that returns True if the edge attribute dictionary for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test. If edge_match is not specified then edge attributes are not considered. The function will be called like ``` edge_match(G1[u1][v1], G2[u2][v2]). ``` That is, the function will receive the edge attribute dictionaries of the edges under consideration. #### **Notes** Uses the vf2 algorithm ⁹⁶. ## **Examples** ``` >>> import networkx.algorithms.isomorphism as iso ``` For digraphs G1 and G2, using 'weight' edge attribute (default: 1) ``` >>> G1 = nx.DiGraph() >>> G2 = nx.DiGraph() >>> G1.add_path([1,2,3,4],weight=1) >>> G2.add_path([10,20,30,40],weight=2) >>> em = iso.numerical_edge_match('weight', 1) >>> nx.is_isomorphic(G1, G2) # no weights considered True >>> nx.is_isomorphic(G1, G2, edge_match=em) # match weights False ``` For multidigraphs G1 and G2, using 'fill' node attribute (default: ") ``` >>> G1 = nx.MultiDiGraph() >>> G2 = nx.MultiDiGraph() >>> G1.add_nodes_from([1,2,3],fill='red') >>> G2.add_nodes_from([10,20,30,40],fill='red') >>> G1.add_path([1,2,3,4],weight=3, linewidth=2.5) >>> G2.add_path([10,20,30,40],weight=3) >>> nm = iso.categorical_node_match('fill', 'red') >>> nx.is_isomorphic(G1, G2, node_match=nm) True ``` For multidigraphs G1 and G2, using 'weight' edge attribute (default: 7) ⁹⁶ L. P. Cordella, P. Foggia, C. Sansone, M. Vento, "An Improved Algorithm for Matching Large Graphs", 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Cuen, pp. 149-159, 2001. http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf ``` >>> G1.add_edge(1,2, weight=7) >>> G2.add_edge(10,20) >>> em = iso.numerical_multiedge_match('weight', 7, rtol=1e-6) >>> nx.is_isomorphic(G1, G2, edge_match=em) True ``` For multigraphs G1 and G2, using 'weight' and 'linewidth' edge attributes with default values 7 and 2.5. Also using 'fill' node attribute with default value 'red'. ``` >>> em = iso.numerical_multiedge_match(['weight', 'linewidth'], [7, 2.5]) >>> nm = iso.categorical_node_match('fill', 'red') >>> nx.is_isomorphic(G1, G2, edge_match=em, node_match=nm) True ``` #### See also: ``` numerical_node_match(), numerical_edge_match(), numerical_multiedge_match(), categorical_node_match(), categorical_edge_match(), categorical_multiedge_match() ``` #### References # 4.27.2 could_be_isomorphic ``` could_be_isomorphic(G1, G2) ``` Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism. **Parameters** G2 (G1,) – The two graphs G1 and G2 must be the same type. ## **Notes** Checks for matching degree, triangle, and number of cliques sequences. # 4.27.3 fast could be isomorphic ``` fast could be isomorphic (G1, G2) ``` Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism. **Parameters** G2 (G1,) – The two graphs G1 and G2 must be the same type. ## **Notes** Checks for matching degree and triangle sequences. # 4.27.4 faster could be isomorphic ``` faster_could_be_isomorphic(G1, G2) ``` Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism. **Parameters G2** (G1,) – The two graphs G1 and G2 must be the same type. #### **Notes** Checks for matching degree sequences. # 4.27.5 Advanced Interface to VF2 Algorithm ## **VF2 Algorithm** ## VF2 Algorithm An implementation of VF2 algorithm for graph ismorphism testing. The simplest interface to use this module is to call networkx.is_isomorphic(). **Introduction** The GraphMatcher and DiGraphMatcher are responsible for matching graphs or directed graphs in a predetermined manner. This usually means a check for an isomorphism, though other checks are also possible. For example, a subgraph of one graph can be checked for isomorphism to a second graph. Matching is done via syntactic feasibility. It is also possible to check for semantic feasibility. Feasibility, then, is defined as the logical AND of the two functions. To include a semantic check, the (Di)GraphMatcher class should be subclassed, and the semantic_feasibility() function should be redefined. By default, the semantic feasibility function always returns True. The effect of this is that semantics are not considered in the matching of G1 and G2. # **Examples** Suppose G1 and G2 are isomorphic graphs. Verification is as follows: ``` >>> from networkx.algorithms import isomorphism >>> G1 = nx.path_graph(4) >>> G2 = nx.path_graph(4) >>> GM = isomorphism.GraphMatcher(G1,G2) >>> GM.is_isomorphic() True ``` GM.mapping stores the isomorphism mapping from G1 to G2. ``` >>> GM.mapping {0: 0, 1: 1, 2: 2, 3: 3} ``` Suppose G1 and G2 are isomorphic directed graphs graphs. Verification is as follows: ``` >>> G1 = nx.path_graph(4, create_using=nx.DiGraph()) >>> G2 = nx.path_graph(4, create_using=nx.DiGraph()) >>> DiGM = isomorphism.DiGraphMatcher(G1,G2) >>> DiGM.is_isomorphic() True ``` DiGM.mapping stores the isomorphism mapping from G1 to G2. ``` >>> DiGM.mapping {0: 0, 1: 1, 2: 2, 3: 3} ``` **Subgraph Isomorphism** Graph theory literature can be ambiguious about the meaning of the above statement, and we seek to clarify it now. In the VF2 literature, a mapping M is said to be a graph-subgraph isomorphism iff M is an isomorphism between G2 and a subgraph of G1. Thus, to say that G1 and G2 are graph-subgraph isomorphic is to say that a subgraph of G1 is isomorphic to G2. Other literature uses the phrase 'subgraph isomorphic' as in 'G1 does not have a subgraph isomorphic to G2'. Another use is as an in adverb for isomorphic. Thus, to say that G1 and G2 are subgraph isomorphic is to say that a subgraph of G1 is isomorphic to G2. Finally, the term 'subgraph' can have multiple meanings. In this context, 'subgraph' always means a 'node-induced subgraph'. Edge-induced subgraph isomorphisms are not directly supported, but one should be able to perform the check by making use of nx.line_graph(). For subgraphs which are not induced, the term 'monomorphism' is preferred over 'isomorphism'. Currently, it is not possible to check for monomorphisms. Let G=(N,E) be a graph with a set of nodes N and set of edges E. - If G'=(N',E') is a subgraph, then: N' is a subset of NE' is a subset of E - If G'=(N',E') is a node-induced subgraph, then: N' is a subset of N E' is the subset of edges in E relating nodes in N' - If G'=(N',E') is an edge-induced subgrpah, then: N' is the subset of nodes in N related by edges in E' E' is a subset of E #### References - [1] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento, "A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367-1372, Oct., 2004. http://ieeexplore.ieee.org/iel5/34/29305/01323804.pdf - [2] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, "An Improved Algorithm for Matching Large Graphs", 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Cuen, pp. 149-159, 2001. http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf # See also: syntactic_feasibliity, semantic_feasibility #### **Notes** Modified to handle undirected graphs. Modified to handle multiple edges. In general, this problem is NP-Complete. ## **Graph Matcher** | GraphMatcherinit(G1, G2[, node_match,]) | Initialize graph matcher. | |------------------------------------------------|--------------------------------------------------------------| | GraphMatcher.initialize() | Reinitializes the state of the algorithm. | | <pre>GraphMatcher.is_isomorphic()</pre> | Returns True if G1 and G2 are isomorphic graphs. | | GraphMatcher.subgraph_is_isomorphic() | Returns True if a subgraph of G1 is isomorphic to G2. | | GraphMatcher.isomorphisms_iter() | Generator over isomorphisms between G1 and G2. | | GraphMatcher.subgraph_isomorphisms_iter() | Generator over isomorphisms between a subgraph of G1 and G2. | | <pre>GraphMatcher.candidate_pairs_iter()</pre> | Iterator over candidate pairs of nodes in G1 and G2. | | | Continued on next | | | | | Table 4.72 – continued from p | orevious page | |-------------------------------|---------------| |-------------------------------|---------------| | GraphMatcher.match() | Extends the isomorphism mapping. | |----------------------------------------------|-------------------------------------------------------------------| | GraphMatcher.semantic_feasibility(G1_node,) | Returns True if mapping G1_node to G2_node is semantically fea | | GraphMatcher.syntactic_feasibility(G1_node,) | Returns True if adding (G1_node, G2_node) is syntactically feasil | ## __init__ GraphMatcher.__init__ (*G1*, *G2*, node_match=None, edge_match=None) Initialize graph matcher. #### **Parameters** - **G2** (G1,) The graphs to be tested. - node_match (*callable*) A function that returns True iff node n1 in G1 and n2 in G2 should be considered equal during the isomorphism test. The function will be called like: ``` node_match(G1.node[n1], G2.node[n2])
``` That is, the function will receive the node attribute dictionaries of the nodes under consideration. If None, then no attributes are considered when testing for an isomorphism. • edge_match (callable) – A function that returns True iff the edge attribute dictionary for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test. The function will be called like: ``` edge_match(G1[u1][v1], G2[u2][v2]) ``` That is, the function will receive the edge attribute dictionaries of the edges under consideration. If None, then no attributes are considered when testing for an isomorphism. #### initialize ``` GraphMatcher.initialize() ``` Reinitializes the state of the algorithm. This method should be redefined if using something other than GMState. If only subclassing GraphMatcher, a redefinition is not necessary. #### is isomorphic ``` GraphMatcher.is_isomorphic() ``` Returns True if G1 and G2 are isomorphic graphs. ## subgraph_is_isomorphic ``` GraphMatcher.subgraph_is_isomorphic() ``` Returns True if a subgraph of G1 is isomorphic to G2. # $isomorphisms_iter$ ``` GraphMatcher.isomorphisms_iter() ``` Generator over isomorphisms between G1 and G2. # subgraph_isomorphisms_iter ``` GraphMatcher.subgraph_isomorphisms_iter() ``` Generator over isomorphisms between a subgraph of G1 and G2. 4.27. Isomorphism ## candidate_pairs_iter GraphMatcher.candidate_pairs_iter() Iterator over candidate pairs of nodes in G1 and G2. #### match GraphMatcher.match() Extends the isomorphism mapping. This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping. # semantic_feasibility GraphMatcher.semantic_feasibility(G1_node, G2_node) Returns True if mapping G1_node to G2_node is semantically feasible. ## syntactic_feasibility GraphMatcher.syntactic_feasibility(G1_node, G2_node) Returns True if adding (G1_node, G2_node) is syntactically feasible. This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an isomorphism to be found. ## **DiGraph Matcher** | DiGraphMatcherinit(G1, G2[,]) | Initialize graph matcher. | |-----------------------------------------------|-----------------------------------------------------------------| | DiGraphMatcher.initialize() | Reinitializes the state of the algorithm. | | DiGraphMatcher.is_isomorphic() | Returns True if G1 and G2 are isomorphic graphs. | | DiGraphMatcher.subgraph_is_isomorphic() | Returns True if a subgraph of G1 is isomorphic to G2. | | DiGraphMatcher.isomorphisms_iter() | Generator over isomorphisms between G1 and G2. | | DiGraphMatcher.subgraph_isomorphisms_iter() | Generator over isomorphisms between a subgraph of G1 and G2 | | DiGraphMatcher.candidate_pairs_iter() | Iterator over candidate pairs of nodes in G1 and G2. | | DiGraphMatcher.match() | Extends the isomorphism mapping. | | DiGraphMatcher.semantic_feasibility(G1_node,) | Returns True if mapping G1_node to G2_node is semantically fe | | DiGraphMatcher.syntactic_feasibility() | Returns True if adding (G1_node, G2_node) is syntactically feas | | | | #### init DiGraphMatcher.__init__(G1, G2, node_match=None, edge_match=None) Initialize graph matcher. ## **Parameters** - **G2** (G1,) The graphs to be tested. - node_match (callable) A function that returns True iff node n1 in G1 and n2 in G2 should be considered equal during the isomorphism test. The function will be called like: ``` node_match(G1.node[n1], G2.node[n2]) ``` That is, the function will receive the node attribute dictionaries of the nodes under consideration. If None, then no attributes are considered when testing for an isomorphism. • edge_match (callable) – A function that returns True iff the edge attribute dictionary for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test. The function will be called like: ``` edge_match(G1[u1][v1], G2[u2][v2]) ``` That is, the function will receive the edge attribute dictionaries of the edges under consideration. If None, then no attributes are considered when testing for an isomorphism. #### initialize ``` DiGraphMatcher.initialize() ``` Reinitializes the state of the algorithm. This method should be redefined if using something other than DiGMState. If only subclassing GraphMatcher, a redefinition is not necessary. # is_isomorphic ``` DiGraphMatcher.is_isomorphic() ``` Returns True if G1 and G2 are isomorphic graphs. # subgraph_is_isomorphic ``` DiGraphMatcher.subgraph_is_isomorphic() ``` Returns True if a subgraph of G1 is isomorphic to G2. #### isomorphisms iter ``` DiGraphMatcher.isomorphisms iter() ``` Generator over isomorphisms between G1 and G2. ## subgraph_isomorphisms_iter ``` DiGraphMatcher.subgraph_isomorphisms_iter() ``` Generator over isomorphisms between a subgraph of G1 and G2. ## candidate_pairs_iter ``` DiGraphMatcher.candidate_pairs_iter() ``` Iterator over candidate pairs of nodes in G1 and G2. #### match ``` DiGraphMatcher.match() ``` Extends the isomorphism mapping. This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping. ## semantic_feasibility ``` DiGraphMatcher.semantic_feasibility(G1_node, G2_node) ``` Returns True if mapping G1_node to G2_node is semantically feasible. #### syntactic feasibility ``` DiGraphMatcher.syntactic_feasibility(G1_node, G2_node) ``` Returns True if adding (G1 node, G2 node) is syntactically feasible. This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an isomorphism to be found. # **Match helpers** | categorical_node_match(attr, default) | Returns a comparison function for a categorical node attribute. | |--------------------------------------------------------------|-----------------------------------------------------------------| | categorical_edge_match(attr, default) | Returns a comparison function for a categorical edge attribute. | | <pre>categorical_multiedge_match(attr, default)</pre> | Returns a comparison function for a categorical edge attribute. | | <pre>numerical_node_match(attr, default[, rtol, atol])</pre> | Returns a comparison function for a numerical node attribute. | | <pre>numerical_edge_match(attr, default[, rtol, atol])</pre> | Returns a comparison function for a numerical edge attribute. | | <pre>numerical_multiedge_match(attr, default[,])</pre> | Returns a comparison function for a numerical edge attribute. | | <pre>generic_node_match(attr, default, op)</pre> | Returns a comparison function for a generic attribute. | | <pre>generic_edge_match(attr, default, op)</pre> | Returns a comparison function for a generic attribute. | | <pre>generic_multiedge_match(attr, default, op)</pre> | Returns a comparison function for a generic attribute. | #### categorical_node_match #### categorical_node_match (attr, default) Returns a comparison function for a categorical node attribute. The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True. # **Parameters** - attr (*string* | *list*) The categorical node attribute to compare, or a list of categorical node attributes to compare. - **default** (*value* | *list*) The default value for the categorical node attribute, or a list of default values for the categorical node attributes. **Returns match** – The customized, categorical $node_match$ function. **Return type** *function* # **Examples** ``` >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.categorical_node_match('size', 1) >>> nm = iso.categorical_node_match(['color', 'size'], ['red', 2]) ``` ## categorical_edge_match ``` categorical_edge_match (attr, default) ``` Returns a comparison function for a categorical edge attribute. The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True. - attr (string | list) The categorical edge attribute to compare, or a list of categorical edge attributes to compare. - **default** (*value* | *list*) The default value for the categorical edge attribute, or a list of default values for the categorical edge attributes. **Returns match** – The customized, categorical $edge_match$ function. **Return type** function ## **Examples** ``` >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.categorical_edge_match('size', 1) >>> nm = iso.categorical_edge_match(['color', 'size'], ['red', 2]) ``` #### categorical multiedge match ``` categorical_multiedge_match (attr, default) ``` Returns a comparison function for a categorical edge attribute. The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True. #### **Parameters** - attr (string | list) The categorical edge attribute to compare, or a list of categorical edge attributes to compare. - **default** (*value* | *list*) The default value for the categorical edge attribute, or a list of default values for the categorical edge attributes. **Returns match** – The customized, categorical $edge_match$ function. Return type function # **Examples** ``` >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.categorical_multiedge_match('size', 1) >>> nm = iso.categorical_multiedge_match(['color',
'size'], ['red', 2]) ``` ## numerical_node_match ``` numerical_node_match (attr, default, rtol=1e-05, atol=1e-08) ``` Returns a comparison function for a numerical node attribute. The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True. - attr (*string* | *list*) The numerical node attribute to compare, or a list of numerical node attributes to compare. - **default** (*value* | *list*) The default value for the numerical node attribute, or a list of default values for the numerical node attributes. - **rtol** (*float*) The relative error tolerance. • atol (*float*) – The absolute error tolerance. **Returns match** – The customized, numerical $node_match$ function. Return type function ## **Examples** ``` >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.numerical_node_match('weight', 1.0) >>> nm = iso.numerical_node_match(['weight', 'linewidth'], [.25, .5]) ``` ### numerical_edge_match ``` numerical_edge_match (attr, default, rtol=1e-05, atol=1e-08) ``` Returns a comparison function for a numerical edge attribute. The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True. #### **Parameters** - attr (*string* | *list*) The numerical edge attribute to compare, or a list of numerical edge attributes to compare. - **default** (*value* | *list*) The default value for the numerical edge attribute, or a list of default values for the numerical edge attributes. - **rtol** (*float*) The relative error tolerance. - atol (*float*) The absolute error tolerance. **Returns match** – The customized, numerical $edge_match$ function. **Return type** function # **Examples** ``` >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.numerical_edge_match('weight', 1.0) >>> nm = iso.numerical_edge_match(['weight', 'linewidth'], [.25, .5]) ``` #### numerical_multiedge_match ``` numerical_multiedge_match (attr, default, rtol=1e-05, atol=1e-08) ``` Returns a comparison function for a numerical edge attribute. The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True. - attr (*string* | *list*) The numerical edge attribute to compare, or a list of numerical edge attributes to compare. - **default** (*value* | *list*) The default value for the numerical edge attribute, or a list of default values for the numerical edge attributes. - **rtol** (*float*) The relative error tolerance. • atol (*float*) – The absolute error tolerance. **Returns match** – The customized, numerical $edge_match$ function. Return type function ## **Examples** ``` >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.numerical_multiedge_match('weight', 1.0) >>> nm = iso.numerical_multiedge_match(['weight', 'linewidth'], [.25, .5]) ``` #### generic_node_match ``` generic_node_match (attr, default, op) ``` Returns a comparison function for a generic attribute. The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True. #### **Parameters** - attr (string | list) The node attribute to compare, or a list of node attributes to compare. - default (value | list) The default value for the node attribute, or a list of default values for the node attributes. - op (callable | list) The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute. **Returns match** – The customized, generic $node_match$ function. Return type function # **Examples** ``` >>> from operator import eq >>> from networkx.algorithms.isomorphism.matchhelpers import close >>> from networkx.algorithms.isomorphism import generic_node_match >>> nm = generic_node_match('weight', 1.0, close) >>> nm = generic_node_match('color', 'red', eq) >>> nm = generic_node_match(['weight', 'color'], [1.0, 'red'], [close, eq]) ``` ## generic_edge_match ``` generic_edge_match (attr, default, op) ``` Returns a comparison function for a generic attribute. The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True. - attr (string | list) The edge attribute to compare, or a list of edge attributes to compare. - default (value | list) The default value for the edge attribute, or a list of default values for the edge attributes. - op (callable | list) The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute. **Returns match** – The customized, generic $edge_match$ function. **Return type** function ## **Examples** ``` >>> from operator import eq >>> from networkx.algorithms.isomorphism.matchhelpers import close >>> from networkx.algorithms.isomorphism import generic_edge_match >>> nm = generic_edge_match('weight', 1.0, close) >>> nm = generic_edge_match('color', 'red', eq) >>> nm = generic_edge_match(['weight', 'color'], [1.0, 'red'], [close, eq]) ``` # generic_multiedge_match ``` generic_multiedge_match(attr, default, op) ``` Returns a comparison function for a generic attribute. The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True. Potentially, the constructed edge_match function can be slow since it must verify that no isomorphism exists between the multiedges before it returns False. #### **Parameters** - attr (*string* | *list*) The edge attribute to compare, or a list of node attributes to compare. - **default** (*value* | *list*) The default value for the edge attribute, or a list of default values for the dgeattributes. - op (callable | list) The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute. **Returns match** – The customized, generic $edge_match$ function. Return type function # **Examples** # 4.28 Link Analysis # 4.28.1 PageRank PageRank analysis of graph structure. | pagerank(G[, alpha, personalization,]) | Return the PageRank of the nodes in the graph. | |---|--| | <pre>pagerank_numpy(G[, alpha, personalization,])</pre> | Return the PageRank of the nodes in the graph. | | <pre>pagerank_scipy(G[, alpha, personalization,])</pre> | Return the PageRank of the nodes in the graph. | | <pre>google_matrix(G[, alpha, personalization,])</pre> | Return the Google matrix of the graph. | # pagerank $\label{eq:pagerank} \begin{subarray}{ll} \textbf{pagerank} (\textit{G}, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, nstart=None, weight='weight', \\ \textit{dangling=None}) \end{subarray}$ Return the PageRank of the nodes in the graph. PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages. #### **Parameters** - **G** (*graph*) A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge. - alpha (float, optional) Damping parameter for PageRank, default=0.85. - **personalization** (*dict, optional*) The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used. - max_iter (integer, optional) Maximum number of iterations in power method eigenvalue solver. - tol (*float*, *optional*) Error tolerance used to check convergence in power method solver. - nstart (dictionary, optional) Starting value of PageRank iteration for each node. - weight (key, optional) Edge data key to use as weight. If None weights are set to 1. - dangling (dict, optional) The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified). This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict. Returns pagerank – Dictionary of nodes with PageRank as value **Return type** dictionary # **Examples** ``` >>> G = nx.DiGraph(nx.path_graph(4)) >>> pr = nx.pagerank(G, alpha=0.9) ``` #### **Notes** The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached. The PageRank algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs by converting each edge in the directed graph to two edges. #### See also: ``` pagerank_numpy(), pagerank_scipy(), google_matrix() ``` #### References #### pagerank numpy ``` pagerank_numpy (G, alpha=0.85, personalization=None, weight='weight', dangling=None) Return the PageRank of the nodes in the graph. ``` PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages. #### **Parameters** - **G** (*graph*) A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge. - alpha (*float*, *optional*) Damping parameter for PageRank, default=0.85. - **personalization** (*dict, optional*) The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a
uniform distribution is used. - weight (key, optional) Edge data key to use as weight. If None weights are set to 1. - dangling (dict, optional) The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified) This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict. **Returns** pagerank – Dictionary of nodes with PageRank as value. **Return type** dictionary ### **Examples** ``` >>> G = nx.DiGraph(nx.path_graph(4)) >>> pr = nx.pagerank_numpy(G, alpha=0.9) ``` ### **Notes** The eigenvector calculation uses NumPy's interface to the LAPACK eigenvalue solvers. This will be the fastest and most accurate for small graphs. This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be the sum of all edge weights between those nodes. #### See also: ``` pagerank(), pagerank_scipy(), google_matrix() ``` ## pagerank_scipy $\label{eq:pagerank_scipy} \textbf{pagerank_scipy} (G, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, weight='weight', dangling=None)$ Return the PageRank of the nodes in the graph. PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages. #### **Parameters** - **G** (*graph*) A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge. - alpha (*float*, *optional*) Damping parameter for PageRank, default=0.85. - **personalization** (*dict*, *optional*) The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used. - max_iter (integer, optional) Maximum number of iterations in power method eigenvalue solver. - tol (float, optional) Error tolerance used to check convergence in power method solver. - weight (key, optional) Edge data key to use as weight. If None weights are set to 1. - dangling (dict, optional) The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified) This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict. Returns pagerank – Dictionary of nodes with PageRank as value Return type dictionary # **Examples** ``` >>> G = nx.DiGraph(nx.path_graph(4)) >>> pr = nx.pagerank_scipy(G, alpha=0.9) ``` # Notes The eigenvector calculation uses power iteration with a SciPy sparse matrix representation. This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be the sum of all edge weights between those nodes. #### See also: ``` pagerank(), pagerank_numpy(), google_matrix() ``` # google_matrix Return the Google matrix of the graph. #### **Parameters** - **G** (*graph*) A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge. - **alpha** (*float*) The damping factor. - **personalization** (*dict, optional*) The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used. - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - weight (key, optional) Edge data key to use as weight. If None weights are set to 1. - dangling (dict, optional) The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified) This must be selected to result in an irreducible transition matrix (see notes below). It may be common to have the dangling dict to be the same as the personalization dict. **Returns** A – Google matrix of the graph Return type NumPy matrix #### **Notes** The matrix returned represents the transition matrix that describes the Markov chain used in PageRank. For PageRank to converge to a unique solution (i.e., a unique stationary distribution in a Markov chain), the transition matrix must be irreducible. In other words, it must be that there exists a path between every pair of nodes in the graph, or else there is the potential of "rank sinks." This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be the sum of all edge weights between those nodes. #### See also: pagerank(), pagerank_numpy(), pagerank_scipy() # 4.28.2 Hits Hubs and authorities analysis of graph structure. | hits(G[, max_iter, tol, nstart, normalized]) | Return HITS hubs and authorities values for nodes. | |--|--| | hits_numpy(G[, normalized]) | Return HITS hubs and authorities values for nodes. | | hits_scipy(G[, max_iter, tol, normalized]) | Return HITS hubs and authorities values for nodes. | | hub_matrix(G[, nodelist]) | Return the HITS hub matrix. | | | Continued on next page | # Table 4.76 - continued from previous page authority matrix(G[, nodelist]) Return the HITS authority matrix. #### hits **hits** (*G*, max_iter=100, tol=1e-08, nstart=None, normalized=True) Return HITS hubs and authorities values for nodes. The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links. #### **Parameters** - **G** (*graph*) A NetworkX graph - max_iter (interger, optional) Maximum number of iterations in power method. - tol (float, optional) Error tolerance used to check convergence in power method iteration. - nstart (dictionary, optional) Starting value of each node for power method iteration. - normalized (bool (default=True)) Normalize results by the sum of all of the values. **Returns** (hubs,authorities) – Two dictionaries keyed by node containing the hub and authority values. Return type two-tuple of dictionaries #### **Examples** ``` >>> G=nx.path_graph(4) >>> h,a=nx.hits(G) ``` # **Notes** The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached. The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs. #### References ## hits numpy hits_numpy (G, normalized=True) Return HITS hubs and authorities values for nodes. The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links. G [graph] A NetworkX graph **normalized** [bool (default=True)] Normalize results by the sum of all of the values. **Returns** (hubs,authorities) – Two dictionaries keyed by node containing the hub and authority values. Return type two-tuple of dictionaries # **Examples** ``` >>> G=nx.path_graph(4) >>> h,a=nx.hits(G) ``` #### **Notes** The eigenvector calculation uses NumPy's interface to LAPACK. The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs. #### References ## hits scipy hits_scipy (G, max_iter=100, tol=1e-06, normalized=True) Return HITS hubs and authorities values for nodes. The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links. G [graph] A NetworkX graph max iter [interger, optional] Maximum number of iterations in power method. tol [float, optional] Error tolerance used to check convergence in power method iteration. **nstart** [dictionary, optional] Starting value of each node for power method iteration. **normalized** [bool (default=True)] Normalize results by the sum of all of the values. **Returns** (hubs,authorities) – Two dictionaries keyed by node containing the hub and authority values. Return type two-tuple of dictionaries ### **Examples** ``` >>> G=nx.path_graph(4) >>> h,a=nx.hits(G) ``` # **Notes** This implementation uses SciPy sparse matrices. The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached. The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs. ## hub matrix hub_matrix (*G*, nodelist=None) Return the HITS hub matrix. # authority_matrix **authority_matrix** (*G*, nodelist=None) Return the HITS authority matrix. # 4.29 Link Prediction Link prediction algorithms. | $resource_allocation_index(G[,ebunch])$ | Compute the resource allocation index of all node pairs in ebunch. | |---|--| | <pre>jaccard_coefficient(G[, ebunch])</pre> | Compute the Jaccard coefficient of all node pairs in ebunch. | |
$adamic_adar_index(G[,ebunch])$ | Compute the Adamic-Adar index of all node pairs in ebunch. | | <pre>preferential_attachment(G[, ebunch])</pre> | Compute the preferential attachment score of all node pairs in ebunch. | | $cn_soundarajan_hopcroft(G[, ebunch, community])$ | Count the number of common neighbors of all node pairs in ebunch us | | $ra_index_soundarajan_hopcroft(G[, ebunch,])$ | Compute the resource allocation index of all node pairs in ebunch usin | | within_inter_cluster(G[, ebunch, delta,]) | Compute the ratio of within- and inter-cluster common neighbors of al | # 4.29.1 resource allocation index $resource_allocation_index(G, ebunch=None)$ Compute the resource allocation index of all node pairs in ebunch. Resource allocation index of u and v is defined as $$\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|\Gamma(w)|}$$ where $\Gamma(u)$ denotes the set of neighbors of u. # **Parameters** - **G** (*graph*) A NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional (default = None)*) Resource allocation index will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their resource allocation index. Return type iterator 4.29. Link Prediction 303 #### **Examples** #### References # 4.29.2 jaccard_coefficient ``` jaccard coefficient(G, ebunch=None) ``` Compute the Jaccard coefficient of all node pairs in ebunch. Jaccard coefficient of nodes u and v is defined as $$\frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}$$ where $\Gamma(u)$ denotes the set of neighbors of u. #### **Parameters** - **G** (graph) A NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional (default = None)*) Jaccard coefficient will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their Jaccard coefficient. **Return type** iterator # **Examples** #### References # 4.29.3 adamic_adar_index ``` adamic_adar_index(G, ebunch=None) ``` Compute the Adamic-Adar index of all node pairs in ebunch. Adamic-Adar index of u and v is defined as $$\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|}$$ where $\Gamma(u)$ denotes the set of neighbors of u. #### **Parameters** - **G** (*graph*) NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional* (*default = None*)) Adamic-Adar index will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their Adamic-Adar index. Return type iterator #### **Examples** # References # 4.29.4 preferential_attachment ``` preferential_attachment(G, ebunch=None) ``` Compute the preferential attachment score of all node pairs in ebunch. Preferential attachment score of u and v is defined as $$|\Gamma(u)||\Gamma(v)|$$ where $\Gamma(u)$ denotes the set of neighbors of u. #### **Parameters** - **G** (*graph*) NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional (default = None)*) Preferential attachment score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their preferential attachment score. Return type iterator 4.29. Link Prediction 305 #### **Examples** #### References # 4.29.5 cn soundarajan hopcroft cn_soundarajan_hopcroft(G, ebunch=None, community='community') Count the number of common neighbors of all node pairs in ebunch using community information. For two nodes u and v, this function computes the number of common neighbors and bonus one for each common neighbor belonging to the same community as u and v. Mathematically, $$|\Gamma(u) \cap \Gamma(v)| + \sum_{w \in \Gamma(u) \cap \Gamma(v)} f(w)$$ where f(w) equals 1 if w belongs to the same community as u and v or 0 otherwise and $\Gamma(u)$ denotes the set of neighbors of u. #### **Parameters** - **G** (graph) A NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional (default = None*)) The score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. - **community** (*string*, *optional* (*default* = '*community*')) Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'. **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their score. **Return type** iterator ## **Examples** ``` '(0, 2) -> 2' ``` # 4.29.6 ra_index_soundarajan_hopcroft $\verb"ra_index_soundarajan_hopcroft" (\textit{G}, ebunch=None, community='community')$ Compute the resource allocation index of all node pairs in ebunch using community information. For two nodes u and v, this function computes the resource allocation index considering only common neighbors belonging to the same community as u and v. Mathematically, $$\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{f(w)}{|\Gamma(w)|}$$ where f(w) equals 1 if w belongs to the same community as u and v or 0 otherwise and $\Gamma(u)$ denotes the set of neighbors of u. #### **Parameters** - G (graph) A NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional* (*default = None*)) The score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. - **community** (*string*, *optional* (*default* = '*community*')) Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'. **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their score. Return type iterator # **Examples** 4.29. Link Prediction 307 # 4.29.7 within inter cluster within_inter_cluster(G, ebunch=None, delta=0.001, community='community') Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch. For two nodes u and v, if a common neighbor w belongs to the same community as them, w is considered as within-cluster common neighbor of u and v. Otherwise, it is considered as inter-cluster common neighbor of u and v. The ratio between the size of the set of within- and inter-cluster common neighbors is defined as the WIC measure. ⁹⁷ #### **Parameters** - **G** (graph) A NetworkX undirected graph. - **ebunch** (*iterable of node pairs, optional (default = None)*) The WIC measure will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None. - **delta** (*float*, *optional* (*default* = 0.001)) Value to prevent division by zero in case there is no inter-cluster common neighbor between two nodes. See ¹ for details. Default value: 0.001. - **community** (*string*, *optional* (*default* = '*community*')) Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'. **Returns piter** – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their WIC measure. Return type iterator # **Examples** ``` >>> import networkx as nx >>> G = nx.Graph() >>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)]) >>> G.node[0]['community'] = 0 >>> G.node[1]['community'] = 1 >>> G.node[2]['community'] = 0 >>> G.node[3]['community'] = 0 >>> G.node[4]['community'] = 0 >>> preds = nx.within_inter_cluster(G, [(0, 4)]) >>> for u, v, p in preds: '(%d, %d) -> %.8f' % (u, v, p) '(0, 4) -> 1.99800200' >>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5) >>> for u, v, p in preds: '(%d, %d) -> %.8f' % (u, v, p) '(0, 4) -> 1.333333333 ``` ⁹⁷ Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes. Link prediction in complex networks based on cluster information. In Proceedings of the 21st Brazilian conference on Advances in Artificial Intelligence (SBIA*12) http://dx.doi.org/10.1007/978-3-642-34459-6_10 # 4.30 Matching # 4.30.1 Matching | $maximal_matching(G)$ | Find a maximal cardinality matching in the graph. | |---|---| | <pre>max_weight_matching(G[, maxcardinality])</pre> | Compute a maximum-weighted matching of G. | # 4.30.2 maximal_matching ## $maximal_matching(G)$ Find a maximal cardinality matching in the graph. A matching is a subset of edges in which no node occurs more than once. The cardinality of a matching is the number of matched edges. Parameters G (NetworkX graph) – Undirected graph **Returns** matching – A maximal matching of the graph. Return
type set #### **Notes** The algorithm greedily selects a maximal matching M of the graph G (i.e. no superset of M exists). It runs in O(|E|) time. # 4.30.3 max_weight_matching ## max_weight_matching(G, maxcardinality=False) Compute a maximum-weighted matching of G. A matching is a subset of edges in which no node occurs more than once. The cardinality of a matching is the number of matched edges. The weight of a matching is the sum of the weights of its edges. #### **Parameters** - **G** (NetworkX graph) Undirected graph - maxcardinality (bool, optional) If maxcardinality is True, compute the maximum-cardinality matching with maximum weight among all maximum-cardinality matchings. **Returns** mate – The matching is returned as a dictionary, mate, such that mate[v] == w if node v is matched to node w. Unmatched nodes do not occur as a key in mate. #### Return type dictionary If G has edges with 'weight' attribute the edge data are used as weight values else the weights are assumed to be 1. This function takes time O(number_of_nodes ** 3). If all edge weights are integers, the algorithm uses only integer computations. If floating point weights are used, the algorithm could return a slightly suboptimal matching due to numeric precision errors. 4.30. Matching 309 This method is based on the "blossom" method for finding augmenting paths and the "primal-dual" method for finding a matching of maximum weight, both methods invented by Jack Edmonds ⁹⁸. Bipartite graphs can also be matched using the functions present in networkx.algorithms.bipartite.matching. #### References # 4.31 Minors Provides functions for computing minors of a graph. | <pre>contracted_edge(G, edge[, self_loops])</pre> | Returns the graph that results from contracting the specified edge. | | |--|--|--| | $contracted_nodes(G, u, v[, self_loops])$ | Returns the graph that results from contracting u and v. | | | <pre>identified_nodes(G, u, v[, self_loops])</pre> | Returns the graph that results from contracting u and v. | | | <pre>quotient_graph(G, node_relation[,])</pre> | Returns the quotient graph of G under the specified equivalence relation on nodes. | | # 4.31.1 contracted_edge ``` contracted edge(G, edge, self loops=True) ``` Returns the graph that results from contracting the specified edge. Edge contraction identifies the two endpoints of the edge as a single node incident to any edge that was incident to the original two nodes. A graph that results from edge contraction is called a *minor* of the original graph. #### **Parameters** - **G** (*NetworkX graph*) The graph whose edge will be contracted. - edge (tuple) Must be a pair of nodes in G. - **self_loops** (*Boolean*) If this is True, any edges (including edge) joining the endpoints of edge in G become self-loops on the new node in the returned graph. **Returns** A new graph object of the same type as G (leaving G unmodified) with endpoints of edge identified in a single node. The right node of edge will be merged into the left one, so only the left one will appear in the returned graph. Return type Networkx graph Raises ValueError - If edge is not an edge in G. ## **Examples** Attempting to contract two nonadjacent nodes yields an error: ``` >>> import networkx as nx >>> G = nx.cycle_graph(4) >>> nx.contracted_edge(G, (1, 3)) Traceback (most recent call last): ... ValueError: Edge (1, 3) does not exist in graph G; cannot contract it ``` ^{98 &}quot;Efficient Algorithms for Finding Maximum Matching in Graphs", Zvi Galil, ACM Computing Surveys, 1986. Contracting two adjacent nodes in the cycle graph on n nodes yields the cycle graph on n-1 nodes: ``` >>> import networkx as nx >>> C5 = nx.cycle_graph(5) >>> C4 = nx.cycle_graph(4) >>> M = nx.contracted_edge(C5, (0, 1), self_loops=False) >>> nx.is_isomorphic(M, C4) True ``` #### See also: ``` contracted_nodes(), quotient_graph() ``` # 4.31.2 contracted_nodes ``` contracted_nodes (G, u, v, self_loops=True) ``` Returns the graph that results from contracting u and v. Node contraction identifies the two nodes as a single node incident to any edge that was incident to the original two nodes. #### **Parameters** - **G** (*NetworkX graph*) The graph whose nodes will be contracted. - $\mathbf{v}(u_1)$ Must be nodes in G. - **self_loops** (*Boolean*) If this is True, any edges joining u and v in G become self-loops on the new node in the returned graph. **Returns** A new graph object of the same type as G (leaving G unmodified) with u and v identified in a single node. The right node v will be merged into the node u, so only u will appear in the returned graph. Return type Networkx graph # **Examples** Contracting two nonadjacent nodes of the cycle graph on four nodes C_4 yields the path graph (ignoring parallel edges): ``` >>> import networkx as nx >>> G = nx.cycle_graph(4) >>> M = nx.contracted_nodes(G, 1, 3) >>> P3 = nx.path_graph(3) >>> nx.is_isomorphic(M, P3) True ``` ## See also: ``` contracted_edge(), quotient_graph() ``` # **Notes** This function is also available as identified_nodes. 4.31. Minors 311 # 4.31.3 identified_nodes ``` identified_nodes (G, u, v, self_loops=True) ``` Returns the graph that results from contracting u and v. Node contraction identifies the two nodes as a single node incident to any edge that was incident to the original two nodes. # **Parameters** - **G** (NetworkX graph) The graph whose nodes will be contracted. - $\mathbf{v}(u_1)$ Must be nodes in G. - **self_loops** (*Boolean*) If this is True, any edges joining u and v in G become self-loops on the new node in the returned graph. **Returns** A new graph object of the same type as G (leaving G unmodified) with u and v identified in a single node. The right node v will be merged into the node u, so only u will appear in the returned graph. Return type Networkx graph ## **Examples** Contracting two nonadjacent nodes of the cycle graph on four nodes C_4 yields the path graph (ignoring parallel edges): ``` >>> import networkx as nx >>> G = nx.cycle_graph(4) >>> M = nx.contracted_nodes(G, 1, 3) >>> P3 = nx.path_graph(3) >>> nx.is_isomorphic(M, P3) True ``` # See also: ``` contracted_edge(), quotient_graph() ``` #### **Notes** This function is also available as identified_nodes. # 4.31.4 quotient graph $\verb"quotient_graph" (G, node_relation, edge_relation=None, create_using=None)"$ Returns the quotient graph of G under the specified equivalence relation on nodes. - **G** (*NetworkX graph*) The graph for which to return the quotient graph with the specified node relation. - node_relation (*Boolean function with two arguments*) This function must represent an equivalence relation on the nodes of G. It must take two arguments u and v and return True exactly when u and v are in the same equivalence class. The equivalence classes form the nodes in the returned graph. • **edge_relation** (*Boolean function with two arguments*) — This function must represent an edge relation on the *blocks* of G in the partition induced by node_relation. It must take two arguments, B and C, each one a set of nodes, and return True exactly when there should be an edge joining block B to block C in the returned graph. If edge_relation is not specified, it is assumed to be the following relation. Block B is related to block C if and only if some node in B is adjacent to some node in C, according to the edge set of G. • **create_using** (*NetworkX graph*) – If specified, this must be an instance of a NetworkX graph class. The nodes and edges of the quotient graph will be added to this graph and returned. If not specified, the returned graph will have the same type as the input graph. **Returns** The quotient graph of G under the equivalence relation specified by node_relation. Return type NetworkX graph #### **Examples** The quotient graph of the complete bipartite graph under the "same neighbors" equivalence relation is K_2 . Under this relation, two nodes are equivalent if they are not adjacent but have the same neighbor set: The quotient graph of a directed graph under the "same strongly connected component" equivalence relation is the condensation of the graph (see condensation()). This example comes from the Wikipedia article 'Strongly connected component': Node identification can be represented as the quotient of a graph under the equivalence relation that places the two nodes in one block and each other node in its own singleton block: ``` >>> import networkx as nx >>> K24 = nx.complete_bipartite_graph(2, 4) >>> K34 = nx.complete_bipartite_graph(3, 4) >>> C = nx.contracted_nodes(K34, 1, 2) >>> nodes = {1, 2} ``` 4.31. Minors 313 ``` >>> is_contracted = lambda u, v: u in nodes and v in nodes >>> Q = nx.quotient_graph(K34, is_contracted) >>> nx.is_isomorphic(Q, C) True >>> nx.is_isomorphic(Q, K24) True ``` # 4.32 Maximal independent set Algorithm to find a maximal (not maximum) independent set. maximal_independent_set(G[, nodes]) Return a random maximal independent set guaranteed to contain a given set of node # 4.32.1 maximal_independent_set ``` maximal_independent_set (G, nodes=None) ``` Return a random maximal independent set guaranteed to contain a given set of nodes. An independent set is a set of nodes such that the subgraph of G induced by these nodes contains no edges. A maximal independent set is an independent set such that it is not possible to add a new node and still get an independent set. #### **Parameters** - **G** (NetworkX graph) – - **nodes** (*list or iterable*) Nodes that must be part of the independent set. This set of nodes must be independent. **Returns** indep_nodes – List of nodes that are part of a maximal independent set. Return type list **Raises** NetworkXUnfeasible – If the nodes in the provided list are not part of the graph or do not form an independent set, an exception is raised. # **Examples** ``` >>> G =
nx.path_graph(5) >>> nx.maximal_independent_set(G) [4, 0, 2] >>> nx.maximal_independent_set(G, [1]) [1, 3] ``` This algorithm does not solve the maximum independent set problem. # 4.33 Minimum Spanning Tree Computes minimum spanning tree of a weighted graph. | $minimum_spanning_tree(G[, weight])$ | Return a minimum spanning tree or forest of an undirected weighted graph. | |--|--| | <pre>minimum_spanning_edges(G[, weight, data])</pre> | Generate edges in a minimum spanning forest of an undirected weighted graph. | # 4.33.1 minimum spanning tree ``` minimum_spanning_tree(G, weight='weight') ``` Return a minimum spanning tree or forest of an undirected weighted graph. A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights. If the graph is not connected a spanning forest is constructed. A spanning forest is a union of the spanning trees for each connected component of the graph. #### **Parameters** - **G** (NetworkX Graph) – - weight (*string*) Edge data key to use for weight (default 'weight'). **Returns G** – A minimum spanning tree or forest. Return type NetworkX Graph #### **Examples** ``` >>> G=nx.cycle_graph(4) >>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3 >>> T=nx.minimum_spanning_tree(G) >>> print(sorted(T.edges(data=True))) [(0, 1, {}), (1, 2, {}), (2, 3, {})] ``` #### **Notes** Uses Kruskal's algorithm. If the graph edges do not have a weight attribute a default weight of 1 will be used. # 4.33.2 minimum_spanning_edges ``` minimum_spanning_edges (G, weight='weight', data=True) ``` Generate edges in a minimum spanning forest of an undirected weighted graph. A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights. A spanning forest is a union of the spanning trees for each connected component of the graph. #### **Parameters** - **G** (NetworkX Graph) – - weight (*string*) Edge data key to use for weight (default 'weight'). - data (bool, optional) If True yield the edge data along with the edge. **Returns edges** – A generator that produces edges in the minimum spanning tree. The edges are three-tuples (u,v,w) where w is the weight. Return type iterator ## **Examples** ``` >>> G=nx.cycle_graph(4) >>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3 >>> mst=nx.minimum_spanning_edges(G,data=False) # a generator of MST edges >>> edgelist=list(mst) # make a list of the edges >>> print(sorted(edgelist)) [(0, 1), (1, 2), (2, 3)] ``` #### **Notes** Uses Kruskal's algorithm. If the graph edges do not have a weight attribute a default weight of 1 will be used. Modified code from David Eppstein, April 2006 http://www.ics.uci.edu/~eppstein/PADS/ # 4.34 Operators Unary operations on graphs | <pre>complement(G[, name])</pre> | Return the graph complement of G. | |----------------------------------|---| | reverse(G[, copy]) | Return the reverse directed graph of G. | # 4.34.1 complement complement (G, name=None) Return the graph complement of G. #### **Parameters** - **G** (graph) A NetworkX graph - name (string) Specify name for new graph ## Returns - GC (A new graph.) - Notes - ____ - Note that complement() does not create self-loops and also - does not produce parallel edges for MultiGraphs. - Graph, node, and edge data are not propagated to the new graph. ## **4.34.2** reverse reverse(G, copy=True) Return the reverse directed graph of G. - **G** (*directed graph*) A NetworkX directed graph - **copy** (*bool*) If True, then a new graph is returned. If False, then the graph is reversed in place. **Returns H** – The reversed G. Return type directed graph Operations on graphs including union, intersection, difference. | compose(G, H[, name]) | Return a new graph of G composed with H. | |-----------------------------|---| | union(G, H[, rename, name]) | Return the union of graphs G and H. | | disjoint_union(G, H) | Return the disjoint union of graphs G and H. | | intersection(G, H) | Return a new graph that contains only the edges that exist in both G and H. | | difference(G, H) | Return a new graph that contains the edges that exist in G but not in H. | | symmetric_difference(G, H) | Return new graph with edges that exist in either G or H but not both. | # 4.34.3 compose compose(G, H, name=None) Return a new graph of G composed with H. Composition is the simple union of the node sets and edge sets. The node sets of G and H do not need to be disjoint. ## **Parameters** - G, H (graph) A NetworkX graph - name (string) Specify name for new graph ## Returns C Return type A new graph with the same type as G #### **Notes** It is recommended that G and H be either both directed or both undirected. Attributes from H take precedent over attributes from G. # 4.34.4 union union (G, H, rename = (None, None), name = None) Return the union of graphs G and H. Graphs G and H must be disjoint, otherwise an exception is raised. # **Parameters** - G, H (graph) A NetworkX graph - create_using (NetworkX graph) Use specified graph for result. Otherwise - **rename** (*bool*, *default=*(*None*, *None*)) Node names of G and H can be changed by specifying the tuple rename=('G-','H-') (for example). Node "u" in G is then renamed "G-u" and "v" in H is renamed "H-v". - name (string) Specify the name for the union graph 4.34. Operators 317 #### Returns U **Return type** A union graph with the same type as G. #### **Notes** To force a disjoint union with node relabeling, use disjoint_union(G,H) or convert_node_labels_to integers(). Graph, edge, and node attributes are propagated from G and H to the union graph. If a graph attribute is present in both G and H the value from H is used. #### See also: ``` disjoint_union() ``` # 4.34.5 disjoint union # $disjoint_union(G, H)$ Return the disjoint union of graphs G and H. This algorithm forces distinct integer node labels. Parameters G, H (graph) – A NetworkX graph Returns U **Return type** A union graph with the same type as G. #### **Notes** A new graph is created, of the same class as G. It is recommended that G and H be either both directed or both undirected. The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are relabeled len(G) to len(G)+len(H)-1. Graph, edge, and node attributes are propagated from G and H to the union graph. If a graph attribute is present in both G and H the value from H is used. # 4.34.6 intersection # intersection(G, H) Return a new graph that contains only the edges that exist in both G and H. The node sets of H and G must be the same. **Parameters G, H** (*graph*) – A NetworkX graph. G and H must have the same node sets. **Returns GH** **Return type** A new graph with the same type as G. ## **Notes** Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of the intersection of G and H with the attributes (including edge data) from G use remove_nodes_from() as follows ``` >>> G=nx.path_graph(3) >>> H=nx.path_graph(5) >>> R=G.copy() >>> R.remove_nodes_from(n for n in G if n not in H) ``` ### 4.34.7 difference #### difference(G, H) Return a new graph that contains the edges that exist in G but not in H. The node sets of H and G must be the same. **Parameters** G, H (graph) – A NetworkX graph. G and H must have the same node sets. Returns D **Return type** A new graph with the same type as G. #### **Notes** Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of the difference of G and H with with the attributes (including edge data) from G use remove_nodes_from() as follows: ``` >>> G = nx.path_graph(3) >>> H = nx.path_graph(5) >>> R = G.copy() >>> R.remove_nodes_from(n for n in G if n in H) ``` # 4.34.8 symmetric_difference #### $symmetric_difference(G, H)$ Return new graph with edges that exist in either G or H but not both. The node sets of H and G must be the same. **Parameters** G, H (*graph*) – A NetworkX graph. G and H must have the same node sets. Returns D **Return type** A new graph with the same type as G. ### **Notes** Attributes from the graph, nodes, and edges are not copied to the new graph. Operations on many graphs. | compose_all(graphs[, name]) | Return the composition of all graphs. | |-----------------------------------|---| | union_all(graphs[, rename, name]) | Return the union of all graphs. | | disjoint_union_all(graphs) | Return the disjoint union of all graphs. | | intersection_all(graphs) | Return a new graph that contains only the edges that exist in all graphs. | 4.34. Operators 319 # 4.34.9 compose all ``` compose_all (graphs, name=None) ``` Return the composition of all graphs. Composition is the simple union of the node sets and edge sets. The node sets of the supplied graphs need not be disjoint. ### **Parameters** - graphs (list) List of NetworkX graphs - name (string) Specify name for new graph #### Returns C **Return type** A graph with the same type as the first graph in list #### **Notes** It is recommended that the supplied graphs be either all directed or all undirected. Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used. # 4.34.10 union_all union all(graphs, rename=(None,), name=None) Return the union of all graphs. The graphs must be disjoint, otherwise an exception is raised. # **Parameters** - graphs (list of graphs) List of NetworkX graphs - **rename** (bool, default=(None, None)) Node names of G and H can be changed by specifying the tuple rename=('G-','H-') (for example). Node "u" in G is then renamed "G-u" and "v" in H is renamed "H-v". - name (string) Specify the name for the
union graph@not_implemnted_for('direct ### Returns U Return type a graph with the same type as the first graph in list ### **Notes** To force a disjoint union with node relabeling, use disjoint_union_all(G,H) or convert_node_labels_to integers(). Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used. # See also: ``` union(), disjoint_union_all() ``` # 4.34.11 disjoint union all ### disjoint_union_all (graphs) Return the disjoint union of all graphs. This operation forces distinct integer node labels starting with 0 for the first graph in the list and numbering consecutively. **Parameters** graphs (*list*) – List of NetworkX graphs Returns U **Return type** A graph with the same type as the first graph in list #### **Notes** It is recommended that the graphs be either all directed or all undirected. Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used. # 4.34.12 intersection all ### intersection_all(graphs) Return a new graph that contains only the edges that exist in all graphs. All supplied graphs must have the same node set. **Parameters** graphs_list (*list*) – List of NetworkX graphs Returns R **Return type** A new graph with the same type as the first graph in list #### Notes Attributes from the graph, nodes, and edges are not copied to the new graph. ### Graph products. | cartesian_product(G, H) | Return the Cartesian product of G and H. | |-----------------------------|--| | lexicographic_product(G, H) | Return the lexicographic product of G and H. | | strong_product(G, H) | Return the strong product of G and H. | | tensor_product(G, H) | Return the tensor product of G and H. | | power(G, k) | Returns the specified power of a graph. | # 4.34.13 cartesian_product #### $cartesian_product(G, H)$ Return the Cartesian product of G and H. The Cartesian product P of the graphs G and H has a node set that is the Cartesian product of the node sets, V(P) = V(G)imesV(H). P has an edge ((u,v),(x,y)) if and only if either u is equal to x and v & y are adjacent in H or if v is equal to y and u & x are adjacent in G. **Parameters** $\mathbf{H}(G,)$ – Networkx graphs. 4.34. Operators 321 **Returns** P – The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-graph. Will be a directed if G and H are directed, and undirected if G and H are undirected. Return type NetworkX graph Raises NetworkXError - If G and H are not both directed or both undirected. #### **Notes** Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None. ### **Examples** ``` >>> G = nx.Graph() >>> H = nx.Graph() >>> G.add_node(0,a1=True) >>> H.add_node('a',a2='Spam') >>> P = nx.cartesian_product(G,H) >>> P.nodes() [(0, 'a')] ``` Edge attributes and edge keys (for multigraphs) are also copied to the new product graph # 4.34.14 lexicographic product ### $lexicographic_product(G, H)$ Return the lexicographic product of G and H. The lexicographical product P of the graphs G and H has a node set that is the Cartesian product of the node sets, V(P)=V(G) imes V(H). P has an edge ((u,v),(x,y)) if and only if (u,v) is an edge in G or u==v and (x,y) is an edge in H. **Parameters** $\mathbf{H}(G_{1})$ – Networkx graphs. **Returns** P – The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-graph. Will be a directed if G and H are directed, and undirected if G and H are undirected. Return type NetworkX graph Raises NetworkXError - If G and H are not both directed or both undirected. ### **Notes** Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None. # **Examples** ``` >>> G = nx.Graph() >>> H = nx.Graph() >>> G.add_node(0,a1=True) >>> H.add_node('a',a2='Spam') >>> P = nx.lexicographic_product(G,H) >>> P.nodes() [(0, 'a')] ``` Edge attributes and edge keys (for multigraphs) are also copied to the new product graph # 4.34.15 strong_product ``` strong_product(G, H) ``` Return the strong product of G and H. The strong product P of the graphs G and H has a node set that is the Cartesian product of the node sets, V(P)=V(G) imes V(H). P has an edge ((u,v),(x,y)) if and only if u==v and (x,y) is an edge in H, or x==y and (u,v) is an edge in G, or (u,v) is an edge in G and (x,y) is an edge in H. **Parameters** $\mathbf{H}(G_n)$ – Networkx graphs. **Returns** P – The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-graph. Will be a directed if G and H are directed, and undirected if G and H are undirected. **Return type** NetworkX graph Raises NetworkXError - If G and H are not both directed or both undirected. #### **Notes** Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None. ### **Examples** ``` >>> G = nx.Graph() >>> H = nx.Graph() >>> G.add_node(0,a1=True) >>> H.add_node('a',a2='Spam') >>> P = nx.strong_product(G,H) >>> P.nodes() [(0, 'a')] ``` Edge attributes and edge keys (for multigraphs) are also copied to the new product graph # 4.34.16 tensor product #### tensor product (G, H) Return the tensor product of G and H. The tensor product P of the graphs G and H has a node set that is the Cartesian product of the node sets, $V(P) = V(G) \times V(H)$. P has an edge ((u,v),(x,y)) if and only if (u,x) is an edge in G and (v,y) is an edge in H. Tensor product is sometimes also referred to as the categorical product, direct product, cardinal product or conjunction. **Parameters** $\mathbf{H}(G_1)$ – Networkx graphs. **Returns P** – The tensor product of G and H. P will be a multi-graph if either G or H is a multi-graph, will be a directed if G and H are directed, and undirected if G and H are undirected. Return type NetworkX graph Raises NetworkXError - If G and H are not both directed or both undirected. 4.34. Operators 323 #### **Notes** Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None. # **Examples** ``` >>> G = nx.Graph() >>> H = nx.Graph() >>> G.add_node(0,al=True) >>> H.add_node('a',a2='Spam') >>> P = nx.tensor_product(G,H) >>> P.nodes() [(0, 'a')] ``` Edge attributes and edge keys (for multigraphs) are also copied to the new product graph # 4.34.17 power ### power(G, k) Returns the specified power of a graph. The k-th power of a simple graph G = (V, E) is the graph G^k whose vertex set is V, two distinct vertices u, v are adjacent in G^k if and only if the shortest path distance between u and v in G is at most k. ### **Parameters** - **G** (*graph*) A NetworkX simple graph object. - \mathbf{k} (positive integer) The power to which to raise the graph G. **Returns** G to the k-th power. **Return type** NetworkX simple graph #### Raises - exc:ValueError If the exponent k is not positive. - NetworkXError If G is not a simple graph. ### **Examples** ``` >>> G = nx.path_graph(4) >>> nx.power(G,2).edges() [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)] >>> nx.power(G,3).edges() [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)] ``` A complete graph of order n is returned if k is greater than equal to n/2 for a cycle graph of even order n, and if k is greater than equal to (n-1)/2 for a cycle graph of odd order. ``` >>> G = nx.cycle_graph(5) >>> nx.power(G,2).edges() == nx.complete_graph(5).edges() True >>> G = nx.cycle_graph(8) >>> nx.power(G,4).edges() == nx.complete_graph(8).edges() True ``` #### References #### **Notes** Exercise 3.1.6 of *Graph Theory* by J. A. Bondy and U. S. R. Murty ⁹⁹. # 4.35 Rich Club rich_club_coefficient(G[, normalized, Q]) Return the rich-club coefficient of the graph G. # 4.35.1 rich club coefficient rich_club_coefficient (G, normalized=True, Q=100) Return the rich-club coefficient of the graph G. The rich-club coefficient is the ratio, for every degree k, of the number of actual to the number of potential edges for nodes with degree greater than k: $$\phi(k) = \frac{2Ek}{Nk(Nk - 1)}$$ where Nk is the number of nodes with degree larger than k, and Ek be the number of edges among those nodes. #### **Parameters** - **G** (NetworkX graph) – - normalized (bool (optional)) Normalize using randomized network (see ¹⁰⁰) - Q (float (optional, default=100)) If normalized=True build a random network by performing Q*M double-edge swaps, where M is the number of edges in G, to use as a null-model for normalization. **Returns** rc – A dictionary, keyed by degree, with rich club coefficient values. Return type dictionary ### **Examples** ``` >>> G = nx.Graph([(0,1),(0,2),(1,2),(1,3),(1,4),(4,5)]) >>> rc = nx.rich_club_coefficient(G,normalized=False) >>> rc[0] 0.4 ``` The rich club definition and algorithm are found in ¹. This algorithm ignores any edge weights and is not defined for directed graphs or graphs with parallel edges or self loops. Estimates for appropriate values of Q are found in ¹⁰¹. 4.35. Rich Club 325 ^{10. (}a)Bondy, U. S. R. Murty, Graph Theory. Springer, 2008. Julian J. McAuley, Luciano da Fontoura Costa, and Tibério S. Caetano, "The rich-club phenomenon across complex network hierarchies", Applied Physics Letters Vol 91 Issue 8, August 2007. http://arxiv.org/abs/physics/0701290 ¹⁰¹ R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon, "Uniform generation of random graphs with arbitrary degree sequences", 2006. http://arxiv.org/abs/cond-mat/0312028 #### References # 4.36 Shortest Paths Compute the shortest paths and path lengths between nodes in the graph. These algorithms work with undirected and directed graphs. | <pre>shortest_path(G[, source, target, weight])</pre> | Compute shortest paths in the graph. | |--
---| | <pre>all_shortest_paths(G, source, target[, weight])</pre> | Compute all shortest paths in the graph. | | <pre>shortest_path_length(G[, source, target, weight])</pre> | Compute shortest path lengths in the graph. | | $average_shortest_path_length(G[, weight])$ | Return the average shortest path length. | | has_path(G, source, target) | Return True if G has a path from source to target, False otherwise. | # 4.36.1 shortest_path **shortest_path** (*G*, *source=None*, *target=None*, *weight=None*) Compute shortest paths in the graph. #### **Parameters** - **G** (NetworkX graph) – - **source** (*node*, *optional*) Starting node for path. If not specified, compute shortest paths using all nodes as source nodes. - **target** (*node*, *optional*) Ending node for path. If not specified, compute shortest paths using all nodes as target nodes. - weight (*None or string, optional (default = None*)) If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1. #### Returns **path** – All returned paths include both the source and target in the path. If the source and target are both specified, return a single list of nodes in a shortest path from the source to the target. If only the source is specified, return a dictionary keyed by targets with a list of nodes in a shortest path from the source to one of the targets. If only the target is specified, return a dictionary keyed by sources with a list of nodes in a shortest path from one of the sources to the target. If neither the source nor target are specified return a dictionary of dictionaries with path[source][target]=[list of nodes in path]. Return type list or dictionary # **Examples** ``` >>> G=nx.path_graph(5) >>> print(nx.shortest_path(G,source=0,target=4)) [0, 1, 2, 3, 4] >>> p=nx.shortest_path(G,source=0) # target not specified ``` ``` >>> p[4] [0, 1, 2, 3, 4] >>> p=nx.shortest_path(G, target=4) # source not specified >>> p[0] [0, 1, 2, 3, 4] >>> p=nx.shortest_path(G) # source, target not specified >>> p[0][4] [0, 1, 2, 3, 4] ``` #### **Notes** There may be more than one shortest path between a source and target. This returns only one of them. #### See also: ``` all_pairs_shortest_path(), single_source_shortest_path(), single_source_dijkstra_path() ``` # 4.36.2 all_shortest_paths all_shortest_paths (G, source, target, weight=None) Compute all shortest paths in the graph. #### **Parameters** - **G** (NetworkX graph) – - **source** (*node*) Starting node for path. - **target** (*node*) Ending node for path. - weight (*None or string, optional (default = None*)) If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1. **Returns** paths – A generator of all paths between source and target. Return type generator of lists #### **Examples** ``` >>> G=nx.Graph() >>> G.add_path([0,1,2]) >>> G.add_path([0,10,2]) >>> print([p for p in nx.all_shortest_paths(G,source=0,target=2)]) [[0, 1, 2], [0, 10, 2]] ``` ### **Notes** There may be many shortest paths between the source and target. ### See also: ``` shortest_path(), single_source_shortest_path(), all_pairs_shortest_path() ``` # 4.36.3 shortest path length **shortest_path_length** (*G*, *source=None*, *target=None*, *weight=None*) Compute shortest path lengths in the graph. #### **Parameters** - **G** (NetworkX graph) – - **source** (*node*, *optional*) Starting node for path. If not specified, compute shortest path lengths using all nodes as source nodes. - **target** (*node*, *optional*) Ending node for path. If not specified, compute shortest path lengths using all nodes as target nodes. - weight (None or string, optional (default = None)) If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1. #### Returns **length** – If the source and target are both specified, return the length of the shortest path from the source to the target. If only the source is specified, return a dictionary keyed by targets whose values are the lengths of the shortest path from the source to one of the targets. If only the target is specified, return a dictionary keyed by sources whose values are the lengths of the shortest path from one of the sources to the target. If neither the source nor target are specified return a dictionary of dictionaries with path[source][target]=L, where L is the length of the shortest path from source to target. ### **Return type** int or dictionary Raises NetworkXNoPath – If no path exists between source and target. ### **Examples** ``` >>> G=nx.path_graph(5) >>> print(nx.shortest_path_length(G, source=0, target=4)) 4 >>> p=nx.shortest_path_length(G, source=0) # target not specified >>> p[4] 4 >>> p=nx.shortest_path_length(G, target=4) # source not specified >>> p[0] 4 >>> p=nx.shortest_path_length(G) # source, target not specified >>> p[0][4] 4 ``` # **Notes** The length of the path is always 1 less than the number of nodes involved in the path since the length measures the number of edges followed. For digraphs this returns the shortest directed path length. To find path lengths in the reverse direction use G.reverse(copy=False) first to flip the edge orientation. #### See also: ``` all_pairs_shortest_path_length(), single_source_shortest_path_length(), single_source_dijkstra_path_length() ``` # 4.36.4 average shortest path length average_shortest_path_length(G, weight=None) Return the average shortest path length. The average shortest path length is $$a = \sum_{s,t \in V} \frac{d(s,t)}{n(n-1)}$$ where V is the set of nodes in G, d(s,t) is the shortest path from s to t, and n is the number of nodes in G. #### **Parameters** - **G** (NetworkX graph) – - weight (None or string, optional (default = None)) If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1. Raises NetworkXError – if the graph is not connected. ### **Examples** ``` >>> G=nx.path_graph(5) >>> print(nx.average_shortest_path_length(G)) 2.0 ``` For disconnected graphs you can compute the average shortest path length for each component: >>> G=nx.Graph([(1,2),(3,4)]) >>> for g in $nx.connected_component_subgraphs(G)$: ... $print(nx.average_shortest_path_length(g))$ 1.0 1.0 # 4.36.5 has path has_path(G, source, target) Return True if G has a path from source to target, False otherwise. #### **Parameters** - **G** (NetworkX graph) – - **source** (*node*) Starting node for path - target (node) Ending node for path ### 4.36.6 Advanced Interface Shortest path algorithms for unweighted graphs. single_source_shortest_path(G, source[, cutoff]) Compute shortest path between source and all other nodes reachable Continued o ### Table 4.88 – continued from previous page | <pre>single_source_shortest_path_length(G, source)</pre> | Compute the shortest path lengths from source to all reachable nodes | |--|---| | all_pairs_shortest_path(G[, cutoff]) | Compute shortest paths between all nodes. | | all_pairs_shortest_path_length(G[, cutoff]) | Computes the shortest path lengths between all nodes in G. | | predecessor(G, source[, target, cutoff,]) | Returns dictionary of predecessors for the path from source to all no | ### single_source_shortest_path ### single_source_shortest_path(G, source, cutoff=None) Compute shortest path between source and all other nodes reachable from source. #### **Parameters** - **G** (NetworkX graph) – - source (node label) Starting node for path - cutoff (integer, optional) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns** lengths – Dictionary, keyed by target, of shortest paths. Return type dictionary ### **Examples** ``` >>> G=nx.path_graph(5) >>> path=nx.single_source_shortest_path(G,0) >>> path[4] [0, 1, 2, 3, 4] ``` # Notes The shortest path is not necessarily unique. So there can be multiple paths between the source and each target node, all of which have the same 'shortest' length. For each target node, this function returns only one of those paths. #### See also: ``` shortest_path() ``` ### single_source_shortest_path_length ### single_source_shortest_path_length(G, source, cutoff=None) Compute the shortest path lengths from source to all reachable nodes. ### **Parameters** - **G** (NetworkX graph) – - source (node) Starting node for path - **cutoff** (*integer*, *optional*) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns** lengths – Dictionary of shortest path lengths keyed by target. # Return type dictionary # **Examples** ``` >>> G=nx.path_graph(5) >>> length=nx.single_source_shortest_path_length(G,0) >>> length[4] 4 >>> print(length) {0: 0, 1: 1, 2: 2, 3: 3, 4: 4} ``` #### See also: ``` shortest_path_length() ``` ### all_pairs_shortest_path ### all_pairs_shortest_path(G, cutoff=None) Compute shortest paths between all nodes. #### **Parameters** - **G** (NetworkX graph) – - cutoff (integer, optional) Depth at which to stop the search. Only paths of length at most cutoff are returned. **Returns** lengths – Dictionary, keyed by source and target, of shortest paths. Return type dictionary ### **Examples** ``` >>> G = nx.path_graph(5) >>> path = nx.all_pairs_shortest_path(G) >>> print(path[0][4]) [0, 1, 2, 3, 4] ``` ### See also: ``` floyd_warshall() ``` ### all_pairs_shortest_path_length ### all_pairs_shortest_path_length(G, cutoff=None) Computes the shortest path lengths between all nodes in G. # **Parameters** - **G** (NetworkX graph) – - cutoff (integer, optional) Depth at which to stop the search. Only paths of length at most cutoff are returned. **Returns** lengths – Dictionary of shortest path
lengths keyed by source and target. **Return type** dictionary #### **Notes** The dictionary returned only has keys for reachable node pairs. # **Examples** ``` >>> G = nx.path_graph(5) >>> length = nx.all_pairs_shortest_path_length(G) >>> print(length[1][4]) 3 >>> length[1] {0: 1, 1: 0, 2: 1, 3: 2, 4: 3} ``` ### predecessor **predecessor** (*G*, *source*, *target=None*, *cutoff=None*, *return_seen=None*) Returns dictionary of predecessors for the path from source to all nodes in G. ### **Parameters** - **G** (NetworkX graph) – - source (node label) Starting node for path - target (node label, optional) Ending node for path. If provided only predecessors between source and target are returned - **cutoff** (*integer*, *optional*) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns** pred – Dictionary, keyed by node, of predecessors in the shortest path. **Return type** dictionary ### **Examples** ``` >>> G=nx.path_graph(4) >>> print(G.nodes()) [0, 1, 2, 3] >>> nx.predecessor(G,0) {0: [], 1: [0], 2: [1], 3: [2]} ``` Shortest path algorithms for weighed graphs. | <pre>dijkstra_path(G, source, target[, weight])</pre> | Returns the shortest path from source to target in a weighted graph G | |--|--| | <pre>dijkstra_path_length(G, source, target[, weight])</pre> | Returns the shortest path length from source to target in a weighted g | | $single_source_dijkstra_path(G, source[,])$ | Compute shortest path between source and all other reachable nodes | | $single_source_dijkstra_path_length(G, source)$ | Compute the shortest path length between source and all other reacha | | $all_pairs_dijkstra_path(G[, cutoff, weight])$ | Compute shortest paths between all nodes in a weighted graph. | | $all_pairs_dijkstra_path_length(G[, cutoff,])$ | Compute shortest path lengths between all nodes in a weighted graph | | single_source_dijkstra(G, source[, target,]) | Compute shortest paths and lengths in a weighted graph G. | | bidirectional_dijkstra(G, source, target[,]) | Dijkstra's algorithm for shortest paths using bidirectional search. | | $\verb"dijkstra_predecessor_and_distance" (G, source)$ | Compute shortest path length and predecessors on shortest paths in w | | bellman_ford(G, source[, weight]) | Compute shortest path lengths and predecessors on shortest paths in | | | | ### Table 4.89 – continued from previous page | $negative_edge_cycle(G[, weight])$ | Return True if there exists a negative edge cycle anywhere in G. | |--------------------------------------|--| | johnson(G[, weight]) | Compute shortest paths between all nodes in a weighted graph using | # dijkstra_path ### dijkstra_path (G, source, target, weight='weight') Returns the shortest path from source to target in a weighted graph G. #### **Parameters** - **G** (NetworkX graph) – - **source** (*node*) Starting node - target (node) Ending node - weight (*string*, *optional* (*default='weight'*)) Edge data key corresponding to the edge weight **Returns** path – List of nodes in a shortest path. Return type list Raises NetworkXNoPath – If no path exists between source and target. ### **Examples** ``` >>> G=nx.path_graph(5) >>> print(nx.dijkstra_path(G,0,4)) [0, 1, 2, 3, 4] ``` Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. ### See also: ``` bidirectional_dijkstra() ``` # dijkstra_path_length ``` dijkstra path length(G, source, target, weight='weight') ``` Returns the shortest path length from source to target in a weighted graph. #### **Parameters** - **G** (NetworkX graph) – - **source** (*node label*) starting node for path - target (node label) ending node for path - weight (string, optional (default='weight')) Edge data key corresponding to the edge weight **Returns** length – Shortest path length. Return type number Raises NetworkXNoPath - If no path exists between source and target. #### **Examples** ``` >>> G=nx.path_graph(5) >>> print(nx.dijkstra_path_length(G,0,4)) 4 ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. #### See also: ``` bidirectional_dijkstra() ``` ### single_source_dijkstra_path ``` single_source_dijkstra_path(G, source, cutoff=None, weight='weight') ``` Compute shortest path between source and all other reachable nodes for a weighted graph. #### **Parameters** - **G** (NetworkX graph) – - **source** (*node*) Starting node for path. - weight (*string*, *optional* (*default='weight'*)) Edge data key corresponding to the edge weight - **cutoff** (*integer or float, optional*) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns** paths – Dictionary of shortest path lengths keyed by target. Return type dictionary ### **Examples** ``` >>> G=nx.path_graph(5) >>> path=nx.single_source_dijkstra_path(G,0) >>> path[4] [0, 1, 2, 3, 4] ``` ### Notes Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. # See also: ``` single_source_dijkstra() ``` # single_source_dijkstra_path_length ``` \verb|single_source_dijkstra_path_length| (\textit{G}, \textit{source}, \textit{cutoff} = \textit{None}, \textit{weight} = \textit{`weight'})| ``` Compute the shortest path length between source and all other reachable nodes for a weighted graph. #### **Parameters** - **G** (NetworkX graph) – - source (node label) Starting node for path - weight (*string*, *optional* (*default='weight'*)) Edge data key corresponding to the edge weight. - cutoff (integer or float, optional) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns** length – Dictionary of shortest lengths keyed by target. Return type dictionary ### **Examples** ``` >>> G=nx.path_graph(5) >>> length=nx.single_source_dijkstra_path_length(G,0) >>> length[4] 4 >>> print(length) {0: 0, 1: 1, 2: 2, 3: 3, 4: 4} ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. #### See also: ``` single_source_dijkstra() ``` ### all pairs dijkstra path ``` all_pairs_dijkstra_path(G, cutoff=None, weight='weight') ``` Compute shortest paths between all nodes in a weighted graph. #### **Parameters** - **G** (NetworkX graph) – - weight (*string*, *optional* (*default='weight'*)) Edge data key corresponding to the edge weight - cutoff (integer or float, optional) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns distance** – Dictionary, keyed by source and target, of shortest paths. Return type dictionary ### **Examples** ``` >>> G=nx.path_graph(5) >>> path=nx.all_pairs_dijkstra_path(G) >>> print(path[0][4]) [0, 1, 2, 3, 4] ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. #### See also: ``` floyd_warshall() ``` ### all pairs dijkstra path length ``` all_pairs_dijkstra_path_length(G, cutoff=None, weight='weight') ``` Compute shortest path lengths between all nodes in a weighted graph. #### **Parameters** - **G** (NetworkX graph) – - weight (*string*, *optional* (*default='weight'*)) Edge data key corresponding to the edge weight - cutoff (integer or float, optional) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns distance** – Dictionary, keyed by source and target, of shortest path lengths. Return type dictionary ### **Examples** ``` >>> G=nx.path_graph(5) >>> length=nx.all_pairs_dijkstra_path_length(G) >>> print(length[1][4]) 3 >>> length[1] {0: 1, 1: 0, 2: 1, 3: 2, 4: 3} ``` ### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The dictionary returned only has keys for reachable node pairs. ### single_source_dijkstra ``` single_source_dijkstra(G, source, target=None, cutoff=None, weight='weight') ``` Compute shortest paths and lengths in a weighted graph G. Uses Dijkstra's algorithm for shortest paths. #### **Parameters** - **G** (NetworkX graph) – - source (node label) Starting node for path - target (node label, optional) Ending node for path cutoff (integer or float, optional) – Depth to stop the search. Only paths of length <= cutoff are returned. **Returns distance,path** – Returns a tuple of two dictionaries keyed by node. The first dictionary stores distance from the source. The second stores the path from the source to that node. Return type dictionaries #### **Examples** ``` >>> G=nx.path_graph(5) >>> length,path=nx.single_source_dijkstra(G,0) >>> print(length[4]) 4 >>> print(length) {0: 0, 1: 1, 2: 2, 3: 3, 4: 4} >>> path[4] [0, 1, 2, 3, 4] ``` Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. Based on the Python cookbook recipe (119466) at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466 This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows and roundoff errors can cause problems). #### See also: ``` single_source_dijkstra_path(), single_source_dijkstra_path_length() ``` ### bidirectional dijkstra bidirectional_dijkstra(G, source, target, weight='weight') Dijkstra's algorithm for shortest paths using bidirectional search. ### **Parameters** - **G** (NetworkX graph) – - **source** (*node*) Starting node. - target (node) Ending node. - weight (*string*, *optional* (*default='weight'*)) Edge data key corresponding to the edge weight ### Returns - **length** (*number*) Shortest path length. - Returns a tuple of two dictionaries keyed by node. - The first dictionary stores distance from the source. - The second stores the path from the source to that node. Raises NetworkXNoPath – If no path exists between source and target. #### **Examples** ``` >>>
G=nx.path_graph(5) >>> length,path=nx.bidirectional_dijkstra(G,0,4) >>> print(length) 4 >>> print(path) [0, 1, 2, 3, 4] ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. In practice bidirectional Dijkstra is much more than twice as fast as ordinary Dijkstra. Ordinary Dijkstra expands nodes in a sphere-like manner from the source. The radius of this sphere will eventually be the length of the shortest path. Bidirectional Dijkstra will expand nodes from both the source and the target, making two spheres of half this radius. Volume of the first sphere is pi*r*r while the others are 2*pi*r/2*r/2, making up half the volume. This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows and roundoff errors can cause problems). #### See also: ``` shortest_path(), shortest_path_length() ``` ### dijkstra predecessor and distance dijkstra_predecessor_and_distance(G, source, cutoff=None, weight='weight') Compute shortest path length and predecessors on shortest paths in weighted graphs. ### Parameters - **G** (NetworkX graph) – - source (node label) Starting node for path - weight (*string*, *optional* (*default='weight'*)) Edge data key corresponding to the edge weight - cutoff (integer or float, optional) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns pred,distance** – Returns two dictionaries representing a list of predecessors of a node and the distance to each node. Return type dictionaries #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The list of predecessors contains more than one element only when there are more than one shortest paths to the key node. ### bellman ford ``` bellman_ford(G, source, weight='weight') ``` Compute shortest path lengths and predecessors on shortest paths in weighted graphs. The algorithm has a running time of O(mn) where n is the number of nodes and m is the number of edges. It is slower than Dijkstra but can handle negative edge weights. ### **Parameters** - **G** (*NetworkX graph*) The algorithm works for all types of graphs, including directed graphs and multigraphs. - **source** (*node label*) Starting node for path - weight (string, optional (default='weight')) Edge data key corresponding to the edge weight **Returns pred, dist** – Returns two dictionaries keyed by node to predecessor in the path and to the distance from the source respectively. ### Return type dictionaries Raises NetworkXUnbounded – If the (di)graph contains a negative cost (di)cycle, the algorithm raises an exception to indicate the presence of the negative cost (di)cycle. Note: any negative weight edge in an undirected graph is a negative cost cycle. #### **Examples** ``` >>> import networkx as nx >>> G = nx.path_graph(5, create_using = nx.DiGraph()) >>> pred, dist = nx.bellman_ford(G, 0) >>> sorted(pred.items()) [(0, None), (1, 0), (2, 1), (3, 2), (4, 3)] >>> sorted(dist.items()) [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] ``` ``` >>> from nose.tools import assert_raises >>> G = nx.cycle_graph(5, create_using = nx.DiGraph()) >>> G[1][2]['weight'] = -7 >>> assert_raises(nx.NetworkXUnbounded, nx.bellman_ford, G, 0) ``` ### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. The dictionaries returned only have keys for nodes reachable from the source. In the case where the (di)graph is not connected, if a component not containing the source contains a negative cost (di)cycle, it will not be detected. ### negative_edge_cycle ``` negative_edge_cycle (G, weight='weight') ``` Return True if there exists a negative edge cycle anywhere in G. ### **Parameters** - **G** (NetworkX graph) – - weight (*string*, *optional* (*default='weight'*)) Edge data key corresponding to the edge weight **Returns** negative_cycle – True if a negative edge cycle exists, otherwise False. Return type bool ### **Examples** ``` >>> import networkx as nx >>> G = nx.cycle_graph(5, create_using = nx.DiGraph()) >>> print(nx.negative_edge_cycle(G)) False >>> G[1][2]['weight'] = -7 >>> print(nx.negative_edge_cycle(G)) True ``` #### **Notes** Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed. This algorithm uses bellman_ford() but finds negative cycles on any component by first adding a new node connected to every node, and starting bellman_ford on that node. It then removes that extra node. ### johnson ``` johnson (G, weight='weight') ``` Compute shortest paths between all nodes in a weighted graph using Johnson's algorithm. ### **Parameters** - **G** (NetworkX graph) – - weight (*string*, *optional* (*default='weight'*)) Edge data key corresponding to the edge weight. **Returns distance** – Dictionary, keyed by source and target, of shortest paths. **Return type** dictionary Raises NetworkXError – If given graph is not weighted. ### **Examples** ``` >>> import networkx as nx >>> graph = nx.DiGraph() >>> graph.add_weighted_edges_from([('0', '3', 3), ('0', '1', -5), ... ('0', '2', 2), ('1', '2', 4), ('2', '3', 1)]) >>> paths = nx.johnson(graph, weight='weight') >>> paths['0']['2'] ['0', '1', '2'] ``` Johnson's algorithm is suitable even for graphs with negative weights. It works by using the Bellman–Ford algorithm to compute a transformation of the input graph that removes all negative weights, allowing Dijkstra's algorithm to be used on the transformed graph. It may be faster than Floyd - Warshall algorithm in sparse graphs. Algorithm complexity: $O(V^2 * logV + V * E)$ #### See also: # 4.36.7 Dense Graphs Floyd-Warshall algorithm for shortest paths. | floyd_warshall(G[, weight]) | Find all-pairs shortest path lengths using Floyd's algorithm. | |---|---| | $floyd_warshall_predecessor_and_distance(G[,])$ | Find all-pairs shortest path lengths using Floyd's algorithm. | | $floyd_warshall_numpy(G[, nodelist, weight])$ | Find all-pairs shortest path lengths using Floyd's algorithm. | ### floyd_warshall ``` floyd_warshall (G, weight='weight') ``` Find all-pairs shortest path lengths using Floyd's algorithm. #### **Parameters** - **G** (NetworkX graph) – - weight (*string*, *optional* (*default=* 'weight')) Edge data key corresponding to the edge weight. ### Returns - distance (dict) A dictionary, keyed by source and target, of shortest paths distances between nodes. - Notes - ___ - Floyd's algorithm is appropriate for finding shortest paths - in dense graphs or graphs with negative weights when Dijkstra's algorithm - fails. This algorithm can still fail if there are negative cycles. - It has running time $O(n^3)$ with running space of $O(n^2)$. ### See also: ### floyd_warshall_predecessor_and_distance ### floyd_warshall_predecessor_and_distance(G, weight='weight') Find all-pairs shortest path lengths using Floyd's algorithm. #### **Parameters** - **G** (NetworkX graph) – - weight (*string*, *optional* (*default*= '*weight*')) Edge data key corresponding to the edge weight. #### Returns - **predecessor,distance** (*dictionaries*) Dictionaries, keyed by source and target, of predecessors and distances in the shortest path. - Notes - ____ - Floyd's algorithm is appropriate for finding shortest paths - in dense graphs or graphs with negative weights when Dijkstra's algorithm - fails. This algorithm can still fail if there are negative cycles. - It has running time $O(n^3)$ with running space of $O(n^2)$. #### See also: ``` floyd_warshall(), floyd_warshall_numpy(), all_pairs_shortest_path(), all_pairs_shortest_path_length() ``` ### floyd warshall numpy $\verb|floyd_warshall_numpy| (G, nodelist=None, weight='weight')|$ Find all-pairs shortest path lengths using Floyd's algorithm. #### **Parameters** - **G** (NetworkX graph) – - **nodelist** (*list*, *optional*) The rows and columns are ordered by the nodes in nodelist. If nodelist is None then the ordering is produced by G.nodes(). - weight (*string*, *optional* (*default*= 'weight')) Edge data key corresponding to the edge weight. #### Returns - **distance** (*NumPy matrix*) A matrix of shortest path distances between nodes. If there is no path between to nodes the corresponding matrix entry will be Inf. - Notes - ____ - Floyd's algorithm is appropriate for finding shortest paths in - dense graphs or graphs with negative weights when Dijkstra's - algorithm fails. This algorithm can still fail if there are - negative cycles. It has running time $O(n^3)$ with running space of $O(n^2)$. # 4.36.8 A* Algorithm Shortest paths and path lengths using A* ("A star") algorithm. ``` astar_path(G, source, target[, heuristic, ...]) Return a list of nodes in a shortest path between source and target using the A* ("A-satar_path_length(G, source, target[, ...]) Return the length of the shortest path between source and target using the A* ("A-satar_path_length(G, source, target[, ...]) ``` ### astar_path ``` astar_path (G, source, target, heuristic=None, weight='weight') ``` Return a list of nodes in a shortest path between source and target using the A* ("A-star") algorithm. There may be more than one shortest path. This returns only one. #### **Parameters** - **G** (NetworkX graph) – - **source** (*node*) Starting node for path - target (node) Ending node for path - heuristic (function) A function to evaluate the estimate of the distance from the a node to the target. The function takes two nodes arguments and must return a number. - weight (*string*, *optional* (*default='weight'*)) Edge data key corresponding to the edge weight. Raises NetworkXNoPath - If no path exists between source and target. ### **Examples** ``` >>> G=nx.path_graph(5) >>> print(nx.astar_path(G,0,4)) [0, 1, 2, 3, 4] >>> G=nx.grid_graph(dim=[3,3]) # nodes are two-tuples (x,y) >>> def dist(a, b): ...
(x1, y1) = a ... (x2, y2) = b ... return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5 >>> print(nx.astar_path(G,(0,0),(2,2),dist)) [(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)] ``` ### See also: ``` shortest_path(), dijkstra_path() ``` ### astar_path_length ``` astar_path_length(G, source, target, heuristic=None, weight='weight') ``` Return the length of the shortest path between source and target using the A* ("A-star") algorithm. ### **Parameters** - **G** (NetworkX graph) – - source (node) Starting node for path - target (node) Ending node for path - heuristic (function) A function to evaluate the estimate of the distance from the a node to the target. The function takes two nodes arguments and must return a number. Raises NetworkXNoPath – If no path exists between source and target. #### See also: ``` astar_path() ``` # 4.37 Simple Paths ``` all_simple_paths(G, source, target[, cutoff])Generate all simple paths in the graph G from source to target.shortest_simple_paths(G, source, target[, ...])Generate all simple paths in the graph G from source to target, starting from ``` # 4.37.1 all simple paths ``` all_simple_paths (G, source, target, cutoff=None) ``` Generate all simple paths in the graph G from source to target. A simple path is a path with no repeated nodes. #### **Parameters** - **G** (NetworkX graph) – - source (node) Starting node for path - target (node) Ending node for path - cutoff (integer, optional) Depth to stop the search. Only paths of length <= cutoff are returned. **Returns path_generator** – A generator that produces lists of simple paths. If there are no paths between the source and target within the given cutoff the generator produces no output. **Return type** generator ### **Examples** #### **Notes** This algorithm uses a modified depth-first search to generate the paths 102 . A single path can be found in O(V+E) time but the number of simple paths in a graph can be very large, e.g. O(n!) in the complete graph ¹⁰² R. Sedgewick, "Algorithms in C, Part 5: Graph Algorithms", Addison Wesley Professional, 3rd ed., 2001. of order n. ### References #### See also: ``` all_shortest_paths(), shortest_path() ``` # 4.37.2 shortest_simple_paths ``` shortest_simple_paths (G, source, target, weight=None) ``` Generate all simple paths in the graph G from source to target, starting from shortest ones. A simple path is a path with no repeated nodes. If a weighted shortest path search is to be used, no negative weights are allawed. #### **Parameters** - **G** (NetworkX graph) – - **source** (*node*) Starting node for path - target (node) Ending node for path - weight (*string*) Name of the edge attribute to be used as a weight. If None all edges are considered to have unit weight. Default value None. **Returns** path_generator – A generator that produces lists of simple paths, in order from shortest to longest. ### Return type generator ### Raises - NetworkXNoPath If no path exists between source and target. - NetworkXError If source or target nodes are not in the input graph. - NetworkXNotImplemented If the input graph is a Multi[Di]Graph. ### **Examples** ``` >>> G = nx.cycle_graph(7) >>> paths = list(nx.shortest_simple_paths(G, 0, 3)) >>> print(paths) [[0, 1, 2, 3], [0, 6, 5, 4, 3]] ``` You can use this function to efficiently compute the k shortest/best paths between two nodes. ``` >>> from itertools import islice >>> def k_shortest_paths(G, source, target, k, weight=None): ... return list(islice(nx.shortest_simple_paths(G, source, target, weight=weight), k)) >>> for path in k_shortest_paths(G, 0, 3, 2): ... print(path) [0, 1, 2, 3] [0, 6, 5, 4, 3] ``` 4.37. Simple Paths 345 #### **Notes** This procedure is based on algorithm by Jin Y. Yen ¹⁰³. Finding the first K paths requires O(KN³) operations. #### See also: ``` all_shortest_paths(), shortest_path(), all_simple_paths() ``` References # 4.38 Swap Swap edges in a graph. | double_edge_swap(G[, nswap, max_tries]) | Swap two edges in the graph while keeping the node degrees fixed. | |--|--| | $connected_double_edge_swap(G[, nswap,])$ | Attempts the specified number of double-edge swaps in the graph G. | # 4.38.1 double_edge_swap ``` double_edge_swap (G, nswap=1, max_tries=100) ``` Swap two edges in the graph while keeping the node degrees fixed. A double-edge swap removes two randomly chosen edges u-v and x-y and creates the new edges u-x and v-y: ``` u--v u v becomes | | x--y x y ``` If either the edge u-x or v-y already exist no swap is performed and another attempt is made to find a suitable edge pair. ### **Parameters** - **G** (*graph*) An undirected graph - **nswap** (*integer* (*optional*, *default=1*)) Number of double-edge swaps to perform - max_tries (integer (optional)) Maximum number of attempts to swap edges **Returns** G – The graph after double edge swaps. Return type graph #### Notes Does not enforce any connectivity constraints. The graph G is modified in place. ¹⁰³ Jin Y. Yen, "Finding the K Shortest Loopless Paths in a Network", Management Science, Vol. 17, No. 11, Theory Series (Jul., 1971), pp. 712-716. # 4.38.2 connected_double_edge_swap connected_double_edge_swap (G, nswap=1, _window_threshold=3) Attempts the specified number of double-edge swaps in the graph G. A double-edge swap removes two randomly chosen edges (u, v) and (x, y) and creates the new edges (u, x) and (v, y): ``` u--v u v becomes | | x--y x y ``` If either (u, x) or (v, y) already exist, then no swap is performed so the actual number of swapped edges is always at most nswap. #### **Parameters** - **G** (graph) An undirected graph - nswap (integer (optional, default=1)) Number of double-edge swaps to perform - _window_threshold (integer) The window size below which connectedness of the graph will be checked after each swap. The "window" in this function is a dynamically updated integer that represents the number of swap attempts to make before checking if the graph remains connected. It is an optimization used to decrease the running time of the algorithm in exchange for increased complexity of implementation. If the window size is below this threshold, then the algorithm checks after each swap if the graph remains connected by checking if there is a path joining the two nodes whose edge was just removed. If the window size is above this threshold, then the algorithm performs do all the swaps in the window and only then check if the graph is still connected. **Returns** The number of successful swaps Return type int Raises NetworkXError- If the input graph is not connected, or if the graph has fewer than four nodes. #### **Notes** The initial graph G must be connected, and the resulting graph is connected. The graph G is modified in place. References ### 4.39 Traversal ### 4.39.1 Depth First Search ### **Depth-first search** Basic algorithms for depth-first searching the nodes of a graph. Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. 4.39. Traversal 347 | dfs_edges(G[, source]) | Produce edges in a depth-first-search (DFS). | |---|---| | dfs_tree(G, source) | Return oriented tree constructed from a depth-first-search from source. | | $dfs_predecessors(G[, source])$ | Return dictionary of predecessors in depth-first-search from source. | | $dfs_successors(G[, source])$ | Return dictionary of successors in depth-first-search from source. | | $dfs_preorder_nodes(G[, source])$ | Produce nodes in a depth-first-search pre-ordering starting from source. | | <pre>dfs_postorder_nodes(G[, source])</pre> | Produce nodes in a depth-first-search post-ordering starting from source. | | $dfs_labeled_edges(G[, source])$ | Produce edges in a depth-first-search (DFS) labeled by type. | ### dfs_edges ``` dfs_edges (G, source=None) ``` Produce edges in a depth-first-search (DFS). #### **Parameters** - **G** (NetworkX graph) – - **source** (*node*, *optional*) Specify starting node for depth-first search and return edges in the component reachable from source. **Returns** edges – A generator of edges in the depth-first-search. Return type generator ### **Examples** ``` >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> print(list(nx.dfs_edges(G,0))) [(0, 1), (1, 2)] ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. ### dfs tree ``` dfs_tree(G, source) ``` Return oriented tree constructed from a depth-first-search from source. # **Parameters** - **G** (NetworkX graph) – - **source** (*node*, *optional*) Specify starting node for depth-first search. **Returns** T – An oriented tree Return type NetworkX DiGraph ### **Examples** ``` >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> T = nx.dfs_tree(G,0) >>> print(T.edges()) [(0, 1), (1, 2)] ``` ### dfs_predecessors ### dfs_predecessors(G, source=None) Return dictionary of predecessors in depth-first-search from source. #### **Parameters** - **G** (NetworkX graph) – - **source** (*node*, *optional*) Specify starting node for depth-first search and return edges in the component reachable from source. **Returns** pred – A dictionary with nodes as keys and predecessor nodes as values. Return type dict ### **Examples** ``` >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> print(nx.dfs_predecessors(G,0)) {1: 0, 2: 1} ``` ### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. ### dfs successors ### dfs_successors(G, source=None) Return dictionary of successors in depth-first-search from source. ### **Parameters** - **G** (NetworkX graph) – - **source**
(*node*, *optional*) Specify starting node for depth-first search and return edges in the component reachable from source. **Returns** succ – A dictionary with nodes as keys and list of successor nodes as values. Return type dict 4.39. Traversal 349 ### **Examples** ``` >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> print(nx.dfs_successors(G,0)) {0: [1], 1: [2]} ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. ## dfs_preorder_nodes ``` dfs_preorder_nodes (G, source=None) ``` Produce nodes in a depth-first-search pre-ordering starting from source. #### **Parameters** - **G** (NetworkX graph) – - **source** (*node*, *optional*) Specify starting node for depth-first search and return edges in the component reachable from source. **Returns nodes** – A generator of nodes in a depth-first-search pre-ordering. Return type generator ### **Examples** ``` >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> print(list(nx.dfs_preorder_nodes(G,0))) [0, 1, 2] ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. ### dfs_postorder_nodes ``` dfs_postorder_nodes (G, source=None) ``` Produce nodes in a depth-first-search post-ordering starting from source. ### **Parameters** • **G** (NetworkX graph) – • **source** (*node*, *optional*) – Specify starting node for depth-first search and return edges in the component reachable from source. **Returns nodes** – A generator of nodes in a depth-first-search post-ordering. Return type generator ### **Examples** ``` >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> print(list(nx.dfs_postorder_nodes(G,0))) [2, 1, 0] ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. ### dfs_labeled_edges ``` dfs_labeled_edges(G, source=None) ``` Produce edges in a depth-first-search (DFS) labeled by type. ### **Parameters** - **G** (NetworkX graph) – - **source** (*node*, *optional*) Specify starting node for depth-first search and return edges in the component reachable from source. **Returns edges** – A generator of edges in the depth-first-search labeled with 'forward', 'nontree', and 'reverse'. Return type generator ### **Examples** ``` >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> edges = (list(nx.dfs_labeled_edges(G,0))) ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004. If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched. 4.39. Traversal 351 # 4.39.2 Breadth First Search ### **Breadth-first search** Basic algorithms for breadth-first searching the nodes of a graph. | bfs_edges(G, source[, reverse]) | Produce edges in a breadth-first-search starting at source. | |---|--| | <pre>bfs_tree(G, source[, reverse])</pre> | Return an oriented tree constructed from of a breadth-first-search starting at source. | | bfs_predecessors(G, source) | Return dictionary of predecessors in breadth-first-search from source. | | bfs_successors(G, source) | Return dictionary of successors in breadth-first-search from source. | # bfs_edges bfs_edges (G, source, reverse=False) Produce edges in a breadth-first-search starting at source. #### **Parameters** - G (NetworkX graph) - - **source** (*node*) Specify starting node for breadth-first search and return edges in the component reachable from source. - reverse (bool, optional) If True traverse a directed graph in the reverse direction **Returns** edges – A generator of edges in the breadth-first-search. Return type generator ### **Examples** ``` >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> print(list(nx.bfs_edges(G,0))) [(0, 1), (1, 2)] ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004. ### bfs tree bfs_tree (G, source, reverse=False) Return an oriented tree constructed from of a breadth-first-search starting at source. ### **Parameters** - **G** (NetworkX graph) – - **source** (*node*) Specify starting node for breadth-first search and return edges in the component reachable from source. - reverse (bool, optional) If True traverse a directed graph in the reverse direction **Returns** T – An oriented tree ### Return type NetworkX DiGraph ### **Examples** ``` >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> print(list(nx.bfs_edges(G,0))) [(0, 1), (1, 2)] ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004. ### bfs predecessors ### bfs_predecessors(G, source) Return dictionary of predecessors in breadth-first-search from source. #### **Parameters** - **G** (NetworkX graph) – - **source** (*node*) Specify starting node for breadth-first search and return edges in the component reachable from source. **Returns** pred – A dictionary with nodes as keys and predecessor nodes as values. Return type dict # **Examples** ``` >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> print(nx.bfs_predecessors(G,0)) {1: 0, 2: 1} ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004. ### bfs_successors ### bfs_successors(G, source) Return dictionary of successors in breadth-first-search from source. ### **Parameters** - **G** (NetworkX graph) – - **source** (*node*) Specify starting node for breadth-first search and return edges in the component reachable from source. **Returns** succ – A dictionary with nodes as keys and list of successors nodes as values. 4.39. Traversal 353 #### Return type dict ### **Examples** ``` >>> G = nx.Graph() >>> G.add_path([0,1,2]) >>> print(nx.bfs_successors(G,0)) {0: [1], 1: [2]} ``` #### **Notes** Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004. # 4.39.3 Depth First Search on Edges ### **Depth First Search on Edges** Algorithms for a depth-first traversal of edges in a graph. ``` edge_dfs(G[, source, orientation]) A directed, depth-first traversal of edges in G, beginning at source. ``` ### edge dfs ``` edge_dfs (G, source=None, orientation='original') ``` A directed, depth-first traversal of edges in G, beginning at source. #### **Parameters** - **G** (*graph*) A directed/undirected graph/multigraph. - **source** (*node*, *list of nodes*) The node from which the traversal begins. If None, then a source is chosen arbitrarily and repeatedly until all edges from each node in the graph are searched. - **orientation** ('original' | 'reverse' | 'ignore') For directed graphs and directed multigraphs, edge traversals need not respect the original orientation of the edges. When set to 'reverse', then every edge will be traversed in the reverse direction. When set to 'ignore', then each directed edge is treated as a single undirected edge that can be traversed in either direction. For undirected graphs and undirected multigraphs, this parameter is meaningless and is not consulted by the algorithm. Yields edge (directed edge) – A directed edge indicating the path taken by the depth-first traversal. For graphs, edge is of the form (u, v) where u and v are the tail and head of the edge as determined by the traversal. For multigraphs, edge is of the form (u, v, key), where key is the key of the edge. When the graph is directed, then u and v are always in the order of the actual directed edge. If orientation is 'reverse' or 'ignore', then edge takes the form (u, v, key, direction) where direction is a string, 'forward' or 'reverse', that indicates if the edge was traversed in the forward (tail to head) or reverse (head to tail) direction, respectively. #### **Examples** ``` >>> import networkx as nx >>> nodes = [0, 1, 2, 3] >>> edges = [(0, 1), (1, 0), (1, 0), (2, 1), (3, 1)] >>> list(nx.edge_dfs(nx.Graph(edges), nodes)) [(0, 1), (1, 2), (1, 3)] >>> list(nx.edge_dfs(nx.DiGraph(edges), nodes)) [(0, 1), (1, 0), (2, 1), (3, 1)] >>> list(nx.edge_dfs(nx.MultiGraph(edges), nodes)) [(0, 1, 0), (1, 0, 1), (0, 1, 2), (1, 2, 0), (1, 3, 0)] >>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes)) [(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 1, 0), (3, 1, 0)] >>> list(nx.edge_dfs(nx.DiGraph(edges), nodes, orientation='ignore')) [(0, 1, 'forward'), (1, 0, 'forward'), (2, 1, 'reverse'), (3, 1, 'reverse')] >>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes, orientation='ignore')) >>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes, orientation='ignore')) ``` [(0, 1, 0, 'forward'), (1, 0, 0, 'forward'), (1, 0, 1, 'reverse'), (2, 1, 0, 'reverse'), (3, 1, #### **Notes** The goal of this function is to visit edges. It differs from the more familiar depth-first traversal of nodes, as provided by networkx.algorithms.traversal.depth_first_search.dfs_edges(), in that it does not stop once every node has been visited. In a directed graph with edges [(0, 1), (1, 2), (2, 1)], the edge (2, 1) would not be visited if not for the functionality provided by this function. #### See also: ``` dfs edges() ``` ### 4.40 Tree ### 4.40.1 Recognition ### **Recognition Tests** A *forest* is an acyclic, undirected graph, and a *tree* is a connected forest. Depending on the subfield, there are various conventions for generalizing these definitions to directed graphs. In one convention, directed variants of forest and tree are defined in an identical manner, except that the direction of the edges is ignored. In effect, each directed edge is treated as a single undirected edge. Then, additional restrictions are imposed to define *branchings* and *arborescences*. In another convention, directed variants
of forest and tree correspond to the previous convention's branchings and arborescences, respectively. Then two new terms, *polyforest* and *polytree*, are defined to correspond to the other convention's forest and tree. Summarizing: 4.40. Tree 355 Each convention has its reasons. The first convention emphasizes definitional similarity in that directed forests and trees are only concerned with acyclicity and do not have an in-degree constraint, just as their undirected counterparts do not. The second convention emphasizes functional similarity in the sense that the directed analog of a spanning tree is a spanning arborescence. That is, take any spanning tree and choose one node as the root. Then every edge is assigned a direction such there is a directed path from the root to every other node. The result is a spanning arborescence. NetworkX follows convention "A". Explicitly, these are: undirected forest An undirected graph with no undirected cycles. undirected tree A connected, undirected forest. **directed forest** A directed graph with no undirected cycles. Equivalently, the underlying graph structure (which ignores edge orientations) is an undirected forest. In convention B, this is known as a polyforest. **directed tree** A weakly connected, directed forest. Equivalently, the underlying graph structure (which ignores edge orientations) is an undirected tree. In convention B, this is known as a polytree. **branching** A directed forest with each node having, at most, one parent. So the maximum in-degree is equal to 1. In convention B, this is known as a forest. **arborescence** A directed tree with each node having, at most, one parent. So the maximum in-degree is equal to 1. In convention B, this is known as a tree. For trees and arborescences, the adjective "spanning" may be added to designate that the graph, when considered as a forest/branching, consists of a single tree/arborescence that includes all nodes in the graph. It is true, by definition, that every tree/arborescence is spanning with respect to the nodes that define the tree/arborescence and so, it might seem redundant to introduce the notion of "spanning". However, the nodes may represent a subset of nodes from a larger graph, and it is in this context that the term "spanning" becomes a useful notion. | is_tree(G) | Returns True if G is a tree. | |--------------------------|---------------------------------------| | is_forest(G) | Returns True if G is a forest. | | is_arborescence(G) | Returns True if G is an arborescence. | | is_branching(G) | Returns True if G is a branching. | ### is_tree #### is tree (G) Returns True if G is a tree. A tree is a connected graph with no undirected cycles. For directed graphs, G is a tree if the underlying graph is a tree. The underlying graph is obtained by treating each directed edge as a single undirected edge in a multigraph. **Parameters** G(graph) – The graph to test. **Returns b** – A boolean that is True if G is a tree. Return type bool #### **Notes** In another convention, a directed tree is known as a *polytree* and then *tree* corresponds to an *arborescence*. #### See also: ``` is_arborescence() ``` ### is_forest ### $is_forest(G)$ Returns True if G is a forest. A forest is a graph with no undirected cycles. For directed graphs, G is a forest if the underlying graph is a forest. The underlying graph is obtained by treating each directed edge as a single undirected edge in a multigraph. ``` Parameters G(graph) – The graph to test. ``` **Returns b** – A boolean that is True if G is a forest. Return type bool #### **Notes** In another convention, a directed forest is known as a polyforest and then forest corresponds to a branching. #### See also: ``` is_branching() ``` ### is_arborescence ### $is_arborescence(G)$ Returns True if G is an arborescence. An arborescence is a directed tree with maximum in-degree equal to 1. ``` Parameters G(graph) – The graph to test. ``` **Returns b** – A boolean that is True if G is an arborescence. Return type bool ### **Notes** In another convention, an arborescence is known as a tree. #### See also: ``` is_tree() ``` 4.40. Tree 357 ### is branching ### $is_branching(G)$ Returns True if G is a branching. A branching is a directed forest with maximum in-degree equal to 1. **Parameters G** (*directed graph*) – The directed graph to test. **Returns** b - A boolean that is True if G is a branching. Return type bool #### **Notes** In another convention, a branching is also known as a forest. ### See also: is_forest() # 4.40.2 Branchings and Spanning Arborescences Algorithms for finding optimum branchings and spanning arborescences. This implementation is based on: J. Edmonds, Optimum branchings, J. Res. Natl. Bur. Standards 71B (1967), 233–240. URL: http://archive.org/details/jresv71Bn4p233 | branching_weight(G[, attr, default]) | Returns the total weight of a branching. | |---|--| | greedy_branching(G[, attr, default, kind]) | Returns a branching obtained through a greedy algorithm. | | maximum_branching(G[, attr, default]) | Returns a maximum branching from G. | | minimum_branching(G[, attr, default]) | Returns a minimum branching from G. | | maximum_spanning_arborescence(G[, attr, default]) | Returns a maximum spanning arborescence from G. | | minimum_spanning_arborescence(G[, attr, default]) | Returns a minimum spanning arborescence from G. | | Edmonds(G[, seed]) | Edmonds algorithm for finding optimal branchings and spanning arbo | | | | ### branching_weight branching_weight (G, attr='weight', default=1) Returns the total weight of a branching. ### greedy_branching greedy_branching (G, attr='weight', default=1, kind='max') Returns a branching obtained through a greedy algorithm. This algorithm is wrong, and cannot give a proper optimal branching. However, we include it for pedagogical reasons, as it can be helpful to see what its outputs are. The output is a branching, and possibly, a spanning arborescence. However, it is not guaranteed to be optimal in either case. #### **Parameters** - G (DiGraph) The directed graph to scan. - attr (str) The attribute to use as weights. If None, then each edge will be treated equally with a weight of 1. - **default** (*float*) When *attr* is not None, then if an edge does not have that attribute, *default* specifies what value it should take. - kind (str) The type of optimum to search for: 'min' or 'max' greedy branching. **Returns B** – The greedily obtained branching. Return type directed graph ### maximum_branching maximum_branching(G, attr='weight', default=1) Returns a maximum branching from G. #### **Parameters** - **G** ((multi)digraph-like) The graph to be searched. - attr (*str*) The edge attribute used to in determining optimality. - default (float) The value of the edge attribute used if an edge does not have the attribute attr. **Returns** B - A maximum branching. Return type (multi)digraph-like ### minimum branching minimum_branching(G, attr='weight', default=1) Returns a minimum branching from G. ### **Parameters** - **G** ((multi)digraph-like) The graph to be searched. - attr (*str*) The edge attribute used to in determining optimality. - default (float) The value of the edge attribute used if an edge does not have the attribute attr. **Returns B** – A minimum branching. Return type (multi)digraph-like ### maximum_spanning_arborescence maximum_spanning_arborescence (G, attr='weight', default=1) Returns a maximum spanning arborescence from G. #### **Parameters** - **G** ((*multi*)digraph-like) The graph to be searched. - **attr** (*str*) The edge attribute used to in determining optimality. 4.40. Tree 359 default (float) – The value of the edge attribute used if an edge does not have the attribute attr. **Returns B** – A maximum spanning arborescence. Return type (multi)digraph-like Raises NetworkXException – If the graph does not contain a maximum spanning arborescence. ### minimum spanning arborescence ### minimum_spanning_arborescence (G, attr='weight', default=1) Returns a minimum spanning arborescence from G. #### **Parameters** - **G** ((*multi*)digraph-like) The graph to be searched. - attr (str) The edge attribute used to in determining optimality. - default (float) The value of the edge attribute used if an edge does not have the attribute attr. **Returns** B - A minimum spanning arborescence. Return type (multi)digraph-like Raises NetworkXException – If the graph does not contain a minimum spanning arborescence. #### **Edmonds** #### class Edmonds (G, seed=None) Edmonds algorithm for finding optimal branchings and spanning arborescences. ``` __init__(G, seed=None) ``` ### Methods | init(G[, seed]) | | |---|-----------------------------| | <pre>find_optimum([attr, default, kind, style])</pre> | Returns a branching from G. | # 4.41 Triads Functions for analyzing triads of a graph. triadic_census(G) Determines the triadic census of a directed graph. # 4.41.1 triadic census ### ${\tt triadic_census}\,(G)$ Determines the triadic census of a directed graph. The triadic census is a count of how many of the 16 possible types of triads are present in a directed graph. **Parameters** G (digraph) – A NetworkX DiGraph Returns census – Dictionary with triad names as keys and number of occurrences as values. Return type dict #### **Notes** This algorithm has complexity O(m) where m is the number of edges in the graph. ### References # 4.42 Vitality Vitality measures. closeness_vitality(G[, weight]) Compute closeness vitality for nodes. # 4.42.1 closeness_vitality ``` closeness_vitality(G, weight=None) ``` Compute closeness vitality for nodes. Closeness vitality of a node is the change in the sum of distances between all node pairs when excluding that node. #### **Parameters** - **G** (graph) – - **weight** (*None or string (optional)*) The name of
the edge attribute used as weight. If None the edge weights are ignored. **Returns** nodes – Dictionary with nodes as keys and closeness vitality as the value. Return type dictionary ### **Examples** ``` >>> G=nx.cycle_graph(3) >>> nx.closeness_vitality(G) {0: 4.0, 1: 4.0, 2: 4.0} ``` ### See also: ``` closeness_centrality() ``` # References 4.42. Vitality 361 # **FUNCTIONS** Functional interface to graph methods and assorted utilities. # 5.1 Graph | degree(G[, nbunch, weight]) | Return degree of single node or of nbunch of nodes. | |---|---| | degree_histogram(G) | Return a list of the frequency of each degree value. | | density(G) | Return the density of a graph. | | info(G[, n]) | Print short summary of information for the graph G or the node n. | | <pre>create_empty_copy(G[, with_nodes])</pre> | Return a copy of the graph G with all of the edges removed. | | is_directed(G) | Return True if graph is directed. | # **5.1.1 degree** degree (G, nbunch=None, weight=None) Return degree of single node or of nbunch of nodes. If nbunch is ommitted, then return degrees of all nodes. # 5.1.2 degree_histogram ### $\mathtt{degree_histogram}\left(G\right)$ Return a list of the frequency of each degree value. Parameters G (Networkx graph) – A graph Returns hist – A list of frequencies of degrees. The degree values are the index in the list. Return type list ### **Notes** Note: the bins are width one, hence len(list) can be large (Order(number_of_edges)) # 5.1.3 density ### $\mathtt{density}(G)$ Return the density of a graph. The density for undirected graphs is $$d = \frac{2m}{n(n-1)},$$ and for directed graphs is $$d = \frac{m}{n(n-1)},$$ where n is the number of nodes and m is the number of edges in G. #### **Notes** The density is 0 for a graph without edges and 1 for a complete graph. The density of multigraphs can be higher than 1. Self loops are counted in the total number of edges so graphs with self loops can have density higher than 1. ### 5.1.4 info info(G, n=None) Print short summary of information for the graph G or the node n. #### **Parameters** - **G** (Networkx graph) A graph - n (node (any hashable)) A node in the graph G # 5.1.5 create empty copy create_empty_copy (G, with_nodes=True) Return a copy of the graph G with all of the edges removed. #### **Parameters** - **G** (*graph*) A NetworkX graph - with_nodes (bool (default=True)) Include nodes. ### **Notes** Graph, node, and edge data is not propagated to the new graph. # 5.1.6 is directed ### $is_directed(G)$ Return True if graph is directed. # 5.2 Nodes | nodes(G) Return a copy of the graph nodes in a list. | | | |---|--|--| | $number_of_nodes(G)$ | Return the number of nodes in the graph. | | | $nodes_iter(G)$ | G) Return an iterator over the graph nodes. | | | all_neighbors(graph, node) Returns all of the neighbors of a node in the graph. | | | | non_neighbors(graph, node) | Returns the non-neighbors of the node in the graph. | | | $common_neighbors(G, u, v)$ | Return the common neighbors of two nodes in a graph. | | ### 5.2.1 nodes ### nodes(G) Return a copy of the graph nodes in a list. # 5.2.2 number of nodes ### $number_of_nodes(G)$ Return the number of nodes in the graph. # 5.2.3 nodes_iter #### $nodes_iter(G)$ Return an iterator over the graph nodes. # 5.2.4 all_neighbors ### all_neighbors (graph, node) Returns all of the neighbors of a node in the graph. If the graph is directed returns predecessors as well as successors. #### **Parameters** - **graph** (*NetworkX graph*) Graph to find neighbors. - **node** (*node*) The node whose neighbors will be returned. Returns neighbors – Iterator of neighbors Return type iterator # 5.2.5 non neighbors ### non_neighbors (graph, node) Returns the non-neighbors of the node in the graph. ### **Parameters** - **graph** (*NetworkX graph*) Graph to find neighbors. - **node** (*node*) The node whose neighbors will be returned. **Returns non_neighbors** – Iterator of nodes in the graph that are not neighbors of the node. Return type iterator 5.2. Nodes 365 # 5.2.6 common_neighbors ``` common_neighbors(G, u, v) ``` Return the common neighbors of two nodes in a graph. #### **Parameters** - **G** (*graph*) A NetworkX undirected graph. - $\mathbf{v}(u,)$ Nodes in the graph. **Returns** cnbors – Iterator of common neighbors of u and v in the graph. Return type iterator **Raises** NetworkXError – If u or v is not a node in the graph. ### **Examples** ``` >>> G = nx.complete_graph(5) >>> sorted(nx.common_neighbors(G, 0, 1)) [2, 3, 4] ``` # 5.3 Edges | edges(G[, nbunch]) | Return list of edges incident to nodes in nbunch. | | |------------------------------------|---|--| | number_of_edges(G) | Return the number of edges in the graph. | | | <pre>edges_iter(G[, nbunch])</pre> | Return iterator over edges incident to nodes in nbunch. | | | non_edges(graph) | Returns the non-existent edges in the graph. | | # **5.3.1 edges** ``` edges (G, nbunch=None) ``` Return list of edges incident to nodes in nbunch. Return all edges if nbunch is unspecified or nbunch=None. For digraphs, edges=out_edges # 5.3.2 number_of_edges ``` number_of_edges(G) ``` Return the number of edges in the graph. # 5.3.3 edges_iter ``` edges_iter(G, nbunch=None) ``` Return iterator over edges incident to nodes in nbunch. Return all edges if nbunch is unspecified or nbunch=None. For digraphs, edges=out_edges # 5.3.4 non edges ``` non_edges (graph) ``` Returns the non-existent edges in the graph. **Parameters** graph (NetworkX graph.) – Graph to find non-existent edges. **Returns** non_edges – Iterator of edges that are not in the graph. Return type iterator # 5.4 Attributes | <pre>set_node_attributes(G, name, values)</pre> | Set node attributes from dictionary of nodes and values | |---|--| | <pre>get_node_attributes(G, name)</pre> | Get node attributes from graph | | set_edge_attributes(G, name, values) | Set edge attributes from dictionary of edge tuples and values. | | <pre>get_edge_attributes(G, name)</pre> | Get edge attributes from graph | # 5.4.1 set node attributes ``` set_node_attributes(G, name, values) ``` Set node attributes from dictionary of nodes and values #### **Parameters** - **G** (NetworkX Graph) – - name (string) Attribute name - **values** (*dict*) Dictionary of attribute values keyed by node. If *values* is not a dictionary, then it is treated as a single attribute value that is then applied to every node in *G*. ### **Examples** ``` >>> G = nx.path_graph(3) >>> bb = nx.betweenness_centrality(G) >>> nx.set_node_attributes(G, 'betweenness', bb) >>> G.node[1]['betweenness'] 1.0 ``` # 5.4.2 get_node_attributes ### get_node_attributes(G, name) Get node attributes from graph #### **Parameters** - **G** (NetworkX Graph) – - name (string) Attribute name #### Returns Return type Dictionary of attributes keyed by node. 5.4. Attributes 367 #### **Examples** ``` >>> G=nx.Graph() >>> G.add_nodes_from([1,2,3],color='red') >>> color=nx.get_node_attributes(G,'color') >>> color[1] 'red' ``` # 5.4.3 set edge attributes ``` set_edge_attributes (G, name, values) ``` Set edge attributes from dictionary of edge tuples and values. #### **Parameters** - **G** (NetworkX Graph) – - name (string) Attribute name - **values** (*dict*) Dictionary of attribute values keyed by edge (tuple). For multigraphs, the keys tuples must be of the form (u, v, key). For non-multigraphs, the keys must be tuples of the form (u, v). If *values* is not a dictionary, then it is treated as a single attribute value that is then applied to every edge in *G*. ## **Examples** ``` >>> G = nx.path_graph(3) >>> bb = nx.edge_betweenness_centrality(G, normalized=False) >>> nx.set_edge_attributes(G, 'betweenness', bb) >>> G[1][2]['betweenness'] 2.0 ``` # 5.4.4 get_edge_attributes ### $\texttt{get_edge_attributes} (G, name)$ Get edge attributes from graph #### **Parameters** - **G** (NetworkX Graph) – - name (string) Attribute name #### Returns - Dictionary of attributes keyed by edge. For (di)graphs, the keys are - **2-tuples of the form** ((u,v). For multi(di)graphs, the keys are 3-tuples of) - **the form** ((*u*, *v*, *key*).) ### **Examples** ``` >>> G=nx.Graph() >>> G.add_path([1,2,3],color='red') >>> color=nx.get_edge_attributes(G,'color') >>> color[(1,2)] 'red' ``` # 5.5 Freezing graph structure | freeze(G) | Modify graph to prevent further change by adding or removing nodes or edges. | |--------------|--| | is_frozen(G) | Return True if graph is frozen. | #### **5.5.1** freeze #### freeze(G) Modify graph to prevent further change by adding or removing nodes or edges. Node and edge data can still be modified. G [graph] A NetworkX graph ### **Examples** ``` >>> G=nx.Graph() >>> G.add_path([0,1,2,3]) >>> G=nx.freeze(G) >>> try: ... G.add_edge(4,5) ... except nx.NetworkXError as e: ... print(str(e)) Frozen graph can't be modified ``` ### **Notes** To "unfreeze" a graph you must make a copy by creating a new graph object: ``` >>> graph = nx.path_graph(4) >>> frozen_graph = nx.freeze(graph) >>> unfrozen_graph = nx.Graph(frozen_graph) >>> nx.is_frozen(unfrozen_graph) False ``` #### See also: ``` is_frozen() ``` # 5.5.2 is_frozen #### $is_frozen(G)$ Return True if graph is frozen. G [graph] A NetworkX graph # See also: freeze() **CHAPTER** SIX # **GRAPH GENERATORS** # 6.1 Atlas Generators for the small graph atlas. See "An Atlas of Graphs" by Ronald C. Read and Robin J. Wilson, Oxford University Press, 1998. Because of its size, this module is not imported by default. graph_atlas_g() Return the list [G0,G1,...,G1252] of
graphs as named in the Graph Atlas. # 6.1.1 graph_atlas_g ### graph_atlas_g() Return the list [G0,G1,...,G1252] of graphs as named in the Graph Atlas. G0,G1,...,G1252 are all graphs with up to 7 nodes. ### The graphs are listed: - 1. in increasing order of number of nodes; - 2. for a fixed number of nodes, in increasing order of the number of edges; - 3. for fixed numbers of nodes and edges, in increasing order of the degree sequence, for example 111223 < 112222; - 4. for fixed degree sequence, in increasing number of automorphisms. Note that indexing is set up so that for GAG=graph_atlas_g(), then G123=GAG[123] and G[0]=empty_graph(0) # 6.2 Classic Generators for some classic graphs. The typical graph generator is called as follows: ``` >>> G=nx.complete_graph(100) ``` returning the complete graph on n nodes labeled 0,...,99 as a simple graph. Except for empty_graph, all the generators in this module return a Graph class (i.e. a simple, undirected graph). balanced_tree(r, h[, create_using]) Return the perfectly balanced r-tree of height h. Con | Table | 6.2 - | continued | from | previous page | | |-------|-------|-----------|------|---------------|--| | | | | | | | | barbell_graph(m1, m2[, create_using]) | Return the Barbell Graph: two complete graphs connected by a path. | |--|---| | <pre>complete_graph(n[, create_using])</pre> | Return the complete graph K_n with n nodes. | | <pre>complete_multipartite_graph(*block_sizes)</pre> | Returns the complete multipartite graph with the specified block sizes. | | <pre>circular_ladder_graph(n[, create_using])</pre> | Return the circular ladder graph CL_n of length n. | | cycle_graph(n[, create_using]) | Return the cycle graph C_n over n nodes. | | $dorogovtsev_goltsev_mendes_graph(n[,])$ | Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph. | | <pre>empty_graph([n, create_using])</pre> | Return the empty graph with n nodes and zero edges. | | <pre>grid_2d_graph(m, n[, periodic, create_using])</pre> | Return the 2d grid graph of mxn nodes, each connected to its nearest neight | | <pre>grid_graph(dim[, periodic])</pre> | Return the n-dimensional grid graph. | | hypercube_graph(n) | Return the n-dimensional hypercube. | | ladder_graph(n[, create_using]) | Return the Ladder graph of length n. | | lollipop_graph(m, n[, create_using]) | Return the Lollipop Graph; K_m connected to P_n . | | null_graph([create_using]) | Return the Null graph with no nodes or edges. | | <pre>path_graph(n[, create_using])</pre> | Return the Path graph P_n of n nodes linearly connected by n-1 edges. | | star_graph(n[, create_using]) | Return the Star graph with n+1 nodes: one center node, connected to n oute | | trivial_graph([create_using]) | Return the Trivial graph with one node (with integer label 0) and no edges. | | <pre>wheel_graph(n[, create_using])</pre> | Return the wheel graph: a single hub node connected to each node of the (n | | | | # 6.2.1 balanced_tree balanced_tree (r, h, create_using=None) Return the perfectly balanced r-tree of height h. ### **Parameters** - **r** (*int*) Branching factor of the tree - **h** (*int*) Height of the tree - **create_using** (*NetworkX graph type, optional*) Use specified type to construct graph (default = networkx.Graph) **Returns** G - A tree with n nodes Return type networkx Graph ### **Notes** This is the rooted tree where all leaves are at distance h from the root. The root has degree r and all other internal nodes have degree r+1. Node labels are the integers 0 (the root) up to number_of_nodes - 1. Also refered to as a complete r-ary tree. # 6.2.2 barbell_graph barbell_graph (m1, m2, create_using=None) Return the Barbell Graph: two complete graphs connected by a path. For m1 > 1 and m2 >= 0. Two identical complete graphs K_{m1} form the left and right bells, and are connected by a path P_{m2} . **The 2*m1+m2 nodes are numbered** 0,...,m1-1 for the left barbell, m1,...,m1+m2-1 for the path, and m1+m2,...,2*m1+m2-1 for the right barbell. The 3 subgraphs are joined via the edges (m1-1,m1) and (m1+m2-1,m1+m2). If m2=0, this is merely two complete graphs joined together. This graph is an extremal example in David Aldous and Jim Fill's etext on Random Walks on Graphs. # 6.2.3 complete graph ``` complete_graph (n, create_using=None) ``` Return the complete graph K_n with n nodes. Node labels are the integers 0 to n-1. # 6.2.4 complete_multipartite_graph ``` complete_multipartite_graph(*block_sizes) ``` Returns the complete multipartite graph with the specified block sizes. **Parameters** block_sizes (*tuple of integers*) – The number of vertices in each block of the multipartite graph. The length of this tuple is the number of blocks. #### Returns G- Returns the complete multipartite graph with the specified block sizes. For each node, the node attribute 'block' is an integer indicating which block contains the node. Return type NetworkX Graph #### **Examples** Creating a complete tripartite graph, with blocks of one, two, and three vertices, respectively. ``` >>> import networkx as nx >>> G = nx.complete_multipartite_graph(1, 2, 3) >>> [G.node[u]['block'] for u in G] [0, 1, 1, 2, 2, 2] >>> G.edges(0) [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)] >>> G.edges(2) [(2, 0), (2, 3), (2, 4), (2, 5)] >>> G.edges(4) [(4, 0), (4, 1), (4, 2)] ``` ### **Notes** This function generalizes several other graph generator functions. - •If no block sizes are given, this returns the null graph. - $\bullet If \ a \ single \ block \ size \ n \ is \ given, this returns the empty graph on \ n \ nodes.$ 6.2. Classic 373 - •If two block sizes m and n are given, this returns the complete bipartite graph on m + n nodes. - •If block sizes 1 and n are given, this returns the star graph on n + 1 nodes. #### See also: ``` complete_bipartite_graph() ``` # 6.2.5 circular ladder graph ``` circular_ladder_graph (n, create_using=None) ``` Return the circular ladder graph CL_n of length n. CL_n consists of two concentric n-cycles in which each of the n pairs of concentric nodes are joined by an edge. Node labels are the integers 0 to n-1 # 6.2.6 cycle_graph ``` cycle_graph (n, create_using=None) ``` Return the cycle graph C_n over n nodes. C n is the n-path with two end-nodes connected. Node labels are the integers 0 to n-1 If create_using is a DiGraph, the direction is in increasing order. # 6.2.7 dorogovtsev goltsev mendes graph ``` dorogovtsev_goltsev_mendes_graph (n, create_using=None) ``` Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph. n is the generation. See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev and Mendes. # 6.2.8 empty_graph ``` empty_graph (n=0, create_using=None) ``` Return the empty graph with n nodes and zero edges. Node labels are the integers 0 to n-1 For example: >>> G=nx.empty_graph(10) >>> G.number_of_nodes() 10 >>> G.number_of_edges() 0 The variable create_using should point to a "graph"-like object that will be cleaned (nodes and edges will be removed) and refitted as an empty "graph" with n nodes with integer labels. This capability is useful for specifying the class-nature of the resulting empty "graph" (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.). The variable create_using has two main uses: Firstly, the variable create_using can be used to create an empty digraph, network, etc. For example, ``` >>> n=10 >>> G=nx.empty_graph(n,create_using=nx.DiGraph()) ``` will create an empty digraph on n nodes. Secondly, one can pass an existing graph (digraph, pseudograph, etc.) via create_using. For example, if G is an existing graph (resp. digraph, pseudograph, etc.), then empty_graph(n,create_using=G) will empty G (i.e. delete all nodes and edges using G.clear() in base) and then add n nodes and zero edges, and return the modified graph (resp. digraph, pseudograph, etc.). See also create_empty_copy(G). # 6.2.9 grid_2d_graph ### grid_2d_graph (m, n, periodic=False, create_using=None) Return the 2d grid graph of mxn nodes, each connected to its nearest neighbors. Optional argument periodic=True will connect boundary nodes via periodic boundary conditions. # 6.2.10 grid_graph ### grid_graph (dim, periodic=False) Return the n-dimensional grid graph. The dimension is the length of the list 'dim' and the size in each dimension is the value of the list element. E.g. G=grid_graph(dim=[2,3]) produces a 2x3 grid graph. If periodic=True then join grid edges with periodic boundary conditions. # 6.2.11 hypercube_graph ### $hypercube_graph(n)$ Return the n-dimensional hypercube. Node labels are the integers 0 to 2**n - 1. # 6.2.12 ladder_graph ### ladder_graph (n, create_using=None) Return the Ladder graph of length n. This is two rows of n nodes, with each pair connected by a single edge. Node labels are the integers 0 to 2*n - 1. # 6.2.13 lollipop graph ### lollipop_graph (m, n, create_using=None) Return the Lollipop Graph; K_m connected to P_n . This is the Barbell Graph without the right barbell. For m>1 and n>=0, the complete graph K_m is connected to the path P_n. The resulting m+n nodes are labelled 0,...,m-1 for the complete graph and m,...,m+n-1 for the path. The 2 subgraphs are joined via the edge (m-1,m). If n=0, this is merely a complete graph. Node labels are the integers 0 to number_of_nodes - 1. (This graph is an extremal example in David Aldous and Jim Fill's etext on Random Walks on Graphs.) 6.2. Classic 375 # 6.2.14 null_graph ### null_graph (create_using=None) Return the Null graph with no nodes or edges. See empty_graph for the use of create_using. # 6.2.15 path_graph ### path_graph (n, create_using=None) Return the Path graph P_n of n nodes linearly connected by n-1 edges. Node labels are the integers 0 to n - 1. If create_using is a DiGraph then the edges are directed in increasing order. # 6.2.16 star graph ### star_graph (n, create_using=None) Return the Star graph
with n+1 nodes: one center node, connected to n outer nodes. Node labels are the integers 0 to n. # 6.2.17 trivial_graph ### trivial_graph (create_using=None) Return the Trivial graph with one node (with integer label 0) and no edges. ### 6.2.18 wheel graph ## wheel_graph (n, create_using=None) Return the wheel graph: a single hub node connected to each node of the (n-1)-node cycle graph. Node labels are the integers 0 to n - 1. # 6.3 Expanders Provides explicit constructions of expander graphs. | <pre>margulis_gabber_galil_graph(n[, create_using])</pre> | Return the Margulis-Gabber-Galil undirected MultiGraph on n^2 nodes. | |---|--| | chordal_cycle_graph(p[, create_using]) | Return the chordal cycle graph on p nodes. | # 6.3.1 margulis_gabber_galil_graph ### margulis_gabber_galil_graph (n, create_using=None) Return the Margulis-Gabber-Galil undirected MultiGraph on n^2 nodes. The undirected MultiGraph is regular with degree 8. Nodes are integer pairs. The second-largest eigenvalue of the adjacency matrix of the graph is at most $5\sqrt{2}$, regardless of n. ### **Parameters** - \mathbf{n} (int) Determines the number of nodes in the graph: n^2 . - **create_using** (*graph-like*) A graph-like object that receives the constructed edges. If None, then a *MultiGraph* instance is used. **Returns G** – The constructed undirected multigraph. Return type graph **Raises** NetworkXError – If the graph is directed or not a multigraph. # 6.3.2 chordal cycle graph chordal_cycle_graph (p, create_using=None) Return the chordal cycle graph on p nodes. The returned graph is a cycle graph on p nodes with chords joining each vertex x to its inverse modulo p. This graph is a (mildly explicit) 3-regular expander 1 . p must be a prime number. #### **Parameters** - **p** (*a prime number*) The number of vertices in the graph. This also indicates where the chordal edges in the cycle will be created. - **create_using** (*graph-like*) A graph-like object that receives the constructed edges. If None, then a *MultiGraph* instance is used. **Returns G** – The constructed undirected multigraph. Return type graph Raises NetworkXError - If the graph provided in create_using is directed or not a multigraph. ### References # 6.4 Small Various small and named graphs, together with some compact generators. | make_small_graph(graph_description[,]) | Return the small graph described by graph_description. | |---|--| | LCF_graph(n, shift_list, repeats[, create_using]) | Return the cubic graph specified in LCF notation. | | bull_graph([create_using]) | Return the Bull graph. | | chvatal_graph([create_using]) | Return the Chvátal graph. | | cubical_graph([create_using]) | Return the 3-regular Platonic Cubical graph. | | desargues_graph([create_using]) | Return the Desargues graph. | | diamond_graph([create_using]) | Return the Diamond graph. | | dodecahedral_graph([create_using]) | Return the Platonic Dodecahedral graph. | | frucht_graph([create_using]) | Return the Frucht Graph. | | heawood_graph([create_using]) | Return the Heawood graph, a (3,6) cage. | | house_graph([create_using]) | Return the House graph (square with triangle on top). | | | Continued on next page | ¹ Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and invariant measures", volume 125 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1994. 6.4. Small 377 | Table | 6.4 – continued from previous page | |-------|------------------------------------| | | | | | 1 1 0 | |---|--| | house_x_graph([create_using]) | Return the House graph with a cross inside the house square. | | icosahedral_graph([create_using]) | Return the Platonic Icosahedral graph. | | krackhardt_kite_graph([create_using]) | Return the Krackhardt Kite Social Network. | | <pre>moebius_kantor_graph([create_using])</pre> | Return the Moebius-Kantor graph. | | octahedral_graph([create_using]) | Return the Platonic Octahedral graph. | | pappus_graph() | Return the Pappus graph. | | <pre>petersen_graph([create_using])</pre> | Return the Petersen graph. | | <pre>sedgewick_maze_graph([create_using])</pre> | Return a small maze with a cycle. | | tetrahedral_graph([create_using]) | Return the 3-regular Platonic Tetrahedral graph. | | truncated_cube_graph([create_using]) | Return the skeleton of the truncated cube. | | truncated_tetrahedron_graph([create_using]) | Return the skeleton of the truncated Platonic tetrahedron. | | tutte_graph([create_using]) | Return the Tutte graph. | | | | # 6.4.1 make_small_graph make_small_graph (graph_description, create_using=None) Return the small graph described by graph_description. graph_description is a list of the form [ltype,name,n,xlist] Here ltype is one of "adjacencylist" or "edgelist", name is the name of the graph and n the number of nodes. This constructs a graph of n nodes with integer labels 0,..,n-1. If ltype="adjacencylist" then xlist is an adjacency list with exactly n entries, in with the j'th entry (which can be empty) specifies the nodes connected to vertex j. e.g. the "square" graph C_4 can be obtained by ``` >>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[1,3],[2,4],[1,3]]]) ``` or, since we do not need to add edges twice, ``` >>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[3],[4],[]]]) ``` If ltype="edgelist" then xlist is an edge list written as [[v1,w2],[v2,w2],...,[vk,wk]], where vj and wj integers in the range 1,..,n e.g. the "square" graph C_4 can be obtained by ``` >>> G=nx.make_small_graph(["edgelist","C_4",4,[[1,2],[3,4],[2,3],[4,1]]]) ``` Use the create_using argument to choose the graph class/type. # 6.4.2 LCF_graph **LCF** graph (n, shift list, repeats, create using=None) Return the cubic graph specified in LCF notation. LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed notation used in the generation of various cubic Hamiltonian graphs of high symmetry. See, for example, dodecahedral_graph, desargues_graph, hea-wood_graph and pappus_graph below. **n (number of nodes)** The starting graph is the n-cycle with nodes 0,...,n-1. (The null graph is returned if n < 0.) $shift_list = [s1, s2, ..., sk]$, a list of integer shifts mod n, **repeats** integer specifying the number of times that shifts in shift_list are successively applied to each v_current in the n-cycle to generate an edge between v_current and v_current+shift mod n. For v1 cycling through the n-cycle a total of k*repeats with shift cycling through shiftlist repeats times connect v1 with v1+shift mod n The utility graph $K_{3,3}$ ``` >>> G=nx.LCF_graph(6,[3,-3],3) ``` The Heawood graph ``` >>> G=nx.LCF_graph(14,[5,-5],7) ``` See http://mathworld.wolfram.com/LCFNotation.html for a description and references. # 6.4.3 bull_graph ``` bull_graph (create_using=None) Return the Bull graph. ``` # 6.4.4 chvatal_graph ``` chvatal_graph (create_using=None) Return the Chvátal graph. ``` # 6.4.5 cubical_graph ``` cubical_graph (create_using=None) Return the 3-regular Platonic Cubical graph. ``` # 6.4.6 desargues graph ``` desargues_graph (create_using=None) Return the Desargues graph. ``` # 6.4.7 diamond_graph ``` diamond_graph (create_using=None) Return the Diamond graph. ``` # 6.4.8 dodecahedral_graph ``` dodecahedral_graph (create_using=None) Return the Platonic Dodecahedral graph. ``` ### 6.4.9 frucht graph ``` frucht_graph (create_using=None) Return the Frucht Graph. ``` The Frucht Graph is the smallest cubical graph whose automorphism group consists only of the identity element. 6.4. Small 379 # 6.4.10 heawood graph heawood_graph (*create_using=None*) Return the Heawood graph, a (3,6) cage. # 6.4.11 house graph house_graph (*create_using=None*) Return the House graph (square with triangle on top). # 6.4.12 house x graph house_x_graph (create_using=None) Return the House graph with a cross inside the house square. # 6.4.13 icosahedral_graph icosahedral_graph (create_using=None) Return the Platonic Icosahedral graph. # 6.4.14 krackhardt_kite_graph krackhardt_kite_graph (create_using=None) Return the Krackhardt Kite Social Network. A 10 actor social network introduced by David Krackhardt to illustrate: degree, betweenness, centrality, closeness, etc. The traditional labeling is: Andre=1, Beverley=2, Carol=3, Diane=4, Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10. # 6.4.15 moebius kantor graph ${\tt moebius_kantor_graph}~(\mathit{create_using} = \!\! None)$ Return the Moebius-Kantor graph. # 6.4.16 octahedral_graph octahedral_graph (create_using=None) Return the Platonic Octahedral graph. # 6.4.17 pappus_graph pappus_graph() Return the Pappus graph. # 6.4.18 petersen graph petersen_graph (create_using=None) Return the Petersen graph. # 6.4.19 sedgewick maze graph ### sedgewick_maze_graph(create_using=None) Return a small maze with a cycle. This is the maze used in Sedgewick,3rd Edition, Part 5, Graph Algorithms, Chapter 18, e.g. Figure 18.2 and following. Nodes are numbered 0,...,7 # 6.4.20 tetrahedral_graph tetrahedral_graph (create_using=None) Return the 3-regular Platonic Tetrahedral graph. # 6.4.21 truncated_cube_graph truncated_cube_graph (create_using=None) Return the skeleton of the truncated cube. # 6.4.22 truncated tetrahedron graph truncated_tetrahedron_graph(create_using=None) Return the skeleton of the truncated Platonic tetrahedron. # 6.4.23 tutte_graph tutte_graph (create_using=None) Return the Tutte graph. # 6.5 Random Graphs Generators for random graphs. | <pre>fast_gnp_random_graph(n, p[, seed, directed])</pre> | Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or | |--
---| | <pre>gnp_random_graph(n, p[, seed, directed])</pre> | Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or | | dense_gnm_random_graph(n, m[, seed]) | Returns a $G_{n,m}$ random graph. | | <pre>gnm_random_graph(n, m[, seed, directed])</pre> | Returns a $G_{n,m}$ random graph. | | erdos_renyi_graph(n, p[, seed, directed]) | Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or | | binomial_graph(n, p[, seed, directed]) | Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or | | $newman_watts_strogatz_graph(n, k, p[, seed])$ | Return a Newman–Watts–Strogatz small-world graph. | | watts_strogatz_graph(n, k, p[, seed]) | Return a Watts-Strogatz small-world graph. | | $connected_watts_strogatz_graph(n, k, p[,])$ | Returns a connected Watts-Strogatz small-world graph. | | random_regular_graph(d, n[, seed]) | Returns a random d-regular graph on n nodes. | | barabasi_albert_graph(n, m[, seed]) | Returns a random graph according to the Barabási–Albert preferential a | | <pre>powerlaw_cluster_graph(n, m, p[, seed])</pre> | Holme and Kim algorithm for growing graphs with powerlaw degree di | | duplication_divergence_graph(n, p[, seed]) | Returns an undirected graph using the duplication-divergence model. | | random_lobster(n, p1, p2[, seed]) | Returns a random lobster graph. | | random_shell_graph(constructor[, seed]) | Returns a random shell graph for the constructor given. | | random_powerlaw_tree(n[, gamma, seed, tries]) | Returns a tree with a power law degree distribution. | | | | random_powerlaw_tree_sequence(n[, gamma, ...]) Returns a degree sequence for a tree with a power law distribution. # 6.5.1 fast gnp random graph fast_gnp_random_graph (n, p, seed=None, directed=False) Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or a binomial graph. #### **Parameters** - **n** (*int*) The number of nodes. - **p** (*float*) Probability for edge creation. - **seed** (*int*, *optional*) Seed for random number generator (default=None). - **directed** (*bool*, *optional* (*default=False*)) If True, this function returns a directed graph. #### **Notes** The $G_{n,p}$ graph algorithm chooses each of the [n(n-1)]/2 (undirected) or n(n-1) (directed) possible edges with probability p. This algorithm runs in O(n+m) time, where m is the expected number of edges, which equals pn(n-1)/2. This should be faster than $gnp_random_graph()$ when p is small and the expected number of edges is small (that is, the graph is sparse). #### See also: ``` gnp_random_graph() ``` #### References ### 6.5.2 gnp random graph ``` gnp_random_graph(n, p, seed=None, directed=False) ``` Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or a binomial graph. The $G_{n,p}$ model chooses each of the possible edges with probability p. The functions binomial_graph() and erdos_renyi_graph() are aliases of this function. #### **Parameters** - **n** (*int*) The number of nodes. - p (*float*) Probability for edge creation. - **seed** (*int*, *optional*) Seed for random number generator (default=None). - **directed** (*bool*, *optional* (*default=False*)) If True, this function returns a directed graph. #### See also: ``` fast_gnp_random_graph() ``` #### **Notes** This algorithm runs in $O(n^2)$ time. For sparse graphs (that is, for small values of p), fast_gnp_random_graph() is a faster algorithm. #### References # 6.5.3 dense gnm random graph ### $dense_gnm_random_graph(n, m, seed=None)$ Returns a $G_{n,m}$ random graph. In the $G_{n,m}$ model, a graph is chosen uniformly at random from the set of all graphs with n nodes and m edges. This algorithm should be faster than <code>gnm_random_graph()</code> for dense graphs. #### **Parameters** - **n** (*int*) The number of nodes. - **m** (*int*) The number of edges. - **seed** (*int*, *optional*) Seed for random number generator (default=None). #### See also: ``` gnm_random_graph() ``` #### **Notes** Algorithm by Keith M. Briggs Mar 31, 2006. Inspired by Knuth's Algorithm S (Selection sampling technique), in section 3.4.2 of ². ### References # 6.5.4 gnm random graph ``` gnm_random_graph (n, m, seed=None, directed=False) ``` Returns a $G_{n,m}$ random graph. In the $G_{n,m}$ model, a graph is chosen uniformly at random from the set of all graphs with n nodes and m edges. This algorithm should be faster than dense_gnm_random_graph() for sparse graphs. ### **Parameters** - **n** (*int*) The number of nodes. - m (int) The number of edges. - **seed** (*int*, *optional*) Seed for random number generator (default=None). - directed (bool, optional (default=False)) If True return a directed graph ### See also: ``` dense_gnm_random_graph() ``` ² Donald E. Knuth, The Art of Computer Programming, Volume 2/Seminumerical algorithms, Third Edition, Addison-Wesley, 1997. # 6.5.5 erdos_renyi_graph ### erdos_renyi_graph (n, p, seed=None, directed=False) Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or a binomial graph. The $G_{n,p}$ model chooses each of the possible edges with probability p. The functions binomial_graph() and erdos_renyi_graph() are aliases of this function. #### **Parameters** - **n** (*int*) The number of nodes. - p (*float*) Probability for edge creation. - **seed** (*int*, *optional*) Seed for random number generator (default=None). - **directed** (*bool*, *optional* (*default=False*)) If True, this function returns a directed graph. #### See also: ``` fast_gnp_random_graph() ``` #### **Notes** This algorithm runs in $O(n^2)$ time. For sparse graphs (that is, for small values of p), $fast_gnp_random_graph$ () is a faster algorithm. #### References ### 6.5.6 binomial graph ### binomial_graph (n, p, seed=None, directed=False) Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or a binomial graph. The $G_{n,n}$ model chooses each of the possible edges with probability p. The functions binomial_graph() and erdos_renyi_graph() are aliases of this function. ### **Parameters** - **n** (*int*) The number of nodes. - **p** (*float*) Probability for edge creation. - **seed** (int, optional) Seed for random number generator (default=None). - **directed** (*bool*, *optional* (*default=False*)) If True, this function returns a directed graph. ### See also: ``` fast_gnp_random_graph() ``` #### **Notes** This algorithm runs in $O(n^2)$ time. For sparse graphs (that is, for small values of p), $fast_gnp_random_graph$ () is a faster algorithm. #### References # 6.5.7 newman_watts_strogatz_graph ### $newman_watts_strogatz_graph(n, k, p, seed=None)$ Return a Newman–Watts–Strogatz small-world graph. #### **Parameters** - **n** (*int*) The number of nodes. - **k** (*int*) Each node is joined with its k nearest neighbors in a ring topology. - p (float) The probability of adding a new edge for each edge. - **seed** (*int*, *optional*) The seed for the random number generator (the default is None). #### **Notes** First create a ring over n nodes. Then each node in the ring is connected with its k nearest neighbors (or k-1 neighbors if k is odd). Then shortcuts are created by adding new edges as follows: for each edge (u, v) in the underlying "n-ring with k nearest neighbors" with probability p add a new edge (u, w) with randomly-chosen existing node w. In contrast with $watts_strogatz_graph()$, no edges are removed. #### See also: ``` watts_strogatz_graph() ``` #### References # 6.5.8 watts strogatz graph ### $watts_strogatz_graph(n, k, p, seed=None)$ Return a Watts-Strogatz small-world graph. #### **Parameters** - **n** (*int*) The number of nodes - **k** (*int*) Each node is joined with its k nearest neighbors in a ring topology. - **p** (*float*) The probability of rewiring each edge - **seed** (*int*, *optional*) Seed for random number generator (default=None) #### See also: ``` newman_watts_strogatz_graph(), connected_watts_strogatz_graph() ``` ### **Notes** First create a ring over n nodes. Then each node in the ring is joined to its k nearest neighbors (or k-1 neighbors if k is odd). Then shortcuts are created by replacing some edges as follows: for each edge (u, v) in the underlying "n-ring with k nearest neighbors" with probability p replace it with a new edge (u, w) with uniformly random choice of existing node w. In contrast with <code>newman_watts_strogatz_graph()</code>, the random rewiring does not increase the number of edges. The rewired graph is not guaranteed to be connected as in <code>connected_watts_strogatz_graph()</code>. #### References # 6.5.9 connected_watts_strogatz_graph ### connected_watts_strogatz_graph(n, k, p, tries=100, seed=None) Returns a connected Watts-Strogatz small-world graph. Attempts to generate a connected graph by repeated generation of Watts-Strogatz small-world graphs. An exception is raised if the maximum number of tries is exceeded. #### **Parameters** - n (int) The number of nodes - **k** (*int*) Each node is joined with its k nearest neighbors in a ring topology. - p (float) The probability of rewiring each edge - **tries** (*int*) Number of attempts to generate a connected graph. - **seed** (*int*, *optional*) The seed for random number generator. #### See also: newman_watts_strogatz_graph(), watts_strogatz_graph() # 6.5.10 random_regular_graph ### random_regular_graph (d, n, seed=None) Returns a random d-regular graph on n nodes. The resulting graph has no self-loops or parallel edges. ### Parameters - **d** (*int*) The degree of each node. - n (integer) The number of nodes. The value of n * d must be even. - **seed** (*hashable object*) The seed for random number generator. #### **Notes** The nodes are numbered from 0 to n - 1. Kim and Vu's paper ³ shows that this algorithm samples in an asymptotically uniform way from the space of random graphs when $d = O(n^{1/3-\epsilon})$. **Raises** NetworkXError – If n * d is odd or d is greater than or equal to n. ³ Jeong Han Kim and
Van H. Vu, Generating random regular graphs, Proceedings of the thirty-fifth ACM symposium on Theory of computing, San Diego, CA, USA, pp 213–222, 2003. http://portal.acm.org/citation.cfm?id=780542.780576 #### References # 6.5.11 barabasi_albert_graph #### barabasi_albert_graph (n, m, seed=None) Returns a random graph according to the Barabási-Albert preferential attachment model. A graph of n nodes is grown by attaching new nodes each with m edges that are preferentially attached to existing nodes with high degree. #### **Parameters** - **n** (*int*) Number of nodes - m (int) Number of edges to attach from a new node to existing nodes - **seed** (*int*, *optional*) Seed for random number generator (default=None). #### Returns G ### Return type Graph **Raises** NetworkXError – If m does not satisfy 1 <= m < n. #### References # 6.5.12 powerlaw_cluster_graph ### powerlaw_cluster_graph (n, m, p, seed=None) Holme and Kim algorithm for growing graphs with powerlaw degree distribution and approximate average clustering. #### **Parameters** - **n** (*int*) the number of nodes - m (int) the number of random edges to add for each new node - p (float,) Probability of adding a triangle after adding a random edge - **seed** (*int*, *optional*) Seed for random number generator (default=None). #### **Notes** The average clustering has a hard time getting above a certain cutoff that depends on m. This cutoff is often quite low. The transitivity (fraction of triangles to possible triangles) seems to decrease with network size. It is essentially the Barabási–Albert (BA) growth model with an extra step that each random edge is followed by a chance of making an edge to one of its neighbors too (and thus a triangle). This algorithm improves on BA in the sense that it enables a higher average clustering to be attained if desired. It seems possible to have a disconnected graph with this algorithm since the initial m nodes may not be all linked to a new node on the first iteration like the BA model. ``` Raises NetworkXError – If m does not satisfy 1 \le m \le n or p does not satisfy 0 \le p \le 1. ``` #### References # 6.5.13 duplication_divergence_graph #### duplication_divergence_graph (n, p, seed=None) Returns an undirected graph using the duplication-divergence model. A graph of n nodes is created by duplicating the initial nodes and retaining edges incident to the original nodes with a retention probability p. #### **Parameters** - **n** (*int*) The desired number of nodes in the graph. - **p** (*float*) The probability for retaining the edge of the replicated node. - seed (int, optional) A seed for the random number generator of random (default=None). #### Returns G Return type Graph **Raises** NetworkXError – If p is not a valid probability. If n is less than 2. #### References # 6.5.14 random lobster ``` random_lobster (n, p1, p2, seed=None) ``` Returns a random lobster graph. A lobster is a tree that reduces to a caterpillar when pruning all leaf nodes. A caterpillar is a tree that reduces to a path graph when pruning all leaf nodes; setting p2 to zero produces a caterillar. #### **Parameters** - **n** (*int*) The expected number of nodes in the backbone - p1 (float) Probability of adding an edge to the backbone - p2 (*float*) Probability of adding an edge one level beyond backbone - **seed** (*int*, *optional*) Seed for random number generator (default=None). # 6.5.15 random shell graph #### random_shell_graph (constructor, seed=None) Returns a random shell graph for the constructor given. #### **Parameters** - **constructor** (*list of three-tuples*) Represents the parameters for a shell, starting at the center shell. Each element of the list must be of the form (n, m, d), where n is the number of nodes in the shell, m is the number of edges in the shell, and d is the ratio of inter-shell (next) edges to intra-shell edges. If d is zero, there will be no intra-shell edges, and if d is one there will be all possible intra-shell edges. - **seed** (*int*, *optional*) Seed for random number generator (default=None). ### **Examples** ``` >>> constructor = [(10, 20, 0.8), (20, 40, 0.8)] >>> G = nx.random_shell_graph(constructor) ``` # 6.5.16 random powerlaw tree random_powerlaw_tree (n, gamma=3, seed=None, tries=100) Returns a tree with a power law degree distribution. #### **Parameters** - **n** (*int*) The number of nodes. - gamma (float) Exponent of the power law. - **seed** (*int*, *optional*) Seed for random number generator (default=None). - tries (int) Number of attempts to adjust the sequence to make it a tree. Raises NetworkXError - If no valid sequence is found within the maximum number of attempts. #### **Notes** A trial power law degree sequence is chosen and then elements are swapped with new elements from a powerlaw distribution until the sequence makes a tree (by checking, for example, that the number of edges is one smaller than the number of nodes). # 6.5.17 random powerlaw tree sequence random_powerlaw_tree_sequence (n, gamma=3, seed=None, tries=100) Returns a degree sequence for a tree with a power law distribution. #### **Parameters** - **n** (*int*,) The number of nodes. - gamma (*float*) Exponent of the power law. - **seed** (*int*, *optional*) Seed for random number generator (default=None). - tries (int) Number of attempts to adjust the sequence to make it a tree. Raises NetworkXError - If no valid sequence is found within the maximum number of attempts. ### **Notes** A trial power law degree sequence is chosen and then elements are swapped with new elements from a power law distribution until the sequence makes a tree (by checking, for example, that the number of edges is one smaller than the number of nodes). # 6.6 Degree Sequence Generate graphs with a given degree sequence or expected degree sequence. | <pre>configuration_model(deg_sequence[,])</pre> | Return a random graph with the given degree sequence. | |--|--| | directed_configuration_model([,]) | Return a directed_random graph with the given degree sequences. | | <pre>expected_degree_graph(w[, seed, selfloops])</pre> | Return a random graph with given expected degrees. | | havel_hakimi_graph(deg_sequence[, create_using]) | Return a simple graph with given degree sequence constructed using | | directed_havel_hakimi_graph(in_deg_sequence,) | Return a directed graph with the given degree sequences. | | <pre>degree_sequence_tree(deg_sequence[,])</pre> | Make a tree for the given degree sequence. | | random_degree_sequence_graph(sequence[,]) | Return a simple random graph with the given degree sequence. | # 6.6.1 configuration model configuration_model (deg_sequence, create_using=None, seed=None) Return a random graph with the given degree sequence. The configuration model generates a random pseudograph (graph with parallel edges and self loops) by randomly assigning edges to match the given degree sequence. #### **Parameters** - **deg_sequence** (*list of integers*) Each list entry corresponds to the degree of a node. - **create_using** (*graph*, *optional* (*default MultiGraph*)) Return graph of this type. The instance will be cleared. - **seed** (hashable object, optional) Seed for random number generator. **Returns G** – A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence. Return type MultiGraph **Raises** NetworkXError – If the degree sequence does not have an even sum. ### See also: is_valid_degree_sequence() #### Notes As described by Newman 4. A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the degree sequence does not have an even sum. This configuration model construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified. The density of self-loops and parallel edges tends to decrease as the number of nodes increases. However, typically the number of self-loops will approach a Poisson distribution with a nonzero mean, and similarly for the number of parallel edges. Consider a node with k stubs. The probability of being joined to another stub of the same node is basically (k-1)/N where k is the degree and N is the number of nodes. So the probability of a self-loop scales like c/N for some constant c. As N grows, this means we expect c self-loops. Similarly for parallel edges. ⁴ M.E.J. Newman, "The structure and function of complex networks", SIAM REVIEW 45-2, pp 167-256, 2003. #### References #### **Examples** ``` >>> from networkx.utils import powerlaw_sequence >>> z=nx.utils.create_degree_sequence(100, powerlaw_sequence) >>> G=nx.configuration_model(z) ``` #### To remove parallel edges: ``` >>> G=nx.Graph(G) ``` ### To remove self loops: ``` >>> G.remove_edges_from(G.selfloop_edges()) ``` # 6.6.2 directed configuration model Return a directed_random graph with the given degree sequences. The configuration model generates a random directed pseudograph (graph with parallel edges and self loops) by randomly assigning edges to match the given degree sequences. #### **Parameters** - in_degree_sequence (list of integers) Each list entry corresponds to the in-degree of a node. - out_degree_sequence (*list of integers*) Each list entry corresponds to the out-degree of a node. - create_using (graph, optional (default MultiDiGraph)) Return graph of this type. The instance will be cleared. - **seed** (hashable object, optional) Seed for random number generator. **Returns** G – A graph with the specified degree sequences. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence. Return type MultiDiGraph **Raises** NetworkXError – If the
degree sequences do not have the same sum. #### See also: ``` configuration_model() ``` ### **Notes** Algorithm as described by Newman ⁵. A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the degree sequences does not have the same sum. ⁵ Newman, M. E. J. and Strogatz, S. H. and Watts, D. J. Random graphs with arbitrary degree distributions and their applications Phys. Rev. E, 64, 026118 (2001) This configuration model construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified. This "finite-size effect" decreases as the size of the graph increases. #### References ### **Examples** ``` >>> D=nx.DiGraph([(0,1),(1,2),(2,3)]) # directed path graph >>> din=list(D.in_degree().values()) >>> dout=list(D.out_degree().values()) >>> din.append(1) >>> dout[0]=2 >>> D=nx.directed_configuration_model(din,dout) ``` ### To remove parallel edges: ``` >>> D=nx.DiGraph(D) ``` ### To remove self loops: ``` >>> D.remove_edges_from(D.selfloop_edges()) ``` # 6.6.3 expected_degree_graph ``` expected_degree_graph (w, seed=None, selfloops=True) ``` Return a random graph with given expected degrees. Given a sequence of expected degrees $W=(w_0,w_1,\ldots,w_{n-1})$ of length n this algorithm assigns an edge between node u and node v with probability $$p_{uv} = \frac{w_u w_v}{\sum_k w_k}.$$ #### **Parameters** - w (list) The list of expected degrees. - **selfloops** (*bool* (*default=True*)) Set to False to remove the possibility of self-loop edges. - **seed** (*hashable object, optional*) The seed for the random number generator. ### Returns Return type Graph ### **Examples** ``` >>> z=[10 for i in range(100)] >>> G=nx.expected_degree_graph(z) ``` #### **Notes** The nodes have integer labels corresponding to index of expected degrees input sequence. The complexity of this algorithm is O(n+m) where n is the number of nodes and m is the expected number of edges. The model in ⁶ includes the possibility of self-loop edges. Set selfloops=False to produce a graph without self loops. For finite graphs this model doesn't produce exactly the given expected degree sequence. Instead the expected degrees are as follows. For the case without self loops (selfloops=False), $$E[deg(u)] = \sum_{v \neq u} p_{uv} = w_u \left(1 - \frac{w_u}{\sum_k w_k} \right).$$ NetworkX uses the standard convention that a self-loop edge counts 2 in the degree of a node, so with self loops (selfloops=True), $$E[deg(u)] = \sum_{v \neq u} p_{uv} + 2p_{uu} = w_u \left(1 + \frac{w_u}{\sum_k w_k}\right).$$ #### References # 6.6.4 havel hakimi graph havel_hakimi_graph (deg_sequence, create_using=None) Return a simple graph with given degree sequence constructed using the Havel-Hakimi algorithm. #### **Parameters** - deg_sequence (list of integers) Each integer corresponds to the degree of a node (need not be sorted). - **create_using** (*graph*, *optional* (*default Graph*)) Return graph of this type. The instance will be cleared. Directed graphs are not allowed. **Raises** NetworkXException – For a non-graphical degree sequence (i.e. one not realizable by some simple graph). #### **Notes** The Havel-Hakimi algorithm constructs a simple graph by successively connecting the node of highest degree to other nodes of highest degree, resorting remaining nodes by degree, and repeating the process. The resulting graph has a high degree-associativity. Nodes are labeled 1,.., len(deg_sequence), corresponding to their position in deg_sequence. The basic algorithm is from Hakimi ⁷ and was generalized by Kleitman and Wang ⁸. ⁶ Fan Chung and L. Lu, Connected components in random graphs with given expected degree sequences, Ann. Combinatorics, 6, pp. 125-145, 2002. ⁷ Hakimi S., On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I, Journal of SIAM, 10(3), pp. 496-506 (1962) ⁸ Kleitman D.J. and Wang D.L. Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973) #### References # 6.6.5 directed havel hakimi graph **directed_havel_hakimi_graph** (*in_deg_sequence*, *out_deg_sequence*, *create_using=None*) Return a directed graph with the given degree sequences. ### **Parameters** - in_deg_sequence (list of integers) Each list entry corresponds to the in-degree of a node. - out_deg_sequence (list of integers) Each list entry corresponds to the out-degree of a node. - **create_using** (*graph*, *optional* (*default DiGraph*)) Return graph of this type. The instance will be cleared. **Returns** G – A graph with the specified degree sequences. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence ## Return type DiGraph Raises NetworkXError – If the degree sequences are not digraphical. #### See also: ``` configuration_model() ``` ### **Notes** Algorithm as described by Kleitman and Wang 9. #### References # 6.6.6 degree sequence tree degree_sequence_tree (deg_sequence, create_using=None) Make a tree for the given degree sequence. A tree has #nodes-#edges=1 so the degree sequence must have len(deg_sequence)-sum(deg_sequence)/2=1 # 6.6.7 random_degree_sequence_graph random_degree_sequence_graph (sequence, seed=None, tries=10) Return a simple random graph with the given degree sequence. If the maximum degree d_m in the sequence is $O(m^{1/4})$ then the algorithm produces almost uniform random graphs in $O(md_m)$ time where m is the number of edges. ### **Parameters** - **sequence** (*list of integers*) Sequence of degrees - seed (hashable object, optional) Seed for random number generator ⁹ D.J. Kleitman and D.L. Wang Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973) • **tries** (*int*, *optional*) – Maximum number of tries to create a graph **Returns G** – A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in the sequence. ### Return type Graph #### **Raises** - NetworkXUnfeasible If the degree sequence is not graphical. - NetworkXError If a graph is not produced in specified number of tries #### See also: ``` is_valid_degree_sequence(), configuration_model() ``` #### **Notes** The generator algorithm ¹⁰ is not guaranteed to produce a graph. #### References ### **Examples** ``` >>> sequence = [1, 2, 2, 3] >>> G = nx.random_degree_sequence_graph(sequence) >>> sorted(G.degree().values()) [1, 2, 2, 3] ``` # 6.7 Random Clustered Generate graphs with given degree and triangle sequence. random_clustered_graph(joint_degree_sequence) Generate a random graph with the given joint independent edge degree are # 6.7.1 random clustered graph random_clustered_graph (joint_degree_sequence, create_using=None, seed=None) Generate a random graph with the given joint independent edge degree and triangle degree sequence. This uses a configuration model-like approach to generate a random graph (with parallel edges and self-loops) by randomly assigning edges to match the given joint degree sequence. The joint degree sequence is a list of pairs of integers of the form $[(d_{1,i}, d_{1,t}), \dots, (d_{n,i}, d_{n,t})]$. According to this list, vertex u is a member of $d_{u,t}$ triangles and has $d_{u,i}$ other edges. The number $d_{u,t}$ is the *triangle degree* of u and the number $d_{u,i}$ is the *independent edge degree*. # **Parameters** 6.7. Random Clustered 395 ¹⁰ Moshen Bayati, Jeong Han Kim, and Amin Saberi, A sequential algorithm for generating random graphs. Algorithmica, Volume 58, Number 4, 860-910, DOI: 10.1007/s00453-009-9340-1 - joint_degree_sequence (*list of integer pairs*) Each list entry corresponds to the independent edge degree and triangle degree of a node. - **create_using** (*graph*, *optional* (*default MultiGraph*)) Return graph of this type. The instance will be cleared. - **seed** (hashable object, optional) The seed for the random number generator. **Returns G** – A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence. ### Return type MultiGraph **Raises** NetworkXError – If the independent edge degree sequence sum is not even or the triangle degree sequence sum is not divisible by 3. #### **Notes** As described by Miller ¹¹ (see also Newman ¹² for an equivalent description). A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the independent degree sequence does not have an even sum or the triangle degree sequence sum is not divisible by 3. This configuration model-like construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified. This "finite-size effect" decreases as the size of the graph increases. #### References ### **Examples** ``` >>> deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)] >>> G = nx.random_clustered_graph(deg) ``` ## To remove parallel edges: ``` >>> G = nx.Graph(G) ``` ## To remove self loops: ``` >>> G.remove_edges_from(G.selfloop_edges()) ``` # 6.8 Directed Generators for some directed graphs, including growing network (GN) graphs and scale-free graphs. | <pre>gn_graph(n[, kernel, create_using, seed])</pre> | Return the growing network (GN) digraph with n nodes. | |--|--| | gnr_graph(n, p[, create_using, seed]) | Return the growing network with redirection (GNR) digraph with n nodes and | | gnc_graph(n[, create_using, seed])
 Return the growing network with copying (GNC) digraph with n nodes. | | scale_free_graph(n[, alpha, beta, gamma,]) | Returns a scale-free directed graph. | ¹¹ Joel C. Miller. "Percolation and epidemics in random clustered networks". In: Physical review. E, Statistical, nonlinear, and soft matter physics 80 (2 Part 1 August 2009). ¹² M. E. J. Newman. "Random Graphs with Clustering". In: Physical Review Letters 103 (5 July 2009) # 6.8.1 gn_graph gn_graph (n, kernel=None, create_using=None, seed=None) Return the growing network (GN) digraph with n nodes. The GN graph is built by adding nodes one at a time with a link to one previously added node. The target node for the link is chosen with probability based on degree. The default attachment kernel is a linear function of the degree of a node. The graph is always a (directed) tree. #### **Parameters** - **n** (*int*) The number of nodes for the generated graph. - **kernel** (function) The attachment kernel. - **create_using** (*graph*, *optional* (*default DiGraph*)) Return graph of this type. The instance will be cleared. - **seed** (hashable object, optional) The seed for the random number generator. ## **Examples** To create the undirected GN graph, use the to_directed() method: ``` >>> D = nx.gn_graph(10) # the GN graph >>> G = D.to_undirected() # the undirected version ``` To specify an attachment kernel, use the kernel keyword argument: ``` >>> D = nx.gn_graph(10, kernel=lambda x: x ** 1.5) # A_k = k^1.5 ``` #### References ## 6.8.2 gnr_graph gnr_graph (n, p, create_using=None, seed=None) Return the growing network with redirection (GNR) digraph with n nodes and redirection probability p. The GNR graph is built by adding nodes one at a time with a link to one previously added node. The previous target node is chosen uniformly at random. With probability p the link is instead "redirected" to the successor node of the target. The graph is always a (directed) tree. #### **Parameters** - **n** (*int*) The number of nodes for the generated graph. - **p** (*float*) The redirection probability. - create_using (graph, optional (default DiGraph)) Return graph of this type. The instance will be cleared. - **seed** (hashable object, optional) The seed for the random number generator. 6.8. Directed 397 #### **Examples** To create the undirected GNR graph, use the to_directed() method: ``` >>> D = nx.gnr_graph(10, 0.5) # the GNR graph >>> G = D.to_undirected() # the undirected version ``` #### References # 6.8.3 gnc graph gnc_graph (n, create_using=None, seed=None) Return the growing network with copying (GNC) digraph with n nodes. The GNC graph is built by adding nodes one at a time with a link to one previously added node (chosen uniformly at random) and to all of that node's successors. #### **Parameters** - **n** (*int*) The number of nodes for the generated graph. - **create_using** (*graph*, *optional* (*default DiGraph*)) Return graph of this type. The instance will be cleared. - **seed** (*hashable object, optional*) The seed for the random number generator. #### References # 6.8.4 scale_free_graph ### **Parameters** - n (integer) Number of nodes in graph - **alpha** (*float*) Probability for adding a new node connected to an existing node chosen randomly according to the in-degree distribution. - **beta** (*float*) Probability for adding an edge between two existing nodes. One existing node is chosen randomly according the in-degree distribution and the other chosen randomly according to the out-degree distribution. - gamma (float) Probability for adding a new node conecgted to an existing node chosen randomly according to the out-degree distribution. - **delta_in** (*float*) Bias for choosing ndoes from in-degree distribution. - **delta_out** (*float*) Bias for choosing ndoes from out-degree distribution. - **create_using** (*graph*, *optional* (*default MultiDiGraph*)) Use this graph instance to start the process (default=3-cycle). - seed (integer, optional) Seed for random number generator ### **Examples** Create a scale-free graph on one hundred nodes: ``` >>> G = nx.scale_free_graph(100) ``` ### **Notes** The sum of alpha, beta, and gamma must be 1. #### References # 6.9 Geometric Generators for geometric graphs. | random_geometric_graph(n, radius[, dim, pos]) | Returns a random geometric graph in the unit cube. | |--|--| | <pre>geographical_threshold_graph(n, theta[,])</pre> | Returns a geographical threshold graph. | | waxman_graph(n[, alpha, beta, L, domain]) | Return a Waxman random graph. | | navigable_small_world_graph(n[, p, q, r,]) | Return a navigable small-world graph. | # 6.9.1 random_geometric_graph random_geometric_graph (n, radius, dim=2, pos=None) Returns a random geometric graph in the unit cube. The random geometric graph model places n nodes uniformly at random in the unit cube. Two nodes are joined by an edge if the Euclidean distance between the nodes is at most radius. #### **Parameters** - n (int) Number of nodes - radius (float) Distance threshold value - dim (int, optional) Dimension of graph - pos (dict, optional) A dictionary keyed by node with node positions as values. #### Returns Return type Graph ## **Examples** Create a random geometric graph on twenty nodes where nodes are joined by an edge if their distance is at most 0.1: ``` >>> G = nx.random_geometric_graph(20, 0.1) ``` 6.9. Geometric 399 #### **Notes** This algorithm currently only supports Euclidean distance. This uses an $O(n^2)$ algorithm to build the graph. A faster algorithm is possible using k-d trees. The pos keyword argument can be used to specify node positions so you can create an arbitrary distribution and domain for positions. For example, to use a 2D Gaussian distribution of node positions with mean (0, 0) and standard deviation 2: ``` >>> import random >>> n = 20 >>> p = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)} >>> G = nx.random_geometric_graph(n, 0.2, pos=p) ``` #### References # 6.9.2 geographical_threshold_graph **geographical_threshold_graph** (*n*, theta, alpha=2, dim=2, pos=None, weight=None) Returns a geographical threshold graph. The geographical threshold graph model places n nodes uniformly at random in a rectangular domain. Each node u is assigned a weight w_u . Two nodes u and v are joined by an edge if $$w_u + w_v > \theta r^{\alpha}$$ where r is the Euclidean distance between u and v, and θ , α are parameters. ### **Parameters** - **n** (*int*) Number of nodes - theta (float) Threshold value - alpha (float, optional) Exponent of distance function - dim (int, optional) Dimension of graph - **pos** (*dict*) Node positions as a dictionary of tuples keyed by node. - weight (*dict*) Node weights as a dictionary of numbers keyed by node. ### Returns Return type Graph #### **Examples** ``` >>> G = nx.geographical_threshold_graph(20, 50) ``` ## **Notes** If weights are not specified they are assigned to nodes by drawing randomly from the exponential distribution with rate parameter $\lambda = 1$. To specify weights from a different distribution, use the weight keyword argument: ``` >>> import random >>> n = 20 >>> w = {i: random.expovariate(5.0) for i in range(n)} >>> G = nx.geographical_threshold_graph(20, 50, weight=w) ``` If node positions are not specified they are randomly assigned from the uniform distribution. #### References # 6.9.3 waxman graph ``` waxman_graph (n, alpha=0.4, beta=0.1, L=None, domain=(0, 0, 1, 1)) Return a Waxman random graph. ``` The Waxman random graph model places n nodes uniformly at random in a rectangular domain. Each pair of nodes at Euclidean distance d is joined by an edge with probability $$p = \alpha \exp(-d/\beta L)$$. This function implements both Waxman models, using the L keyword argument. - •Waxman-1: if L is not specified, it is set to be the maximum distance between any pair of nodes. - •Waxman-2: if L is specified, the distance between a pair of nodes is chosen uniformly at random from the interval [0, L]. ### **Parameters** - **n** (*int*) Number of nodes - alpha (float) Model parameter - beta (*float*) Model parameter - L (float, optional) Maximum distance between nodes. If not specified, the actual distance is calculated. - domain (four-tuple of numbers, optional) Domain size, given as a tuple of the form $(x_m in, y_m in, x_m ax, y_m ax)$. #### Returns G Return type Graph #### References # 6.9.4 navigable_small_world_graph ``` navigable_small_world_graph (n, p=1, q=1, r=2, dim=2, seed=None) Return a navigable small-world graph. ``` A navigable small-world graph is a directed grid with additional long-range connections that are chosen randomly. [...] we begin with a set of nodes [...] that are identified with the set of lattice points in an nimesn square, $\{(i,j):i\in\{1,2,\ldots,n\},j\in\{1,2,\ldots,n\}\}$, and we define the lattice distance between two nodes (i,j) and (k,l) to be the number of "lattice steps" separating them: d((i,j),(k,l))=|k-i|+|l-j|. For a universal constant $p\geq 1$, the node u has a directed edge to every other node within 6.9. Geometric 401 lattice distance p — these are its *local contacts*. For universal constants $q \ge 0$ and $r \ge 0$ we also construct directed edges from u to q other nodes (the *long-range contacts*) using independent random trials; the i'thdirectededge from u has endpoint v with probability proportional to $[d(u,v)]^{-r}$. 13 #### **Parameters** - **n** (*int*) The number of nodes. - p (int) The diameter of short range connections. Each node is joined with every other node within this lattice distance. - **q** (*int*) The number of long-range connections for each node. - \mathbf{r} (float) Exponent for decaying probability of connections. The probability of connecting to a node at lattice distance d is $1/d^r$. - dim (int) Dimension of grid - **seed** (*int*, *optional*) Seed for random number generator
(default=None). #### References # 6.10 Line Graph Functions for generating line graphs. line_graph(G[, create_using]) Returns the line graph of the graph or digraph G. # 6.10.1 line_graph ### line_graph (G, create_using=None) Returns the line graph of the graph or digraph G. The line graph of a graph G has a node for each edge in G and an edge joining those nodes if the two edges in G share a common node. For directed graphs, nodes are adjacent exactly when the edges they represent form a directed path of length two. The nodes of the line graph are 2-tuples of nodes in the original graph (or 3-tuples for multigraphs, with the key of the edge as the third element). For information about self-loops and more discussion, see the Notes section below. Parameters G (graph) – A NetworkX Graph, DiGraph, MultiGraph, or MultiDigraph. **Returns** L – The line graph of G. Return type graph ### **Examples** ¹³ J. Kleinberg. The small-world phenomenon: An algorithmic perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000. ``` >>> import networkx as nx >>> G = nx.star_graph(3) >>> L = nx.line_graph(G) >>> print(sorted(map(sorted, L.edges()))) # makes a 3-clique, K3 [[(0, 1), (0, 2)], [(0, 1), (0, 3)], [(0, 2), (0, 3)]] ``` #### **Notes** Graph, node, and edge data are not propagated to the new graph. For undirected graphs, the nodes in G must be sortable, otherwise the constructed line graph may not be correct. Self-loops in undirected graphs For an undirected graph G without multiple edges, each edge can be written as a set $\{u,v\}$. Its line graph L has the edges of G as its nodes. If x and y are two nodes in L, then $\{x,y\}$ is an edge in L if and only if the intersection of x and y is nonempty. Thus, the set of all edges is determined by the set of all pairwise intersections of edges in G. Trivially, every edge in G would have a nonzero intersection with itself, and so every node in L should have a self-loop. This is not so interesting, and the original context of line graphs was with simple graphs, which had no self-loops or multiple edges. The line graph was also meant to be a simple graph and thus, self-loops in L are not part of the standard definition of a line graph. In a pairwise intersection matrix, this is analogous to excluding the diagonal entries from the line graph definition. Self-loops and multiple edges in G add nodes to L in a natural way, and do not require any fundamental changes to the definition. It might be argued that the self-loops we excluded before should now be included. However, the self-loops are still "trivial" in some sense and thus, are usually excluded. Self-loops in directed graphs For a directed graph G without multiple edges, each edge can be written as a tuple (u,v). Its line graph L has the edges of G as its nodes. If x and y are two nodes in L, then (x,y) is an edge in L if and only if the tail of x matches the head of y, for example, if x = (a,b) and y = (b,c) for some vertices a,b, and c in G. Due to the directed nature of the edges, it is no longer the case that every edge in G should have a self-loop in G. Now, the only time self-loops arise is if a node in G itself has a self-loop. So such self-loops are no longer "trivial" but instead, represent essential features of the topology of G. For this reason, the historical development of line digraphs is such that self-loops are included. When the graph G has multiple edges, once again only superficial changes are required to the definition. #### References - •Harary, Frank, and Norman, Robert Z., "Some properties of line digraphs", Rend. Circ. Mat. Palermo, II. Ser. 9 (1960), 161–168. - •Hemminger, R. L.; Beineke, L. W. (1978), "Line graphs and line digraphs", in Beineke, L. W.; Wilson, R. J., Selected Topics in Graph Theory, Academic Press Inc., pp. 271–305. # 6.11 Ego Graph Ego graph. eqo_graph(G, n[, radius, center, ...]) Returns induced subgraph of neighbors centered at node n within a given radius. 6.11. Ego Graph 403 # 6.11.1 ego_graph **ego_graph** (*G*, *n*, *radius=1*, *center=True*, *undirected=False*, *distance=None*) Returns induced subgraph of neighbors centered at node n within a given radius. #### **Parameters** - G (graph) A NetworkX Graph or DiGraph - **n** (node) A single node - radius (*number*, *optional*) Include all neighbors of distance<=radius from n. - center (bool, optional) If False, do not include center node in graph - undirected (bool, optional) If True use both in- and out-neighbors of directed graphs. - **distance** (*key, optional*) Use specified edge data key as distance. For example, setting distance='weight' will use the edge weight to measure the distance from the node n. #### **Notes** For directed graphs D this produces the "out" neighborhood or successors. If you want the neighborhood of predecessors first reverse the graph with D.reverse(). If you want both directions use the keyword argument undirected=True. Node, edge, and graph attributes are copied to the returned subgraph. # 6.12 Stochastic Functions for generating stochastic graphs from a given weighted directed graph. stochastic_graph(G[, copy, weight]) Returns a right-stochastic representation of the directed graph G. # 6.12.1 stochastic graph stochastic_graph (G, copy=True, weight='weight') Returns a right-stochastic representation of the directed graph G. A right-stochastic graph is a weighted digraph in which for each node, the sum of the weights of all the outedges of that node is 1. If the graph is already weighted (for example, via a 'weight' edge attribute), the reweighting takes that into account. G [directed graph] A NetworkX DiGraph **copy** [boolean, optional] If this is True, then this function returns a new instance of networkx.Digraph. Otherwise, the original graph is modified in-place (and also returned, for convenience). weight [edge attribute key (optional, default='weight')] Edge attribute key used for reading the existing weight and setting the new weight. If no attribute with this key is found for an edge, then the edge weight is assumed to be 1. If an edge has a weight, it must be a a positive number. # 6.13 Intersection Generators for random intersection graphs. | $\verb"uniform_random_intersection_graph" (n, m, p[,])$ | Return a uniform random intersection graph. | |---|---| | $k_{random_intersection_graph(n, m, k)}$ | Return a intersection graph with randomly chosen attribute sets for e | | <pre>general_random_intersection_graph(n, m, p)</pre> | Return a random intersection graph with independent probabilities for | # 6.13.1 uniform_random_intersection_graph ### uniform_random_intersection_graph (n, m, p, seed=None) Return a uniform random intersection graph. #### **Parameters** - **n** (*int*) The number of nodes in the first bipartite set (nodes) - m (int) The number of nodes in the second bipartite set (attributes) - p (float) Probability of connecting nodes between bipartite sets - **seed** (*int*, *optional*) Seed for random number generator (default=None). #### See also: ``` gnp_random_graph() ``` References # 6.13.2 k random intersection graph #### $k_{random_intersection_graph(n, m, k)}$ Return a intersection graph with randomly chosen attribute sets for each node that are of equal size (k). ### **Parameters** - **n** (*int*) The number of nodes in the first bipartite set (nodes) - m (int) The number of nodes in the second bipartite set (attributes) - **k** (*float*) Size of attribute set to assign to each node. - **seed** (*int*, *optional*) Seed for random number generator (default=None). ### See also: ``` gnp_random_graph(), uniform_random_intersection_graph() ``` References # 6.13.3 general random intersection graph ## $general_random_intersection_graph(n, m, p)$ Return a random intersection graph with independent probabilities for connections between node and attribute sets. #### **Parameters** 6.13. Intersection 405 - **n** (*int*) The number of nodes in the first bipartite set (nodes) - **m** (*int*) The number of nodes in the second bipartite set (attributes) - \mathbf{p} (*list of floats of length m*) Probabilities for connecting nodes to each attribute - **seed** (*int*, *optional*) Seed for random number generator (default=None). #### See also: ``` gnp_random_graph(), uniform_random_intersection_graph() ``` References # 6.14 Social Networks Famous social networks. | karate_club_graph() | Return Zachary's Karate Club graph. | |------------------------------|---| | davis_southern_women_graph() | Return Davis Southern women social network. | | florentine_families_graph() | Return Florentine families graph. | # 6.14.1 karate_club_graph ### karate_club_graph() Return Zachary's Karate Club graph. Each node in the returned graph has a node attribute 'club' that indicates the name of the club to which the member represented by that node belongs, either 'Mr. Hi' or 'Officer'. ### **Examples** To get the name of the club to which a node belongs: ``` >>> import networkx as nx >>> G = nx.karate_club_graph() >>> G.node[5]['club'] 'Mr. Hi' >>> G.node[9]['club'] 'Officer' ``` ### References # 6.14.2 davis southern women graph ## davis_southern_women_graph() Return Davis Southern women social network. This is a bipartite graph. #### References # 6.14.3 florentine families graph ### florentine_families_graph() Return Florentine families graph. References # 6.15 Community Generators for classes of graphs used in studying social networks. | caveman_graph(l, k) | Returns a caveman graph of 1 cliques of size k. | |--|--| | $connected_caveman_graph(l,k)$ | Returns a connected caveman graph of 1 cliques of size k. | | $relaxed_caveman_graph(l, k, p[, seed])$ | Return a relaxed caveman graph. | |
<pre>random_partition_graph(sizes, p_in, p_out[,])</pre> | Return the random partition graph with a partition of sizes. | | <pre>planted_partition_graph(l, k, p_in, p_out[,])</pre> | Return the planted l-partition graph. | | <pre>gaussian_random_partition_graph(n, s, v,)</pre> | Generate a Gaussian random partition graph. | # 6.15.1 caveman_graph ## ${\tt caveman_graph}\,(l,k)$ Returns a caveman graph of 1 cliques of size k. #### **Parameters** - 1 (*int*) Number of cliques - **k** (*int*) Size of cliques Returns G - caveman graph Return type NetworkX Graph #### **Notes** This returns an undirected graph, it can be converted to a directed graph using $nx.to_directed()$, or a multigraph using $nx.MultiGraph(nx.caveman_graph(l, k))$. Only the undirected version is described in 14 and it is unclear which of the directed generalizations is most useful. ### **Examples** ``` >>> G = nx.caveman_graph(3, 3) ``` ### See also: connected_caveman_graph() 6.15. Community 407 ¹⁴ Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.' Amer. J. Soc. 105, 493-527, 1999. #### References # 6.15.2 connected caveman graph ### $connected_caveman_graph(l, k)$ Returns a connected caveman graph of 1 cliques of size k. The connected caveman graph is formed by creating n cliques of size k, then a single edge in each clique is rewired to a node in an adjacent clique. #### **Parameters** - 1 (int) number of cliques - **k** (*int*) size of cliques Returns G - connected caveman graph Return type NetworkX Graph #### **Notes** This returns an undirected graph, it can be converted to a directed graph using $nx.to_directed()$, or a multigraph using $nx.MultiGraph(nx.caveman_graph(l, k))$. Only the undirected version is described in 15 and it is unclear which of the directed generalizations is most useful. ### **Examples** ``` >>> G = nx.connected_caveman_graph(3, 3) ``` ### References # 6.15.3 relaxed caveman graph ### relaxed_caveman_graph (l, k, p, seed=None) Return a relaxed caveman graph. A relaxed caveman graph starts with 1 cliques of size k. Edges are then randomly rewired with probability p to link different cliques. ## **Parameters** - 1 (*int*) Number of groups - **k** (*int*) Size of cliques - p (*float*) Probabilty of rewiring each edge. - **seed** (*int,optional*) Seed for random number generator(default=None) Returns G – Relaxed Caveman Graph Return type NetworkX Graph Raises NetworkXError – If p is not in [0,1] ¹⁵ Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.' Amer. J. Soc. 105, 493-527, 1999. ### **Examples** ``` >>> G = nx.relaxed_caveman_graph(2, 3, 0.1, seed=42) ``` #### References # 6.15.4 random partition graph random_partition_graph (sizes, p_in, p_out, seed=None, directed=False) Return the random partition graph with a partition of sizes. A partition graph is a graph of communities with sizes defined by s in sizes. Nodes in the same group are connected with probability p_in and nodes of different groups are connected with probability p_out. #### **Parameters** - sizes (list of ints) Sizes of groups - **p_in** (*float*) probability of edges with in groups - **p_out** (*float*) probability of edges between groups - directed (boolean optional, default=False) Whether to create a directed graph - seed (int optional, default None) A seed for the random number generator **Returns** G – random partition graph of size sum(gs) Return type NetworkX Graph or DiGraph Raises NetworkXError – If p_in or p_out is not in [0,1] #### **Examples** ``` >>> G = nx.random_partition_graph([10,10,10],.25,.01) >>> len(G) 30 >>> partition = G.graph['partition'] >>> len(partition) 3 ``` ### Notes This is a generalization of the planted-l-partition described in ¹⁶. It allows for the creation of groups of any size. The partition is store as a graph attribute 'partition'. ### References # 6.15.5 planted partition graph planted_partition_graph (l, k, p_in, p_out, seed=None, directed=False) Return the planted 1-partition graph. 6.15. Community 409 ¹⁶ Santo Fortunato 'Community Detection in Graphs' Physical Reports Volume 486, Issue 3-5 p. 75-174. http://arxiv.org/abs/0906.0612 http://arxiv.org/abs/0906.0612 This model partitions a graph with n=1*k vertices in 1 groups with k vertices each. Vertices of the same group are linked with a probability p_in, and vertices of different groups are linked with probability p_out. #### **Parameters** - 1 (*int*) Number of groups - **k** (*int*) Number of vertices in each group - **p_in** (*float*) probability of connecting vertices within a group - **p_out** (*float*) probability of connected vertices between groups - **seed** (*int,optional*) Seed for random number generator(default=None) - directed (bool, optional (default=False)) If True return a directed graph **Returns G** – planted l-partition graph Return type NetworkX Graph or DiGraph Raises NetworkXError - If p_in,p_out are not in [0,1] or ### **Examples** ``` >>> G = nx.planted_partition_graph(4, 3, 0.5, 0.1, seed=42) ``` #### See also: random_partition_model() #### References # 6.15.6 gaussian_random_partition_graph **gaussian_random_partition_graph** (*n*, *s*, *v*, *p_in*, *p_out*, *directed=False*, *seed=None*) Generate a Gaussian random partition graph. A Gaussian random partition graph is created by creating k partitions each with a size drawn from a normal distribution with mean s and variance s/v. Nodes are connected within clusters with probability p_in and between clusters with probability p_out[1] #### **Parameters** - **n** (*int*) Number of nodes in the graph - **s** (*float*) Mean cluster size - **v** (*float*) Shape parameter. The variance of cluster size distribution is s/v. - p_in (float) Probabilty of intra cluster connection. - **p_out** (*float*) Probability of inter cluster connection. - directed (boolean, optional default=False) Whether to create a directed graph or not - seed (int) Seed value for random number generator **Returns G** – gaussian random partition graph Return type NetworkX Graph or DiGraph **Raises** NetworkXError – If s is > n If p_in or p_out is not in [0,1] #### **Notes** Note the number of partitions is dependent on s,v and n, and that the last partition may be considerably smaller, as it is sized to simply fill out the nodes [1] #### See also: ``` random_partition_graph() ``` #### **Examples** ``` >>> G = nx.gaussian_random_partition_graph(100,10,10,.25,.1) >>> len(G) 100 ``` #### References # 6.16 Non Isomorphic Trees Implementation of the Wright, Richmond, Odlyzko and McKay (WROM) algorithm for the enumeration of all non-isomorphic free trees of a given order. Rooted trees are represented by level sequences, i.e., lists in which the i-th element specifies the distance of vertex i to the root. | nonisomorphic_trees(order[, create]) | Returns a list of nonisomporphic trees | |--------------------------------------|---| | number_of_nonisomorphic_trees(order) | Returns the number of nonisomorphic trees | # 6.16.1 nonisomorphic_trees ``` nonisomorphic_trees (order, create='graph') ``` Returns a list of nonisomporphic trees #### **Parameters** - order (int) order of the desired tree(s) - **create** (*graph or matrix* (*default="Graph*)) If graph is selected a list of trees will be returned, if matrix is selected a list of adjancency matrix will be returned ### Returns - **G** (List of NetworkX Graphs) - M (List of Adjacency matrices) ### References # 6.16.2 number_of_nonisomorphic_trees ``` number_of_nonisomorphic_trees(order) ``` Returns the number of nonisomorphic trees **Parameters** order (int) – order of the desired tree(s) Returns length Return type Number of nonisomorphic graphs for the given order References **CHAPTER** # SEVEN # LINEAR ALGEBRA # 7.1 Graph Matrix Adjacency matrix and incidence matrix of graphs. | adjacency_matrix(G[, nodelist, weight]) | Return adjacency matrix of G. | |---|-------------------------------| | <pre>incidence_matrix(G[, nodelist, edgelist,])</pre> | Return incidence matrix of G. | # 7.1.1 adjacency_matrix adjacency_matrix (*G*, nodelist=None, weight='weight') Return adjacency matrix of G. #### **Parameters** - **G** (graph) A NetworkX graph - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - weight (*string or None, optional (default='weight'*)) The edge data key used to provide each value in the matrix. If None, then each edge has weight 1. **Returns** A – Adjacency matrix representation of G. Return type SciPy sparse matrix #### **Notes** For directed graphs, entry i,j corresponds to an edge from i to j. If you want a pure Python adjacency matrix representation try networkx.convert.to_dict_of_dicts which will return a dictionary-of-dictionaries format that can be addressed as a sparse matrix. For MultiGraph/MultiDiGraph with parallel edges the weights are summed. See to_numpy_matrix for other options. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the edge weight attribute (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Scipy sparse matrix can be modified as follows: ``` >>> import scipy as sp >>> G = nx.Graph([(1,1)]) >>> A = nx.adjacency_matrix(G) ``` ``` >>> print(A.todense()) [[1]] >>> A.setdiag(A.diagonal()*2) >>> print(A.todense()) [[2]] ``` #### See also: ``` to_numpy_matrix(),to_scipy_sparse_matrix(),to_dict_of_dicts() ``` # 7.1.2 incidence matrix **incidence_matrix** (*G*, nodelist=None, edgelist=None, oriented=False, weight=None) Return incidence matrix of G. The incidence matrix assigns each row to a node and each column to an edge. For a standard incidence matrix a 1 appears wherever a row's node is incident on the column's edge. For an oriented incidence matrix each edge is assigned an
orientation (arbitrarily for undirected and aligning to direction for directed). A -1 appears for the tail of an edge and 1 for the head of the edge. The elements are zero otherwise. ### **Parameters** - **G** (graph) A NetworkX graph - **nodelist** (*list*, *optional* (*default= all nodes in G*)) The rows are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - **edgelist** (*list*, *optional* (*default= all edges in G*)) The columns are ordered according to the edges in edgelist. If edgelist is None, then the ordering is produced by G.edges(). - **oriented** (*bool*, *optional* (*default=False*)) If True, matrix elements are +1 or -1 for the head or tail node respectively of each edge. If False, +1 occurs at both nodes. - **weight** (*string or None, optional* (*default=None*)) The edge data key used to provide each value in the matrix. If None, then each edge has weight 1. Edge weights, if used, should be positive so that the orientation can provide the sign. **Returns** A – The incidence matrix of G. Return type SciPy sparse matrix ### **Notes** For MultiGraph/MultiDiGraph, the edges in edgelist should be (u,v,key) 3-tuples. "Networks are the best discrete model for so many problems in applied mathematics" 1. #### References # 7.2 Laplacian Matrix Laplacian matrix of graphs. ``` \begin{tabular}{ll} $laplacian_matrix(G[, nodelist, weight])$ & Return the Laplacian matrix of G. \\ & Continued on next page \\ \end{tabular} ``` ¹ Gil Strang, Network applications: A = incidence matrix, http://academicearth.org/lectures/network-applications-incidence-matrix ## Table 7.2 – continued from previous page | $normalized_laplacian_matrix(G[, nodelist,])$ | Return the normalized Laplacian matrix of G. | |---|--| | directed_laplacian_matrix(G[, nodelist,]) | Return the directed Laplacian matrix of G. | # 7.2.1 laplacian_matrix laplacian_matrix(G, nodelist=None, weight='weight') Return the Laplacian matrix of G. The graph Laplacian is the matrix L = D - A, where A is the adjacency matrix and D is the diagonal matrix of node degrees. #### **Parameters** - **G** (graph) A NetworkX graph - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - weight (*string or None, optional (default='weight'*)) The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. Returns L – The Laplacian matrix of G. Return type SciPy sparse matrix ### **Notes** For MultiGraph/MultiDiGraph, the edges weights are summed. #### See also: to_numpy_matrix(), normalized_laplacian_matrix() # 7.2.2 normalized laplacian matrix normalized_laplacian_matrix(G, nodelist=None, weight='weight') Return the normalized Laplacian matrix of G. The normalized graph Laplacian is the matrix $$N = D^{-1/2}LD^{-1/2}$$ where L is the graph Laplacian and D is the diagonal matrix of node degrees. #### **Parameters** - **G** (graph) A NetworkX graph - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - weight (*string or None, optional (default='weight'*)) The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. **Returns** N – The normalized Laplacian matrix of G. **Return type** NumPy matrix #### **Notes** For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options. If the Graph contains selfloops, D is defined as diag(sum(A,1)), where A is the adjacency matrix ². #### See also: laplacian_matrix() #### References # 7.2.3 directed laplacian matrix **directed_laplacian_matrix** (*G*, nodelist=None, weight='weight', walk_type=None, alpha=0.95) Return the directed Laplacian matrix of G. The graph directed Laplacian is the matrix $$L = I - (\Phi^{1/2}P\Phi^{-1/2} + \Phi^{-1/2}P^T\Phi^{1/2})/2$$ where I is the identity matrix, P is the transition matrix of the graph, and Φ a matrix with the Perron vector of P in the diagonal and zeros elsewhere. Depending on the value of walk_type, P can be the transition matrix induced by a random walk, a lazy random walk, or a random walk with teleportation (PageRank). #### **Parameters** - G (DiGraph) A NetworkX graph - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - weight (*string or None, optional (default='weight'*)) The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. - walk_type (*string or None, optional (default=None*)) If None, *P* is selected depending on the properties of the graph. Otherwise is one of 'random', 'lazy', or 'pagerank' - alpha (real) (1 alpha) is the teleportation probability used with pagerank **Returns** L – Normalized Laplacian of G. **Return type** NumPy array #### Raises - NetworkXError If NumPy cannot be imported - NetworkXNotImplemnted If G is not a DiGraph #### **Notes** Only implemented for DiGraphs ### See also: laplacian_matrix() ² Steve Butler, Interlacing For Weighted Graphs Using The Normalized Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98, March 2007. #### References # 7.3 Spectrum Eigenvalue spectrum of graphs. | laplacian_spectrum(G[, weight]) | Return eigenvalues of the Laplacian of G | |------------------------------------|--| | $adjacency_spectrum(G[, weight])$ | Return eigenvalues of the adjacency matrix of G. | # 7.3.1 laplacian_spectrum laplacian_spectrum(G, weight='weight') Return eigenvalues of the Laplacian of G #### **Parameters** - **G** (*graph*) A NetworkX graph - weight (*string or None, optional (default='weight'*)) The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. Returns evals – Eigenvalues Return type NumPy array ### **Notes** For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options. ## See also: ``` laplacian_matrix() ``` # 7.3.2 adjacency_spectrum adjacency_spectrum(G, weight='weight') Return eigenvalues of the adjacency matrix of G. #### **Parameters** - **G** (*graph*) A NetworkX graph - weight (*string or None, optional (default='weight'*)) The edge data key used to compute each value in the matrix. If None, then each edge has weight 1. Returns evals - Eigenvalues **Return type** NumPy array ### **Notes** For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options. ### See also: ``` adjacency_matrix() ``` 7.3. Spectrum 417 # 7.4 Algebraic Connectivity Algebraic connectivity and Fiedler vectors of undirected graphs. | algebraic_connectivity(G[, weight,]) | Return the algebraic connectivity of an undirected graph. | |---|--| | fiedler_vector(G[, weight, normalized, tol,]) | Return the Fiedler vector of a connected undirected graph. | | spectral_ordering(G[, weight, normalized,]) | Compute the spectral_ordering of a graph. | # 7.4.1 algebraic_connectivity **algebraic_connectivity** (*G*, weight='weight', normalized=False, tol=1e-08, method='tracemin') Return the algebraic connectivity of an undirected graph. The algebraic connectivity of a connected undirected graph is the second smallest eigenvalue of its Laplacian matrix. #### **Parameters** - **G** (*NetworkX graph*) An undirected graph. - weight (*object*, *optional*) The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None. - normalized (bool, optional) Whether the normalized Laplacian matrix is used. Default value: False. - tol (*float*, *optional*) Tolerance of relative residual in eigenvalue computation. Default value: 1e-8. - **method** (*string*, *optional*) Method of eigenvalue computation. It should be one of 'tracemin' (TraceMIN), 'lanczos' (Lanczos iteration) and 'lobpcg' (LOBPCG). Default value: 'tracemin'. The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used. | Value | Solver | |-----------------|--| | 'tracemin_pcg' | Preconditioned conjugate gradient method | | 'tracemin_chol' | Cholesky factorization | | 'tracemin_lu' | LU factorization | Returns algebraic connectivity - Algebraic connectivity. Return type float ### Raises - NetworkXNotImplemented If G is directed. - NetworkXError If G has less than two nodes. #### **Notes** Edge weights are interpreted by their absolute values. For MultiGraph's, weights of parallel edges are summed. Zero-weighted edges are ignored. To use Cholesky factorization in the TraceMIN algorithm, the scikits.sparse package must be installed. ### See also: laplacian_matrix() # 7.4.2 fiedler_vector **fiedler_vector** (*G*, weight='weight', normalized=False, tol=1e-08, method='tracemin') Return the Fiedler vector of a connected undirected graph. The Fiedler vector of a connected undirected graph is the eigenvector corresponding to the second smallest eigenvalue of the Laplacian matrix of of the graph. #### **Parameters** - **G** (NetworkX graph) An undirected graph. - weight (*object*, *optional*) The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None. - normalized (bool, optional) Whether the normalized Laplacian matrix is used. Default value: False. - tol (*float*, *optional*) Tolerance of relative residual in eigenvalue computation. Default value: 1e-8. - **method** (*string*, *optional*) Method of eigenvalue computation. It should be one of 'tracemin' (TraceMIN), 'lanczos' (Lanczos iteration) and 'lobpcg' (LOBPCG).
Default value: 'tracemin'. The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used. | Value | Solver | |-----------------|--| | 'tracemin_pcg' | Preconditioned conjugate gradient method | | 'tracemin_chol' | Cholesky factorization | | 'tracemin_lu' | LU factorization | Returns fiedler vector - Fiedler vector. **Return type** NumPy array of floats. #### **Raises** - NetworkXNotImplemented If G is directed. - NetworkXError If G has less than two nodes or is not connected. ### Notes Edge weights are interpreted by their absolute values. For MultiGraph's, weights of parallel edges are summed. Zero-weighted edges are ignored. To use Cholesky factorization in the TraceMIN algorithm, the scikits.sparse package must be installed. #### See also: laplacian_matrix() # 7.4.3 spectral ordering **spectral_ordering** (*G*, weight='weight', normalized=False, tol=1e-08, method='tracemin') Compute the spectral_ordering of a graph. The spectral ordering of a graph is an ordering of its nodes where nodes in the same weakly connected components appear contiguous and ordered by their corresponding elements in the Fiedler vector of the component. #### **Parameters** - **G** (*NetworkX graph*) A graph. - weight (object, optional) The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None. - normalized (bool, optional) Whether the normalized Laplacian matrix is used. Default value: False. - tol (*float*, *optional*) Tolerance of relative residual in eigenvalue computation. Default value: 1e-8. - **method** (*string*, *optional*) Method of eigenvalue computation. It should be one of 'tracemin' (TraceMIN), 'lanczos' (Lanczos iteration) and 'lobpcg' (LOBPCG). Default value: 'tracemin'. The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used. | Value | Solver | |-----------------|--| | 'tracemin_pcg' | Preconditioned conjugate gradient method | | 'tracemin_chol' | Cholesky factorization | | 'tracemin_lu' | LU factorization | **Returns** spectral_ordering – Spectral ordering of nodes. Return type NumPy array of floats. **Raises** NetworkXError – If G is empty. #### **Notes** Edge weights are interpreted by their absolute values. For MultiGraph's, weights of parallel edges are summed. Zero-weighted edges are ignored. To use Cholesky factorization in the TraceMIN algorithm, the scikits.sparse package must be installed. ### See also: laplacian_matrix() # 7.5 Attribute Matrices Functions for constructing matrix-like objects from graph attributes. | <pre>attr_matrix(G[, edge_attr, node_attr,])</pre> | Returns a NumPy matrix using attributes from G. | |--|--| | <pre>attr_sparse_matrix(G[, edge_attr,])</pre> | Returns a SciPy sparse matrix using attributes from G. | # 7.5.1 attr matrix Returns a NumPy matrix using attributes from G. If only G is passed in, then the adjacency matrix is constructed. Let A be a discrete set of values for the node attribute $node_a ttr$. Then the elements of A represent the rows and columns of the constructed matrix. Now, iterate through every edge e=(u,v) in G and consider the value of the edge attribute $edge_a ttr$. If ua and va are the values of the node attribute $node_a ttr$ for u and v, respectively, then the value of the edge attribute is added to the matrix element at (ua, va). #### **Parameters** - **G** (graph) The NetworkX graph used to construct the NumPy matrix. - edge_attr (str, optional) Each element of the matrix represents a running total of the specified edge attribute for edges whose node attributes correspond to the rows/cols of the matrix. The attribute must be present for all edges in the graph. If no attribute is specified, then we just count the number of edges whose node attributes correspond to the matrix element. - node_attr (*str*, *optional*) Each row and column in the matrix represents a particular value of the node attribute. The attribute must be present for all nodes in the graph. Note, the values of this attribute should be reliably hashable. So, float values are not recommended. If no attribute is specified, then the rows and columns will be the nodes of the graph. - normalized (bool, optional) If True, then each row is normalized by the summation of its values. - rc_order (*list*, *optional*) A list of the node attribute values. This list specifies the ordering of rows and columns of the array. If no ordering is provided, then the ordering will be random (and also, a return value). #### **Other Parameters** - **dtype** (*NumPy data-type, optional*) A valid NumPy dtype used to initialize the array. Keep in mind certain dtypes can yield unexpected results if the array is to be normalized. The parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used. - **order** (*f* '*C*', '*F*'*}, optional*) Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. This parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used. #### Returns - **M** (*NumPy matrix*) The attribute matrix. - ordering (list) If rc_order was specified, then only the matrix is returned. However, if rc_order was None, then the ordering used to construct the matrix is returned as well. ### **Examples** Construct an adjacency matrix: ``` >>> G = nx.Graph() >>> G.add_edge(0,1,thickness=1,weight=3) >>> G.add_edge(0,2,thickness=2) >>> G.add_edge(1,2,thickness=3) >>> nx.attr_matrix(G, rc_order=[0,1,2]) ``` 7.5. Attribute Matrices 421 Alternatively, we can obtain the matrix describing edge thickness. We can also color the nodes and ask for the probability distribution over all edges (u,v) describing: $Pr(v \text{ has color } Y \mid u \text{ has color } X)$ For example, the above tells us that for all edges (u,v): ``` Pr(v \text{ is red} \mid u \text{ is red}) = 1/3 Pr(v \text{ is blue} \mid u \text{ is red}) = 2/3 ``` Pr(v is red | u is blue) = 1 Pr(v is blue | u is blue) = 0 Finally, we can obtain the total weights listed by the node colors. Thus, the total weight over all edges (u,v) with u and v having colors: (red, red) is 3 # the sole contribution is from edge (0,1) (red, blue) is 2 # contributions from edges (0,2) and (1,2) (blue, red) is 2 # same as (red, blue) since graph is undirected (blue, blue) is 0 # there are no edges with blue endpoints # 7.5.2 attr_sparse_matrix Returns a SciPy sparse matrix using attributes from G. If only G is passed in, then the adjacency matrix is constructed. Let A be a discrete set of values for the node attribute $node_a ttr$. Then the elements of A represent the rows and columns of the constructed matrix. Now, iterate through every edge e=(u,v) in G and consider the value of the edge attribute $edge_a ttr$. If ua and va are the values of the node attribute $node_a ttr$ for u and v, respectively, then the value of the edge attribute is added to the matrix element at (ua, va). #### **Parameters** - **G** (*graph*) The NetworkX graph used to construct the NumPy matrix. - edge_attr (str, optional) Each element of the matrix represents a running total of the specified edge attribute for edges whose node attributes correspond to the rows/cols of the matrix. The attribute must be present for all edges in the graph. If no attribute is specified, then we just count the number of edges whose node attributes correspond to the matrix element. - node_attr (*str*; *optional*) Each row and column in the matrix represents a particular value of the node attribute. The attribute must be present for all nodes in the graph. Note, the values of this attribute should be reliably hashable. So, float values are not recommended. If no attribute is specified, then the rows and columns will be the nodes of the graph. - normalized (bool, optional) If True, then each row is normalized by the summation of its values. - rc_order (*list, optional*) A list of the node attribute values. This list specifies the ordering of rows and columns of the array. If no ordering is provided, then the ordering will be random (and also, a return value). **Other Parameters dtype** (*NumPy data-type, optional*) – A valid NumPy dtype used to initialize the array. Keep in mind certain dtypes can yield unexpected results if the array is to be normalized. The parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used. ### Returns - M (*SciPy sparse matrix*) The attribute matrix. - **ordering** (*list*) If rc_order was specified, then only the matrix is returned. However, if rc_order was None, then the ordering used to construct the matrix is returned as well. ### **Examples** Construct an adjacency matrix: Alternatively, we can obtain the matrix describing edge thickness. We can also color the nodes and ask for the probability distribution over all edges (u,v) describing: $Pr(v \text{ has color } Y \mid u \text{ has color } X)$ 7.5. Attribute Matrices 423 normalized For example, the above tells us that for all edges (u,v): ``` Pr(v \text{ is red} \mid u \text{ is red}) = 1/3 Pr(v \text{ is blue} \mid u \text{ is red}) = 2/3 ``` $Pr(v \text{ is red} \mid u \text{ is blue}) = 1 Pr(v \text{ is blue} \mid u \text{ is blue}) = 0$ Finally, we can obtain the total weights listed by the node colors. Thus, the total weight over all edges (u,v) with u and v having colors: (red, red) is 3 # the sole contribution is from edge (0,1) (red, blue) is 2 # contributions from edges (0,2) and (1,2) (blue, red) is 2 # same as (red, blue) since graph is undirected (blue, blue) is 0 # there are no edges with blue endpoints node_attr= **CHAPTER** **EIGHT** # CONVERTING TO AND FROM OTHER DATA FORMATS # 8.1 To NetworkX Graph Functions to convert NetworkX graphs to and from other formats. The
preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically. ### **Examples** Create a graph with a single edge from a dictionary of dictionaries ``` >>> d={0: {1: 1}} # dict-of-dicts single edge (0,1) >>> G=nx.Graph(d) ``` #### See also: nx_pygraphviz, nx_pydot to_networkx_graph(data[, create_using, ...]) Make a NetworkX graph from a known data structure. ## 8.1.1 to networkx graph to_networkx_graph (data, create_using=None, multigraph_input=False) Make a NetworkX graph from a known data structure. The preferred way to call this is automatically from the class constructor ``` >>> d={0: {1: {'weight':1}}} # dict-of-dicts single edge (0,1) >>> G=nx.Graph(d) ``` ## instead of the equivalent ``` >>> G=nx.from_dict_of_dicts(d) ``` ### **Parameters** - data (a object to be converted) Current known types are: any NetworkX graph dict-ofdicts dist-of-lists list of edges numpy matrix numpy ndarray scipy sparse matrix pygraphviz agraph - **create_using** (*NetworkX graph*) Use specified graph for result. Otherwise a new graph is created. • multigraph_input (bool (default False)) – If True and data is a dict_of_dicts, try to create a multigraph assuming dict_of_dict_of_lists. If data and create_using are both multigraphs then create a multigraph from a multigraph. # 8.2 Dictionaries | to_dict_of_dicts(G[, nodelist, edge_data]) | Return adjacency representation of graph as a dictionary of dictionaries. | |---|---| | <pre>from_dict_of_dicts(d[, create_using,])</pre> | Return a graph from a dictionary of dictionaries. | # 8.2.1 to_dict_of_dicts to_dict_of_dicts(G, nodelist=None, edge_data=None) Return adjacency representation of graph as a dictionary of dictionaries. #### **Parameters** - **G** (graph) A NetworkX graph - nodelist (list) Use only nodes specified in nodelist - edge_data (*list, optional*) If provided, the value of the dictionary will be set to edge_data for all edges. This is useful to make an adjacency matrix type representation with 1 as the edge data. If edgedata is None, the edgedata in G is used to fill the values. If G is a multigraph, the edgedata is a dict for each pair (u,v). # 8.2.2 from dict of dicts **from_dict_of_dicts** (*d*, *create_using=None*, *multigraph_input=False*) Return a graph from a dictionary of dictionaries. ## **Parameters** - d (dictionary of dictionaries) A dictionary of dictionaries adjacency representation. - **create_using** (*NetworkX graph*) Use specified graph for result. Otherwise a new graph is created. - multigraph_input (bool (default False)) When True, the values of the inner dict are assumed to be containers of edge data for multiple edges. Otherwise this routine assumes the edge data are singletons. ### **Examples** ``` >>> dod= {0: {1:{'weight':1}}} # single edge (0,1) >>> G=nx.from_dict_of_dicts(dod) ``` or >>> G=nx.Graph(dod) # use Graph constructor # 8.3 Lists | to_dict_of_lists(G[, nodelist]) | Return adjacency representation of graph as a dictionary of lists. | |--|--| | <pre>from_dict_of_lists(d[, create_using])</pre> | Return a graph from a dictionary of lists. | | to_edgelist(G[, nodelist]) | Return a list of edges in the graph. | | <pre>from_edgelist(edgelist[, create_using])</pre> | Return a graph from a list of edges. | # 8.3.1 to_dict_of_lists # to_dict_of_lists(G, nodelist=None) Return adjacency representation of graph as a dictionary of lists. #### **Parameters** - **G** (*graph*) A NetworkX graph - nodelist (*list*) Use only nodes specified in nodelist ### Notes Completely ignores edge data for MultiGraph and MultiDiGraph. # 8.3.2 from_dict_of_lists from_dict_of_lists(d, create_using=None) Return a graph from a dictionary of lists. #### **Parameters** - d (dictionary of lists) A dictionary of lists adjacency representation. - **create_using** (*NetworkX graph*) Use specified graph for result. Otherwise a new graph is created. ### **Examples** ``` >>> dol= {0:[1]} # single edge (0,1) >>> G=nx.from_dict_of_lists(dol) ``` or >>> G=nx.Graph(dol) # use Graph constructor # 8.3.3 to_edgelist ## to_edgelist(G, nodelist=None) Return a list of edges in the graph. #### **Parameters** - **G** (*graph*) A NetworkX graph - nodelist (*list*) Use only nodes specified in nodelist 8.3. Lists 427 # 8.3.4 from edgelist from_edgelist (edgelist, create_using=None) Return a graph from a list of edges. #### **Parameters** - edgelist (list or iterator) Edge tuples - **create_using** (*NetworkX graph*) Use specified graph for result. Otherwise a new graph is created. ### **Examples** ``` >>> edgelist= [(0,1)] # single edge (0,1) >>> G=nx.from_edgelist(edgelist) ``` or >>> G=nx.Graph(edgelist) # use Graph constructor # 8.4 Numpy Functions to convert NetworkX graphs to and from numpy/scipy matrices. The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically. ### **Examples** Create a 10 node random graph from a numpy matrix ``` >>> import numpy >>> a = numpy.reshape(numpy.random.random_integers(0,1,size=100),(10,10)) >>> D = nx.DiGraph(a) ``` ### or equivalently ``` >>> D = nx.to_networkx_graph(a,create_using=nx.DiGraph()) ``` #### See also: nx_pygraphviz,nx_pydot | to_numpy_matrix(G[, nodelist, dtype, order,]) | Return the graph adjacency matrix as a NumPy matrix. | |--|--| | to_numpy_recarray(G[, nodelist, dtype, order]) | Return the graph adjacency matrix as a NumPy recarray. | | <pre>from_numpy_matrix(A[, parallel_edges,])</pre> | Return a graph from numpy matrix. | # 8.4.1 to_numpy_matrix to_numpy_matrix (G, nodelist=None, dtype=None, order=None, multigraph_weight=<built-in function sum>, weight='weight', nonedge=0.0) Return the graph adjacency matrix as a NumPy matrix. #### **Parameters** - **G** (graph) The NetworkX graph used to construct the NumPy matrix. - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes(). - **dtype** (*NumPy data type, optional*) A valid single NumPy data type used to initialize the array. This must be a simple type such as int or numpy.float64 and not a compound data type (see to_numpy_recarray) If None, then the NumPy default is used. - order ({'C', 'F'}, optional) Whether to store multidimensional data in C- or Fortrancontiguous (row- or column-wise) order in memory. If None, then the NumPy default is used. - multigraph_weight ({sum, min, max}, optional) An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges. - weight (string or None optional (default = 'weight')) The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead. - nonedge (float (default = 0.0)) The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan. **Returns** M – Graph adjacency matrix Return type NumPy matrix #### See also: ``` to_numpy_recarray(), from_numpy_matrix() ``` ### **Notes** The matrix entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the multigraph_weight parameter. The default is to sum the weight attributes for each of the parallel edges. When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Numpy matrix can be modified as follows: ``` >>> import numpy as np >>> G = nx.Graph([(1, 1)]) >>> A = nx.to_numpy_matrix(G) >>> A matrix([[1.]]) >>> A.A[np.diag_indices_from(A)] *= 2 >>> A matrix([[2.]]) ``` 8.4. Numpy 429 #### **Examples** # 8.4.2 to_numpy_recarray to_numpy_recarray (*G*, nodelist=None, dtype=[('weight', <type 'float'>)], order=None) Return the graph adjacency matrix as a NumPy recarray. ### **Parameters** - **G** (*graph*) The NetworkX graph used to construct the NumPy matrix. - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in *nodelist*. If *nodelist* is None, then the ordering is produced by G.nodes(). - **dtype** (*NumPy data-type, optional*) A valid NumPy named dtype used to initialize the NumPy recarray. The data type names are assumed to be keys in the graph edge attribute dictionary. - order ({'C', 'F'}, optional) Whether to store multidimensional data in C- or Fortrancontiguous (row- or column-wise) order in memory. If None, then the NumPy default is used. **Returns** M – The graph with specified edge data as a Numpy recarray Return type NumPy recarray ### **Notes** When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist. ## **Examples** ``` >>> G = nx.Graph() >>> G.add_edge(1,2,weight=7.0,cost=5) >>> A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)]) >>> print(A.weight) [[0. 7.] [7. 0.]] >>>
print(A.cost) [[0 5] [5 0]] ``` # 8.4.3 from_numpy_matrix **from_numpy_matrix** (A, parallel_edges=False, create_using=None) Return a graph from numpy matrix. The numpy matrix is interpreted as an adjacency matrix for the graph. #### **Parameters** - A (numpy matrix) An adjacency matrix representation of a graph - **parallel_edges** (*Boolean*) If this is True, create_using is a multigraph, and A is an integer matrix, then entry (*i*, *j*) in the matrix is interpreted as the number of parallel edges joining vertices *i* and *j* in the graph. If it is False, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices. - create_using (NetworkX graph) Use specified graph for result. The default is Graph() #### **Notes** If create_using is an instance of networkx.MultiGraph or networkx.MultiDiGraph, parallel_edges is True, and the entries of A are of type int, then this function returns a multigraph (of the same type as create_using) with parallel edges. If $create_using$ is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix A will be added to the graph. If the numpy matrix has a single data type for each matrix entry it will be converted to an appropriate Python data type. If the numpy matrix has a user-specified compound data type the names of the data fields will be used as attribute keys in the resulting NetworkX graph. #### See also: ``` to_numpy_matrix(), to_numpy_recarray() ``` #### **Examples** Simple integer weights on edges: ``` >>> import numpy >>> A=numpy.matrix([[1, 1], [2, 1]]) >>> G=nx.from_numpy_matrix(A) ``` If create_using is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges): ``` >>> import numpy >>> A = numpy.matrix([[1, 1], [1, 2]]) >>> G = nx.from_numpy_matrix(A, create_using = nx.MultiGraph()) >>> G[1][1] {0: {'weight': 2}} ``` If create_using is a multigraph and the matrix has only integer entries but parallel_edges is True, then the entries will be interpreted as the number of parallel edges joining those two vertices: 8.4. Numpy 431 ``` >>> import numpy >>> A = numpy.matrix([[1, 1], [1, 2]]) >>> temp = nx.MultiGraph() >>> G = nx.from_numpy_matrix(A, parallel_edges = True, create_using = temp) >>> G[1][1] {0: {'weight': 1}, 1: {'weight': 1}} ``` User defined compound data type on edges: ``` >>> import numpy >>> dt = [('weight', float), ('cost', int)] >>> A = numpy.matrix([[(1.0, 2)]], dtype = dt) >>> G = nx.from_numpy_matrix(A) >>> G.edges() [(0, 0)] >>> G[0][0]['cost'] 2 >>> G[0][0]['weight'] 1.0 ``` # 8.5 Scipy ``` to_scipy_sparse_matrix(G[, nodelist, dtype, ...]) Return the graph adjacency matrix as a SciPy sparse matrix. from_scipy_sparse_matrix(A[, ...]) Creates a new graph from an adjacency matrix given as a SciPy sparse matrix. ``` # 8.5.1 to_scipy_sparse_matrix to_scipy_sparse_matrix (*G*, nodelist=None, dtype=None, weight='weight', format='csr') Return the graph adjacency matrix as a SciPy sparse matrix. ## **Parameters** - **G** (graph) The NetworkX graph used to construct the NumPy matrix. - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in *nodelist*. If *nodelist* is None, then the ordering is produced by G.nodes(). - **dtype** (*NumPy data-type, optional*) A valid NumPy dtype used to initialize the array. If None, then the NumPy default is used. - weight (*string or None optional (default='weight'*)) The edge attribute that holds the numerical value used for the edge weight. If None then all edge weights are 1. - **format** (*str in {'bsr'*, '*csr'*, '*csc'*, '*coo'*, '*lil'*, '*dia'*, '*dok'}*) The type of the matrix to be returned (default 'csr'). For some algorithms different implementations of sparse matrices can perform better. See ¹ for details. **Returns** M – Graph adjacency matrix. Return type SciPy sparse matrix ¹ Scipy Dev. References, "Sparse Matrices", http://docs.scipy.org/doc/scipy/reference/sparse.html #### **Notes** The matrix entries are populated using the edge attribute held in parameter weight. When an edge does not have that attribute, the value of the entry is 1. For multiple edges the matrix values are the sums of the edge weights. When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist. Uses coo_matrix format. To convert to other formats specify the format= keyword. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Scipy sparse matrix can be modified as follows: ``` >>> import scipy as sp >>> G = nx.Graph([(1,1)]) >>> A = nx.to_scipy_sparse_matrix(G) >>> print(A.todense()) [[1]] >>> A.setdiag(A.diagonal()*2) >>> print(A.todense()) [[2]] ``` ### **Examples** ``` >>> G = nx.MultiDiGraph() >>> G.add_edge(0,1,weight=2) >>> G.add_edge(1,0) >>> G.add_edge(2,2,weight=3) >>> G.add_edge(2,2) >>> S = nx.to_scipy_sparse_matrix(G, nodelist=[0,1,2]) >>> print(S.todense()) [[0 2 0] [1 0 0] [0 0 4]] ``` #### References ### 8.5.2 from scipy sparse matrix **from_scipy_sparse_matrix** (A, parallel_edges=False, create_using=None, edge_attribute='weight') Creates a new graph from an adjacency matrix given as a SciPy sparse matrix. #### **Parameters** - A (scipy sparse matrix) An adjacency matrix representation of a graph - parallel_edges (Boolean) If this is True, $create_u sing$ is a multigraph, and A is an integer matrix, then entry (i, j) in the matrix is interpreted as the number of parallel edges joining vertices i and j in the graph. If it is False, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices. - create_using (NetworkX graph) Use specified graph for result. The default is Graph() 8.5. Scipy 433 • **edge_attribute** (*string*) – Name of edge attribute to store matrix numeric value. The data will have the same type as the matrix entry (int, float, (real,imag)). #### **Notes** If $create_u sing$ is an instance of networkx. MultiGraph or networkx. MultiDiGraph, $parallel_edges$ is True, and the entries of A are of type int, then this function returns a multigraph (of the same type as $create_u sing$) with parallel edges. In this case, $edge_a ttribute$ will be ignored. If $create_u sing$ is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix A will be added to the graph. ### **Examples** ``` >>> import scipy.sparse >>> A = scipy.sparse.eye(2,2,1) >>> G = nx.from_scipy_sparse_matrix(A) ``` If $create_u sing$ is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges): ``` >>> import scipy >>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]]) >>> G = nx.from_scipy_sparse_matrix(A, create_using=nx.MultiGraph()) >>> G[1][1] {0: {'weight': 2}} ``` If $create_u sing$ is a multigraph and the matrix has only integer entries but $parallel_e dges$ is True, then the entries will be interpreted as the number of parallel edges joining those two vertices: # 8.6 Pandas | to_pandas_dataframe(G[, nodelist,]) | Return the graph adjacency matrix as a Pandas DataFrame. | |---|--| | <pre>from_pandas_dataframe(df, source, target[,])</pre> | Return a graph from Pandas DataFrame. | ### 8.6.1 to pandas dataframe ``` to_pandas_dataframe (G, nodelist=None, multigraph_weight=<built-in function sum>, weight='weight', nonedge=0.0) Return the graph adjacency matrix as a Pandas DataFrame. ``` #### **Parameters** • **G** (*graph*) – The NetworkX graph used to construct the Pandas DataFrame. - **nodelist** (*list*, *optional*) The rows and columns are ordered according to the nodes in *nodelist*. If *nodelist* is None, then the ordering is produced by G.nodes(). - multigraph_weight ({sum, min, max}, optional) An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges. - **weight** (*string or None, optional*) The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead. - nonedge (*float*, *optional*) The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan. Returns df – Graph adjacency matrix Return type Pandas DataFrame #### **Notes** The DataFrame entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the 'multigraph_weight' parameter. The default is to sum the weight attributes for each of the parallel edges. When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Pandas DataFrame can be modified as follows: #### **Examples** ``` >>> G = nx.MultiDiGraph() >>> G.add_edge(0,1,weight=2) >>> G.add_edge(1,0) >>> G.add_edge(2,2,weight=3) >>> G.add_edge(2,2) >>> nx.to_pandas_dataframe(G, nodelist=[0,1,2]) 0 1 2 0 0 2 0 1 1 0 0 2 0 0 4 ``` 8.6. Pandas 435 # 8.6.2 from pandas_dataframe **from_pandas_dataframe** (*df*,
source, *target*, *edge_attr=None*, *create_using=None*) Return a graph from Pandas DataFrame. The Pandas DataFrame should contain at least two columns of node names and zero or more columns of node attributes. Each row will be processed as one edge instance. Note: This function iterates over DataFrame.values, which is not guaranteed to retain the data type across columns in the row. This is only a problem if your row is entirely numeric and a mix of ints and floats. In that case, all values will be returned as floats. See the DataFrame.iterrows documentation for an example. ### **Parameters** - **df** (*Pandas DataFrame*) An edge list representation of a graph - source (str or int) A valid column name (string or iteger) for the source nodes (for the directed case). - **target** (*str or int*) A valid column name (string or iteger) for the target nodes (for the directed case). - edge_attr (str or int, iterable, True) A valid column name (str or integer) or list of column names that will be used to retrieve items from the row and add them to the graph as edge attributes. If True, all of the remaining columns will be added. - create_using (NetworkX graph) Use specified graph for result. The default is Graph() #### See also: ``` to_pandas_dataframe() ``` #### **Examples** Simple integer weights on edges: ``` >>> import pandas as pd >>> import numpy as np >>> r = np.random.RandomState(seed=5) >>> ints = r.random_integers(1, 10, size=(3,2)) >>> a = ['A', 'B', 'C'] >>> b = ['D', 'A', 'E'] >>> df = pd.DataFrame(ints, columns=['weight', 'cost']) >>> df[0] = a >>> df['b'] = b >>> df weight cost 0 b 0 4 7 A D 1 7 1 B A 10 2 9 C E >>> G=nx.from_pandas_dataframe(df, 0, 'b', ['weight', 'cost']) >>> G['E']['C']['weight'] >>> G['E']['C']['cost'] ``` **CHAPTER** NINE # READING AND WRITING GRAPHS # 9.1 Adjacency List # 9.1.1 Adjacency List Read and write NetworkX graphs as adjacency lists. Adjacency list format is useful for graphs without data associated with nodes or edges and for nodes that can be meaningfully represented as strings. #### **Format** The adjacency list format consists of lines with node labels. The first label in a line is the source node. Further labels in the line are considered target nodes and are added to the graph along with an edge between the source node and target node. The graph with edges a-b, a-c, d-e can be represented as the following adjacency list (anything following the # in a line is a comment): ``` a b c # source target target d e ``` | read_adjlist(path[, comments, delimiter,]) | Read graph in adjacency list format from path. | |---|---| | <pre>write_adjlist(G, path[, comments,])</pre> | Write graph G in single-line adjacency-list format to path. | | <pre>parse_adjlist(lines[, comments, delimiter,])</pre> | Parse lines of a graph adjacency list representation. | | <pre>generate_adjlist(G[, delimiter])</pre> | Generate a single line of the graph G in adjacency list format. | # 9.1.2 read adjlist read_adjlist (path, comments='#', delimiter=None, create_using=None, nodetype=None, encoding='utf-8') Read graph in adjacency list format from path. ### **Parameters** - path (*string or file*) Filename or file handle to read. Filenames ending in .gz or .bz2 will be uncompressed. - **create_using** (*NetworkX graph container*) Use given NetworkX graph for holding nodes or edges. - **nodetype** (*Python type, optional*) Convert nodes to this type. - comments (*string*, *optional*) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels. The default is whitespace. - create_using Use given NetworkX graph for holding nodes or edges. **Returns** G – The graph corresponding to the lines in adjacency list format. **Return type** NetworkX graph ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_adjlist(G, "test.adjlist") >>> G=nx.read_adjlist("test.adjlist") ``` The path can be a filehandle or a string with the name of the file. If a filehandle is provided, it has to be opened in 'rb' mode. ``` >>> fh=open("test.adjlist", 'rb') >>> G=nx.read_adjlist(fh) ``` Filenames ending in .gz or .bz2 will be compressed. ``` >>> nx.write_adjlist(G,"test.adjlist.gz") >>> G=nx.read_adjlist("test.adjlist.gz") ``` The optional nodetype is a function to convert node strings to nodetype. For example ``` >>> G=nx.read_adjlist("test.adjlist", nodetype=int) ``` will attempt to convert all nodes to integer type. Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.) The optional create_using parameter is a NetworkX graph container. The default is Graph(), an undirected graph. To read the data as a directed graph use ``` >>> G=nx.read_adjlist("test.adjlist", create_using=nx.DiGraph()) ``` ### **Notes** This format does not store graph or node data. ### See also: ``` write_adjlist() ``` # 9.1.3 write_adjlist ``` write_adjlist (G, path, comments='#', delimiter=' ', encoding='utf-8') Write graph G in single-line adjacency-list format to path. ``` #### **Parameters** • **G** (NetworkX graph) – - path (string or file) Filename or file handle for data output. Filenames ending in .gz or .bz2 will be compressed. - comments (string, optional) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels - encoding (*string*, *optional*) Text encoding. ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_adjlist(G, "test.adjlist") ``` The path can be a filehandle or a string with the name of the file. If a filehandle is provided, it has to be opened in 'wb' mode. ``` >>> fh=open("test.adjlist",'wb') >>> nx.write_adjlist(G, fh) ``` #### **Notes** This format does not store graph, node, or edge data. ### See also: ``` read_adjlist(), generate_adjlist() ``` # 9.1.4 parse_adjlist parse_adjlist (lines, comments='#', delimiter=None, create_using=None, nodetype=None) Parse lines of a graph adjacency list representation. #### **Parameters** - lines (list or iterator of strings) Input data in adjlist format - create_using (NetworkX graph container) Use given NetworkX graph for holding nodes or edges. - **nodetype** (*Python type, optional*) Convert nodes to this type. - comments (string, optional) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels. The default is whitespace. - create_using Use given NetworkX graph for holding nodes or edges. **Returns** G – The graph corresponding to the lines in adjacency list format. Return type NetworkX graph ### **Examples** ### See also: ``` read_adjlist() ``` # 9.1.5 generate adjlist ``` generate_adjlist(G, delimiter=' ') ``` Generate a single line of the graph G in adjacency list format. #### **Parameters** - **G** (NetworkX graph) – - **delimiter** (*string*, *optional*) Separator for node labels Returns lines – Lines of data in adjlist format. Return type string ### **Examples** ## See also: ``` write_adjlist(), read_adjlist() ``` # 9.2 Multiline Adjacency List # 9.2.1 Multi-line Adjacency List Read and write NetworkX graphs as multi-line adjacency lists. The multi-line adjacency list format is useful for graphs with nodes that can be meaningfully represented as strings. With this format simple edge data can be stored but node or graph data is not. ### **Format** The first label in a line is the source node label followed by the node degree d. The next d lines are target node labels and optional edge data. That pattern repeats for all nodes in the graph. The graph with edges a-b, a-c, d-e can be represented as the following adjacency list (anything following the # in a line is a comment): ``` # example.multiline-adjlist a 2 b c d 1 e ``` | | <pre>read_multiline_adjlist(path[, comments,])</pre> | Read graph in multi-line adjacency list format from path. | |---|--|---| | | $write_multiline_adjlist(G, path[,])$ | Write the graph G in multiline adjacency list format to path | | Ī | <pre>parse_multiline_adjlist(lines[, comments,])</pre> | Parse lines of a multiline adjacency list representation of a graph. | | Ī | <pre>generate multiline adjlist(G[, delimiter])</pre> | Generate a single line of the graph G in multiline adjacency list format. | # 9.2.2 read multiline adjlist Read graph in multi-line adjacency list format from path. #### **Parameters** - path (*string or file*) Filename or file handle to read. Filenames ending in .gz or .bz2 will be uncompressed. - **create_using** (*NetworkX graph container*) Use given NetworkX graph for holding nodes or edges. - **nodetype** (*Python type, optional*) Convert nodes to this type. - edgetype (*Python type, optional*) Convert edge data to this type. - comments (string, optional) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels. The default is whitespace. - create_using Use given NetworkX graph for holding nodes or edges. #### Returns G Return type NetworkX graph ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_multiline_adjlist(G,"test.adjlist") >>> G=nx.read_multiline_adjlist("test.adjlist") ``` The path can be a file or a string with the name of the file. If a file s provided, it has to be opened in 'rb' mode. ``` >>> fh=open("test.adjlist", 'rb') >>> G=nx.read_multiline_adjlist(fh) ``` Filenames ending in .gz or .bz2 will be compressed. ``` >>> nx.write_multiline_adjlist(G,"test.adjlist.gz") >>> G=nx.read_multiline_adjlist("test.adjlist.gz") ``` The optional nodetype is a function to convert node strings to nodetype. For example ``` >>> G=nx.read_multiline_adjlist("test.adjlist", nodetype=int) ``` will attempt to convert all nodes to integer type. The optional edgetype is a function to convert edge data strings to edgetype. ``` >>> G=nx.read_multiline_adjlist("test.adjlist") ```
The optional create_using parameter is a NetworkX graph container. The default is Graph(), an undirected graph. To read the data as a directed graph use ``` >>> G=nx.read_multiline_adjlist("test.adjlist", create_using=nx.DiGraph()) ``` #### **Notes** This format does not store graph, node, or edge data. #### See also: ``` write_multiline_adjlist() ``` # 9.2.3 write_multiline_adjlist ``` write_multiline_adjlist (G, path, delimiter=' ', comments='#', encoding='utf-8') Write the graph G in multiline adjacency list format to path ``` #### **Parameters** - **G** (NetworkX graph) – - comments (string, optional) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels - encoding (*string*, *optional*) Text encoding. ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_multiline_adjlist(G,"test.adjlist") ``` The path can be a file handle or a string with the name of the file. If a file handle is provided, it has to be opened in 'wb' mode. ``` >>> fh=open("test.adjlist",'wb') >>> nx.write_multiline_adjlist(G,fh) ``` Filenames ending in .gz or .bz2 will be compressed. ``` >>> nx.write_multiline_adjlist(G,"test.adjlist.gz") ``` #### See also: ``` read_multiline_adjlist() ``` # 9.2.4 parse_multiline_adjlist parse_multiline_adjlist(lines, comments='#', delimiter=None, create_using=None, nodetype=None, edgetype=None) Parse lines of a multiline adjacency list representation of a graph. #### **Parameters** - lines (list or iterator of strings) Input data in multiline adjlist format - **create_using** (*NetworkX graph container*) Use given NetworkX graph for holding nodes or edges. - **nodetype** (*Python type, optional*) Convert nodes to this type. - comments (string, optional) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels. The default is whitespace. - create_using Use given NetworkX graph for holding nodes or edges. **Returns** G – The graph corresponding to the lines in multiline adjacency list format. Return type NetworkX graph #### **Examples** # 9.2.5 generate multiline adjlist ``` generate_multiline_adjlist(G, delimiter='') ``` Generate a single line of the graph G in multiline adjacency list format. #### **Parameters** - **G** (NetworkX graph) – - **delimiter** (*string*, *optional*) Separator for node labels **Returns** lines – Lines of data in multiline adjlist format. Return type string ### **Examples** ``` >>> G = nx.lollipop_graph(4, 3) >>> for line in nx.generate_multiline_adjlist(G): print(line) . . . 0 3 1 {} 2 {} 3 {} 1 2 2 {} 3 {} 2 1 3 {} 3 1 4 { } 4 1 5 {} 5 1 6 {} 6 0 ``` ### See also: write_multiline_adjlist(), read_multiline_adjlist() # 9.3 Edge List # 9.3.1 Edge Lists Read and write NetworkX graphs as edge lists. The multi-line adjacency list format is useful for graphs with nodes that can be meaningfully represented as strings. With the edgelist format simple edge data can be stored but node or graph data is not. There is no way of representing isolated nodes unless the node has a self-loop edge. ### **Format** You can read or write three formats of edge lists with these functions. Node pairs with no data: ``` 1 2 ``` Python dictionary as data: ``` 1 2 {'weight':7, 'color':'green'} ``` # Arbitrary data: ``` 1 2 7 green ``` | read_edgelist(path[, comments, delimiter,]) | Read a graph from a list of edges. | |---|------------------------------------| | write_edgelist(G, path[, comments,]) | Write graph as a list of edges. | | | Continued on next page | Table 9.3 – continued from previous page | read_weighted_edgelist(path[, comments,]) | Read a graph as list of edges with numeric weights. | |--|--| | <pre>write_weighted_edgelist(G, path[, comments,])</pre> | Write graph G as a list of edges with numeric weights. | | <pre>generate_edgelist(G[, delimiter, data])</pre> | Generate a single line of the graph G in edge list format. | | <pre>parse_edgelist(lines[, comments, delimiter,])</pre> | Parse lines of an edge list representation of a graph. | # 9.3.2 read_edgelist #### **Parameters** - path (*file or string*) File or filename to read. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed. - comments (string, optional) The character used to indicate the start of a comment. - **delimiter** (*string*, *optional*) The string used to separate values. The default is whitespace. - **create_using** (*Graph container, optional*,) Use specified container to build graph. The default is networkx. Graph, an undirected graph. - nodetype (int, float, str, Python type, optional) Convert node data from strings to specified type - data (bool or list of (label,type) tuples) Tuples specifying dictionary key names and types for edge data - edgetype (int, float, str, Python type, optional OBSOLETE) Convert edge data from strings to specified type and use as 'weight' - encoding (string, optional) Specify which encoding to use when reading file. **Returns** G – A networkx Graph or other type specified with create_using Return type graph ### **Examples** ``` >>> nx.write_edgelist(nx.path_graph(4), "test.edgelist") >>> G=nx.read_edgelist("test.edgelist") >>> fh=open("test.edgelist", 'rb') >>> G=nx.read_edgelist(fh) >>> fh.close() ``` ``` >>> G=nx.read_edgelist("test.edgelist", nodetype=int) >>> G=nx.read_edgelist("test.edgelist", create_using=nx.DiGraph()) ``` #### Edgelist with data in a list: ``` >>> textline = '1 2 3' >>> fh = open('test.edgelist','w') >>> d = fh.write(textline) >>> fh.close() >>> G = nx.read_edgelist('test.edgelist', nodetype=int, data=(('weight',float),)) ``` 9.3. Edge List 445 ``` >>> G.nodes() [1, 2] >>> G.edges(data = True) [(1, 2, {'weight': 3.0})] ``` See parse_edgelist() for more examples of formatting. #### See also: ``` parse_edgelist() ``` #### **Notes** Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.) # 9.3.3 write edgelist ``` write_edgelist (G, path, comments='#', delimiter=' ', data=True, encoding='utf-8') Write graph as a list of edges. ``` #### **Parameters** - **G** (*graph*) A NetworkX graph - path (file or string) File or filename to write. If a file is provided, it must be opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed. - comments (string, optional) The character used to indicate the start of a comment - **delimiter** (*string*, *optional*) The string used to separate values. The default is whitespace. - data (bool or list, optional) If False write no edge data. If True write a string representation of the edge data dictionary.. If a list (or other iterable) is provided, write the keys specified in the list. - **encoding** (*string*, *optional*) Specify which encoding to use when writing file. ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_edgelist(G, "test.edgelist") >>> G=nx.path_graph(4) >>> fh=open("test.edgelist",'wb') >>> nx.write_edgelist(G, fh) >>> nx.write_edgelist(G, "test.edgelist.gz") >>> nx.write_edgelist(G, "test.edgelist.gz", data=False) ``` ``` >>> G=nx.Graph() >>> G.add_edge(1,2,weight=7,color='red') >>> nx.write_edgelist(G,'test.edgelist',data=False) >>> nx.write_edgelist(G,'test.edgelist',data=['color']) >>> nx.write_edgelist(G,'test.edgelist',data=['color','weight']) ``` #### See also: ``` write_edgelist(), write_weighted_edgelist() ``` # 9.3.4 read weighted edgelist Read a graph as list of edges with numeric weights. #### **Parameters** - **path** (*file or string*) File or filename to read. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed. - comments (*string*, *optional*) The character used to indicate the start of a comment. - **delimiter** (*string*, *optional*) The string used to separate values. The default is whitespace. - **create_using** (*Graph container, optional*,) Use specified container to build graph. The default is networkx. Graph, an undirected graph. - nodetype (int, float, str, Python type, optional) Convert node data from strings to specified type - **encoding** (*string*, *optional*) Specify which encoding to use when reading file. **Returns** G – A networkx Graph or other type specified with create using Return type graph #### **Notes** Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.) Example edgelist file format. With numeric edge data: ``` # read with # >>> G=nx.read_weighted_edgelist(fh) # source target data a b 1 a c 3.14159 d e 42 ``` # 9.3.5 write_weighted_edgelist ``` write_weighted_edgelist (G, path, comments='#', delimiter=' ', encoding='utf-8') Write graph G as a list of edges with numeric weights. ``` #### **Parameters** - **G** (*graph*) A NetworkX graph - path (*file or string*) File or filename to write. If a file is provided, it must be opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed. - comments (string, optional) The character used to indicate the start of a comment - **delimiter** (*string*, *optional*) The string used to separate values. The default is whitespace. 9.3. Edge List 447 • **encoding** (*string*, *optional*) – Specify which encoding to use when writing file. ### **Examples** ``` >>> G=nx.Graph() >>> G.add_edge(1,2,weight=7) >>> nx.write_weighted_edgelist(G, 'test.weighted.edgelist') ``` #### See also: ``` read edgelist(), write edgelist(), write weighted edgelist() ``` ## 9.3.6 generate edgelist ``` generate_edgelist(G, delimiter='', data=True) ``` Generate a single line of the graph G in edge list format. #### **Parameters** - **G** (NetworkX graph) – - **delimiter** (*string*, *optional*) Separator for node labels - data (bool or list of keys) If False generate no edge data. If True use a dictionary representation of edge data. If a
list of keys use a list of data values corresponding to the keys. Returns lines – Lines of data in adjlist format. Return type string ### **Examples** ``` >>> for line in nx.generate_edgelist(G): ... print(line) 0 1 {} 0 2 {} 0 3 {} 1 2 {'weight': 3} 1 3 {} 2 3 {} 3 4 {'capacity': 12} ``` ``` 4 5 {} 5 6 {} ``` ### See also: ``` write_adjlist(), read_adjlist() ``` # 9.3.7 parse edgelist #### **Parameters** - lines (list or iterator of strings) Input data in edgelist format - comments (string, optional) Marker for comment lines - **delimiter** (*string*, *optional*) Separator for node labels - create_using (NetworkX graph container, optional) Use given NetworkX graph for holding nodes or edges. - **nodetype** (*Python type, optional*) Convert nodes to this type. - data (bool or list of (label,type) tuples) If False generate no edge data or if True use a dictionary representation of edge data or a list tuples specifying dictionary key names and types for edge data. **Returns G** – The graph corresponding to lines **Return type** NetworkX Graph ### **Examples** Edgelist with no data: 9.3. Edge List 449 Edgelist with data in Python dictionary representation: Edgelist with data in a list: #### See also: read_weighted_edgelist() # **9.4 GEXF** # 9.4.1 **GEXF** Read and write graphs in GEXF format. GEXF (Graph Exchange XML Format) is a language for describing complex network structures, their associated data and dynamics. This implementation does not support mixed graphs (directed and undirected edges together). ## **Format** GEXF is an XML format. See http://gexf.net/format/schema.html for the specification and http://gexf.net/format/basic.html for examples. | <pre>read_gexf(path[, node_type, relabel, version])</pre> | Read graph in GEXF format from path. | |---|--| | <pre>write_gexf(G, path[, encoding, prettyprint,])</pre> | Write G in GEXF format to path. | | relabel_gexf_graph(G) | Relabel graph using "label" node keyword for node label. | # 9.4.2 read_gexf **read_gexf** (path, node_type=None, relabel=False, version='1.1draft') Read graph in GEXF format from path. "GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics" ¹. ¹ GEXF graph format, http://gexf.net/format/ #### **Parameters** - path (file or string) File or file name to write. File names ending in .gz or .bz2 will be compressed. - node_type (*Python type (default: None)*) Convert node ids to this type if not None. - relabel (bool (default: False)) If True relabel the nodes to use the GEXF node "label" attribute instead of the node "id" attribute as the NetworkX node label. **Returns** graph – If no parallel edges are found a Graph or DiGraph is returned. Otherwise a Multi-Graph or MultiDiGraph is returned. Return type NetworkX graph #### **Notes** This implementation does not support mixed graphs (directed and undirected edges together). #### References # 9.4.3 write_gexf ``` write_gexf (G, path, encoding='utf-8', prettyprint=True, version='1.1draft') Write G in GEXF format to path. ``` "GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics" ². ## **Parameters** - G (graph) A NetworkX graph - path (*file or string*) File or file name to write. File names ending in .gz or .bz2 will be compressed. - encoding (string (optional)) Encoding for text data. - prettyprint (bool (optional)) If True use line breaks and indenting in output XML. ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_gexf(G, "test.gexf") ``` ### **Notes** This implementation does not support mixed graphs (directed and undirected edges together). The node id attribute is set to be the string of the node label. If you want to specify an id use set it as node data, e.g. node['a']['id']=1 to set the id of node 'a' to 1. 9.4. GEXF 451 ² GEXF graph format, http://gexf.net/format/ #### References # 9.4.4 relabel_gexf_graph ### $relabel_gexf_graph(G)$ Relabel graph using "label" node keyword for node label. **Parameters** G (graph) – A NetworkX graph read from GEXF data Returns H – A NetworkX graph with relabed nodes Return type graph #### **Notes** This function relabels the nodes in a NetworkX graph with the "label" attribute. It also handles relabeling the specific GEXF node attributes "parents", and "pid". # 9.5 GML Read graphs in GML format. "GML, the G>raph Modelling Language, is our proposal for a portable file format for graphs. GML's key features are portability, simple syntax, extensibility and flexibility. A GML file consists of a hierarchical key-value lists. Graphs can be annotated with arbitrary data structures. The idea for a common file format was born at the GD'95; this proposal is the outcome of many discussions. GML is the standard file format in the Graphlet graph editor system. It has been overtaken and adapted by several other systems for drawing graphs." See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html ### 9.5.1 Format See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html for format specification. Example graphs in GML format: http://www-personal.umich.edu/~mejn/netdata/ | read_gml(path[, label, destringizer]) | Read graph in GML format from path. | |--|--| | <pre>write_gml(G, path[, stringizer])</pre> | Write a graph G in GML format to the file or file handle path. | | <pre>parse_gml(lines[, label, destringizer])</pre> | Parse GML graph from a string or iterable. | | <pre>generate_gml(G[, stringizer])</pre> | Generate a single entry of the graph G in GML format. | | literal_destringizer(rep) | Convert a Python literal to the value it represents. | | literal_stringizer(value) | Convert a value to a Python literal in GML representation. | # 9.5.2 read gml read_gml (path, label='label', destringizer=None) Read graph in GML format from path. ### Parameters - path (filename or filehandle) The filename or filehandle to read from. - label (string, optional) If not None, the parsed nodes will be renamed according to node attributes indicated by label. Default value: 'label'. • **destringizer** (callable, optional) – A destringizer that recovers values stored as strings in GML. If it cannot convert a string to a value, a ValueError is raised. Default value: None. **Returns** G – The parsed graph. Return type NetworkX graph **Raises** NetworkXError – If the input cannot be parsed. #### See also: ``` write_gml(), parse_gml() ``` #### **Notes** The GML specification says that files should be ASCII encoded, with any extended ASCII characters (iso8859-1) appearing as HTML character entities. #### References GML specification: http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html ## **Examples** ``` >>> G = nx.path_graph(4) >>> nx.write_gml(G, 'test.gml') >>> H = nx.read_gml('test.gml') ``` # 9.5.3 write gml ``` write_gml (G, path, stringizer=None) ``` Write a graph G in GML format to the file or file handle path. #### **Parameters** - **G** (*NetworkX graph*) The graph to be converted to GML. - path (*filename or filehandle*) The filename or filehandle to write. Files whose names end with .gz or .bz2 will be compressed. - **stringizer** (callable, optional) A stringizer which converts non-int/non-float/non-dict values into strings. If it cannot convert a value into a string, it should raise a ValueError to indicate that. Default value: None. Raises NetworkXError – If stringizer cannot convert a value into a string, or the value to convert is not a string while stringizer is None. #### See also: ``` read_gml(), generate_gml() ``` 9.5. GML 453 #### **Notes** Graph attributes named 'directed', 'multigraph', 'node' or 'edge', node attributes named 'id' or 'label', edge attributes named 'source' or 'target' (or 'key' if G is a multigraph) are ignored because these attribute names are used to encode the graph structure. ``` >>> G = nx.path_graph(4) >>> nx.write_gml(G, "test.gml") ``` Filenames ending in .gz or .bz2 will be compressed. ``` >>> nx.write_gml(G, "test.gml.gz") ``` # 9.5.4 parse gml parse_gml (lines, label='label', destringizer=None) Parse GML graph from a string or iterable. #### **Parameters** - lines (string or iterable of strings) Data in GML format. - label (*string, optional*) If not None, the parsed nodes will be renamed according to node attributes indicated by label. Default value: 'label'. - **destringizer** (callable, optional) A destringizer that recovers values stored as strings in GML. If it cannot convert a string to a value, a ValueError is raised. Default value: None. **Returns G** – The parsed graph. Return type NetworkX graph **Raises** NetworkXError – If the input cannot be parsed. ## See also: ``` write_gml(), read_gml() ``` ### **Notes** This stores nested GML attributes as dictionaries in the NetworkX graph, node, and edge attribute structures. ### References GML specification: http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html # 9.5.5 generate gml ``` generate_gml (G, stringizer=None) ``` Generate a single entry of the graph G in GML format. #### **Parameters** • **G** (*NetworkX graph*) – The graph to be converted to GML. • **stringizer** (*callable*, *optional*) – A stringizer which converts non-int/float/dict values into strings. If it cannot convert a value into a string, it should raise a ValueError raised to indicate that. Default value: None. **Returns** lines – Lines of GML data. Newlines are not appended. **Return type** generator of strings **Raises** NetworkXError – If stringizer cannot convert a value into a string, or the value to convert is not a string while stringizer is None. #### **Notes** Graph attributes named 'directed',
'multigraph', 'node' or 'edge', node attributes named 'id' or 'label', edge attributes named 'source' or 'target' (or 'key' if G is a multigraph) are ignored because these attribute names are used to encode the graph structure. # 9.5.6 literal_destringizer ### literal_destringizer(rep) Convert a Python literal to the value it represents. **Parameters** rep (*string*) – A Python literal. Returns value – The value of the Python literal. Return type object Raises ValueError – If rep is not a Python literal. # 9.5.7 literal_stringizer ### literal_stringizer(value) Convert a value to a Python literal in GML representation. **Parameters value** (*object*) – The value to be converted to GML representation. **Returns rep** – A double-quoted Python literal representing value. Unprintable characters are replaced by XML character references. Return type string Raises ValueError - If value cannot be converted to GML. ### **Notes** literal_stringizer is largely the same as repr in terms of functionality but attempts prefix unicode and bytes literals with u and b to provide better interoperability of data generated by Python 2 and Python 3. The original value can be recovered using the networks.readwrite.gml.literal_destringizer function. 9.5. GML 455 # 9.6 Pickle # 9.6.1 Pickled Graphs Read and write NetworkX graphs as Python pickles. "The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python object structure. "Pickling" is the process whereby a Python object hierarchy is converted into a byte stream, and "unpickling" is the inverse operation, whereby a byte stream is converted back into an object hierarchy." Note that NetworkX graphs can contain any hashable Python object as node (not just integers and strings). For arbitrary data types it may be difficult to represent the data as text. In that case using Python pickles to store the graph data can be used. #### **Format** See http://docs.python.org/library/pickle.html | read_gpickle(path) | Read graph object in Python pickle format. | |---|--| | <pre>write_gpickle(G, path[, protocol])</pre> | Write graph in Python pickle format. | # 9.6.2 read gpickle ### read_gpickle(path) Read graph object in Python pickle format. Pickles are a serialized byte stream of a Python object ³. This format will preserve Python objects used as nodes or edges **Parameters** path (*file or string*) – File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed. **Returns G** – A NetworkX graph Return type graph ### **Examples** ``` >>> G = nx.path_graph(4) >>> nx.write_gpickle(G, "test.gpickle") >>> G = nx.read_gpickle("test.gpickle") ``` ### References ## 9.6.3 write gpickle write_gpickle (*G*, *path*, *protocol*=2) Write graph in Python pickle format. ³ http://docs.python.org/library/pickle.html Pickles are a serialized byte stream of a Python object ⁴. This format will preserve Python objects used as nodes or edges. #### **Parameters** - **G** (graph) A NetworkX graph - path (*file or string*) File or filename to write. Filenames ending in .gz or .bz2 will be compressed. - **protocol** (*integer*) Pickling protocol to use. Default value: pickle.HIGHEST_PROTOCOL. ### **Examples** ``` >>> G = nx.path_graph(4) >>> nx.write_gpickle(G, "test.gpickle") ``` #### References # 9.7 GraphML # 9.7.1 GraphML Read and write graphs in GraphML format. This implementation does not support mixed graphs (directed and unidirected edges together), hyperedges, nested graphs, or ports. "GraphML is a comprehensive and easy-to-use file format for graphs. It consists of a language core to describe the structural properties of a graph and a flexible extension mechanism to add application-specific data. Its main features include support of - · directed, undirected, and mixed graphs, - · hypergraphs, - · hierarchical graphs, - graphical representations, - references to external data, - · application-specific attribute data, and - light-weight parsers. Unlike many other file formats for graphs, GraphML does not use a custom syntax. Instead, it is based on XML and hence ideally suited as a common denominator for all kinds of services generating, archiving, or processing graphs." http://graphml.graphdrawing.org/ 9.7. GraphML 457 ⁴ http://docs.python.org/library/pickle.html # **Format** $GraphML\ is\ an\ XML\ format.\ See \ http://graphml.graphdrawing.org/specification.html\ for\ the\ specification\ and\ http://graphml.graphdrawing.org/primer/graphml-primer.html\ for\ examples.$ | read_graphml(path[, node_type]) | Read graph in GraphML format from path. | |--|---| | <pre>write_graphml(G, path[, encoding, prettyprint])</pre> | Write G in GraphML XML format to path | # 9.7.2 read_graphml read_graphml (path, node_type=<type 'str'>) Read graph in GraphML format from path. ### **Parameters** - path (file or string) File or filename to write. Filenames ending in .gz or .bz2 will be compressed. - node_type (Python type (default: str)) Convert node ids to this type **Returns** graph – If no parallel edges are found a Graph or DiGraph is returned. Otherwise a Multi-Graph or MultiDiGraph is returned. Return type NetworkX graph #### **Notes** This implementation does not support mixed graphs (directed and unidirected edges together), hypergraphs, nested graphs, or ports. For multigraphs the GraphML edge "id" will be used as the edge key. If not specified then they "key" attribute will be used. If there is no "key" attribute a default NetworkX multigraph edge key will be provided. Files with the yEd "yfiles" extension will can be read but the graphics information is discarded. yEd compressed files ("file.graphmlz" extension) can be read by renaming the file to "file.graphml.gz". # 9.7.3 write_graphml ``` write_graphml (G, path, encoding='utf-8', prettyprint=True) Write G in GraphML XML format to path ``` ### **Parameters** - **G** (graph) A networkx graph - path (*file or string*) File or filename to write. Filenames ending in .gz or .bz2 will be compressed. - encoding (string (optional)) Encoding for text data. - prettyprint (bool (optional)) If True use line breaks and indenting in output XML. # **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_graphml(G, "test.graphml") ``` 9.7. GraphML 459 #### **Notes** This implementation does not support mixed graphs (directed and unidirected edges together) hyperedges, nested graphs, or ports. # **9.8 JSON** ### 9.8.1 JSON data Generate and parse JSON serializable data for NetworkX graphs. These formats are suitable for use with the d3.js examples http://d3js.org/ The three formats that you can generate with NetworkX are: - node-link like in the d3.js example http://bl.ocks.org/mbostock/4062045 - tree like in the d3.js example http://bl.ocks.org/mbostock/4063550 - adjacency like in the d3.js example http://bost.ocks.org/mike/miserables/ | node_link_da | ta(G[, attrs]) | Return data in node-link format that is suitable for JSON serialization and use in Javascr | |----------------|-------------------------|--| | node_link_gr | raph(data[, directed,]) | Return graph from node-link data format. | | adjacency_da | ta(G[, attrs]) | Return data in adjacency format that is suitable for JSON serialization and use in Javascr | | adjacency_gr | raph(data[, directed,]) | Return graph from adjacency data format. | | tree_data(G, r | root[, attrs]) | Return data in tree format that is suitable for JSON serialization and use in Javascript doc | | tree graph(da | ita[, attrs]) | Return graph from tree data format. | # 9.8.2 node link data node_link_data (*G*, attrs={'source': 'source', 'target': 'target', 'key': 'key', 'id': 'id'}) Return data in node-link format that is suitable for JSON serialization and use in Javascript documents. #### **Parameters** - **G** (NetworkX graph) – - attrs (dict) A dictionary that contains four keys 'id', 'source', 'target' and 'key'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict(id='id', source='source', target='target', key='key'). If some user-defined graph data use these attribute names as data keys, they may be silently dropped. **Returns data** – A dictionary with node-link formatted data. Return type dict **Raises** NetworkXError – If values in attrs are not unique. # **Examples** ``` >>> from networkx.readwrite import json_graph >>> G = nx.Graph([(1,2)]) >>> data = json_graph.node_link_data(G) ``` To serialize with json ``` >>> import json >>> s = json.dumps(data) ``` #### **Notes** Graph, node, and link attributes are stored in this format. Note that attribute keys will be converted to strings in order to comply with JSON. The default value of attrs will be changed in a future release of NetworkX. #### See also: ``` node_link_graph(), adjacency_data(), tree_data() ``` # 9.8.3 node_link_graph ### **Parameters** - data (dict) node-link formatted graph data - **directed** (*bool*) If True, and direction not specified in data, return a directed graph. - multigraph (bool) If True, and multigraph not specified in data, return a multigraph. - attrs (dict) A dictionary that contains four keys 'id', 'source', 'target' and 'key'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. Default value: dict(id='id', source='source', target='target', key='key'). **Returns** G – A NetworkX graph object **Return type** NetworkX graph # **Examples** ``` >>> from networkx.readwrite import json_graph >>> G = nx.Graph([(1,2)]) >>> data = json_graph.node_link_data(G) >>> H = json_graph.node_link_graph(data) ``` #### **Notes** The default value of attrs will be changed in a future release of NetworkX. #### See
also: ``` node_link_data(), adjacency_data(), tree_data() ``` 9.8. JSON 461 # 9.8.4 adjacency data ``` adjacency_data(G, attrs={'id': 'id', 'key': 'key'}) ``` Return data in adjacency format that is suitable for JSON serialization and use in Javascript documents. #### **Parameters** - **G** (NetworkX graph) – - attrs (dict) A dictionary that contains two keys 'id' and 'key'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict(id='id', key='key'). If some user-defined graph data use these attribute names as data keys, they may be silently dropped. **Returns data** – A dictionary with adjacency formatted data. Return type dict **Raises** NetworkXError – If values in attrs are not unique. ### **Examples** ``` >>> from networkx.readwrite import json_graph >>> G = nx.Graph([(1,2)]) >>> data = json_graph.adjacency_data(G) ``` #### To serialize with json ``` >>> import json >>> s = json.dumps(data) ``` ### **Notes** Graph, node, and link attributes will be written when using this format but attribute keys must be strings if you want to serialize the resulting data with JSON. The default value of attrs will be changed in a future release of NetworkX. #### See also: ``` adjacency_graph(), node_link_data(), tree_data() ``` # 9.8.5 adjacency_graph adjacency_graph (data, directed=False, multigraph=True, attrs={'id': 'id', 'key': 'key'}) Return graph from adjacency data format. **Parameters** data (dict) – Adjacency list formatted graph data #### Returns - **G** (NetworkX graph) A NetworkX graph object - **directed** (*bool*) If True, and direction not specified in data, return a directed graph. - multigraph (bool) If True, and multigraph not specified in data, return a multigraph. • attrs (dict) – A dictionary that contains two keys 'id' and 'key'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict(id='id', key='key'). ### **Examples** ``` >>> from networkx.readwrite import json_graph >>> G = nx.Graph([(1,2)]) >>> data = json_graph.adjacency_data(G) >>> H = json_graph.adjacency_graph(data) ``` ### **Notes** The default value of attrs will be changed in a future release of NetworkX. ### See also: ``` adjacency_graph(), node_link_data(), tree_data() ``` ## 9.8.6 tree data ``` tree_data(G, root, attrs={'children': 'children', 'id': 'id'}) ``` Return data in tree format that is suitable for JSON serialization and use in Javascript documents. #### **Parameters** - **G** (NetworkX graph) G must be an oriented tree - root (node) The root of the tree - attrs (dict) A dictionary that contains two keys 'id' and 'children'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict(id='id', children='children'). If some user-defined graph data use these attribute names as data keys, they may be silently dropped. **Returns** data – A dictionary with node-link formatted data. Return type dict Raises NetworkXError – If values in attrs are not unique. ## **Examples** ``` >>> from networkx.readwrite import json_graph >>> G = nx.DiGraph([(1,2)]) >>> data = json_graph.tree_data(G,root=1) ``` To serialize with json ``` >>> import json >>> s = json.dumps(data) ``` 9.8. JSON 463 ### **Notes** Node attributes are stored in this format but keys for attributes must be strings if you want to serialize with ISON. Graph and edge attributes are not stored. The default value of attrs will be changed in a future release of NetworkX. #### See also: ``` tree_graph(), node_link_data(), node_link_data() ``` # 9.8.7 tree_graph ``` tree_graph (data, attrs={'children': 'children', 'id': 'id'}) Return graph from tree data format. ``` Parameters data (dict) – Tree formatted graph data ### Returns - **G** (NetworkX DiGraph) - attrs (dict) A dictionary that contains two keys 'id' and 'children'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict(id='id', children='children'). ## **Examples** ``` >>> from networkx.readwrite import json_graph >>> G = nx.DiGraph([(1,2)]) >>> data = json_graph.tree_data(G,root=1) >>> H = json_graph.tree_graph(data) ``` ### **Notes** The default value of attrs will be changed in a future release of NetworkX. ### See also: ``` tree_graph(), node_link_data(), adjacency_data() ``` # **9.9 LEDA** Read graphs in LEDA format. LEDA is a C++ class library for efficient data types and algorithms. ## **9.9.1 Format** See http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html | read_leda(path[, encoding]) | Read graph in LEDA format from path. | |-----------------------------|--| | parse_leda(lines) | Read graph in LEDA format from string or iterable. | # 9.9.2 read_leda read_leda (path, encoding='UTF-8') Read graph in LEDA format from path. **Parameters** path (*file or string*) – File or filename to read. Filenames ending in .gz or .bz2 will be uncompressed. Returns G Return type NetworkX graph ## **Examples** G=nx.read leda('file.leda') References # 9.9.3 parse leda parse_leda(lines) Read graph in LEDA format from string or iterable. Parameters lines (string or iterable) – Data in LEDA format. Returns G Return type NetworkX graph ### **Examples** G=nx.parse_leda(string) References # 9.10 YAML ## 9.10.1 YAML Read and write NetworkX graphs in YAML format. "YAML is a data serialization format designed for human readability and interaction with scripting languages." See http://www.yaml.org for documentation. 9.10. YAML 465 # **Format** http://pyyaml.org/wiki/PyYAML | read_yaml(path) | Read graph in YAML format from path. | |--|---------------------------------------| | <pre>write_yaml(G, path[, encoding])</pre> | Write graph G in YAML format to path. | # 9.10.2 read_yaml ## read_yaml (path) Read graph in YAML format from path. YAML is a data serialization format designed for human readability and interaction with scripting languages 5. **Parameters** path (*file or string*) – File or filename to read. Filenames ending in .gz or .bz2 will be uncompressed. ### Returns G Return type NetworkX graph ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_yaml(G,'test.yaml') >>> G=nx.read_yaml('test.yaml') ``` ### References # 9.10.3 write yaml ``` write_yaml (G, path, encoding='UTF-8', **kwds) ``` Write graph G in YAML format to path. YAML is a data serialization format designed for human readability and interaction with scripting languages ⁶. ## Parameters - **G** (graph) A NetworkX graph - path (*file or string*) File or filename to write. Filenames ending in .gz or .bz2 will be compressed. - encoding (string, optional) Specify which encoding to use when writing file. ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_yaml(G,'test.yaml') ``` 9.10. YAML 467 ⁵ http://www.yaml.org ⁶ http://www.yaml.org ### References # 9.11 SparseGraph6 # 9.11.1 Graph6 Graph6 Read and write graphs in graph6 format. ## **Format** "graph6 and sparse6 are formats for storing undirected graphs in a compact manner, using only printable ASCII characters. Files in these formats have text type and contain one line per graph." See http://cs.anu.edu.au/~bdm/data/formats.txt for details. | parse_graph6(string) | Read a simple undirected graph in graph6 format from string. | |---|---| | read_graph6(path) | Read simple undirected graphs in graph6 format from path. | | <pre>generate_graph6(G[, nodes, header])</pre> | Generate graph6 format string from a simple undirected graph. | | <pre>write_graph6(G, path[, nodes, header])</pre> | Write a simple undirected graph to path in graph6 format. | ## parse_graph6 ``` parse_graph6 (string) ``` Read a simple undirected graph in graph6 format from string. Parameters string (string) - Data in graph6 format Returns G Return type Graph Raises NetworkXError – If the string is unable to be parsed in graph6 format ### **Examples** ``` >>> G = nx.parse_graph6('A_') >>> sorted(G.edges()) [(0, 1)] ``` ### See also: ``` generate_graph6(), read_graph6(), write_graph6() ``` ### References Graph6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details. ## read graph6 ### read_graph6 (path) Read simple undirected graphs in graph6 format from path. **Parameters** path (*file or string*) – File or filename to write. **Returns** G – If the file contains multiple lines then a list of graphs is returned Return type Graph or list of Graphs Raises NetworkXError - If the string is unable to be parsed in graph6 format ## **Examples** ``` >>> nx.write_graph6(nx.Graph([(0,1)]), 'test.g6') >>> G = nx.read_graph6('test.g6') >>> sorted(G.edges()) [(0, 1)] ``` #### See also: ``` generate_graph6(), parse_graph6(), write_graph6() ``` #### References Graph6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details. ## generate_graph6 ``` generate_graph6 (G, nodes=None, header=True) ``` Generate graph6 format string from a simple undirected graph. ## **Parameters** - **G** (*Graph* (*undirected*)) – - **nodes** (*list or iterable*) Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used. - header (bool) If True add '>>graph6<<' string to head of data **Returns** s – String in graph6 format Return type string Raises NetworkXError – If the graph is directed or has parallel edges ## **Examples** ``` >>> G = nx.Graph([(0, 1)]) >>> nx.generate_graph6(G) '>>graph6<<A_' ``` ### See also: ``` read_graph6(), parse_graph6(), write_graph6() ``` ### **Notes** The format does not support edge or node labels, parallel edges or self loops. If self loops are present they are silently ignored. ### References Graph6
specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details. ## write graph6 ``` write_graph6 (G, path, nodes=None, header=True) ``` Write a simple undirected graph to path in graph6 format. ### **Parameters** - **G** (Graph (undirected)) – - path (file or string) File or filename to write. - **nodes** (*list or iterable*) Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used. - header (bool) If True add '>>graph6<<' string to head of data Raises NetworkXError – If the graph is directed or has parallel edges ### **Examples** ``` >>> G = nx.Graph([(0, 1)]) >>> nx.write_graph6(G, 'test.g6') ``` ### See also: ``` generate_graph6(), parse_graph6(), read_graph6() ``` ## **Notes** The format does not support edge or node labels, parallel edges or self loops. If self loops are present they are silently ignored. ## References Graph6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details. # 9.11.2 Sparse6 ### Sparse6 Read and write graphs in sparse6 format. ### **Format** "graph6 and sparse6 are formats for storing undirected graphs in a compact manner, using only printable ASCII characters. Files in these formats have text type and contain one line per graph." See http://cs.anu.edu.au/~bdm/data/formats.txt for details. | parse_sparse6(string) | Read an undirected graph in sparse6 format from string. | |--|--| | read_sparse6(path) | Read an undirected graph in sparse6 format from path. | | generate_sparse6(G[, nodes, header]) | Generate sparse6 format string from an undirected graph. | | <pre>write_sparse6(G, path[, nodes, header])</pre> | Write graph G to given path in sparse6 format. | ### parse sparse6 ### parse_sparse6 (string) Read an undirected graph in sparse6 format from string. Parameters string (string) – Data in sparse6 format Returns G Return type Graph Raises NetworkXError – If the string is unable to be parsed in sparse6 format ## **Examples** ``` >>> G = nx.parse_sparse6(':A_') >>> sorted(G.edges()) [(0, 1), (0, 1), (0, 1)] ``` ### See also: ``` generate_sparse6(), read_sparse6(), write_sparse6() ``` ## References Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt ### read sparse6 ### read_sparse6 (path) Read an undirected graph in sparse6 format from path. **Parameters** path (*file or string*) – File or filename to write. **Returns** G – If the file contains multple lines then a list of graphs is returned Return type Graph/Multigraph or list of Graphs/MultiGraphs Raises NetworkXError – If the string is unable to be parsed in sparse6 format ## **Examples** ``` >>> nx.write_sparse6(nx.Graph([(0,1),(0,1),(0,1)]), 'test.s6') >>> G = nx.read_sparse6('test.s6') >>> sorted(G.edges()) [(0, 1)] ``` ### See also: ``` generate_sparse6(), read_sparse6(), parse_sparse6() ``` ### References Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt ## generate_sparse6 ``` generate_sparse6 (G, nodes=None, header=True) ``` Generate sparse6 format string from an undirected graph. ### **Parameters** - **G** (Graph (undirected)) – - **nodes** (*list or iterable*) Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used. - header (bool) If True add '>>sparse6<<' string to head of data **Returns** s – String in sparse6 format Return type string Raises NetworkXError – If the graph is directed ## **Examples** ``` >>> G = nx.MultiGraph([(0, 1), (0, 1), (0, 1)]) >>> nx.generate_sparse6(G) '>>sparse6<<:A_' ``` ### See also: ``` read_sparse6(), parse_sparse6(), write_sparse6() ``` ### **Notes** The format does not support edge or node labels. ## References Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details. ## write sparse6 ``` write_sparse6 (G, path, nodes=None, header=True) ``` Write graph G to given path in sparse6 format. :param G: :type G: Graph (undirected) :param path: File or filename to write ### **Parameters** - **nodes** (*list or iterable*) Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used. - header (bool) If True add '>>sparse6<<' string to head of data Raises NetworkXError – If the graph is directed # **Examples** ``` >>> G = nx.Graph([(0, 1), (0, 1), (0, 1)]) >>> nx.write_sparse6(G, 'test.s6') ``` ### See also: ``` read_sparse6(), parse_sparse6(), generate_sparse6() ``` ### **Notes** The format does not support edge or node labels. ## References Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details. # 9.12 Pajek # 9.12.1 Pajek Read graphs in Pajek format. This implementation handles directed and undirected graphs including those with self loops and parallel edges. ### **Format** See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information. | read_pajek(path[, encoding]) | Read graph in Pajek format from path. | |---|---| | <pre>write_pajek(G, path[, encoding])</pre> | Write graph in Pajek format to path. | | parse_pajek(lines) | Parse Pajek format graph from string or iterable. | 9.12. Pajek 473 # 9.12.2 read pajek ``` read_pajek (path, encoding='UTF-8') ``` Read graph in Pajek format from path. **Parameters path** (*file or string*) – File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed. Returns G Return type NetworkX MultiGraph or MultiDiGraph. ## **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_pajek(G, "test.net") >>> G=nx.read_pajek("test.net") ``` To create a Graph instead of a MultiGraph use ``` >>> G1=nx.Graph(G) ``` #### References See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information. # 9.12.3 write_pajek ``` write_pajek (G, path, encoding='UTF-8') ``` Write graph in Pajek format to path. ### **Parameters** - **G** (*graph*) A Networkx graph - path (file or string) File or filename to write. Filenames ending in .gz or .bz2 will be compressed. ### **Examples** ``` >>> G=nx.path_graph(4) >>> nx.write_pajek(G, "test.net") ``` #### References See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information. # 9.12.4 parse pajek ``` parse_pajek (lines) ``` Parse Pajek format graph from string or iterable. **Parameters** lines (*string or iterable*) – Data in Pajek format. Returns G Return type NetworkX graph See also: read_pajek() # 9.13 GIS Shapefile # 9.13.1 Shapefile Generates a networkx.DiGraph from point and line shapefiles. "The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software. It is developed and regulated by Esri as a (mostly) open specification for data interoperability among Esri and other software products." See http://en.wikipedia.org/wiki/Shapefile for additional information. | read_shp(path[, simplify]) | Generates a networkx.DiGraph from shapefiles. | |----------------------------|---| | write_shp(G, outdir) | Writes a networkx.DiGraph to two shapefiles, edges and nodes. | # 9.13.2 read shp read_shp (path, simplify=True) Generates a networkx.DiGraph from shapefiles. Point geometries are translated into nodes, lines into edges. Coordinate tuples are used as keys. Attributes are preserved, line geometries are simplified into start and end coordinates. Accepts a single shapefile or directory of many shapefiles. "The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software 7." ### **Parameters** - path (file or string) File, directory, or filename to read. - **simplify** (*bool*) If True, simplify line geometries to start and end coordinates. If False, and line feature geometry has multiple segments, the non-geometric attributes for that feature will be repeated for each edge comprising that feature. ### Returns G **Return type** NetworkX graph ## **Examples** ``` >>> G=nx.read_shp('test.shp') ``` 9.13. GIS Shapefile 475 ⁷ http://en.wikipedia.org/wiki/Shapefile ### References # 9.13.3 write_shp # $write_shp(G, outdir)$ Writes a networkx.DiGraph to two shapefiles, edges and nodes. Nodes and edges are expected to have a Well Known Binary (Wkb) or Well Known Text (Wkt) key in order to generate geometries. Also acceptable are nodes with a numeric tuple key (x,y). "The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software ⁸." **Parameters** outdir (*directory path*) – Output directory for the two shapefiles. Returns Return type None ## **Examples** nx.write_shp(digraph, '/shapefiles') # doctest +SKIP ## References ⁸ http://en.wikipedia.org/wiki/Shapefile **CHAPTER** **TEN** # **DRAWING** NetworkX provides basic functionality for visualizing graphs, but its main goal is to enable graph analysis rather than perform graph visualization. In the future, graph visualization functionality may be removed from NetworkX or only available as an add-on package. Proper graph visualization is hard, and we highly recommend that people visualize their graphs with tools dedicated to that task. Notable examples of dedicated and fully-featured graph visualization tools are Cytoscape, Gephi, Graphviz and, for LaTeX typesetting, PGF/TikZ. To use these and other such tools, you should export your NetworkX graph into a format that can be read by those tools. For example, Cytoscape can read the GraphML format, and so, $networkx.write_q raphml(G)$ might be an appropriate choice. # 10.1 Matplotlib # 10.1.1 Matplotlib Draw networks with matplotlib. See also: matplotlib http://matplotlib.org/ pygraphviz http://pygraphviz.github.io/ | draw(G[, pos, ax, hold]) | Draw the graph G with Matplotlib. | |---
---| | <pre>draw_networkx(G[, pos, arrows, with_labels])</pre> | Draw the graph G using Matplotlib. | | <pre>draw_networkx_nodes(G, pos[, nodelist,])</pre> | Draw the nodes of the graph G. | | <pre>draw_networkx_edges(G, pos[, edgelist,])</pre> | Draw the edges of the graph G. | | <pre>draw_networkx_labels(G, pos[, labels,])</pre> | Draw node labels on the graph G. | | $draw_networkx_edge_labels(G, pos[,])$ | Draw edge labels. | | draw_circular(G, **kwargs) | Draw the graph G with a circular layout. | | draw_random(G, **kwargs) | Draw the graph G with a random layout. | | draw_spectral(G, **kwargs) | Draw the graph G with a spectral layout. | | draw_spring(G, **kwargs) | Draw the graph G with a spring layout. | | draw_shell(G, **kwargs) | Draw networkx graph with shell layout. | | $draw_graphviz(G[,prog])$ | Draw networkx graph with graphviz layout. | # 10.1.2 draw **draw** (*G*, *pos=None*, *ax=None*, *hold=None*, **kwds) Draw the graph G with Matplotlib. Draw the graph as a simple representation with no node labels or edge labels and using the full Matplotlib figure area and no axis labels by default. See draw_networkx() for more full-featured drawing that allows title, axis labels etc. ### **Parameters** - **G** (*graph*) A networkx graph - **pos** (*dictionary*, *optional*) A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. - ax (Matplotlib Axes object, optional) Draw the graph in specified Matplotlib axes. - hold (bool, optional) Set the Matplotlib hold state. If True subsequent draw commands will be added to the current axes. - **kwds See networkx.draw_networkx() for a description of optional keywords. ### **Examples** ``` >>> G=nx.dodecahedral_graph() >>> nx.draw(G) >>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout ``` #### See also: #### Notes This function has the same name as pylab.draw and pyplot.draw so beware when using ``` >>> from networkx import * ``` since you might overwrite the pylab.draw function. With pyplot use ``` >>> import matplotlib.pyplot as plt >>> import networkx as nx >>> G=nx.dodecahedral_graph() >>> nx.draw(G) # networkx draw() >>> plt.draw() # pyplot draw() ``` Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html # 10.1.3 draw_networkx ``` draw_networkx (G, pos=None, arrows=True, with_labels=True, **kwds) Draw the graph G using Matplotlib. ``` Draw the graph with Matplotlib with options for node positions, labeling, titles, and many other drawing features. See draw() for simple drawing without labels or axes. ## **Parameters** • **G** (*graph*) – A networkx graph - **pos** (*dictionary*, *optional*) A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. - arrows (bool, optional (default=True)) For directed graphs, if True draw arrowheads. - with_labels (bool, optional (default=True)) Set to True to draw labels on the nodes. - ax (Matplotlib Axes object, optional) Draw the graph in the specified Matplotlib axes. - nodelist (list, optional (default G.nodes())) Draw only specified nodes - edgelist (list, optional (default=G.edges())) Draw only specified edges - node_size (scalar or array, optional (default=300)) Size of nodes. If an array is specified it must be the same length as nodelist. - node_color (color string, or array of floats, (default='r')) Node color. Can be a single color format string, or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin, vmax parameters. See matplotlib.scatter for more details. - **node_shape** (*string*, *optional* (*default='o'*)) The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8'. - alpha (float, optional (default=1.0)) The node and edge transparency - cmap (Matplotlib colormap, optional (default=None)) Colormap for mapping intensities of nodes - **vmin**, **vmax** (*float*, *optional* (*default=None*)) Minimum and maximum for node colormap scaling - linewidths ([None | scalar | sequence]) Line width of symbol border (default =1.0) - width (float, optional (default=1.0)) Line width of edges - edge_color (color string, or array of floats (default='r')) Edge color. Can be a single color format string, or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters. - edge_cmap (Matplotlib colormap, optional (default=None)) Colormap for mapping intensities of edges - edge_vmin, edge_vmax (floats, optional (default=None)) Minimum and maximum for edge colormap scaling - style (string, optional (default='solid')) Edge line style (solidldashedldotted,dashdot) - labels (dictionary, optional (default=None)) Node labels in a dictionary keyed by node of text labels - font_size (int, optional (default=12)) Font size for text labels - font_color (string, optional (default='k' black)) Font color string - font_weight (string, optional (default='normal')) Font weight - **font_family** (*string*, *optional* (*default='sans-serif'*)) Font family - label (string, optional) Label for graph legend 10.1. Matplotlib 479 ### **Notes** For directed graphs, "arrows" (actually just thicker stubs) are drawn at the head end. Arrows can be turned off with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky. ### **Examples** ``` >>> G=nx.dodecahedral_graph() >>> nx.draw(G) >>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout ``` ``` >>> import matplotlib.pyplot as plt >>> limits=plt.axis('off') # turn of axis ``` Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html #### See also: ``` draw(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_labels(), draw_networkx_edge_labels() ``` ## 10.1.4 draw networkx nodes ``` \label{local_color} \begin{split} \textbf{draw_networkx_nodes} & (G, \ pos, \ node | list=None, \ node_size=300, \ node_color='r', \ node_shape='o', \ al-\\ & pha=1.0, cmap=None, vmin=None, vmax=None, ax=None, linewidths=None, la-\\ & bel=None, **kwds) \end{split} ``` Draw the nodes of the graph G. This draws only the nodes of the graph G. #### **Parameters** - **G** (graph) A networkx graph - **pos** (*dictionary*) A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2. - ax (Matplotlib Axes object, optional) Draw the graph in the specified Matplotlib axes. - nodelist (list, optional) Draw only specified nodes (default G.nodes()) - node_size (*scalar or array*) Size of nodes (default=300). If an array is specified it must be the same length as nodelist. - node_color (color string, or array of floats) Node color. Can be a single color format string (default='r'), or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more details. - **node_shape** (*string*) The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8' (default='o'). - alpha (*float*) The node transparency (default=1.0) - cmap (Matplotlib colormap) Colormap for mapping intensities of nodes (default=None) - vmin, vmax (floats) Minimum and maximum for node colormap scaling (default=None) - linewidths ([None | scalar | sequence]) Line width of symbol border (default =1.0) • label ([None| string]) – Label for legend **Returns** PathCollection of the nodes. Return type matplotlib.collections.PathCollection ### **Examples** ``` >>> G=nx.dodecahedral_graph() >>> nodes=nx.draw_networkx_nodes(G,pos=nx.spring_layout(G)) ``` Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html ### See also: ``` draw(), draw_networkx(), draw_networkx_edges(), draw_networkx_labels(), draw_networkx_edge_labels() ``` # 10.1.5 draw networkx edges Draw the edges of the graph G. This draws only the edges of the graph G. #### **Parameters** - **G** (graph) A networkx graph - **pos** (*dictionary*) A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2. - edgelist (collection of edge tuples) Draw only specified edges(default=G.edges()) - width (float, or array of floats) Line width of edges (default=1.0) - edge_color (color string, or array of floats) Edge color. Can be a single color format string (default='r'), or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge vmin,edge vmax parameters. - **style** (*string*) Edge line style (default='solid') (solidldashedldotted,dashdot) - **alpha** (*float*) The edge transparency (default=1.0) - cmap (edge) Colormap for mapping intensities of edges (default=None) - edge_vmin, edge_vmax (floats) Minimum and maximum for edge colormap scaling (default=None) - ax (Matplotlib Axes object, optional) Draw the graph in the specified Matplotlib axes. - **arrows** (*bool*, *optional* (*default=True*)) For directed graphs, if True draw arrowheads. - label ([None| string]) Label for legend **Returns** LineCollection of the edges **Return type** matplotlib.collection.LineCollection 10.1. Matplotlib 481 ### **Notes** For directed graphs, "arrows" (actually just thicker stubs) are drawn at the head end. Arrows can be turned off with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky. ### **Examples** ``` >>> G=nx.dodecahedral_graph() >>> edges=nx.draw_networkx_edges(G,pos=nx.spring_layout(G)) ``` Also see the NetworkX drawing examples at
http://networkx.github.io/documentation/latest/gallery.html #### See also: ``` draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_labels(), draw_networkx_edge_labels() ``` # 10.1.6 draw networkx labels ``` draw_networkx_labels (G, pos, labels=None, font_size=12, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, bbox=None, ax=None, **kwds) Draw node labels on the graph G. ``` #### **Parameters** - **G** (graph) A networkx graph - **pos** (*dictionary*) A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2. - labels (dictionary, optional (default=None)) Node labels in a dictionary keyed by node of text labels - **font_size** (*int*) Font size for text labels (default=12) - **font color** (*string*) Font color string (default='k' black) - **font_family** (*string*) Font family (default='sans-serif') - **font_weight** (*string*) Font weight (default='normal') - **alpha** (*float*) The text transparency (default=1.0) - **ax** (*Matplotlib Axes object, optional*) Draw the graph in the specified Matplotlib axes. **Returns** dict of labels keyed on the nodes Return type dict ### **Examples** ``` >>> G=nx.dodecahedral_graph() >>> labels=nx.draw_networkx_labels(G,pos=nx.spring_layout(G)) ``` Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html ### See also: ``` draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_edge_labels() ``` # 10.1.7 draw networkx edge labels ``` \label{local_continuous} \begin{split} \textbf{draw_networkx_edge_labels} &(G, pos, edge_labels=None, label_pos=0.5, font_size=10, \\ &font_color='k', font_family='sans-serif', font_weight='normal', \\ &alpha=1.0, bbox=None, ax=None, rotate=True, **kwds) \end{split} ``` Draw edge labels. ### **Parameters** - **G** (*graph*) A networkx graph - **pos** (*dictionary*) A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2. - ax (Matplotlib Axes object, optional) Draw the graph in the specified Matplotlib axes. - **alpha** (*float*) The text transparency (default=1.0) - edge_labels (*dictionary*) Edge labels in a dictionary keyed by edge two-tuple of text labels (default=None). Only labels for the keys in the dictionary are drawn. - label_pos (*float*) Position of edge label along edge (0=head, 0.5=center, 1=tail) - **font size** (*int*) Font size for text labels (default=12) - font_color (string) Font color string (default='k' black) - font_weight (string) Font weight (default='normal') - **font_family** (*string*) Font family (default='sans-serif') - **bbox** (*Matplotlib bbox*) Specify text box shape and colors. - clip_on (bool) Turn on clipping at axis boundaries (default=True) **Returns** dict of labels keyed on the edges Return type dict ## **Examples** ``` >>> G=nx.dodecahedral_graph() >>> edge_labels=nx.draw_networkx_edge_labels(G,pos=nx.spring_layout(G)) ``` Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html ## See also: ``` draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(), ``` ## 10.1.8 draw circular ``` draw circular(G, **kwargs) ``` Draw the graph G with a circular layout. ### Parameters - **G** (*graph*) A networkx graph - **kwargs See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. 10.1. Matplotlib 483 # 10.1.9 draw random ``` draw_random(G, **kwargs) ``` Draw the graph G with a random layout. ### **Parameters** - **G** (graph) A networkx graph - **kwargs See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. # 10.1.10 draw_spectral ``` draw_spectral(G, **kwargs) ``` Draw the graph G with a spectral layout. ### **Parameters** - **G** (graph) A networkx graph - **kwargs See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. # 10.1.11 draw_spring ``` draw_spring(G, **kwargs) ``` Draw the graph G with a spring layout. ### **Parameters** - **G** (*graph*) A networkx graph - **kwargs See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. # 10.1.12 draw shell ``` draw_shell(G, **kwargs) ``` Draw networkx graph with shell layout. ### **Parameters** - **G** (*graph*) A networkx graph - **kwargs See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. # 10.1.13 draw graphviz ``` draw_graphviz (G, prog='neato', **kwargs) ``` Draw networkx graph with graphviz layout. ## **Parameters** - **G** (*graph*) A networkx graph - **prog** (*string*, *optional*) Name of Graphviz layout program • **kwargs - See networkx.draw_networkx() for a description of optional keywords. # 10.2 Graphviz AGraph (dot) # 10.2.1 Graphviz AGraph Interface to pygraphviz AGraph class. ### **Examples** ``` >>> G=nx.complete_graph(5) >>> A=nx.to_agraph(G) >>> H=nx.from_agraph(A) ``` #### See also: ## Pygraphviz http://pygraphviz.github.io/ | from_agraph(A[, create_using]) | Return a NetworkX Graph or DiGraph from a PyGraphviz graph. | |---|---| | $to_agraph(N)$ | Return a pygraphviz graph from a NetworkX graph N. | | write_dot(G, path) | Write NetworkX graph G to Graphviz dot format on path. | | read_dot(path) | Return a NetworkX graph from a dot file on path. | | <pre>graphviz_layout(G[, prog, root, args])</pre> | Create node positions for G using Graphviz. | | <pre>pygraphviz_layout(G[, prog, root, args])</pre> | Create node positions for G using Graphviz. | # 10.2.2 from_agraph from_agraph (A, create_using=None) Return a NetworkX Graph or DiGraph from a PyGraphviz graph. ## **Parameters** - A (PyGraphviz AGraph) A graph created with PyGraphviz - **create_using** (*NetworkX graph class instance*) The output is created using the given graph class instance ### **Examples** ``` >>> K5=nx.complete_graph(5) >>> A=nx.to_agraph(K5) >>> G=nx.from_agraph(A) >>> G=nx.from_agraph(A) ``` ### **Notes** The Graph G will have a dictionary G.graph_attr containing the default graphviz attributes for graphs, nodes and edges. Default node attributes will be in the dictionary G.node_attr which is keyed by node. Edge attributes will be returned as edge data in G. With edge_attr=False the edge data will be the Graphviz edge weight attribute or the value 1 if no edge weight attribute is found. # 10.2.3 to_agraph ### $to_agraph(N)$ Return a pygraphviz graph from a NetworkX graph N. Parameters N (NetworkX graph) – A graph created with NetworkX ### **Examples** ``` >>> K5=nx.complete_graph(5) >>> A=nx.to_agraph(K5) ``` #### **Notes** If N has an dict N.graph_attr an attempt will be made first to copy properties attached to the graph (see from_agraph) and then updated with the calling arguments if any. # 10.2.4 write_dot #### write dot(G, path) Write NetworkX graph G to Graphviz dot format on path. ### **Parameters** - **G** (graph) A networkx graph - path (filename) Filename or file handle to write # 10.2.5 read_dot ### read_dot (path) Return a NetworkX graph from a dot file on path. Parameters path (file or string) - File name or file handle to read. ## 10.2.6 graphviz layout ``` graphviz_layout (G, prog='neato', root=None, args='') Create node positions for G using Graphviz. ``` ## Parameters - G (NetworkX graph) A graph created with NetworkX - prog (string) Name of Graphviz layout program - root (*string*, *optional*) Root node for twopi layout - args (string, optional) Extra arguments to Graphviz layout program - **Returns** (*dictionary*) Dictionary of x,y, positions keyed by node. ## **Examples** ``` >>> G=nx.petersen_graph() >>> pos=nx.graphviz_layout(G) >>> pos=nx.graphviz_layout(G,prog='dot') ``` ### **Notes** This is a wrapper for pygraphviz_layout. # 10.2.7 pygraphviz_layout ``` pygraphviz_layout (G, prog='neato', root=None, args='') Create node positions for G using Graphviz. ``` ### **Parameters** - **G** (*NetworkX graph*) A graph created with NetworkX - prog (string) Name of Graphviz layout program - root (string, optional) Root node for twopi layout - args (string, optional) Extra arguments to Graphviz layout program - **Returns** (*dictionary*) Dictionary of x,y, positions keyed by node. # **Examples** ``` >>> G=nx.petersen_graph() >>> pos=nx.graphviz_layout(G) >>> pos=nx.graphviz_layout(G,prog='dot') ``` # 10.3 Graphviz with pydot # 10.3.1 Pydot Import and export NetworkX graphs in Graphviz dot format using pydot. Either this module or nx_pygraphviz can be used to interface with graphviz. ### See also: Pydot http://code.google.com/p/pydot/ Graphviz http://www.research.att.com/sw/tools/graphviz/ DOT | from_pydot(P) | Return a NetworkX graph from a Pydot graph. | |-----------------------|---| | to_pydot(N[, strict]) | Return a pydot graph from a NetworkX graph N. | | write_dot(G, path) | Write NetworkX graph G to Graphviz dot format on path. | | read_dot(path) | Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path. | | | Continued on next page | ## Table 10.3 – continued from previous page | <pre>graphviz_layout(G[, prog, root])</pre> | Create node positions using Pydot and Graphviz. | |---|---| | <pre>pydot_layout(G[, prog, root])</pre> | Create node positions using Pydot and Graphviz. | # 10.3.2 from_pydot ## $from_pydot(P)$ Return a NetworkX graph from a Pydot graph. **Parameters P** (*Pydot graph*) – A graph created with Pydot **Returns G** – A MultiGraph or MultiDiGraph. Return type NetworkX
multigraph ## **Examples** ``` >>> K5=nx.complete_graph(5) >>> A=nx.to_pydot(K5) >>> G=nx.from_pydot(A) # return MultiGraph >>> G=nx.Graph(nx.from_pydot(A)) # make a Graph instead of MultiGraph ``` # 10.3.3 to_pydot ### to_pydot (N, strict=True) Return a pydot graph from a NetworkX graph N. Parameters N (NetworkX graph) – A graph created with NetworkX ### **Examples** ``` >>> K5=nx.complete_graph(5) >>> P=nx.to_pydot(K5) ``` ### **Notes** # 10.3.4 write_dot ### write_dot(G, path) Write NetworkX graph G to Graphviz dot format on path. Path can be a string or a file handle. # 10.3.5 read dot ### read_dot (path) Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path. Parameters path (filename or file handle) - **Returns G** – A MultiGraph or MultiDiGraph. ## Return type NetworkX multigraph ## **Notes** Use G=nx.Graph(nx.read_dot(path)) to return a Graph instead of a MultiGraph. # 10.3.6 graphviz_layout ``` graphviz_layout (G, prog='neato', root=None, **kwds) Create node positions using Pydot and Graphviz. ``` Returns a dictionary of positions keyed by node. ### **Examples** ``` >>> G=nx.complete_graph(4) >>> pos=nx.graphviz_layout(G) >>> pos=nx.graphviz_layout(G,prog='dot') ``` ## **Notes** This is a wrapper for pydot_layout. # 10.3.7 pydot_layout ``` pydot_layout (G, prog='neato', root=None, **kwds) Create node positions using Pydot and Graphviz. ``` Returns a dictionary of positions keyed by node. # **Examples** ``` >>> G=nx.complete_graph(4) >>> pos=nx.pydot_layout(G) >>> pos=nx.pydot_layout(G,prog='dot') ``` # 10.4 Graph Layout # 10.4.1 Layout Node positioning algorithms for graph drawing. | circular_layout(G[, dim, scale, center]) | Position nodes on a circle. | |---|---| | random_layout(G[, dim, center]) | Position nodes uniformly at random in the unit square. | | <pre>shell_layout(G[, nlist, dim, scale, center])</pre> | Position nodes in concentric circles. | | spring_layout(G[, dim, k, pos, fixed,]) | Position nodes using Fruchterman-Reingold force-directed algorithm. | | spectral_layout(G[, dim, weight, scale, center]) | Position nodes using the eigenvectors of the graph Laplacian. | 10.4. Graph Layout 489 # 10.4.2 circular layout ``` circular_layout (G, dim=2, scale=1, center=None) ``` Position nodes on a circle. ### **Parameters** - **G** (NetworkX graph or list of nodes) – - dim (int) Dimension of layout, currently only dim=2 is supported - scale (*float*) Scale factor for positions - **center** (*array-like or None*) Coordinate pair around which to center the layout. **Returns** A dictionary of positions keyed by node Return type dict ### **Examples** ``` >>> G=nx.path_graph(4) >>> pos=nx.circular_layout(G) ``` This algorithm currently only works in two dimensions and does not try to minimize edge crossings. # 10.4.3 random_layout ``` random_layout (G, dim=2, center=None) ``` Position nodes uniformly at random in the unit square. For every node, a position is generated by choosing each of dim coordinates uniformly at random on the interval [0.0, 1.0). NumPy (http://scipy.org) is required for this function. ### **Parameters** - **G** (NetworkX graph or list of nodes) A position will be assigned to every node in G. - dim (int) Dimension of layout. - center (array-like or None) Coordinate pair around which to center the layout. Returns pos – A dictionary of positions keyed by node Return type dict ## **Examples** ``` >>> G = nx.lollipop_graph(4, 3) >>> pos = nx.random_layout(G) ``` # 10.4.4 shell_layout ``` shell_layout (G, nlist=None, dim=2, scale=1, center=None) ``` Position nodes in concentric circles. ### **Parameters** - **G** (NetworkX graph or list of nodes) – - nlist (*list of lists*) List of node lists for each shell. - dim (int) Dimension of layout, currently only dim=2 is supported - scale (*float*) Scale factor for positions - center (array-like or None) Coordinate pair around which to center the layout. **Returns** A dictionary of positions keyed by node Return type dict ### **Examples** ``` >>> G = nx.path_graph(4) >>> shells = [[0], [1,2,3]] >>> pos = nx.shell_layout(G, shells) ``` This algorithm currently only works in two dimensions and does not try to minimize edge crossings. # 10.4.5 spring layout Position nodes using Fruchterman-Reingold force-directed algorithm. ## **Parameters** - **G** (NetworkX graph or list of nodes) – - dim (int) Dimension of layout - **k** (*float* (*default=None*)) Optimal distance between nodes. If None the distance is set to 1/sqrt(n) where n is the number of nodes. Increase this value to move nodes farther apart. **pos** [dict or None optional (default=None)] Initial positions for nodes as a dictionary with node as keys and values as a list or tuple. If None, then use random initial positions. **fixed** [list or None optional (default=None)] Nodes to keep fixed at initial position. iterations [int optional (default=50)] Number of iterations of spring-force relaxation weight [string or None optional (default='weight')] The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1. **scale** [float (default=1.0)] Scale factor for positions. The nodes are positioned in a box of size [0,scale] x [0,scale]. center [array-like or None] Coordinate pair around which to center the layout. **Returns** A dictionary of positions keyed by node Return type dict ### **Examples** ``` >>> G=nx.path_graph(4) >>> pos=nx.spring_layout(G) ``` # The same using longer function name >>> pos=nx.fruchterman_reingold_layout(G) # 10.4.6 spectral_layout **spectral_layout** (*G*, *dim=2*, *weight='weight'*, *scale=1*, *center=None*) Position nodes using the eigenvectors of the graph Laplacian. ### **Parameters** - **G** (NetworkX graph or list of nodes) – - dim (int) Dimension of layout - weight (*string or None optional (default='weight'*)) The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1. - scale (*float*) Scale factor for positions - center (array-like or None) Coordinate pair around which to center the layout. **Returns** A dictionary of positions keyed by node Return type dict ### **Examples** ``` >>> G=nx.path_graph(4) >>> pos=nx.spectral_layout(G) ``` ### **Notes** Directed graphs will be considered as undirected graphs when positioning the nodes. For larger graphs (>500 nodes) this will use the SciPy sparse eigenvalue solver (ARPACK). **CHAPTER** # **ELEVEN** # **EXCEPTIONS** # 11.1 Exceptions Base exceptions and errors for NetworkX. ## class NetworkXException Base class for exceptions in NetworkX. ### class NetworkXError Exception for a serious error in NetworkX ## class NetworkXPointlessConcept Harary, F. and Read, R. "Is the Null Graph a Pointless Concept?" In Graphs and Combinatorics Conference, George Washington University. New York: Springer-Verlag, 1973. ## class NetworkXAlgorithmError Exception for unexpected termination of algorithms. ## class NetworkXUnfeasible Exception raised by algorithms trying to solve a problem instance that has no feasible solution. ## class NetworkXNoPath Exception for algorithms that should return a path when running on graphs where such a path does not exist. ### class NetworkXUnbounded Exception raised by algorithms trying to solve a maximization or a minimization problem instance that is unbounded. **CHAPTER** # **TWELVE** # **UTILITIES** # 12.1 Helper Functions Miscellaneous Helpers for NetworkX. These are not imported into the base networkx namespace but can be accessed, for example, as ``` >>> import networkx >>> networkx.utils.is_string_like('spam') True ``` | is_string_like(obj) | Check if obj is string. | |-----------------------------------|--| | flatten(obj[, result]) | Return flattened version of (possibly nested) iterable object. | | iterable(obj) | Return True if obj is iterable with a well-defined len(). | | is_list_of_ints(intlist) | Return True if list is a list of ints. | | make_str(x) | Return the string representation of t. | | <pre>generate_unique_node()</pre> | | | default_opener(filename) | Opens filename using system's default program. | # 12.1.1 is_string_like ``` is_string_like (obj) Check if obj is string. ``` # 12.1.2 flatten flatten (obj, result=None) Return flattened version of (possibly nested) iterable object. # 12.1.3 iterable ``` iterable(obj) ``` Return True if obj is iterable with a well-defined len(). # 12.1.4 is_list_of_ints ## is_list_of_ints(intlist) Return True if list is a list of ints. # 12.1.5 make str ### $make_str(x)$ Return the string representation of t. # 12.1.6 generate_unique_node ### generate_unique_node() Generate a unique node label. # 12.1.7 default_opener ## default_opener (filename) Opens *filename* using system's default program. **Parameters filename** (*str*) – The path of the file to be opened. # 12.2 Data Structures and Algorithms Union-find data structure. UnionFind.union(*objects) Find the sets containing the objects and merge them all. ## 12.2.1 union UnionFind.union(*objects) Find the sets containing the objects and merge them all. # 12.3 Random Sequence Generators Utilities for generating random numbers, random sequences, and random selections. | <pre>create_degree_sequence(n[, sfunction, max_tries])</pre> | | |--|--| | <pre>pareto_sequence(n[, exponent])</pre> | Return sample sequence of length n from a Pareto distribution. | | <pre>powerlaw_sequence(n[, exponent])</pre> | Return sample sequence of length n from a power law distribution. | | uniform_sequence(n) | Return sample sequence of length n from a uniform distribution. | | cumulative_distribution(distribution) | Return normalized cumulative distribution from discrete distribution. |
| discrete_sequence(n[, distribution,]) | Return sample sequence of length n from a given discrete distribution or | | zipf_sequence(n[, alpha, xmin]) | Return a sample sequence of length n from a Zipf distribution with expo | | zipf_rv(alpha[, xmin, seed]) | Return a random value chosen from the Zipf distribution. | | random_weighted_sample(mapping,k) | Return k items without replacement from a weighted sample. | | weighted_choice(mapping) | Return a single element from a weighted sample. | | | | # 12.3.1 create_degree_sequence create_degree_sequence (n, sfunction=None, max_tries=50, **kwds) # 12.3.2 pareto_sequence ### pareto_sequence (n, exponent=1.0) Return sample sequence of length n from a Pareto distribution. # 12.3.3 powerlaw_sequence ### powerlaw_sequence (n, exponent=2.0) Return sample sequence of length n from a power law distribution. # 12.3.4 uniform_sequence ### $uniform_sequence(n)$ Return sample sequence of length n from a uniform distribution. # 12.3.5 cumulative_distribution ### cumulative_distribution (distribution) Return normalized cumulative distribution from discrete distribution. # 12.3.6 discrete sequence ### discrete_sequence (n, distribution=None, cdistribution=None) Return sample sequence of length n from a given discrete distribution or discrete cumulative distribution. One of the following must be specified. distribution = histogram of values, will be normalized cdistribution = normalized discrete cumulative distribution # 12.3.7 zipf_sequence ### zipf_sequence (n, alpha=2.0, xmin=1) Return a sample sequence of length n from a Zipf distribution with exponent parameter alpha and minimum value xmin. ### See also: ``` zipf_rv() ``` ## 12.3.8 zipf rv ## zipf_rv (alpha, xmin=1, seed=None) Return a random value chosen from the Zipf distribution. The return value is an integer drawn from the probability distribution ::math: ``` p(x) = \frac{x^{-\alpha}}{\left(\alpha, x_{\min}\right)}, ``` where $\zeta(\alpha, x_{min})$ is the Hurwitz zeta function. ### **Parameters** - alpha (float) Exponent value of the distribution - xmin (int) Minimum value - seed (int) Seed value for random number generator **Returns** x – Random value from Zipf distribution Return type int Raises ValueError - If xmin < 1 or If alpha <= 1 ### **Notes** The rejection algorithm generates random values for a the power-law distribution in uniformly bounded expected time dependent on parameters. See [1] for details on its operation. ## **Examples** ``` >>> nx.zipf_rv(alpha=2, xmin=3, seed=42) ``` #### References ..[1] Luc Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986. # 12.3.9 random_weighted_sample ## random_weighted_sample (mapping, k) Return k items without replacement from a weighted sample. The input is a dictionary of items with weights as values. # 12.3.10 weighted_choice ### weighted_choice (mapping) Return a single element from a weighted sample. The input is a dictionary of items with weights as values. # 12.4 Decorators open_file(path_arg[, mode]) Decorator to ensure clean opening and closing of files. # 12.4.1 open_file ## open_file (path_arg, mode='r') Decorator to ensure clean opening and closing of files. ### **Parameters** - path_arg (int) Location of the path argument in args. Even if the argument is a named positional argument (with a default value), you must specify its index as a positional argument - mode (str) String for opening mode. **Returns** _open_file – Function which cleanly executes the io. Return type function #### **Examples** Decorate functions like this: ``` @open_file(0,'r') def read_function(pathname): pass @open_file(1,'w') def write_function(G,pathname): pass @open_file(1,'w') def write_function(G, pathname='graph.dot') pass @open_file('path', 'w+') def another_function(arg, **kwargs): path = kwargs['path'] pass ``` # 12.5 Cuthill-Mckee Ordering Cuthill-McKee ordering of graph nodes to produce sparse matrices | <pre>cuthill_mckee_ordering(G[, heuristic])</pre> | Generate an ordering (permutation) of the graph nodes to make a spars | |---|---| | reverse_cuthill_mckee_ordering(G[, heuristic]) | Generate an ordering (permutation) of the graph nodes to make a spars | # 12.5.1 cuthill mckee ordering ``` cuthill_mckee_ordering(G, heuristic=None) ``` Generate an ordering (permutation) of the graph nodes to make a sparse matrix. Uses the Cuthill-McKee heuristic (based on breadth-first search) ¹. ### **Parameters** - **G** (graph) A NetworkX graph - heuristic (function, optional) Function to choose starting node for RCM algorithm. If None a node from a psuedo-peripheral pair is used. A user-defined function can be supplied that takes a graph object and returns a single node. $^{^1}$ E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices, In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969. http://doi.acm.org/10.1145/800195.805928 Returns nodes – Generator of nodes in Cuthill-McKee ordering. **Return type** generator ### **Examples** ``` >>> from networkx.utils import cuthill_mckee_ordering >>> G = nx.path_graph(4) >>> rcm = list(cuthill_mckee_ordering(G)) >>> A = nx.adjacency_matrix(G, nodelist=rcm) ``` Smallest degree node as heuristic function: ``` >>> def smallest_degree(G): ... return min(G, key=G.degree) >>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree)) ``` #### See also: ``` reverse_cuthill_mckee_ordering() ``` #### **Notes** The optimal solution the the bandwidth reduction is NP-complete ². #### References # 12.5.2 reverse_cuthill_mckee_ordering ``` reverse_cuthill_mckee_ordering(G, heuristic=None) ``` Generate an ordering (permutation) of the graph nodes to make a sparse matrix. Uses the reverse Cuthill-McKee heuristic (based on breadth-first search) ³. #### **Parameters** - **G** (graph) A NetworkX graph - heuristic (function, optional) Function to choose starting node for RCM algorithm. If None a node from a psuedo-peripheral pair is used. A user-defined function can be supplied that takes a graph object and returns a single node. **Returns nodes** – Generator of nodes in reverse Cuthill-McKee ordering. **Return type** generator #### **Examples** ``` >>> from networkx.utils import reverse_cuthill_mckee_ordering >>> G = nx.path_graph(4) >>> rcm = list(reverse_cuthill_mckee_ordering(G)) >>> A = nx.adjacency_matrix(G, nodelist=rcm) ``` ² Steven S. Skiena. 1997. The Algorithm Design Manual. Springer-Verlag New York, Inc., New York, NY, USA. ³ E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices, In Proc. 24th Nat. Conf. ACM, pages 157-72, 1969. http://doi.acm.org/10.1145/800195.805928 Smallest degree node as heuristic function: #### See also: ``` cuthill_mckee_ordering() ``` #### **Notes** The optimal solution the the bandwidth reduction is NP-complete ⁴. #### References # 12.6 Context Managers reversed(*args, **kwds) A context manager for temporarily reversing a directed graph in place. ### 12.6.1 reversed ``` reversed(*args, **kwds) ``` A context manager for temporarily reversing a directed graph in place. This is a no-op for undirected graphs. **Parameters G** (*graph*) – A NetworkX graph. ⁴ Steven S. Skiena. 1997. The Algorithm Design Manual. Springer-Verlag New York, Inc., New York, NY, USA. 502 Chapter 12. Utilities **CHAPTER** ## **THIRTEEN** # **LICENSE** #### NetworkX is distributed with the BSD license. Copyright (C) 2004-2012, NetworkX Developers Aric Hagberg hagberg@lanl.gov Dan Schult hall rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - * Neither the name of the NetworkX Developers nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **CHAPTER** # **FOURTEEN** # **CITING** To cite NetworkX please use the following publication: Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, "Exploring network structure, dynamics, and function using NetworkX", in Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11–15, Aug 2008 506 Chapter 14. Citing **CHAPTER** ### **FIFTEEN** ## **CREDITS** NetworkX was originally written by Aric Hagberg, Dan Schult, and Pieter Swart, and has been developed with the help of many others. Thanks to everyone who has improved NetworkX by contributing code, bug reports (and fixes), documentation, and input on design, features, and the future of NetworkX. ## 15.1 Contributions This section aims to provide a list of people and projects that have contributed to networkx. It is intended to be an *inclusive*
list, and anyone who has contributed and wishes to make that contribution known is welcome to add an entry into this file. Generally, no name should be added to this list without the approval of the person associated with that name. Creating a comprehensive list of contributors can be difficult, and the list within this file is almost certainly incomplete. Contributors include testers, bug reporters, contributors who wish to remain anonymous, funding sources, academic advisors, end users, and even build/integration systems (such as TravisCI, coveralls, and readthedocs). Do you want to make your contribution known? If you have commit access, edit this file and add your name. If you do not have commit access, feel free to open an issue, submit a pull request, or get in contact with one of the official team members. A supplementary (but still incomplete) list of contributors is given by the list of names that have commits in networkx's git repository. This can be obtained via: ``` git log --raw | grep "^Author: " | sort | uniq ``` A historical, partial listing of contributors and their contributions to some of the earlier versions of NetworkX can be found here. # 15.1.1 Original Authors Aric Hagberg Dan Schult Pieter Swart ### 15.1.2 Contributors Optionally, add your desired name and include a few relevant links. The order is partially historical, and now, mostly arbitrary. - Aric Hagberg, GitHub: hagberg - Dan Schult, GitHub: dschult - Pieter Swart - Katy Bold - · Hernan Rozenfeld - · Brendt Wohlberg - Jim Bagrow - Holly Johnsen - Arnar Flatberg - Chris Myers - Joel Miller - Keith Briggs - Ignacio Rozada - Phillipp Pagel - Sverre Sundsdal - Ross M. Richardson - Eben Kenah - · Sasha Gutfriend - Udi Weinsberg - Matteo Dell'Amico - · Andrew Conway - Raf Guns - Salim Fadhley - Matteo Dell'Amico - Fabrice Desclaux - · Arpad Horvath - Minh Van Nguyen - Willem Ligtenberg - Loïc Séguin-C. - Paul McGuire - Jesus Cerquides - Ben Edwards - Jon Olav Vik - Hugh Brown - Ben Reilly - Leo Lopes 508 Chapter 15. Credits - Jordi Torrents, GitHub: jtorrents - · Dheeraj M R - · Franck Kalala - Simon Knight - · Conrad Lee - · Sérgio Nery Simões - · Robert King - · Nick Mancuso - · Brian Cloteaux - Alejandro Weinstein - Dustin Smith - · Mathieu Larose - · Vincent Gauthier - Sérgio Nery Simões - chebee7i, GitHub: chebee7i - · Jeffrey Finkelstein - Jean-Gabriel Young, Github: jg-you - · Andrey Paramonov, http://aparamon.msk.ru - Mridul Seth, GitHub: MridulS - Thodoris Sotiropoulos, GitHub: theosotr - Konstantinos Karakatsanis, GitHub: k-karakatsanis - Ryan Nelson, GitHub: rnelsonchem # 15.2 Support networkx and those who have contributed to networkx have received support throughout the years from a variety of sources. We list them below. If you have provided support to networkx and a support acknowledgment does not appear below, please help us remedy the situation, and similarly, please let us know if you'd like something modified or corrected. # 15.2.1 Research Groups networkx acknowledges support from the following: - Center for Nonlinear Studies, Los Alamos National Laboratory, PI: Aric Hagberg - Open Source Programs Office, Google - · Complexity Sciences Center, Department of Physics, University of California-Davis, PI: James P. Crutchfield - Center for Complexity and Collective Computation, Wisconsin Institute for Discovery, University of Wisconsin-Madison, PIs: Jessica C. Flack and David C. Krakauer 15.2. Support 509 # **15.2.2 Funding** networkx acknowledges support from the following: - Google Summer of Code via Python Software Foundation - U.S. Army Research Office grant W911NF-12-1-0288 - DARPA Physical Intelligence Subcontract No. 9060-000709 - NSF Grant No. PHY-0748828 - John Templeton Foundation through a grant to the Santa Fe Institute to study complexity - U.S. Army Research Laboratory and the U.S. Army Research Office under contract number W911NF-13-1-0340 510 Chapter 15. Credits **CHAPTER** ## SIXTEEN ## **GLOSSARY** **dictionary** A Python dictionary maps keys to values. Also known as "hashes", or "associative arrays". See http://docs.python.org/tutorial/datastructures.html#dictionaries **ebunch** An iteratable container of edge tuples like a list, iterator, or file. edge Edges are either two-tuples of nodes (u,v) or three tuples of nodes with an edge attribute dictionary (u,v,dict). **edge attribute** Edges can have arbitrary Python objects assigned as attributes by using keyword/value pairs when adding an edge assigning to the G.edge[u][v] attribute dictionary for the specified edge u-v. hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__() method), and can be compared to other objects (it needs an __eq__() or __cmp__() method). Hashable objects which compare equal must have the same hash value. Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash value internally. All of Python's immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal, and their hash value is their id(). Definition from http://docs.python.org/glossary.html **nbunch** An nbunch is any iterable container of nodes that is not itself a node in the graph. It can be an iterable or an iterator, e.g. a list, set, graph, file, etc.. **node** A node can be any hashable Python object except None. **node attribute** Nodes can have arbitrary Python objects assigned as attributes by using keyword/value pairs when adding a node or assigning to the G.node[n] attribute dictionary for the specified node n. ``` а networkx.algorithms.chordal.chordal_alg, networkx.algorithms.approximation, 129 networkx.algorithms.approximation.clique,networkx.algorithms.clique,197 networkx.algorithms.cluster, 200 networkx.algorithms.approximation.clusteleheneosekefælgosithms.coloring,204 networkx.algorithms.community, 205 networkx.algorithms.approximation.connectftwerkx.algorithms.community.kclique, \verb"networkx.algorithms.approximation.domina \verb"engorithms.components", 206 networkx.algorithms.components.attracting, networkx.algorithms.approximation.independent set. networkx.algorithms.components.biconnected, networkx.algorithms.approximation.kcomponents, 216 networkx.algorithms.components.connected, networkx.algorithms.approximation.matching, networkx.algorithms.components.semiconnected, networkx.algorithms.approximation.ramsey, networkx.algorithms.components.strongly_connected, networkx.algorithms.approximation.vertex cover.^{209} networkx.algorithms.components.weakly connected, networkx.algorithms.assortativity, 138 networkx.algorithms.connectivity, 222 networkx.algorithms.bipartite, 146 networkx.algorithms.connectivity.connectivity, networkx.algorithms.bipartite.basic, 148 networkx.algorithms.bipartite.centrality, networkx.algorithms.connectivity.cuts, networkx.algorithms.bipartite.cluster, networkx.algorithms.connectivity.kcomponents, 222 networkx.algorithms.bipartite.generators, networkx.algorithms.connectivity.kcutsets, networkx.algorithms.bipartite.matching, networkx.algorithms.connectivity.stoerwagner, networkx.algorithms.bipartite.matrix, networkx.algorithms.connectivity.utils, 239 networkx.algorithms.bipartite.projection, networkx.algorithms.core, 240 \verb"networkx.algorithms.bipartite.redundancy, "networkx.algorithms.cycles", 243 networkx.algorithms.dag, 246 networkx.algorithms.distance measures, networkx.algorithms.bipartite.spectral, 159 networkx.algorithms.distance_regular, networkx.algorithms.block, 173 networkx.algorithms.boundary, 173 networkx.algorithms.dominance, 254 networkx.algorithms.centrality, 175 ``` ``` d networkx.algorithms.dominating, 255 networkx.algorithms.euler, 256 networkx.drawing.layout, 489 networkx.algorithms.flow, 257 networkx.drawing.nx agraph, 485 networkx.algorithms.graphical, 278 networkx.drawing.nx_pydot,487 networkx.algorithms.hierarchy, 281 networkx.drawing.nx_pylab,477 networkx.algorithms.hybrid, 282 networkx.algorithms.isolate, 283 e networkx.algorithms.isomorphism, 284 networkx.exception, 493 networkx.algorithms.isomorphism.isomorphvf2, networkx.algorithms.link_analysis.hits alg networkx.generators.atlas,371 300 networkx.generators.classic, 371 networkx.algorithms.link_analysis.pagerank_alg_networkx.generators.community,407 networkx.generators.degree seg, 389 networkx.algorithms.link_prediction, 303 networkx.generators.directed, 396 networkx.algorithms.matching, 309 networkx.generators.ego, 403 networkx.algorithms.minors, 310 networkx.generators.expanders, 376 networkx.algorithms.mis, 314 networkx.generators.geometric, 399 networkx.algorithms.mst, 314 networkx.generators.intersection, 405 networkx.algorithms.operators.all, 319 networkx.generators.line, 402 networkx.algorithms.operators.binary, networkx.generators.nonisomorphic_trees, 411 networkx.algorithms.operators.product, networkx.generators.random_clustered, 395 networkx.algorithms.operators.unary, 316 networkx.generators.random_graphs, 381 networkx.algorithms.richclub, 325 networkx.generators.small, 377 networkx.algorithms.shortest_paths.astar_hetworkx.generators.social,406 networkx.generators.stochastic, 404 networkx.algorithms.shortest_paths.dense. 341 networkx.algorithms.shortest_paths.generic, networkx.linalg.algebraicconnectivity, networkx.algorithms.shortest_paths.unweighted, networkx.linalg.attrmatrix,420 networkx.algorithms.shortest_paths.weighted.networkx.linalg.laplacianmatrix,414 networkx.linalg.graphmatrix,413 networkx.linalg.spectrum, 417 networkx.algorithms.simple paths, 344 networkx.algorithms.swap, 346 networkx.algorithms.traversal.breadth_first_search, networkx.readwrite.adjlist,437 352 networkx.algorithms.traversal.depth_first_search. networkx'.readwrite.gexf, 450 347 networkx.readwrite.gml, 452 networkx.algorithms.traversal.edgedfs, networkx.readwrite.gpickle, 456 354
networkx.readwrite.graph6,468 networkx.algorithms.tree.branchings, 358 networkx.readwrite.graphml, 457 networkx.algorithms.tree.recognition, networkx.readwrite.json graph, 460 355 networkx.readwrite.leda, 464 networkx.algorithms.triads, 360 networkx.readwrite.multiline_adjlist, networkx.algorithms.vitality, 361 440 networkx.readwrite.nx_shp, 475 C networkx.readwrite.nx yaml, 465 networkx.classes.function, 363 networkx.readwrite.pajek, 473 networkx.convert, 425 networkx.readwrite.sparse6,470 networkx.convert_matrix, 428 ``` ## u ``` networkx.utils.495 networkx.utils.contextmanagers,501 networkx.utils.decorators,498 networkx.utils.misc,495 networkx.utils.random_sequence,496 networkx.utils.rcm,499 networkx.utils.union_find,496 ``` **Python Module Index** 516 Python Module Index | Symbols | add_node() (MultiDiGraph method), 99 | |--|---| | contains() (DiGraph method), 58 | add_node() (MultiGraph method), 72 | | contains() (Graph method), 28 | add_nodes_from() (DiGraph method), 41 | | contains() (MultiDiGraph method), 117 | add_nodes_from() (Graph method), 14 | | contains() (MultiGraph method), 87 | add_nodes_from() (MultiDiGraph method), 100 | | getitem() (DiGraph method), 54 | add_nodes_from() (MultiGraph method), 73 | | getitem() (Graph method), 26 | add_path() (DiGraph method), 47 | | getitem() (MultiDiGraph method), 114 | add_path() (Graph method), 20 | | getitem() (MultiGraph method), 85 | add_path() (MultiDiGraph method), 106 | | init() (DiGraph method), 40 | add_path() (MultiGraph method), 78 | | init() (DiGraph Matcher method), 290 | add_star() (DiGraph method), 46 | | init() (Edmonds method), 360 | add_star() (Graph method), 19 | | init() (Graph method), 13 | add_star() (MultiDiGraph method), 106 | | init() (Graph method), 13
init() (GraphMatcher method), 289 | add_star() (MultiGraph method), 78 | | | add_weighted_edges_from() (DiGraph method), 45 | | init() (MultiDiGraph method), 99 | add_weighted_edges_from() (Graph method), 18 | | init() (MultiGraph method), 72 | add_weighted_edges_from() (MultiDiGraph method), | | iter() (DiGraph method), 49 | 103 | | iter() (Graph method), 22 | add_weighted_edges_from() (MultiGraph method), 76 | | iter() (MultiDiGraph method), 109 | adjacency_data() (in module net- | | iter() (MultiGraph method), 81 | workx.readwrite.json_graph), 462 | | len() (DiGraph method), 59 | adjacency_graph() (in module net- | | len() (Graph method), 30 | workx.readwrite.json_graph), 462 | | len() (MultiDiGraph method), 119 | adjacency_iter() (DiGraph method), 56 | | len() (MultiGraph method), 89 | adjacency_iter() (Graph method), 27 | | ٨ | adjacency_iter() (Graph method), 27 adjacency_iter() (MultiDiGraph method), 116 | | A | adjacency_iter() (MultiGraph method), 86 | | adamic_adar_index() (in module net- | adjacency_list() (DiGraph method), 55 | | workx.algorithms.link_prediction), 304 | adjacency_list() (Graph method), 26 | | add_cycle() (DiGraph method), 47 | • • | | add_cycle() (Graph method), 20 | adjacency_list() (MultiDiGraph method), 115 | | add_cycle() (MultiDiGraph method), 106 | adjacency_list() (MultiGraph method), 85 | | add_cycle() (MultiGraph method), 79 | adjacency_matrix() (in module net- | | add_edge() (DiGraph method), 43 | workx.linalg.graphmatrix), 413 | | add_edge() (Graph method), 16 | adjacency_spectrum() (in module net- | | add_edge() (MultiDiGraph method), 102 | workx.linalg.spectrum), 417 | | add_edge() (MultiGraph method), 74 | algebraic_connectivity() (in module net- | | add_edges_from() (DiGraph method), 44 | workx.linalg.algebraicconnectivity), 418 | | add_edges_from() (Graph method), 17 | all_neighbors() (in module networkx.classes.function), | | add_edges_from() (MultiDiGraph method), 103 | 365 | | add_edges_from() (MultiGraph method), 75 | all_node_cuts() (in module net- | | add_node() (DiGraph method), 41 | workx.algorithms.connectivity.kcutsets), | | add node() (Graph method), 14 | 223 | all_pairs_dijkstra_path() module (in module average clustering() (in networkx.algorithms.shortest_paths.weighted), workx.algorithms.approximation.clustering coefficient), 134 all_pairs_dijkstra_path_length() average_clustering() module (in module (in netnetworkx.algorithms.shortest paths.weighted), workx.algorithms.bipartite.cluster), 162 average clustering() (in module networkx.algorithms.cluster), 202 all pairs node connectivity() (in module networkx.algorithms.approximation.connectivity), average degree connectivity() module (in net-129 workx.algorithms.assortativity), 142 average_neighbor_degree() all_pairs_node_connectivity() module (in module (in netnetworkx.algorithms.connectivity.connectivity), workx.algorithms.assortativity), 141 225 average_node_connectivity() (in module netall_pairs_shortest_path() (in module networkx.algorithms.connectivity.connectivity), workx.algorithms.shortest_paths.unweighted), 224 average_shortest_path_length() (in module networkx.algorithms.shortest_paths.generic), all_pairs_shortest_path_length() (in module networkx.algorithms.shortest_paths.unweighted), 329 331 В netall shortest paths() (in module workx.algorithms.shortest paths.generic), balanced_tree() (in module networkx.generators.classic), 327 372 all_simple_paths() (in module netbarabasi albert graph() (in module networkx.algorithms.simple_paths), 344 workx.generators.random graphs), 387 alternating_havel_hakimi graph() (in module barbell graph() (in module networkx.generators.classic), networkx.algorithms.bipartite.generators), 170 372 ancestors() (in module networkx.algorithms.dag), 246 bellman ford() (in module netantichains() (in module networkx.algorithms.dag), 249 workx.algorithms.shortest paths.weighted), approximate_current_flow_betweenness_centrality() (in 339 module networkx.algorithms.centrality), 183 betweenness centrality() (in module netarticulation points() (in module networkx.algorithms.bipartite.centrality), 167 workx.algorithms.components.biconnected), betweenness centrality() (in module net-220 workx.algorithms.centrality), 178 module astar_path() (in netbfs_edges() module (in workx.algorithms.shortest_paths.astar), 343 workx.algorithms.traversal.breadth_first_search), astar_path_length() module (in 352 workx.algorithms.shortest_paths.astar), 343 bfs predecessors() (in module netattr matrix() (in module networkx.linalg.attrmatrix), 421 workx.algorithms.traversal.breadth_first_search), attr_sparse_matrix() (in module net-353 workx.linalg.attrmatrix), 422 module bfs_successors() (in netattracting_component_subgraphs() (in module workx.algorithms.traversal.breadth first search), networkx.algorithms.components.attracting), 216 bfs tree() (in module attracting components() (in module networkx.algorithms.traversal.breadth first search), workx.algorithms.components.attracting), 352 biadjacency_matrix() (in module netattribute_assortativity_coefficient() (in module networkx.algorithms.bipartite.matrix), 153 workx.algorithms.assortativity), 139 biconnected_component_edges() (in module netattribute_mixing_dict() (in module workx.algorithms.components.biconnected), networkx.algorithms.assortativity), 146 218 attribute_mixing_matrix() (in module netbiconnected_component_subgraphs() (in module networkx.algorithms.assortativity), 145 workx.algorithms.components.biconnected), authority matrix() (in module net-219 workx.algorithms.link analysis.hits alg), biconnected_components() (in module net-303 workx.algorithms.components.biconnected), | 217 | cliques_containing_node() (in module net- | |---|---| | bidirectional_dijkstra() (in module net- | workx.algorithms.clique), 200 | | workx.algorithms.shortest_paths.weighted), | closeness_centrality() (in module net- | | 337 | workx.algorithms.bipartite.centrality), 166 | | binomial_graph() (in module net- | closeness_centrality() (in module net- | | workx.generators.random_graphs), 384 | workx.algorithms.centrality), 177 | | blockmodel() (in module networkx.algorithms.block), | closeness_vitality() (in module net- | | 173 | workx.algorithms.vitality), 361 | | branching_weight() (in module net- | clustering() (in module net- | | workx.algorithms.tree.branchings), 358 | workx.algorithms.bipartite.cluster), 160 | | build_auxiliary_edge_connectivity() (in module net- | clustering() (in module networkx.algorithms.cluster), 202 | | workx.algorithms.connectivity.utils), 239 | cn_soundarajan_hopcroft() (in module net- | | build_auxiliary_node_connectivity() (in module net- | workx.algorithms.link_prediction), 306 | | workx.algorithms.connectivity.utils), 240 | collaboration_weighted_projected_graph() (in module | | build_residual_network() (in module net- | networkx.algorithms.bipartite.projection), 156 | | workx.algorithms.flow), 269 | color() (in module networkx.algorithms.bipartite.basic), | | bull_graph() (in module networkx.generators.small), 379 | 149 | | <u></u> | common_neighbors() (in module net- | | C | workx.classes.function), 366 | | candidate_pairs_iter() (DiGraphMatcher method), 291 | communicability() (in module net- | | candidate_pairs_iter() (GraphMatcher method), 290 | workx.algorithms.centrality), 188 | | capacity_scaling() (in module networkx.algorithms.flow), | communicability_betweenness_centrality() (in module | | 276 | networkx.algorithms.centrality), 191 | | cartesian_product() (in module net- | communicability_centrality() (in module net- | | workx.algorithms.operators.product), 321 | workx.algorithms.centrality), 190 | | categorical_edge_match() (in module net- | communicability_centrality_exp() (in module net- | | workx.algorithms.isomorphism), 292 | workx.algorithms.centrality), 191 | | categorical_multiedge_match() (in module net- | communicability_exp() (in module net- | | workx.algorithms.isomorphism), 293 |
workx.algorithms.centrality), 189 | | categorical_node_match() (in module net- | complement() (in module networkx.algorithms.operators.unary), 316 | | workx.algorithms.isomorphism), 292 | complete_bipartite_graph() (in module net- | | caveman_graph() (in module net- | workx.algorithms.bipartite.generators), 168 | | workx.generators.community), 407 | complete_graph() (in module net- | | center() (in module net- | workx.generators.classic), 373 | | workx.algorithms.distance_measures), 250 | complete_multipartite_graph() (in module net- | | chordal_cycle_graph() (in module net- | workx.generators.classic), 373 | | workx.generators.expanders), 377
chordal_graph_cliques() (in module net- | compose() (in module net- | | chordal_graph_cliques() (in module net-
workx.algorithms.chordal.chordal_alg), 196 | workx.algorithms.operators.binary), 317 | | chordal_graph_treewidth() (in module net- | compose_all() (in module net- | | workx.algorithms.chordal.chordal_alg), 196 | workx.algorithms.operators.all), 320 | | chvatal_graph() (in module networkx.generators.small), | condensation() (in module net- | | 379 | workx.algorithms.components.strongly_connected) | | circular_ladder_graph() (in module net- | 212 | | workx.generators.classic), 374 | configuration_model() (in module net- | | circular_layout() (in module networkx.drawing.layout), | workx.algorithms.bipartite.generators), 169 | | 490 | configuration_model() (in module net- | | clear() (DiGraph method), 48 | workx.generators.degree_seq), 390 | | clear() (Graph method), 20 | connected_caveman_graph() (in module net- | | clear() (MultiDiGraph method), 107 | workx.generators.community), 408 | | clear() (MultiGraph method), 79 | connected_component_subgraphs() (in module net- | | clique_removal() (in module net- | workx.algorithms.components.connected), | | workx.algorithms.approximation.clique), | 208 | 133 | $\begin{array}{ccc} connected_components() & (in & module & net-\\ workx.algorithms.components.connected), \end{array}$ | degree_assortativity_coefficient() (in module net-
workx.algorithms.assortativity), 138 | |--|--| | 207 | degree_centrality() (in module net- | | connected_double_edge_swap() (in module net- | workx.algorithms.bipartite.centrality), 166 | | workx.algorithms.swap), 347 | degree_centrality() (in module net- | | connected_watts_strogatz_graph() (in module net- | workx.algorithms.centrality), 176 | | workx.generators.random_graphs), 386 | degree_histogram() (in module net- | | contracted_edge() (in module net- | workx.classes.function), 363 | | workx.algorithms.minors), 310 | degree_iter() (DiGraph method), 60 | | contracted_nodes() (in module net- | degree_iter() (Graph method), 31 | | workx.algorithms.minors), 311 | degree_iter() (MultiDiGraph method), 120 | | copy() (DiGraph method), 65 | degree_iter() (MultiGraph method), 90 | | copy() (Graph method), 34 | degree_mixing_dict() (in module net- | | copy() (MultiDiGraph method), 126 | workx.algorithms.assortativity), 145 | | copy() (MultiGraph method), 93 | degree_mixing_matrix() (in module net- | | core_number() (in module networkx.algorithms.core), | workx.algorithms.assortativity), 145 | | 240 | degree_pearson_correlation_coefficient() (in module net- | | cost_of_flow() (in module networkx.algorithms.flow), | workx.algorithms.assortativity), 140 | | 274 | degree_sequence_tree() (in module net- | | could_be_isomorphic() (in module net- | workx.generators.degree_seq), 394 | | workx.algorithms.isomorphism), 286 | degrees() (in module net- | | create_degree_sequence() (in module net- | workx.algorithms.bipartite.basic), 150 | | workx.utils.random_sequence), 496 | dense_gnm_random_graph() (in module net- | | create_empty_copy() (in module net- | workx.generators.random_graphs), 383 | | workx.classes.function), 364 | density() (in module net- | | <pre>cubical_graph() (in module networkx.generators.small),</pre> | workx.algorithms.bipartite.basic), 150 | | 379 | density() (in module networkx.classes.function), 363 | | cumulative_distribution() (in module net- | desargues_graph() (in module net- | | workx.utils.random_sequence), 497 | workx.generators.small), 379 | | current_flow_betweenness_centrality() (in module net- | descendants() (in module networkx.algorithms.dag), 246 | | workx.algorithms.centrality), 181 | dfs_edges() (in module net- | | current_flow_closeness_centrality() (in module networkx.algorithms.centrality), 180 | workx.algorithms.traversal.depth_first_search), 348 | | cuthill_mckee_ordering() (in module net- | & ` ` ` | | workx.utils.rcm), 499 | workx.algorithms.traversal.depth_first_search), | | cycle_basis() (in module networkx.algorithms.cycles), | 351 | | 243 | dfs_postorder_nodes() (in module net- | | cycle_graph() (in module networkx.generators.classic), 374 | workx.algorithms.traversal.depth_first_search), 350 | | n | dfs_predecessors() (in module net- | | D | workx.algorithms.traversal.depth_first_search), | | dag_longest_path() (in module networkx.algorithms.dag), | 349 | | 249 | dfs_preorder_nodes() (in module net- | | dag_longest_path_length() (in module networkx.algorithms.dag), 250 | workx.algorithms.traversal.depth_first_search), 350 | | davis_southern_women_graph() (in module net- | dfs_successors() (in module net- | | workx.generators.social), 406 | workx.algorithms.traversal.depth_first_search), | | default_opener() (in module networkx.utils.misc), 496 | 349 | | degree() (DiGraph method), 59 | dfs_tree() (in module net- | | degree() (Graph method), 30 | workx.algorithms.traversal.depth_first_search), | | degree() (in module networkx.classes.function), 363 | 348 | | degree() (MultiDiGraph method), 119 | diameter() (in module net- | | degree() (MultiGraph method), 89 | workx.algorithms.distance_measures), 250 | | | | | diamond_graph() (in module networkx.generators.sn
379 | nall), | draw_random() (in module networkx.drawing.nx_pylab), 484 | |--|--------|---| | dictionary, 511 | | draw_shell() (in module networkx.drawing.nx_pylab), | | difference() (in module | net- | 484 | | workx.algorithms.operators.binary), 319 | | draw_spectral() (in module networkx.drawing.nx_pylab), | | DiGraph() (in module networkx), 36 | | 484 | | dijkstra_path() (in module | net- | draw_spring() (in module networkx.drawing.nx_pylab), | | workx.algorithms.shortest_paths.weighted | | 484 | | 333 | ,, | duplication_divergence_graph() (in module net- | | dijkstra_path_length() (in module | net- | workx.generators.random_graphs), 388 | | workx.algorithms.shortest_paths.weighted | | worldingenerators random_graphs), 500 | | 333 | ,, | E | | dijkstra_predecessor_and_distance() (in module | net- | ebunch, 511 | | workx.algorithms.shortest_paths.weighted | | | | 338 | , | eccentricity() (in module net- | | directed_configuration_model() (in module | net- | workx.algorithms.distance_measures), 251 | | workx.generators.degree_seq), 391 | nct- | edge, 511 | | directed_havel_hakimi_graph() (in module | nat | edge attribute, 511 | | workx.generators.degree_seq), 394 | net- | edge_betweenness_centrality() (in module networkx.algorithms.centrality), 179 | | directed_laplacian_matrix() (in module | net- | edge_boundary() (in module net- | | workx.linalg.laplacianmatrix), 416 | | workx.algorithms.boundary), 174 | | discrete_sequence() (in module | net- | edge_connectivity() (in module net- | | workx.utils.random_sequence), 497 | | workx.algorithms.connectivity.connectivity), | | disjoint_union() (in module | net- | 226 | | workx.algorithms.operators.binary), 318 | | edge_current_flow_betweenness_centrality() (in module | | disjoint_union_all() (in module | net- | networkx.algorithms.centrality), 182 | | workx.algorithms.operators.all), 321 | | edge_dfs() (in module net- | | dispersion() (in module networkx.algorithms.centra | lity), | workx.algorithms.traversal.edgedfs), 354 | | 194 | | edge_load() (in module networkx.algorithms.centrality), | | dodecahedral_graph() (in module | net- | 194 | | workx.generators.small), 379 | | edges() (DiGraph method), 50 | | dominance_frontiers() (in module | net- | edges() (Graph method), 22 | | workx.algorithms.dominance), 254 | | edges() (in module networkx.classes.function), 366 | | dominating_set() (in module | net- | edges() (MultiDiGraph method), 109 | | workx.algorithms.dominating), 255 | | edges() (MultiGraph method), 81 | | dorogovtsev_goltsev_mendes_graph() (in module | net- | edges_iter() (DiGraph method), 50 | | workx.generators.classic), 374 | | edges_iter() (Graph method), 23 | | double_edge_swap() (in module | net- | edges_iter() (in module networkx.classes.function), 366 | | workx.algorithms.swap), 346 | | edges_iter() (MultiDiGraph method), 110 | | draw() (in module networkx.drawing.nx_pylab), 477 | | edges_iter() (MultiGraph method), 82 | | draw_circular() (in module networkx.drawing.nx_py 483 | lab), | Edmonds (class in networkx.algorithms.tree.branchings), 360 | | draw_graphviz() (in module | net- | edmonds_karp() (in module networkx.algorithms.flow), | | workx.drawing.nx_pylab), 484 | | 264 | | draw_networkx() (in module | net- | ego_graph() (in module networkx.generators.ego), 404 | | workx.drawing.nx_pylab), 478 | | eigenvector_centrality() (in module net- | | draw_networkx_edge_labels() (in module | net- | workx.algorithms.centrality), 184 | | workx.drawing.nx_pylab), 483 | | | | draw_networkx_edges() (in module | net- | eigenvector_centrality_numpy() (in module net-
workx.algorithms.centrality), 184 | | workx.drawing.nx_pylab), 481 | | empty_graph() (in module networkx.generators.classic), | | draw_networkx_labels() (in module | net- | 374 | | workx_tabels() (III IIIIodale
workx.drawing.nx_pylab), 482 | 1101 | | | draw_networkx_nodes() (in module | net- | enumerate_all_cliques() (in module net-
workx.algorithms.clique), 198 | | workx.drawing.nx_pylab), 480 | | works.argoriumis.cnque), 170 | | eppstein_matching() (in module net-
workx.algorithms.bipartite.matching), 151 | from_scipy_sparse_matrix() (in module net-
workx.convert_matrix), 433 | |---|---| | erdos_renyi_graph() (in module net-
workx.generators.random_graphs), 384 | frucht_graph() (in module networkx.generators.small), 379 | | estrada_index() (in module net- | G | | workx.algorithms.centrality), 192 eulerian_circuit() (in module networkx.algorithms.euler), | gaussian_random_partition_graph() (in module net- | | 256 | workx.generators.community), 410 | | expected_degree_graph() (in module net-
workx.generators.degree_seq), 392 | general_random_intersection_graph() (in module networkx.generators.intersection), 405 | | F | generate_adjlist() (in module networkx.readwrite.adjlist), 440 | | fast_could_be_isomorphic() (in module net- | generate_edgelist() (in module networkx.readwrite.edgelist), 448 | | workx.algorithms.isomorphism), 286 | | | fast_gnp_random_graph() (in module net- | generate_gml() (in module networkx.readwrite.gml), 454 | | workx.generators.random_graphs), 382 | generate_graph6() (in module net- | | faster_could_be_isomorphic() (in module net- | workx.readwrite.graph6), 469 | | workx.algorithms.isomorphism), 286 | generate_multiline_adjlist() (in module net- | | fiedler_vector() (in module net- | workx.readwrite.multiline_adjlist), 443 | | workx.linalg.algebraicconnectivity), 419 | generate_sparse6() (in module net- | | find_cliques() (in module networkx.algorithms.clique), | workx.readwrite.sparse6), 472 | | 198 | generate_unique_node() (in module networkx.utils.misc), | | find_cycle() (in module networkx.algorithms.cycles), 245 | 496 | | find_induced_nodes() (in module net- | generic_edge_match() (in module net- | | workx.algorithms.chordal.chordal_alg), 197 | workx.algorithms.isomorphism), 295 | | flatten() (in module networkx.utils.misc), 495 | generic_multiedge_match() (in module net- | | florentine_families_graph() (in module net- | workx.algorithms.isomorphism), 296 | | workx.generators.social), 407 | generic_node_match() (in module net- | | flow_hierarchy() (in module net- | workx.algorithms.isomorphism), 295 | | workx.algorithms.hierarchy), 281 | generic_weighted_projected_graph() (in module net- | | floyd_warshall() (in module net- | workx.algorithms.bipartite.projection), 158 | | workx.algorithms.shortest_paths.dense), 341 | geographical_threshold_graph() (in module networkx.generators.geometric), 400 | | floyd_warshall_numpy() (in module net- | get_edge_attributes() (in module net- | | workx.algorithms.shortest_paths.dense), 342 | workx.classes.function), 368
get_edge_data() (DiGraph method), 53 | | floyd_warshall_predecessor_and_distance() (in module | get_edge_data() (Graph method), 24 | | networkx.algorithms.shortest_paths.dense), | get_edge_data() (MultiDiGraph method), 113 | | 341 | get_edge_data() (MultiGraph method), 83 | | freeze() (in module networkx.classes.function), 369 | get_node_attributes() (in module net- | | from_agraph() (in module networkx.drawing.nx_agraph), | workx.classes.function), 367 | | 485 | global_parameters() (in module net- | | from_biadjacency_matrix() (in module net- | workx.algorithms.distance_regular), 253 | | workx.algorithms.bipartite.matrix), 154 | <pre>gn_graph() (in module networkx.generators.directed),</pre> | | from_dict_of_dicts() (in module networkx.convert), 426 | 397 | | from_dict_of_lists() (in module networkx.convert), 427 | gnc_graph() (in module networkx.generators.directed), 398 | | from_edgelist() (in module networkx.convert), 428 | | | from_numpy_matrix() (in module net- | gnm_random_graph() (in module net-
workx.generators.random_graphs), 383 | | workx.convert_matrix), 431
from pandas dataframe() (in module net- | gnmk_random_graph() (in module net- | | from_pandas_dataframe() (in module net-
workx.convert_matrix), 436 | workx.algorithms.bipartite.generators), 172 | | from_pydot() (in module networkx.drawing.nx_pydot), | gnp_random_graph() (in module net- | | 488 | workx.generators.random_graphs), 382 | | 100 | | | gnr_graph() (in module networkx.generators.directed 397 |), hopcroft_karp_matching() (in module net-
workx.algorithms.bipartite.matching), 152 | |---|--| | | | | google_matrix() (in module ne | -E 1 0 \ E | | workx.algorithms.link_analysis.pagerank_alg) | | | 300 | house_x_graph() (in module networkx.generators.small), | | Graph() (in module networkx), 9 | 380 | | graph_atlas_g() (in module networkx.generators.atlas | | | 371 | workx.algorithms.link_analysis.hits_alg), | | graph_clique_number() (in module ne | | | workx.algorithms.clique), 200 | hypercube_graph() (in module net- | | graph_number_of_cliques() (in module ne | workx.generators.classic), 375 | | workx.algorithms.clique), 200 | | | graphviz_layout() (in module ne | , I | | workx.drawing.nx_agraph), 486 | icosahedral_graph() (in module net- | | graphviz_layout() (in module ne | | | workx.drawing.nx_pydot), 489 | identified_nodes() (in module net- | | greedy_branching() (in module ne | | | workx.algorithms.tree.branchings), 358 | immediate_dominators() (in module net- | | greedy_color() (in module ne | | | workx.algorithms.coloring), 204 | workx.argoriums.dommanee), 25 i | | grid_2d_graph() (in module networkx.generators.classic | in_degree() (DiGraph method), 60 | | 375 | <u>-</u> | | grid_graph() (in module networkx.generators.classic | in_degree_centrality() (in module net- | | 375 | | | 313 | in_degree_iter() (DiGraph method), 61 | | H | in_degree_iter() (MultiDiGraph method), 121 | | | in_edges() (DiGraph method), 53 | | has_edge() (DiGraph method), 58 | in_edges() (MultiDiGraph method), 112 | | has_edge() (Graph method), 28 | in_edges_iter() (DiGraph method), 53 | | has_edge() (MultiDiGraph method), 118 | in_edges_iter() (MultiDiGraph method), 113 | | has_edge() (MultiGraph method), 88 | incidence_matrix() (in module net- | | has_node() (DiGraph method), 57 | workx.linalg.graphmatrix), 414 | | has_node() (Graph method), 28 | info() (in module networkx.classes.function), 364 | | has_node() (MultiDiGraph method), 117 | initialize() (DiGraphMatcher method), 291 | | has_node() (MultiGraph method), 87 | initialize() (GraphMatcher method), 289 | | has_path() (in module ne | intersection() (in module net- | | workx.algorithms.shortest_paths.generic), | workx.algorithms.operators.binary), 318 | | 329 | intersection_all() (in module net- | | hashable, 511 | workx.algorithms.operators.all), 321 | | havel_hakimi_graph() (in module ne | | | workx.algorithms.bipartite.generators), 169 | workx.algorithms.distance_regular), 252 | | havel_hakimi_graph() (in module ne | <u> </u> | | workx.generators.degree_seq), 393 | is_arborescence() (in module net- | | heawood_graph() (in module networkx.generators.small | | | 380 | is_attracting_component() (in module net- | | hits() (in module ne | | | workx.algorithms.link_analysis.hits_alg), | 215 | | 301 | is_biconnected() (in module net- | | hits_numpy() (in module ne | | | workx.algorithms.link_analysis.hits_alg), | 216 | | 301 | | | hits_scipy() (in module ne | is_bipartite() (in module net- | | workx.algorithms.link_analysis.hits_alg), | werningeriumererpurereusie), 1 ie | | workx.argoritims.imk_anarysis.ims_arg), 302 | is_bipartite_node_set() (in module net-
workx_algorithms_bipartite_basic), 148 | | JU2 | workx.aigorithms.bibartite.basic), 148 | | is_branching() | (in | module | net- | J | | |------------------------|---|--------------------|---|---|---------| | workx.al | gorithms.tree. | recognition), 358 | | jaccard_coefficient() (in module r | net- | | is_chordal() | (in | module | net- | workx.algorithms.link_prediction), 304 | | | | - | dal.chordal_alg), | | | net- | | is_connected() | (in | module | net- | workx.algorithms.shortest_paths.weighted), | | | workx.al
206 | gorithms.com | ponents.connected | 1), | 340 | | | is_digraphical() | (in | module | net- | K | | | | lgorithms.grap | | | k_clique_communities() (in module r | net- | | is_directed() (in m | | | | workx.algorithms.community.kclique), 205 | | | is_directed_acyclic | | (in module | net- | = 1 | net- | | | gorithms.dag) | | | workx.algorithms.approximation.kcomponer | nts), | | is_distance_regula | | module | net- | 132 | | | | - | ince_regular), 252 | | = 1 | net- | | is_dominating_set | () (III
 gorithms.dom | module | net- | workx.algorithms.connectivity.kcomponents | 5), | | is_eulerian() (in m | | | r) 256 | 222 | | | is_forest() | (in | module | net- | k_core() (in module networkx.algorithms.core), 241 | | | | | recognition), 357 | iict- | k_corona() (in module networkx.algorithms.core), 243 | 5 | | is_frozen() (in mod | | | 369 | k_crust() (in module networkx.algorithms.core), 242
k_nearest_neighbors() (in module r | | | is_graphical() | (in | module | net- | k_nearest_neighbors() (in module rworkx.algorithms.assortativity), 143 | net- | | | gorithms.grap | | | | net- | | is_isolate() (in mo | | | e), 283 | workx.generators.intersection), 405 | ict- | | is_isomorphic() (D | | | ,, | k_shell() (in module networkx.algorithms.core), 241 | | | is_isomorphic() (C | | | | | net- | | is_isomorphic() | (in | module | net- | workx.generators.social), 406 | 101 | | workx.al | gorithms.ison | norphism), 284 | | | net- | | is_kl_connected() | (in |
module | net- | workx.algorithms.centrality), 185 | | | | lgorithms.hybr | | | | net- | | is_list_of_ints() (ir | | | 195 | workx.algorithms.centrality), 187 | | | is_multigraphical(| | module | net- | kl_connected_subgraph() (in module r | net- | | | gorithms.grap | | | workx.algorithms.hybrid), 282 | | | is_pseudographica | | module | net- | kosaraju_strongly_connected_components() | | | | gorithms.grap | | 4 | | net- | | is_semiconnected(| | module | net- | workx.algorithms.components.strongly_com | nected) | | 221 | goriumis.com | ponents.semiconn | ected), | 211 | | | is_string_like() (in | module netw | orky utile mise) 4 | 05 | e ı v | net- | | is_strongly_connection | | | net- | workx.generators.small), 380 | | | | | ponents.strongly_ | | ed). | | | 209 | .go:1011111111111111111111111111111111111 | ponentorou engry_ | • | | • | | is_tree() | (in | module | net- | ladder_graph() (in module networkx.generators.class 375 | 1C), | | | ` | recognition), 356 | | | net- | | is_valid_degree_se | | | ıle net- | workx.linalg.laplacianmatrix), 415 | ict- | | workx.al | gorithms.grap | hical), 280 | | | net- | | is_valid_degree_se | equence_havel | _hakimi() (in 1 | nodule | workx.linalg.spectrum), 417 | ict | | network | x.algorithms.g | raphical), 280 | | 3 1 | net- | | is_weakly_connec | ted() (in | | net- | morly algorithms hiportite aluster) 162 | | | workx.al | gorithms.com | ponents.weakly_c | onnected | d) CF_graph() (in module networkx.generators.small), | 378 | | 213 | | | | lexicographic_product() (in module r | net- | | isolates() (in modu | | | | workx.algorithms.operators.product), 322 | | | isomorphisms_iter | | | 91 | line_graph() (in module networkx.generators.line), 402 | 2 | | isomorphisms_iter | | | | = & V \ | net- | | iterable() (in modu | ne networkx.u | uis.misc), 495 | | workx.readwrite.gml), 455 | | | literal_stringizer() (in module networkx.readwrite.gml),
455 | min_edge_dominating_set() (in module net-
workx.algorithms.approximation.dominating_set) | |--|---| | load_centrality() (in module net- | 135 | | load_centrality() (in module net-
workx.algorithms.centrality), 193 | min_maximal_matching() (in module net- | | local_edge_connectivity() (in module net- | workx.algorithms.approximation.matching), | | | | | workx.algorithms.connectivity.connectivity), | 136 | | 227 | min_weighted_dominating_set() (in module net- | | local_node_connectivity() (in module net- | $work x. algorithms. approximation. dominating_set)$ | | workx.algorithms.approximation.connectivity), | 135 | | 130 | min_weighted_vertex_cover() (in module net- | | local_node_connectivity() (in module net- | workx.algorithms.approximation.vertex_cover), | | workx.algorithms.connectivity.connectivity), | 137 | | 229 | minimum_branching() (in module net- | | lollipop_graph() (in module networkx.generators.classic), | workx.algorithms.tree.branchings), 359 | | 375 | minimum_cut() (in module networkx.algorithms.flow), | | | 261 | | M | minimum_cut_value() (in module net- | | make_clique_bipartite() (in module net- | workx.algorithms.flow), 262 | | workx.algorithms.clique), 199 | minimum_edge_cut() (in module net- | | 1 / | workx.algorithms.connectivity.cuts), 232 | | make_max_clique_graph() (in module net- | · · · · · · · · · · · · · · · · · · · | | workx.algorithms.clique), 199 | minimum_node_cut() (in module net- | | make_small_graph() (in module net- | workx.algorithms.connectivity.cuts), 234 | | workx.generators.small), 378 | minimum_spanning_arborescence() (in module net- | | make_str() (in module networkx.utils.misc), 496 | workx.algorithms.tree.branchings), 360 | | margulis_gabber_galil_graph() (in module net- | minimum_spanning_edges() (in module net- | | workx.generators.expanders), 376 | workx.algorithms.mst), 315 | | match() (DiGraphMatcher method), 291 | minimum_spanning_tree() (in module net- | | match() (GraphMatcher method), 290 | workx.algorithms.mst), 315 | | max_clique() (in module net- | minimum_st_edge_cut() (in module net- | | workx.algorithms.approximation.clique), | workx.algorithms.connectivity.cuts), 235 | | 133 | minimum_st_node_cut() (in module net- | | max_flow_min_cost() (in module net- | workx.algorithms.connectivity.cuts), 236 | | workx.algorithms.flow), 275 | moebius_kantor_graph() (in module net- | | | workx.generators.small), 380 | | | MultiDiGraph() (in module networkx), 95 | | workx.algorithms.matching), 309 | | | maximal_independent_set() (in module net- | MultiGraph() (in module networkx), 68 | | workx.algorithms.mis), 314 | N | | maximal_matching() (in module net- | N | | workx.algorithms.matching), 309 | navigable_small_world_graph() (in module net- | | maximum_branching() (in module net- | workx.generators.geometric), 401 | | workx.algorithms.tree.branchings), 359 | nbunch, 511 | | maximum_flow() (in module networkx.algorithms.flow), | nbunch_iter() (DiGraph method), 56 | | 257 | nbunch_iter() (Graph method), 27 | | maximum_flow_value() (in module net- | nbunch_iter() (MultiDiGraph method), 116 | | workx.algorithms.flow), 259 | nbunch_iter() (MultiGraph method), 86 | | maximum_independent_set() (in module net- | negative_edge_cycle() (in module net- | | workx.algorithms.approximation.independent_se | | | 136 | 339 | | maximum_spanning_arborescence() (in module net- | | | | neighbors() (DiGraph method), 54 | | workx.algorithms.tree.branchings), 359 | neighbors() (Graph method), 25 | | min_cost_flow() (in module networkx.algorithms.flow), | neighbors() (MultiDiGraph method), 114 | | 273 | neighbors() (MultiGraph method), 84 | | min_cost_flow_cost() (in module net- | neighbors_iter() (DiGraph method), 54 | | workx.algorithms.flow), 272 | neighbors iter() (Graph method), 25 | | neighbors_iter() (MultiDiGraph method), 114 | networkx.algorithms.components.weakly_connected | |---|--| | neighbors_iter() (MultiGraph method), 84 | (module), 213 | | network_simplex() (in module net- | networkx.algorithms.connectivity (module), 222 | |
workx.algorithms.flow), 270 | $network x. algorithms. connectivity. connectivity \ \ (module),$ | | networkx.algorithms.approximation (module), 129 | 224 | | networkx.algorithms.approximation.clique (module), 133 | networkx.algorithms.connectivity.cuts (module), 232 | | $network x. algorithms. approximation. clustering_coefficient$ | networkx.algorithms.connectivity.kcomponents (mod- | | (module), 134 | ule), 222 | | networkx.algorithms.approximation.connectivity (mod- | networkx.algorithms.connectivity.kcutsets (module), 223 | | ule), 129 | networkx.algorithms.connectivity.stoerwagner (module), | | networkx.algorithms.approximation.dominating_set | 238 | | (module), 134 | networkx.algorithms.connectivity.utils (module), 239 | | networkx.algorithms.approximation.independent_set | networkx.algorithms.core (module), 240 | | | | | (module), 135 | networkx.algorithms.cycles (module), 243 | | networkx.algorithms.approximation.kcomponents (mod- | networkx.algorithms.dag (module), 246 | | ule), 131 | networkx.algorithms.distance_measures (module), 250 | | networkx.algorithms.approximation.matching (module), | networkx.algorithms.distance_regular (module), 252 | | 136 | networkx.algorithms.dominance (module), 254 | | networkx.algorithms.approximation.ramsey (module), | networkx.algorithms.dominating (module), 255 | | 137 | networkx.algorithms.euler (module), 256 | | networkx.algorithms.approximation.vertex_cover (mod- | networkx.algorithms.flow (module), 257 | | ule), 137 | networkx.algorithms.graphical (module), 278 | | networkx.algorithms.assortativity (module), 138 | networkx.algorithms.hierarchy (module), 281 | | networkx.algorithms.bipartite (module), 146 | networkx.algorithms.hybrid (module), 282 | | networkx.algorithms.bipartite.basic (module), 148 | networkx.algorithms.isolate (module), 283 | | networkx.algorithms.bipartite.centrality (module), 165 | networkx.algorithms.isomorphism (module), 284 | | networkx.algorithms.bipartite.cluster (module), 160 | networkx.algorithms.isomorphism.isomorphyf2 (mod- | | networkx.algorithms.bipartite.generators (module), 168 | ule), 287 | | networks.argoriums.orpartite.generators (module), 106 | uic), 207 | | networky algorithms binartite metabing (module) 151 | | | networks.algorithms.bipartite.matching (module), 151 | $network x. algorithms. link_analysis. hits_alg \qquad (module),$ | | networkx.algorithms.bipartite.matrix (module), 153 | networkx.algorithms.link_analysis.hits_alg (module), 300 | | networkx.algorithms.bipartite.matrix (module), 153
networkx.algorithms.bipartite.projection (module), 154 | $network x. algorithms. link_analysis. hits_alg \qquad (module), \\ 300 \\ network x. algorithms. link_analysis. pagerank_alg \qquad (module), \\ network x. algorithms. network$ | | networkx.algorithms.bipartite.matrix (module), 153
networkx.algorithms.bipartite.projection (module), 154
networkx.algorithms.bipartite.redundancy (module), 164 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 | | networkx.algorithms.bipartite.matrix (module), 153
networkx.algorithms.bipartite.projection (module), 154
networkx.algorithms.bipartite.redundancy (module), 164
networkx.algorithms.bipartite.spectral (module), 159 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 | | networkx.algorithms.bipartite.matrix (module), 153
networkx.algorithms.bipartite.projection (module), 154
networkx.algorithms.bipartite.redundancy (module), 164
networkx.algorithms.bipartite.spectral (module), 159
networkx.algorithms.block (module), 173 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 | | networkx.algorithms.bipartite.matrix (module), 153
networkx.algorithms.bipartite.projection (module), 154
networkx.algorithms.bipartite.redundancy (module), 164
networkx.algorithms.bipartite.spectral (module), 159
networkx.algorithms.block (module), 173
networkx.algorithms.boundary (module), 173 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 | | networkx.algorithms.bipartite.matrix (module), 153
networkx.algorithms.bipartite.projection (module), 154
networkx.algorithms.bipartite.redundancy (module), 164
networkx.algorithms.bipartite.spectral (module), 159
networkx.algorithms.block (module), 173
networkx.algorithms.boundary (module), 173
networkx.algorithms.centrality (module), 175 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal_alg (module), 195 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.mst (module), 314 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.mst (module), 314 networkx.algorithms.operators.all (module), 319 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal_alg (module), 195 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.mst (module), 314 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.mst (module), 314 networkx.algorithms.operators.all (module), 319 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.cluster (module), 200 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.mst (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.cluster (module), 200 networkx.algorithms.coloring (module), 204 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314
networkx.algorithms.mst (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 networkx.algorithms.operators.product (module), 321 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.cluster (module), 200 networkx.algorithms.coloring (module), 204 networkx.algorithms.community (module), 205 networkx.algorithms.community.kclique (module), 205 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.mst (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 networkx.algorithms.operators.product (module), 321 networkx.algorithms.operators.unary (module), 316 networkx.algorithms.operators.unary (module), 325 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.cluster (module), 200 networkx.algorithms.coloring (module), 204 networkx.algorithms.community (module), 205 networkx.algorithms.community.kclique (module), 205 networkx.algorithms.components (module), 206 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.mst (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 networkx.algorithms.operators.product (module), 321 networkx.algorithms.operators.unary (module), 316 networkx.algorithms.richclub (module), 325 networkx.algorithms.shortest_paths.astar (module), 342 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.cluster (module), 200 networkx.algorithms.coloring (module), 204 networkx.algorithms.community (module), 205 networkx.algorithms.community.kclique (module), 205 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.mst (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 networkx.algorithms.operators.product (module), 321 networkx.algorithms.operators.unary (module), 321 networkx.algorithms.richclub (module), 325 networkx.algorithms.shortest_paths.astar (module), 342 networkx.algorithms.shortest_paths.dense (module), 341 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.cluster (module), 200 networkx.algorithms.coloring (module), 204 networkx.algorithms.community (module), 205 networkx.algorithms.community.kclique (module), 205 networkx.algorithms.components (module), 206 networkx.algorithms.components (module), 206 networkx.algorithms.components.attracting (module), 215 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 networkx.algorithms.operators.product (module), 321 networkx.algorithms.operators.unary (module), 321 networkx.algorithms.operators.unary (module), 316 networkx.algorithms.richclub (module), 325 networkx.algorithms.shortest_paths.astar (module), 341 networkx.algorithms.shortest_paths.dense (module), 341 networkx.algorithms.shortest_paths.generic (module), 341 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.cluster (module), 200 networkx.algorithms.coloring (module), 204 networkx.algorithms.community (module), 205 networkx.algorithms.community.kclique (module), 205 networkx.algorithms.components (module), 206 networkx.algorithms.components.attracting (module), 215 networkx.algorithms.components.biconnected (module), | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 networkx.algorithms.operators.product (module), 321 networkx.algorithms.operators.unary (module), 321 networkx.algorithms.operators.unary (module), 325 networkx.algorithms.richclub (module), 325 networkx.algorithms.shortest_paths.astar (module), 341 networkx.algorithms.shortest_paths.dense (module), 341 networkx.algorithms.shortest_paths.generic (module), 326 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.clique (module), 200 networkx.algorithms.coloring (module), 204 networkx.algorithms.community (module), 205 networkx.algorithms.community.kclique (module), 205 networkx.algorithms.components (module), 206 networkx.algorithms.components.attracting (module), 215 networkx.algorithms.components.biconnected (module), 216 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 networkx.algorithms.operators.product (module), 321 networkx.algorithms.operators.unary (module), 321 networkx.algorithms.operators.unary (module), 325 networkx.algorithms.shortest_paths.astar (module), 342 networkx.algorithms.shortest_paths.dense (module), 341 networkx.algorithms.shortest_paths.generic (module), 326 networkx.algorithms.shortest_paths.unweighted (module), 326 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.cluster (module), 200 networkx.algorithms.coloring (module), 204 networkx.algorithms.community (module), 205 networkx.algorithms.community.kclique (module), 205 networkx.algorithms.components (module), 206 networkx.algorithms.components.attracting (module), 215 networkx.algorithms.components.biconnected (module), 216 networkx.algorithms.components.connected (module), | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.mst (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 networkx.algorithms.operators.product (module), 321 networkx.algorithms.operators.unary (module), 321 networkx.algorithms.operators.unary
(module), 325 networkx.algorithms.shortest_paths.astar (module), 342 networkx.algorithms.shortest_paths.dense (module), 341 networkx.algorithms.shortest_paths.generic (module), 326 networkx.algorithms.shortest_paths.unweighted (module), 329 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.cluster (module), 200 networkx.algorithms.coloring (module), 204 networkx.algorithms.community (module), 205 networkx.algorithms.community.kclique (module), 205 networkx.algorithms.components (module), 206 networkx.algorithms.components.attracting (module), 215 networkx.algorithms.components.biconnected (module), 216 networkx.algorithms.components.connected (module), 206 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.mst (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 networkx.algorithms.operators.product (module), 321 networkx.algorithms.operators.unary (module), 321 networkx.algorithms.operators.unary (module), 325 networkx.algorithms.shortest_paths.astar (module), 342 networkx.algorithms.shortest_paths.dense (module), 341 networkx.algorithms.shortest_paths.generic (module), 326 networkx.algorithms.shortest_paths.unweighted (module), 329 networkx.algorithms.shortest_paths.weighted (module), | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.cluster (module), 200 networkx.algorithms.coloring (module), 204 networkx.algorithms.community (module), 205 networkx.algorithms.community.kclique (module), 205 networkx.algorithms.components (module), 206 networkx.algorithms.components.biconnected (module), 216 networkx.algorithms.components.connected (module), 206 networkx.algorithms.components.semiconnected (module), 206 networkx.algorithms.components.semiconnected (module), 206 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 networkx.algorithms.operators.product (module), 321 networkx.algorithms.operators.unary (module), 321 networkx.algorithms.operators.unary (module), 325 networkx.algorithms.richclub (module), 325 networkx.algorithms.shortest_paths.astar (module), 341 networkx.algorithms.shortest_paths.generic (module), 326 networkx.algorithms.shortest_paths.unweighted (module), 329 networkx.algorithms.shortest_paths.weighted (module), 332 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.cluster (module), 200 networkx.algorithms.coloring (module), 204 networkx.algorithms.community (module), 205 networkx.algorithms.community.kclique (module), 205 networkx.algorithms.components (module), 206 networkx.algorithms.components.attracting (module), 215 networkx.algorithms.components.biconnected (module), 206 networkx.algorithms.components.connected (module), 206 networkx.algorithms.components.semiconnected (module), 206 networkx.algorithms.components.semiconnected (module), 206 networkx.algorithms.components.semiconnected (module), 206 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 networkx.algorithms.operators.product (module), 321 networkx.algorithms.operators.unary (module), 321 networkx.algorithms.operators.unary (module), 325 networkx.algorithms.shortest_paths.astar (module), 342 networkx.algorithms.shortest_paths.dense (module), 341 networkx.algorithms.shortest_paths.generic (module), 326 networkx.algorithms.shortest_paths.unweighted (module), 329 networkx.algorithms.shortest_paths.weighted (module), 332 networkx.algorithms.shortest_paths.weighted (module), 332 networkx.algorithms.shortest_paths.weighted (module), 332 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.cluster (module), 200 networkx.algorithms.coloring (module), 204 networkx.algorithms.community (module), 205 networkx.algorithms.community.kclique (module), 205 networkx.algorithms.components (module), 206 networkx.algorithms.components.attracting (module), 215 networkx.algorithms.components.biconnected (module), 206 networkx.algorithms.components.semiconnected (module), 206 networkx.algorithms.components.semiconnected (module), 206 networkx.algorithms.components.semiconnected (module), 201 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 networkx.algorithms.operators.product (module), 321 networkx.algorithms.operators.unary (module), 321 networkx.algorithms.operators.unary (module), 325 networkx.algorithms.richclub (module), 325 networkx.algorithms.shortest_paths.astar (module), 341 networkx.algorithms.shortest_paths.dense (module), 341 networkx.algorithms.shortest_paths.unweighted (module), 329 networkx.algorithms.shortest_paths.weighted (module), 332 networkx.algorithms.simple_paths (module), 344 networkx.algorithms.simple_paths (module), 344 networkx.algorithms.swap (module), 346 | | networkx.algorithms.bipartite.matrix (module), 153 networkx.algorithms.bipartite.projection (module), 154 networkx.algorithms.bipartite.redundancy (module), 164 networkx.algorithms.bipartite.spectral (module), 159 networkx.algorithms.block (module), 173 networkx.algorithms.boundary (module), 173 networkx.algorithms.centrality (module), 175 networkx.algorithms.chordal.chordal_alg (module), 195 networkx.algorithms.clique (module), 197 networkx.algorithms.cluster (module), 200 networkx.algorithms.coloring (module), 204 networkx.algorithms.community (module), 205 networkx.algorithms.community.kclique (module), 205 networkx.algorithms.components (module), 206 networkx.algorithms.components.attracting (module), 215 networkx.algorithms.components.biconnected (module), 206 networkx.algorithms.components.connected (module), 206 networkx.algorithms.components.semiconnected (module), 206 networkx.algorithms.components.semiconnected (module), 206 networkx.algorithms.components.semiconnected (module), 206 | networkx.algorithms.link_analysis.hits_alg (module), 300 networkx.algorithms.link_analysis.pagerank_alg (module), 296 networkx.algorithms.link_prediction (module), 303 networkx.algorithms.matching (module), 309 networkx.algorithms.minors (module), 310 networkx.algorithms.mis (module), 314 networkx.algorithms.operators.all (module), 319 networkx.algorithms.operators.binary (module), 317 networkx.algorithms.operators.product (module), 321 networkx.algorithms.operators.unary (module), 321 networkx.algorithms.operators.unary (module), 325 networkx.algorithms.shortest_paths.astar (module), 342 networkx.algorithms.shortest_paths.dense (module), 341 networkx.algorithms.shortest_paths.generic (module), 326 networkx.algorithms.shortest_paths.unweighted (module), 329 networkx.algorithms.shortest_paths.weighted (module), 332 networkx.algorithms.shortest_paths.weighted (module), 332 networkx.algorithms.shortest_paths.weighted (module), 332 | | networkx.algorithms.traversal.depth_first_search (mod- | networkx.utils.random_sequence (module), 496 | | |--
--|--| | ule), 347 | networkx.utils.rcm (module), 499 | | | networkx.algorithms.traversal.edgedfs (module), 354 | networkx.utils.union_find (module), 496 | | | networkx.algorithms.tree.branchings (module), 358 | NetworkXAlgorithmError (class in networkx), 493 | | | networkx.algorithms.tree.recognition (module), 355 | NetworkXError (class in networkx), 493 | | | networkx.algorithms.triads (module), 360 | NetworkXException (class in networkx), 493 | | | networkx.algorithms.vitality (module), 361 | NetworkXNoPath (class in networkx), 493 | | | networkx.classes.function (module), 363 | NetworkXPointlessConcept (class in networkx), 493 | | | networkx.convert (module), 425 | NetworkXUnbounded (class in networkx), 493 | | | networkx.convert_matrix (module), 428 | NetworkXUnfeasible (class in networkx), 493 | | | networkx.drawing.layout (module), 489 | newman_watts_strogatz_graph() (in module net- | | | networkx.drawing.nx_agraph (module), 485 | workx.generators.random_graphs), 385 | | | networkx.drawing.nx_pydot (module), 487 | node, 511 | | | networkx.drawing.nx_pylab (module), 477 | node attribute, 511 | | | networkx.exception (module), 493 | node_boundary() (in module net- | | | networkx.generators.atlas (module), 371 | workx.algorithms.boundary), 174 | | | networkx.generators.classic (module), 371 | node_clique_number() (in module net- | | | networkx.generators.community (module), 407 | workx.algorithms.clique), 200 | | | networkx.generators.degree_seq (module), 389 | node_connected_component() (in module net- | | | networkx.generators.directed (module), 396 | workx.algorithms.components.connected), | | | networkx.generators.ego (module), 403 | 208 | | | networkx.generators.expanders (module), 376 | node_connectivity() (in module net- | | | networkx.generators.geometric (module), 399 | workx.algorithms.approximation.connectivity), | | | networkx.generators.intersection (module), 405 | 131 | | | networkx.generators.line (module), 402 | node_connectivity() (in module net- | | | networkx.generators.nonisomorphic_trees (module), 411 | workx.algorithms.connectivity.connectivity), | | | networkx.generators.random_clustered (module), 395 | 231 | | | networkx.generators.random_graphs (module), 381 | node_link_data() (in module net- | | | networkx.generators.small (module), 377 | workx.readwrite.json_graph), 460 | | | networkx.generators.social (module), 406 | node_link_graph() (in module net- | | | networkx.generators.stochastic (module), 404 | workx.readwrite.json_graph), 461 | | | networkx.linalg.algebraicconnectivity (module), 418 | node_redundancy() (in module net- | | | networkx.linalg.attrmatrix (module), 420 | workx.algorithms.bipartite.redundancy), | | | networkx.linalg.graphmatrix (module), 413 | 164 | | | networkx.linalg.laplacianmatrix (module), 414 | nodes() (DiGraph method), 48 | | | networkx.linalg.spectrum (module), 417 | nodes() (Graph method), 21 | | | networkx.readwrite.adjlist (module), 437 | nodes() (in module networkx.classes.function), 365 | | | networkx.readwrite.edgelist (module), 444 | nodes() (MultiDiGraph method), 108 | | | networkx.readwrite.gexf (module), 450 | nodes() (MultiGraph method), 80 | | | networkx.readwrite.gml (module), 452 | nodes_iter() (DiGraph method), 49 | | | networkx.readwrite.gpickle (module), 456 | nodes_iter() (Graph method), 22 | | | networkx.readwrite.graph6 (module), 468 | nodes_iter() (in module networkx.classes.function), 365 | | | networkx.readwrite.graphml (module), 457 | nodes_iter() (MultiDiGraph method), 108 | | | networkx.readwrite.json_graph (module), 460 | nodes_iter() (MultiGraph method), 80 | | | networkx.readwrite.leda (module), 464 | nodes_with_selfloops() (DiGraph method), 64 | | | networkx.readwrite.multiline_adjlist (module), 440 | | | | | nodes_with_selfloops() (Graph method), 32 | | | networkx.readwrite.nx_shp (module), 475 | | | | networkx.readwrite.nx_shp (module), 475
networkx.readwrite.nx_yaml (module), 465 | nodes_with_selfloops() (Graph method), 32 | | | | nodes_with_selfloops() (Graph method), 32
nodes_with_selfloops() (MultiDiGraph method), 124 | | | networkx.readwrite.nx_yaml (module), 465 | nodes_with_selfloops() (Graph method), 32
nodes_with_selfloops() (MultiDiGraph method), 124
nodes_with_selfloops() (MultiGraph method), 91 | | | networkx.readwrite.nx_yaml (module), 465
networkx.readwrite.pajek (module), 473 | nodes_with_selfloops() (Graph method), 32
nodes_with_selfloops() (MultiDiGraph method), 124
nodes_with_selfloops() (MultiGraph method), 91
non_edges() (in module networkx.classes.function), 367 | | | networkx.readwrite.nx_yaml (module), 465
networkx.readwrite.pajek (module), 473
networkx.readwrite.sparse6 (module), 470 | nodes_with_selfloops() (Graph method), 32
nodes_with_selfloops() (MultiDiGraph method), 124
nodes_with_selfloops() (MultiGraph method), 91
non_edges() (in module networkx.classes.function), 367
non_neighbors() (in module networkx.classes.function), | | | networkx.readwrite.nx_yaml (module), 465
networkx.readwrite.pajek (module), 473
networkx.readwrite.sparse6 (module), 470
networkx.utils (module), 495 | nodes_with_selfloops() (Graph method), 32
nodes_with_selfloops() (MultiDiGraph method), 124
nodes_with_selfloops() (MultiGraph method), 91
non_edges() (in module networkx.classes.function), 367
non_neighbors() (in module networkx.classes.function), 365 | | | normalized_laplacian_matrix() (in module net-
workx.linalg.laplacianmatrix), 415
null_graph() (in module networkx.generators.classic), | order() (MultiGraph method), 88
out_degree() (DiGraph method), 62
out_degree() (MultiDiGraph method), 122 | |--|---| | 376 | out_degree_centrality() (in module net- | | number_attracting_components() (in module net- | workx.algorithms.centrality), 177 | | workx.algorithms.components.attracting), 215 | out_degree_iter() (DiGraph method), 62
out_degree_iter() (MultiDiGraph method), 122 | | number_connected_components() (in module net- | out_edges() (DiGraph method), 51 | | workx.algorithms.components.connected), 207 | out_edges() (MultiDiGraph method), 111
out_edges_iter() (DiGraph method), 52 | | number_of_cliques() (in module net- | out_edges_iter() (MultiDiGraph method), 111 | | workx.algorithms.clique), 200 | overlap_weighted_projected_graph() (in module net- | | number_of_edges() (DiGraph method), 63 | workx.algorithms.bipartite.projection), 157 | | number_of_edges() (Graph method), 32 | works.argorumis.orpartic.projection), 137 | | number_of_edges() (in module net- | P | | | | | workx.classes.function), 366 | pagerank() (in module net- | | number_of_edges() (MultiDiGraph method), 123 | workx.algorithms.link_analysis.pagerank_alg), | | number_of_edges() (MultiGraph method), 91 | 297 | | number_of_nodes() (DiGraph method), 59 | pagerank_numpy() (in module net- | | number_of_nodes() (Graph method), 29 | workx.algorithms.link_analysis.pagerank_alg), | | number_of_nodes() (in module net- | 298 | | workx.classes.function), 365 | pagerank_scipy() (in module net- | | number_of_nodes() (MultiDiGraph method), 119 | workx.algorithms.link_analysis.pagerank_alg), | | number_of_nodes() (MultiGraph method), 88 | 299 | | number_of_nonisomorphic_trees() (in module net- | <pre>pappus_graph() (in module networkx.generators.small),</pre> | | workx.generators.nonisomorphic_trees), 411 | 380 | | number_of_selfloops() (DiGraph method), 65 | pareto_sequence() (in module net- | | number_of_selfloops() (Graph method), 33 | workx.utils.random_sequence), 497 | | number_of_selfloops() (MultiDiGraph method), 125 | parse_adjlist() (in module networkx.readwrite.adjlist), | | number_of_selfloops() (MultiGraph method), 93 | 439 | | number_strongly_connected_components() | <pre>parse_edgelist() (in module networkx.readwrite.edgelist),</pre> | | (in module net- | 449 | | workx.algorithms.components.strongly_connec | ted arse_gml() (in module networkx.readwrite.gml), 454 | | 209 | parse_graph6() (in module networkx.readwrite.graph6), | | number_weakly_connected_components() | 468 | | (in module net- | parse_leda() (in module networkx.readwrite.leda), 465 | | workx.algorithms.components.weakly_connected | ed parse_multiline_adjlist() (in module net- | | 213 | workx.readwrite.multiline_adjlist), 443 | | numeric_assortativity_coefficient() (in module net- | parse_pajek() (in module networkx.readwrite.pajek), 474 | | workx.algorithms.assortativity), 140 | parse_sparse6() (in module networkx.readwrite.sparse6), | | numerical_edge_match() (in module net- | 471 | | workx.algorithms.isomorphism), 294 | path_graph() (in module networkx.generators.classic), | | numerical_multiedge_match() (in module net- | 376 | | workx.algorithms.isomorphism), 294 | periphery() (in module net- | | numerical_node_match() (in module net- | workx.algorithms.distance_measures), 251 | | workx.algorithms.isomorphism), 293 | petersen_graph() (in module networkx.generators.small), | | | 380 | | 0 | planted_partition_graph() (in module net- | | octahedral_graph() (in module net- | workx.generators.community), 409 | | workx.generators.small), 380 | power() (in module net- | | open_file() (in module networkx.utils.decorators), 498 | workx.algorithms.operators.product), 324 | | order() (DiGraph method), 58 | powerlaw_cluster_graph() (in module net- | | order() (Graph method), 29 | workx.generators.random_graphs), 387 | | order() (MultiDiGraph method), 118 | works. Sonorators. random_graphs), 507 | | oraci ()
(manusiorapii memou), 110 | | | 1 0 0 11 | | 1 1 11 10 6 11 | | |---|------|---|--------------| | powerlaw_sequence() (in module r
workx.utils.random_sequence), 497 | net- | random_shell_graph() (in module n
workx.generators.random_graphs), 388 | iet- | | | nat | | iet- | | workx.algorithms.shortest_paths.unweighted | iet- | workx.utils.random_sequence), 498 | ici- | | 332 | 1), | read_adjlist() (in module networkx.readwrite.adjlist), 4 | 137 | | predecessors() (DiGraph method), 55 | | read_dot() (in module networkx.readwrite.adjinst), 4 | | | predecessors() (MultiDiGraph method), 115 | | read_dot() (in module networkx.drawing.nx_pydot), 4 | | | predecessors_iter() (DiGraph method), 55 | | read_edgelist() (in module networkx.readwrite.edgelis | | | predecessors_iter() (MultiDiGraph method), 115 | | 445 | <i>30)</i> , | | | net- | read_gexf() (in module networkx.readwrite.gexf), 450 | | | workx.algorithms.link_prediction), 305 | | read_gml() (in module networkx.readwrite.gml), 452 | | | | net- | read_gpickle() (in module networkx.readwrite.gpickl | le), | | workx.algorithms.bipartite.generators), 171 | | 456 | - , , | | preflow_push() (in module networkx.algorithms.flo | w), | read_graph6() (in module networkx.readwrite.graph | 16), | | 267 | | 469 | | | projected_graph() (in module r | net- | <pre>read_graphml() (in module networkx.readwrite.graphm</pre> | nl), | | workx.algorithms.bipartite.projection), 154 | | 459 | | | pydot_layout() (in module networkx.drawing.nx_pydot_ | ot), | read_leda() (in module networkx.readwrite.leda), 465 | | | 489 | | read_multiline_adjlist() (in module n | net- | | pygraphviz_layout() (in module r | net- | workx.readwrite.multiline_adjlist), 441 | | | workx.drawing.nx_agraph), 487 | | read_pajek() (in module networkx.readwrite.pajek), 47 | 14 | | | | read_shp() (in module networkx.readwrite.nx_shp), 47 | | | Q | | read_sparse6() (in module networkx.readwrite.sparse | :6), | | quotient_graph() (in module r | net- | 471 | | | workx.algorithms.minors), 312 | | = & = & \ | iet- | | n | | workx.readwrite.edgelist), 447 | | | R | | read_yaml() (in module networkx.readwrite.nx_yam | nl), | | ra_index_soundarajan_hopcroft() (in module r | net- | 467 | 4 | | workx.algorithms.link_prediction), 307 | | relabel_gexf_graph() (in module n
workx.readwrite.gexf), 452 | iet- | | · · · · · · · · · · · · · · · · · · · | net- | | iet- | | workx.algorithms.distance_measures), 251 | | workx.generators.community), 408 | ict- | | 3 — | net- | remove_edge() (DiGraph method), 45 | | | workx.algorithms.approximation.ramsey), | | remove_edge() (Graph method), 18 | | | 137 | | remove_edge() (MultiDiGraph method), 104 | | | , | net- | remove_edge() (MultiGraph method), 77 | | | workx.generators.random_clustered), 395 | | remove_edges_from() (DiGraph method), 46 | | | - e - i -e i · · · | net- | remove_edges_from() (Graph method), 19 | | | workx.generators.degree_seq), 394 random_geometric_graph() (in module r | net- | remove_edges_from() (MultiDiGraph method), 105 | | | workx.generators.geometric), 399 | ict- | remove_edges_from() (MultiGraph method), 77 | | | | net- | remove_node() (DiGraph method), 42 | | | workx.algorithms.bipartite.generators), 171 | 101 | remove_node() (Graph method), 15 | | | random_layout() (in module networkx.drawing.layou | ut). | remove_node() (MultiDiGraph method), 101 | | | 490 | // | remove_node() (MultiGraph method), 73 | | | random_lobster() (in module r | net- | remove_nodes_from() (DiGraph method), 43 | | | workx.generators.random_graphs), 388 | | remove_nodes_from() (Graph method), 16 | | | random_partition_graph() (in module r | net- | remove_nodes_from() (MultiDiGraph method), 101 | | | workx.generators.community), 409 | | remove_nodes_from() (MultiGraph method), 74 | | | random_powerlaw_tree() (in module r | net- | ` ` | iet- | | workx.generators.random_graphs), 389 | | workx.algorithms.link_prediction), 303 | | | | net- | reverse() (DiGraph method), 68 | no+ | | workx.generators.random_graphs), 389 | | reverse() (in module n
workx.algorithms.operators.unary), 316 | iet- | | _ c _c , | net- | reverse() (MultiDiGraph method), 128 | | | workx.generators.random_graphs), 386 | | Teverse() (within Dioraph memon), 120 | | | reverse_cuthill_mckee_ordering() (in module net-
workx.utils.rcm), 500 | single_source_shortest_path_length() (in module net-
workx.algorithms.shortest_paths.unweighted), | |---|--| | reverse_havel_hakimi_graph() (in module net- | 330 | | | | | workx.algorithms.bipartite.generators), 170 | size() (DiGraph method), 63 | | reversed() (in module networkx.utils.contextmanagers), | size() (Graph method), 31 | | 501 | size() (MultiDiGraph method), 123 | | rich_club_coefficient() (in module net- | size() (MultiGraph method), 90 | | workx.algorithms.richclub), 325 | spectral_bipartivity() (in module net- | | robins_alexander_clustering() (in module net- | workx.algorithms.bipartite.spectral), 160 | | workx.algorithms.bipartite.cluster), 164 | spectral_layout() (in module networkx.drawing.layout), | | works.argoriamis.orparate.oraster), 101 | 492 | | S | | | o . | spectral_ordering() (in module net- | | scale_free_graph() (in module net- | workx.linalg.algebraicconnectivity), 420 | | workx.generators.directed), 398 | spring_layout() (in module networkx.drawing.layout), | | sedgewick_maze_graph() (in module net- | 491 | | workx.generators.small), 381 | square_clustering() (in module net- | | selfloop_edges() (DiGraph method), 64 | workx.algorithms.cluster), 203 | | | star_graph() (in module networkx.generators.classic), 376 | | selfloop_edges() (Graph method), 33 | stochastic_graph() (in module net- | | selfloop_edges() (MultiDiGraph method), 124 | - · · · · · · · · · · · · · · · · · · · | | selfloop_edges() (MultiGraph method), 92 | workx.generators.stochastic), 404 | | semantic_feasibility() (DiGraphMatcher method), 291 | stoer_wagner() (in module net- | | semantic_feasibility() (GraphMatcher method), 290 | workx.algorithms.connectivity.stoerwagner), | | set_edge_attributes() (in module net- | 238 | | workx.classes.function), 368 | strong_product() (in module net- | | set_node_attributes() (in module net- | workx.algorithms.operators.product), 323 | | workx.classes.function), 367 | strongly_connected_component_subgraphs() | | sets() (in module networkx.algorithms.bipartite.basic), | (in module net- | | 149 | workx.algorithms.components.strongly_connected), | | | 210 | | shell_layout() (in module networkx.drawing.layout), 490 | strongly_connected_components() (in module net- | | shortest_augmenting_path() (in module net- | | | workx.algorithms.flow), 266 | workx.algorithms.components.strongly_connected), | | shortest_path() (in module net- | 209 | | workx.algorithms.shortest_paths.generic), | strongly_connected_components_recursive() | | 326 | (in module net- | | shortest_path_length() (in module net- | workx.algorithms.components.strongly_connected), | | workx.algorithms.shortest_paths.generic), | 211 | | 328 | subgraph() (DiGraph method), 67 | | shortest_simple_paths() (in module net- | subgraph() (Graph method), 36 | | workx.algorithms.simple_paths), 345 | subgraph() (MultiDiGraph method), 127 | | simple_cycles() (in module networkx.algorithms.cycles), | subgraph() (MultiGraph method), 95 | | 244 | subgraph_is_isomorphic() (DiGraphMatcher method), | | | 291 | | single_source_dijkstra() (in module net- | subgraph_is_isomorphic() (GraphMatcher method), 289 | | workx.algorithms.shortest_paths.weighted), | subgraph_isomorphisms_iter() (DiGraphMatcher | | 336 | | | single_source_dijkstra_path() (in module net- | method), 291 | | workx.algorithms.shortest_paths.weighted), | subgraph_isomorphisms_iter() (GraphMatcher method), | | 334 | 289 | | single_source_dijkstra_path_length() (in module net- | successors() (DiGraph method), 55 | | workx.algorithms.shortest_paths.weighted), | successors() (MultiDiGraph method), 115 | | 334 | successors_iter() (DiGraph method), 55 | | single_source_shortest_path() (in module net- | successors_iter() (MultiDiGraph method), 115 | | workx.algorithms.shortest_paths.unweighted), | symmetric_difference() (in module net- | | 330 | workx.algorithms.operators.binary), 319 | | 550 | syntactic_feasibility() (DiGraphMatcher method), 292 | | | | | syntactic_feasibility() (GraphMatcher method), 290 | U | |---|---| | Т | uniform_random_intersection_graph() (in module networkx.generators.intersection), 405 | | tensor_product() (in module networkx.algorithms.operators.product), 323 | uniform_sequence() (in module net-
workx.utils.random_sequence), 497 | | tetrahedral_graph() (in module networkx.generators.small), 381 | union() (in module net-
workx.algorithms.operators.binary), 317 | | to_agraph() (in module networkx.drawing.nx_agraph), 486 | union() (UnionFind method), 496
union_all() (in module net- | | to_dict_of_dicts() (in module networkx.convert), 426 | workx.algorithms.operators.all), 320 | | to_dict_of_lists() (in module networkx.convert), 427 to_directed() (DiGraph method), 66 | W | | to_directed() (Graph method), 35 | | | to_directed() (MultiDiGraph method), 127 | watts_strogatz_graph() (in module net- | | to_directed() (MultiGraph method), 94 | workx.generators.random_graphs), 385 waxman_graph() (in module net- | | to_edgelist() (in module networkx.convert), 427 | waxman_graph() (in module net-
workx.generators.geometric), 401 | | to_networkx_graph() (in module networkx.convert), 425 |
weakly_connected_component_subgraphs() | | to_numpy_matrix() (in module net- | (in module net- | | workx.convert_matrix), 428 | workx.algorithms.components.weakly_connected), | | to_numpy_recarray() (in module net- | 214 | | workx.convert_matrix), 430 | weakly_connected_components() (in module net- | | to_pandas_dataframe() (in module net-
workx.convert_matrix), 434 | workx.algorithms.components.weakly_connected), 213 | | to_pydot() (in module networkx.drawing.nx_pydot), 488 | weighted_choice() (in module net- | | to_scipy_sparse_matrix() (in module net- | workx.utils.random_sequence), 498 | | workx.convert_matrix), 432 | weighted_projected_graph() (in module net- | | to_undirected() (DiGraph method), 66 | workx.algorithms.bipartite.projection), 155 | | to_undirected() (Graph method), 34 | wheel_graph() (in module networkx.generators.classic), | | to_undirected() (MultiDiGraph method), 126 | 376 | | to_undirected() (MultiGraph method), 94 | within_inter_cluster() (in module net- | | to_vertex_cover() (in module net- | workx.algorithms.link_prediction), 308 | | workx.algorithms.bipartite.matching), 152 | write_adjlist() (in module networkx.readwrite.adjlist), | | topological_sort() (in module networkx.algorithms.dag), 247 | 438 | | topological_sort_recursive() (in module net- | write_dot() (in module networkx.drawing.nx_agraph), 486 | | workx.algorithms.dag), 247 | write_dot() (in module networkx.drawing.nx_pydot), 488 | | transitive_closure() (in module net-
workx.algorithms.dag), 249 | write_edgelist() (in module networkx.readwrite.edgelist), | | transitivity() (in module networkx.algorithms.cluster), | 446 | | 201 | write_gexf() (in module networkx.readwrite.gexf), 451 | | tree_data() (in module networkx.readwrite.json_graph), | write_gml() (in module networkx.readwrite.gml), 453 write_gpickle() (in module networkx.readwrite.gpickle), | | 463 | 456 | | tree_graph() (in module networkx.readwrite.json_graph), 464 | write_graph6() (in module networkx.readwrite.graph6), 470 | | triadic_census() (in module networkx.algorithms.triads), | write_graphml() (in module net- | | 360 | workx.readwrite.graphml), 459 | | triangles() (in module networkx.algorithms.cluster), 200 | write_multiline_adjlist() (in module net- | | trivial_graph() (in module networkx.generators.classic), | workx.readwrite.multiline_adjlist), 442 | | 376 | write_pajek() (in module networkx.readwrite.pajek), 474 | | truncated_cube_graph() (in module net- | write_shp() (in module networkx.readwrite.nx_shp), 476 | | workx.generators.small), 381
truncated_tetrahedron_graph() (in module net- | write_sparse6() (in module networkx.readwrite.sparse6), 473 | | workx.generators.small), 381 | write_weighted_edgelist() (in module net- | | tutte_graph() (in module networkx.generators.small), 381 | workx.readwrite.edgelist), 447 | ``` write_yaml() (in module networkx.readwrite.nx_yaml), 467 ``` # Ζ ``` zipf_rv() (in module networkx.utils.random_sequence), 497 zipf_sequence() (in module networkx.utils.random_sequence), 497 ```