Pergi ke kandungan

Fungsi

Daripada Wikipedia, ensiklopedia bebas.
(Dilencongkan daripada Fungsi (matematik))
Hubungan fungsi unsur set (domain) dipetakan kepada unsur set (kodomain).

Fungsi merupakan suatu hubungan banyak-ke-satu atau satu-ke-satu antara unsur set yang dipanggil sebagai domain kepada unsur set yang dipanggil sebagai kodomain. Setiap unsur dalam set dipanggil sebagai 'objek' atau 'input' manakala setiap unsur di dalam set dipanggil sebagai 'imej' atau 'output'.

Tatatanda Fungsi

[sunting | sunting sumber]

Terdapat beberapa notasi bagi menulis suatu hubungan fungsi dimana input dipetakan kepada output .

  • Notasi Fungsi:
  • Notasi Anak Panah:
  • Notasi Indeks:
Anologi fungsi mana suatu fungsi dicatat sebagai suatu mesen yang menerima suatu input dan menghasilkan suatu output.

Sebagai contoh, suatu hubungan fungsi dimana setiap input akan menghasil output boleh ditulis sebagai .

Apabila kita inputkan suatu nilai kedalam suatu fungsi, kita hanya mesti gantikan semua pemboleh ubah dengan nilai itu. Sebagai contoh, katakan kita mempunyai suatu fungsi , dimana . Untuk mencari nilai , kita hanya mesti gantikan semua pemboleh ubah dengan . Jadi;

  1. ,
  2. Maka,

Walaupun nama fungsi selalunya dilabel dengan huruf abjad Rumi, fungsi kebanyakannya juga dilabelkan dengan huruf abjad Yunani atau suatu perkataan, contohnya:

  • , Fungsi Riemann-Zeta
  • , Fungsi Kiraan Nombor Perdana
  • , Fungsi Gamma
  • , Fungsi Rayo
  • , Fungsi TREE

Input hanya boleh dilabelkan dengan huruf abjad Rumi dan Yunani. adalah nama input yang paling popular untuk digunakan sebagai nama input serta dengan digunakan sebagai nama input apabila suatu fungsi hanya terima input nombor bulat dan selalunya digunakan apabila suatu fungsi boleh menerima nombor kompleks. Namun begitu, ia juga penting untuk diperhatikan bahawa pengarang dan ahli matematik mungkin lebih suka memilihi huruf yang berbeza dalam kerja mereka.

Domain, Kodomain dan Julat

[sunting | sunting sumber]

Domain adalah set bagi semua input yang boleh diterima oleh fungsi. Ia biasanya ditulis dalam notasi set dan notasi interval. Berikut adalah contoh asas:

Katakan suatu fungsi dimana . Domain bagi fungsi ini adalah atau kerana apabila dimasukkan kedalam fungsi itu, ia menghasilkan ralat bahagian dengan 0. Maka, tidak ditakrif dan tidak disertakan dalam domainnya

Ini adalah satu lagi contoh asas:

Katakan suatu fungsi dimana . Domain bagi fungsi ini boleh ditulis sebagai , atau . Ia sebab apabila kita inputkan suatu nombor negatif ke dalam fungsi itu, ia menghasikan ralat bahagi . Maka, dimana tidak ditakrif dan semua nombor dalam set tidak disertai ke dalam domainnya.

Kodomain dan Julat

[sunting | sunting sumber]

Kodomain adalah set bagi semua nilai yang wujud manakala julat adalah set bagi semua output yang hanya boleh dikeluari oleh suatu fungsi. Ia biasanya ditulis dalam notasi set dan notasi interval.

Kelas Fungsi

[sunting | sunting sumber]

Fungsi mempunyai 3 kelas fungsi iaitu fungsi injektif, surjektif dan bijektif.

Fungsi Injektif

[sunting | sunting sumber]

Fungsi injektif (juga dipanggil sebagai injeksi atau satu-ke-satu) merupakan suatu hubungan fungsi dimana semua inputnya dipetakan kepada suatu output tetapi kodomain masih ada nilai yang mustahil untuk dipetakan dari domain fungsi tersebut.

Katakan suatu fungsi dimana dan kodomainnya adalah semua nilai dalam . Fungsi merupakan suatu fungsi injektif kerana terdapat unsur dalam kodomainnya yang tidak dapat dipetakan dari domain. Set bagi semua unsur yang boleh dipetakan dari domain fungsi ini adalah julatnya.

Fungsi Surjektif

[sunting | sunting sumber]

Fungsi surjektif (juga dipanggil sebagai surjeksi) merupakan suatu hubungan fungsi dimana setiap inputnya dipetakan kepada suatu output tetapi lebih dari satu input mungkin mempunyai suatu output-output yang sama.

Katakan suatu fungsi dimana . Fungsi ini merupakan suatu fungsi surjektif kerana domain fungsi ini mempunyai unsur yang dipetakan kepada unsur julat yang sama. Sebagai contoh, jika kita menginputkan dan kedalam fungsi tersebut, ia akan dipetakan kepada ; dan

Fungsi Bijektif

[sunting | sunting sumber]

Fungsi bijektif (juga dipanggil sebagai bijeksi) merupakan suatu gabungan definisi hubungan fungsi injektif dan surjektif dimana setiap input hanya mempuyai satu output sendirinya dan tidak mempunyai output yang berkongsian dengan input lain.

Sebagai contoh, katakan fungsi dimana . Fungsi ini merupakan suatu fungsi bijektif kerana setiap unsur dalam domainnya dipetakan hanya kepada satu output di julat.


Pautan luar

[sunting | sunting sumber]