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Abstract
We introduce pn-random qn-proportion Bulgarian solitaire (0 < pn, qn ≤ 1), played
on n cards distributed in piles. In each pile, a number of cards equal to the propor-
tion qn of the pile size rounded upward to the nearest integer are candidates to be
picked. Each candidate card is picked with probability pn, independently of other
candidate cards. This generalizes Popov’s random Bulgarian solitaire, in which
there is a single candidate card in each pile. Popov showed that a triangular limit
shape is obtained for a fixed p as n tends to infinity. Here we let both pn and qn
vary with n. We show that under the conditions q2npnn/logn → ∞ and pnqn → 0 as
n → ∞, the pn-random qn-proportion Bulgarian solitaire has an exponential limit
shape.

1. Introduction

The game of Bulgarian solitaire has received a great deal of attention, see reviews by
Hopkins [10] and Drensky [2]. Bulgarian solitaire is played with a deck of n identical
cards divided arbitrarily into a number of piles. A move consists of picking a card
from each pile and letting these cards form a new pile. If piles are sorted in order
of decreasing size, every position in the solitaire is equivalent to a Young diagram
of an integer partition of n.
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Popov [15] considered a random version of Bulgarian solitaire defined by a prob-
ability p ∈ (0, 1], such that one card from each pile is picked with probability p,
independently of the other piles. We will refer to this stochastic process on con-
figurations as p-random Bulgarian solitaire. The probabilities of configurations
converge to a stationary distribution. Popov showed that as n grows to infinity and
configuration diagrams are downscaled by

√
n in both dimensions, the stationary

probability of the set of configurations that deviate from a triangle with slope p by
more than ε > 0 tends to zero. In this sense, random configurations have a limit
shape.

The objective of the present paper is to study such limit shapes in a generalization
of random Bulgarian solitaire.

1.1. qn-proportion Bulgarian Solitaire

Olson [13] introduced a generalization of Bulgarian solitaire in which the number
of cards that are picked from a pile of size h is given by some nonnegative valued
function σ(h). Eriksson, Jonsson and Sjöstrand [3] recently studied the special case
when σ is well-behaved in the sense that σ(1) = 1 and both σ(h) and h− σ(h) are
non-decreasing functions of h. In particular, they studied a special case that they
called qn-proportion Bulgarian solitaire, defined by the rule σ(h) = ⌈qnh⌉. This
means that from each pile we pick a number of cards given by the proportion qn of
the pile size rounded upward to the nearest integer. To illustrate the effect of the
parameter qn, set it to 0.3 and consider the configuration (6, 2, 2, 1). From the first
pile we pick ⌈0.3× 6⌉ = 2 cards; similar calculations give that 1 card is picked from
each of the other three piles. Note that for qn ≤ 1/n exactly one card is always
picked from each pile, and we retrieve the ordinary Bulgarian solitaire.

As n tends to infinity, Eriksson, Jonsson and Sjöstrand [3] determined limit
shapes of stable configurations of qn-proportion Bulgarian solitaire: in case q2nn → 0,
the limit shape is triangular, which generalizes the limit shape result for the ordinary
Bulgarian solitaire. For other asymptotic behavior of qn, other limit shapes were
obtained. Specifically, in case q2nn → ∞, the limit shape is exponential. The
intermediate case q2nn → C > 0 produces a family of limit shapes interpolating
between the triangular and the exponential shape.

1.1.1. pn-random qn-proportion Bulgarian Solitaire

We shall examine a pn-random version of qn-proportion Bulgarian solitaire, in which
the proportion qn (rounded upward) of cards in a pile are only candidates to be
picked, each of which is picked only with probability pn, independently of all other
candidate cards. This process will be denoted by B(n, pn, qn). Note that in the
special case of a fixed p and for qn ≤ 1/n, this process is equivalent to Popov’s
p-random Bulgarian solitaire.
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Our focus will be on establishing a regime in which pn-random qn-proportion
Bulgarian solitaire has an exponential limit shape.

2. The Concept of Limit Shapes

In this section we give the precise definitions of the limit shapes we consider. Let
P(n) be the set of integer partitions of n. For any partition λ ∈ P(n) withN = N(λ)
positive parts λ1 ≥ λ2 ≥ . . . ≥ λN > 0, define λi = 0 for i > N(λ), and the diagram
of λ as the Young diagram oriented such that the parts of λ are represented by
left and bottom aligned columns, weakly decreasing in height from left to right.

For example, is the diagram of the partition (2, 1, 1). We define the diagram-
boundary function of λ as the nonnegative, weakly decreasing and piecewise constant
function ∂λ : R≥0 → R≥0 describing the boundary of λ, given by

∂λ(x) = λ⌊x⌋+1.

Following [4] and [16], the diagram is downscaled using some scaling factor an > 0
such that all row lengths are multiplied by 1/an and all column heights are multi-
plied by an/n, yielding a constant area of 1.

Thus, given a partition λ, define the an-scaled diagram-boundary function of λ
as the nonnegative, real-valued, weakly decreasing and piecewise constant function
∂anλ : R≥0 → R≥0 given by

∂anλ(x) =
an
n
∂λ(anx) =

an
n
λ⌊anx⌋+1. (1)

The pn-random qn-proportion Bulgarian solitaire B(n, pn, qn) (with pn, qn ∈
(0, 1]) can be regarded as a Markov chain on the finite state-space P(n). Let us
denote the sequence of visited states by (λ(0),λ(1), . . . ). In the truly random case
of pn < 1, it is straightforward to verify that this Markov chain is aperiodic and
irreducible. It is well known that an aperiodic and irreducible Markov chain on a
finite state space has a unique stationary distribution π and that, starting from any
initial state, the distribution of the ith state λ(i) converges to π as i tends to infinity.
We denote by πn,pn,qn the stationary measure of the Markov chain (λ(0),λ(1), . . . )
on P(n) given by B(n, pn, qn) for pn < 1.1 When we refer to a limit shape of the
process B(n, pn, qn) for pn < 1 as n grows to infinity, we shall mean the limit shape
of the stationary measure πn,pn,qn . The intuitive sense of this concept is that when
the solitaire is played on a sufficiently large number of cards for sufficiently long,

1Readers acquainted with the limit shape literature may wonder whether the stationary measure
has the property of being multiplicative, in the sense of interpretable as the product measure on the
space of integer sequences restricted to a certain affine subspace [7]. The multiplicative property
is useful in limit shape problems and related problems [1, 5, 8, 14, 16]. However, such techniques
will not be used here as πn,pn,qn is unlikely to be multiplicative in general.
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the configuration will with a high probability be very close to the limit shape after
suitable downscaling. Following Vershik [16], a sequence {πn} of probability distri-
butions on P(n) is said to have a limit shape φ under the scaling an if the an-scaled
diagrams approach φ in probability as n grows to infinity. The exact condition for
convergence can vary. We shall use the definition that

lim
n→∞

πn{λ ∈ P(n) : sup
x>0

|∂anλ(x) − φ(x)| < ε} = 1 (2)

for any ε > 0.2

3. The Approach of Ordering Piles by Time of Creation

It will sometimes be useful to explicitly order piles by time of creation rather than
by size. Here we develop this approach.

When parts are not sorted by size, a configuration is not represented by an integer
partition but by a weak integer composition: an infinite sequence α = (α1,α2, . . . ),
not necessarily decreasing, of nonnegative integers adding up to n. Let W(n) denote
the set of weak compositions of n. We define the diagram, the diagram-boundary
function ∂α, and the an-scaled diagram-boundary function ∂anα of a weak com-
position α in exact analogy to the way we defined them for partitions in Sec-
tion 2. For example, the diagram of α = (3, 0, 2, 4, 1, 0, 0, . . . ) and the correspond-
ing function graph y = ∂α(x) are shown in Figure 1. Also, for a weak composition
α = (α1,α2, . . . ,αN , 0, 0, . . . ) we define the number of parts N = N(α) disregarding
the trailing zeros.

3.1. Connecting the Limit Shapes of Compositions and Partitions

We shall now connect compositions with partitions. For any α ∈ W(n), define the
operator ord as the ordering operator that arranges the parts of α in descending
order, thus yielding a partition. We shall now prove that such sorting of the piles by
size conserves the convergence to a limit shape. The proof uses some basic theory
of symmetric-decreasing rearrangements, see for example [9, Ch. 10] or [11, Ch. 3].

2Vershik [16] and Erlihson and Granovsky [6] used a weaker condition for convergence toward
a limit shape, namely that

lim
n→∞

πn{λ ∈ P(n) : sup
x∈[a,b]

|∂anλ(x) − φ(x)| < ε} = 1

should hold for any compact interval [a, b] ⊂ (0,∞) and any ε > 0. Yakubovich [17] and Eriksson
and Sjöstrand [4] used the even weaker condition that

lim
n→∞

πn{λ ∈ P(n) : |∂anλ(x)− φ(x)| < ε} = 1

should hold for any x > 0 and any ε > 0.
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Diagram of α Function graph y = ∂α(x)
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Figure 1: The composition α = (3, 0, 2, 4, 1, 0, 0, . . . ) ∈ W(10).

For any measurable function f : R → R≥0 such that limx→±∞ f(x) = 0, there is a
unique function f∗ : R → R≥0, called the symmetric-decreasing rearrangement of f ,
with the following properties:

• f∗ is symmetric, that is, f∗(−x) = f∗(x) for all x,

• f∗ is weakly decreasing on the interval [0,∞),

• f∗ and f are equimeasurable, that is,

L({x : f(x) > t}) = L({x : f∗(x) > t})

for all t > 0, where L denotes the Lebesgue measure,

• f∗ is lower semi-continuous.

In particular, if f is a symmetric function that is weakly decreasing and right-
continuous on [0,∞) and tends to 0 at infinity, then f∗ = f .

Lemma 1. Let α ∈ W(n) be a weak composition of n and let f : R≥0 → R≥0 be
a right-continuous and weakly decreasing function such that f(x) → 0 as x → ∞.
The diagram-boundary functions before and after sorting of the weak composition
satisfy the inequality

∥∂ordα− f∥∞ ≤ ∥∂α− f∥∞,

where ∥ · ∥∞ denotes the max norm ∥f∥∞ = sup
{
|f(x)| : x ≥ 0

}
.

Proof. The intuition of the lemma should be obvious from Figure 2. To be able to
use the standard machinery of symmetric rearrangements, we consider the functions
f , ∂α, and ∂ordα as being defined on the entire real axis by letting f(x) = f(|x|)
and analogously for ∂α, and ∂ordα.
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Since f(x) → 0 as x → ∞, its symmetric-decreasing rearrangement f∗ is defined
and, since f is weakly decreasing and lower semi-continuous, we have f∗ = f .
Similarly, ∂ordα(x) → 0 as x → ∞ and is weakly decreasing, so (∂ordα)∗ =
∂ordα. Moreover, (∂α)∗ = ∂ordα must hold because the operator ord arranges the
composition parts in descending order.

Now, since symmetric rearrangements decrease Lp-distances for any 1 ≤ p ≤ ∞
(see for example [11], Section 3.4), we obtain

∥∂ordα− f∥∞ = ∥(∂α)∗ − f∗∥∞ ≤ ∥∂α− f∥∞.

✲

✻

x

y
∥∂α− f∥∞ ≤ ε

y = f(x) + ε

y = ∂α(x)

y = f(x)− ε

! ❝! ❝
! ❝! ❝

! ❝
! ❝

✲

✻

x

y
∥∂ordα− f∥∞ ≤ ε

y = f(x) + ε

y = ∂ordα(x)

y = f(x)− ε

! ❝! ❝! ❝! ❝

Figure 2: An example of a composition α and a decreasing function f showing
that if ∂α(x) is enclosed between f(x) − ε and f(x) + ε, then so is ∂ordα(x), an
immediate consequence of Lemma 1.

Lemma 2. For any distribution πn on W(n), define a corresponding distribution
ρ̃(n) on P(n) by

ρ̃(n)(λ) =
∑

α∈W(n)
ordα=λ

πn(α). (3)

If φ is a limit shape of πn on W(n) under some scaling an, then φ is also a limit
shape of ρ̃(n) on P(n) under the same scaling.

Proof. The assumption that φ is a limit shape of the distribution πn on W(n) under
the scaling an means that

lim
n→∞

πn{α ∈ W(n) : sup
x>0

|∂anα(x) − φ(x)| < ε} = 1
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for any ε > 0. By virtue of Lemma 1 we can replace α with ordα in this formula:

lim
n→∞

πn{α ∈ W(n) : sup
x>0

|(∂anordα)(x) − φ(x)| < ε} = 1. (4)

The set A := {α ∈ W(n) : supx>0 |(∂anordα)(x) − φ(x)| < ε} can be written as a
disjoint union of equivalence classes with respect to sorting:

A =
⋃

λ∈L

{α ∈ W(n) : ordα = λ}

where L = {λ ∈ P(n) : supx>0 |∂anλ(x) − φ(x)| < ε}. The πn-probability measure
of A is

πn(A) = πn

(
⋃

λ∈L

{α ∈ W(n) : ordα = λ}
)

=
∑

λ∈L

πn{α ∈ W(n) : ordα = λ}

=
∑

λ∈L

∑

α∈W(n)
ordα=λ

πn(α)

=
∑

λ∈L

ρ̃(n)(λ) (by (3))

= ρ̃(n)(L).

From (4) we have that limn→∞ πn(A) = 1. Because πn(A) = ρ̃(n)(L), we can
conclude that also limn→∞ ρ̃(n)(L) = 1, that is,

lim
n→∞

ρ̃(n){λ ∈ P(n) : sup
x>0

|∂anλ(x) − φ(x)| < ε} = 1

for any ε > 0. This means that φ is a limit shape of the distribution πn on P(n).

4. Three Regimes

Recall from Section 1.1 the qn-proportion Bulgarian solitaire developed in [3], where
the limit shape is triangular when q2nn → 0, exponential when q2nn → ∞ and an
interpolation between the two when q2nn → C > 0.

The pn-random qn-proportion Bulgarian solitaire seems to share this property of
three regimes of limit shapes, based on the asymptotic behavior of pnq2nn. The focus
in this paper is the exponential regime of the pn-random qn-candidate Bulgarian
solitaire, i.e. the case pnq2nn → ∞ as n → ∞. However, with the proof technique
we employ we will prove the stronger statement that the limit shape holds even
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when the configurations are considered elements of W(n), i.e. even without sorting
the piles of a configuration according to size to create a partition in P(n). We will
instead require the stronger condition pnq2nn/logn → ∞ as n → ∞. By virtue of
Lemma 2, the limit shape will also hold for partitions.

In Section 7 we conjecture the limit shape to be triangular when pnq2nn → 0,
exponential when pnq2nn → ∞ and an interpolation between the two (a piecewise
linear function graph that depends on C) when pnq2nn → C > 0.

5. The Exponential Limit Shape

Here we investigate the limit shape of configurations in the pn-random qn-candidate
Bulgarian solitaire B(n, pn, qn) in the regime

pnq2nn

logn
→ ∞ as n → ∞. (5)

Our main result, Theorem 1, says that, under the additional asymptotic property
pnqn → 0 as n → ∞, the (properly downscaled) boundary function of the diagram
obtained after playing sufficiently many moves (for each fixed n) will converge to
the exponential shape e−x in probability as n → ∞. See Figure 3. Throughout this
section, the asymptotic notations o and O will always be with respect to n → ∞.

Figure 3: The result of a computer simulation after 200 moves of pn-random qn-
proportion Bulgarian solitaire in the case qn = 1, with n = 105 cards and pn =
0.01, starting from a triangular configuration. The jagged curve is the 100-scaled
diagram-boundary function of the resulting configuration and the smooth curve is
the limit shape y = e−x.

We shall see that the condition pnq2nn/logn → ∞ implies that the rounding
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effect in computing the number of candidate cards is negligible in the sense that
the number of candidate cards will be qnn(1 + o(1)). This in turn means that the
expected number of picked cards will be pnqnn(1 + o(1)), thus the new pile created
in a move of the solitaire will have size λ1 = pnqnn(1 + o(1)). It will turn out that
we need the scaling factor an = (pnqn)−1 to obtain our exponential limit shape. If
pnqn were bounded away from zero, this scaling would not be able to transform the
jumpy boundary diagrams into a smooth limit shape. Therefore, we also require

pnqn → 0 as n → ∞. (6)

On the other hand, if pnqn tends to zero too fast, the pile sizes will be small and
their random fluctuations will be large. For instance, the new pile after each move
has a size drawn from the binomial distribution Bin(K, pn), where K ≈ qnn is the
number of candidate cards, with relative standard deviation ∼ 1/

√
pnqnn. The

requirement (5) guarantees that pnqn does not tend to zero too fast.

Theorem 1. For each positive integer n, pick qn and pn with 0 < pn, qn ≤ 1 and
a (possibly random) initial configuration λ(0) ∈ P(n). Let (λ(0),λ(1), . . . ) be the
Markov chain on P(n) defined by B(n, pn, qn), and denote its stationary measure
by πn,pn,qn . Suppose

pnqn → 0 and
pnq2nn

logn
→ ∞ as n → ∞.

Then πn,pn,qn has the limit shape e−x under the scaling an = (pnqn)−1.

The proof of Theorem 1 heavily relies on the following version of Chernoff bounds.
For a proof, see for example [12].

Chernoff Bound. For n ≥ 1 and 0 < p ≤ 1, let X ∼ Bin(n, p) and set µ =
E(X) = np. Then, for any 0 < γ < µ,

P (|X − µ| ≥ γ) ≤ 2 exp

(
− γ2

3µ

)
. (7)

The idea of the proof of Theorem 1 is the following.

We will use the approach developed in Section 3, i.e. card configurations in the
solitaire will be represented by weak integer compositions and the piles are ordered
with respect to creation time, i.e. if α ∈ W(n) is the current configuration in the
solitaire, then α1 was the last formed pile, α2 the pile that was formed two moves
ago, etc. With this representation, some piles may be empty, so one may imagine
each pile being placed in a bowl and the bowls are lined up in a row on the table. In
each move of the solitaire, the new (possibly empty) pile is put in a new bowl to the
left of all old bowls. As mentioned in Section 4, we shall prove Theorem 1 as a limit
shape result for diagram-boundary functions of compositions. Thus, throughout this
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section, each configuration of n cards will be represented by an element of W(n).
Also, in the following we may abbreviate p = pn and q = qn unless the dependency
on n is crucial.

Assume a configuration α = (α1,α2, . . . ,αN , 0, 0, . . . ) of n cards with N = N(α)
piles (so that

∑N
i=1 αi = n) in the solitaire B(n, p, q). The number of candidate cards

in the next move is κ :=
∑N

i=1⌈qαi⌉. We denote the rounding effect in pile 1 ≤ i ≤ N
by Ri := ⌈qαi⌉ − qαi and the total rounding effect by R := κ− qn =

∑N
i=1 Ri.

Clearly, R < N (since Ri < 1 for any i), i.e. the total rounding effect is bounded
above by the number of piles. The first thing we will do is to show that after a
sufficient number D of moves from the initial configuration α(0), the number of
piles N(α(D)) in the resulting configuration α(D) is typically much smaller than qn
(so that the number of candidate cards κ is approximately qn and thus the total
rounding effect R is negligible). In Lemma 4 we show that it is possible to choose
such a D, namely D = c logn

pq for any c ≥ 14.

We also need to make sure that the number of piles stays o(qn) for sufficiently
many additional moves M , long enough to establish the convergence of the overall
shape. Lemma 4 will also guarantee that M = ⌈n2/p⌉ suffices for this purpose.

Thus, in the following we shall use

D =

⌈
14

logn

pq

⌉
and M =

⌈
n2

p

⌉
. (8)

If the number of piles stays o(qn) during M moves so that the number of candi-
date cards stays qn(1+o(1)), the newly formed pile in each of these moves will have
expected size pqn(1 + o(1)). Our proof technique involves studying the evolution
of such a pile (which will follow an exponential decay in size). Therefore we need
to additionally make sure that no old piles (which could potentially be much larger
than pqn) remain after these M moves. Lemma 3 shows that, in fact, afterM moves
all piles in the starting configuration have disappeared with a probability tending
to one.

Lemma 3. Let M be given by (8). From any initial configuration α ∈ W(n), after
M moves in the solitaire B(n, pn, qn), the probability that all piles in α have been
consumed tends to 1 as n → ∞.

Proof. Consider a pile of size n. The size of this pile after M moves is statistically
dominated by max(n−X, 0) whereX ∼ Bin(M,pn) whose expected value is E(X) =
Mpn = ⌈n2/pn⌉pn > n. Therefore, the probability that the pile remains after M
moves is P (X ≤ n) with the bound

P (X ≤ n) ≤ P (|X −Mpn| ≥ |Mpn − n|) ≤ 2 exp

(
− (Mpn − n)2

3Mpn

)

≤ 2 exp

(
−n2

3
(1 + o(1))

)
,
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where we used the Chernoff bound (7). Thus, since any given pile in α has size
≤ n, and the number of non-empty piles (of any size in any configuration) is ≤ n,
the probability that all piles in α have been consumed after M moves is at least

1− 2n exp

(
−n2

3
(1 + o(1))

)
→ 1

which concludes the proof.

Lemma 4. Let n, pn, qn and an initial configuration α(0) be given in the solitaire
B(n, pn, qn). Then

1

qnn
max

{
N(α(D+1)), . . . , N(α(D+M))

}
→ 0 in probability,

where D and M are given by (8).

Proof. We will first prove that all piles of size at most q−1 logn disappear with
probability tending to one after D moves, making sure that there are not many
small piles in α(D). Consider a pile of size at most q−1 logn in α(0). Note that
every nonempty pile decreases by at least 1 with probability at least p in each
move. Therefore, after D moves the number of picked cards from this pile statis-
tically dominates X ∼ Bin(D, p) with expected value Dp ≥ 14q−1 logn. Using the
Chernoff bound (7), the probability that this pile remains after D moves is at most

P1 := P

(
X <

logn

q

)
≤ P

(
|X −Dp| >

∣∣∣∣Dp− logn

q

∣∣∣∣

)

≤ 2 exp

⎛

⎜⎝−

(
Dp− logn

q

)2

3Dp

⎞

⎟⎠ ≤ 2 exp

(
−
(14 log n

q − logn
q )2

3 · 14 logn
q

)
= 2n− 132

42
1
q < 2n−4.

Since there can be at most n piles of size at most q−1 logn, the probability that not
all piles of size at most q−1 logn have disappeared after D moves is bounded by

nP1 < 2n−3.

Let us now turn our attention to the number of piles after these D moves. By
the above, all piles smaller than q−1 logn have disappeared with probability tending
to one. Clearly, the number of piles larger than q−1 logn can never be more than

n
q−1 logn = qn

logn . Also, during the process of theseD moves, at mostD new piles have
been formed. (Exactly D piles have been formed but some may have disappeared
in the process.) Thus, for the total number of piles N(α(D)) in the configuration
α(D) after D moves, with probability at least 1− 2n−3, we have

N(α(D)) ≤ qn

logn
+D =

qn

logn
+ 14

logn

pq
= qn

(
1

logn
+ 14

logn

pq2n

)
= o(qn),
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where we used assumption (5) in the last step. It follows that, for any ε > 0,

1

qn
max

{
N(α(D+1)), . . . , N(α(D+M))

}
< ε

with probability at least 1 − 2n−3M ≥ 1 − 2n−3(n2/p + 1) → 1 as n → ∞, since
pn → ∞. (That pn → ∞ is also a consequence of assumption (5).)

Lemma 4 asserts that the number of piles is o(qn) in probability during the
M moves from α(D) to α(D+M), hence the number of candidate cards remains to
be qn(1 + o(1)) in probability during the same moves. Therefore the number of
picked cards (which equals the size of the newly formed pile) remains of expected
size pqn(1+ o(1)). In Lemma 5 we prove that the actual number of picked cards in
each of these M moves does not deviate (relatively) from pqn.

Lemma 5. Let n, pn, qn and an initial configuration α(0) be given in the solitaire
B(n, pn, qn). Let D and M be given by (8). Then

max
k∈[D+1,D+M ]

|α(k)
1 − pnqnn|
pnqnn

→ 0 in probability

as n → ∞.

Proof. Let ε > 0 and let κ be the number of candidate cards in α(k−1) for some
k = D + 1, . . . , D + M . Recall that the total rounding effect in computing the
number of candidate cards is bounded above by the number of piles. It therefore
follows from Lemma 4 that κ = nq(1 + o(1)). The new pile size is α(k)

1 ∼ Bin(κ, p).
Then, using the triangle inequality and the Chernoff bound (7) we have

P2 := P (|α(k)
1 − pqn| > εpqn) ≤ P (|α(k)

1 − κp| > εpqn− |κp− pqn|)

< 2 exp

(
− (εpqn− |κp− pqn|)2

3κp

)

= 2 exp

(
−ε2

3
pqn(1 + o(1))

)

= o(1/M)

where the last equality is derived as follows. By (5), logn = o(pqn) and hence
logna = o(pqn) for any a ≥ 1. Since pqn → ∞, this means that exp(−pqn) tends
to zero faster than exp(− logna), i.e., exp(−pqn) = o(1/na). Since np → ∞, we
therefore also have exp(−pqn) = o(p/na) = o(1/M). The next to the last equality
follows from the fact that εpqn dominates over |pqn − κp| (since |pqn − κp| =
|pqn− nq(1 + o(1))p| = pqn · o(1)).

Therefore, the probability that |α(k)
1 − pqn| > εpqn for any k during the entire

process of M moves is bounded by MP2 = M · o(1/M) = o(1).
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While playing the solitaire, there is a risk that at some point there will be too
many piles, and thereby the number of candidate cards will be significantly larger
than qn (and thus the size of the newly formed pile will be bigger than pqn).
Lemmas 3 and 4 ensure that the probability tends to zero that this ever happens
during the entire process of M moves from α(D) to α(D+M).

There is also a risk that, even if there are suitably many (qn) candidate cards,
the number of picked cards among them will deviate from pqn due to random
fluctuations (and thereby the size of the newly formed pile will deviate from pqn).
Lemma 5 ensures that the probability of this ever happening during the same period
of M moves tends to zero.

Therefore, after m := D +M moves, with probability tending to one

• all current piles have been formed during the last M moves, and

• all current piles had size approximately pqn when they were formed.

At this point, i.e. in the configuration Γ := α(m), the leftmost pile (of size Γ1)
was formed one move ago, the second pile from the left (of size Γ2) was formed
two moves ago, and so on. We shall prove that, with probability tending to one,
the size Γk of the pile that was formed k moves ago for any k ∈ {1, 2, . . . ,m}+ is
Γk ∼ Γ1(1 − pq)k ∼ pqn(1− pq)k, i.e. the size decreases exponentially with k with
decay factor 1− pq.

We will now consider the evolution of a given pile of size A1 during r ≥ 1 steps
in the p-random q-proportion Bulgarian solitaire in the following way. We will need
to keep track of each individual card in this pile. To this end, we label the cards
remaining in a given pile 1, 2, . . . , A1 starting from the top, and each card will keep
their label throughout the process. Let Xi,k ∈ {0, 1} where i = 1, . . . , A1 and
k = 1, . . . , r be independent Bernoulli random variables with P (Xi,k = 1) = p.

Consider the following process. Let Ak+1 be the number of cards remaining in
a given pile after k moves. In each move k ∈ {1, 2, . . . , r}, we remove the card with
label i if Xi,k = 1 and this card belongs to the candidate cards, i.e., the ⌈qAk⌉ top-
most remaining cards. We will call this process a q-process. This process describes
the evolution of a pile of size A1 in the p-random q-proportion Bulgarian solitaire.

Using the same Bernoulli variables, for any real number 0 ≤ s ≤ 1, we define an
s-threshold process in the following way. In each move k = 1, 2 . . . , r, we remove
the card with label i if Xi,k = 1 and i ≤ ⌈sA1⌉. In this process, we let A[s]

k+1 denote
the number of remaining cards after k moves. When it is relevant to indicate the
initial pile size, an s-threshold process is called an (s, A1)-threshold process and the

number of remaining cards after k moves is denoted by A[s,A1]
k+1 .

In the proof of Theorem 1, we will use two different s-threshold processes (for
two different values of s) to over- and underestimate the sizes of r + 1 consecutive
piles in Γ (corresponding to the r steps in an s-threshold process). Both these
processes will have the same desired limit shape and thus the limit shape of our
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solitaire will follow by the squeeze theorem. We first need a combinatorial lemma
giving sufficient conditions for overestimation and for underestimation.

Lemma 6. (i) If ⌈sA1⌉ ≤ ⌈qA1⌉, then A[s]
k ≥ Ak for k = 1, . . . , r + 1.

(ii) If (1− q)A[s]
r+1 ≥ A1 − ⌈sA1⌉, then A[s]

k ≤ Ak for k = 1, . . . , r + 1.

Proof. (i) A card that is removed at some step ℓ during the s-threshold process must
have label i ≤ ⌈sA1⌉, so in the q-process it belongs to the ⌈qA1⌉ candidate cards in
the initial pile and hence it belongs to the candidate cards also at step ℓ and will
be removed. Thus, every card removed in the s-threshold process is removed in the
q-process too, and it follows that A[s]

k ≥ Ak for k = 1, . . . , r + 1.

(ii) We show by induction over r that, after r steps, the remaining cards in the
s-threshold process is a subset of the remaining cards in the q-process. Suppose
(1 − q)A[s]

r+1 ≥ A1 − ⌈sA1⌉. Since A[s]
r ≥ A[s]

r+1 we have (1 − q)A[s]
r ≥ A1 − ⌈sA1⌉

which by the induction hypothesis implies that A[s]
k ≤ Ak for 1 ≤ k ≤ r. It follows

that (1− q)Ar ≥ A1−⌈sA1⌉ which in turn implies that Ar− (A1−⌈sA1⌉) ≥ ⌈qAr⌉.
This latter inequality means that the ⌈qAr⌉ topmost cards before step r in the q-
process all have labels no larger than ⌈sA1⌉. Thus, if a card is removed in step r in
the q-process it is also removed in step r or earlier in the s-threshold process. This
concludes the induction step. The base step r = 0 is trivial.

Recall that we are considering the configuration Γ = α(m) after m = M + D
moves in the solitaire from the initial configuration α(0). We will compare the sizes
of r + 1 consecutive piles in Γ to the r + 1 pile sizes in an s-threshold process. In
order to make the comparison for all piles in Γ, this will be done for r+1 consecutive
piles (which we will call an r-chunk) at a time. In each r-chunk the initial pile size
is the corresponding pile size in the solitaire. In other words, Γ1,Γ2, . . . ,Γr+1 will
be compared to the pile sizes in an (s,Γ1)-threshold process (with initial pile size
Γ1); and Γr+2,Γr+3, . . . ,Γ2(r+1) will be compared to the pile sizes in an (s,Γr+2)-
threshold process (with initial pile size Γr+2), and so on. Let us call the resulting
union of s-threshold processes an (r, s)-union process. Thus, if we denote the pile
sizes in this (r, s)-union process by U1, U2, . . . , we have

U1 = Γ1 = A[s,Γ1]
1 , U2 = A[s,Γ1]

2 , . . . , Ur+1 = A[s,Γ1]
r+1 ,

Ur+2 = Γr+2 = A[s,Γr+2]
1 , Ur+3 = A[s,Γr+2]

2 , . . . , U2(r+1) = A[s,Γr+2]
r+1 , . . . .

We intend to use the (r, s)-union process to estimate the pile sizes in Γ. In
an s-threshold process, starting with a pile of size A1, among the ⌈A1s⌉ topmost
cards, the number of remaining cards B after r moves is binomially distributed:
B ∼ Bin(⌈A1s⌉, (1 − p)r). See Figure 4. Therefore we need to choose r = rn
and s = sn in such a way that the following hold with high probability in each
s-threshold process:



INTEGERS: 18 (2018) 15

A1 − ⌈A1s⌉

⌈A1s⌉
B ∼ Bin(⌈A1s⌉, (1− p)r)

A1
A2 A3

Ar+1

Figure 4: The r steps of an (s, A1)-threshold process.

(I) The pile size Ak+1 is close to A1(1− pq)k for all k = 1, . . . , r.

(II) At the same time s must be close enough to q to make the over- and under-
estimations tight enough.

To accomplish (II) we shall see that s = q will suffice for the overestimation and
s = q(1 + 2pr) = q(1 + o(1)) for the underestimation.

Let us choose

rn =
⌈
ρ−1/3
n p−1

n

⌉
where ρn =

pnq2nn

1 + logn
. (9)

Lemma 7. The following equations hold for our choice of rn under assumption
(5).

(pnrn)
2 pnq

2
nn

logn
=

p3nq
2
nnr

2
n

logn
→ ∞ as n → ∞. (10)

pn(rn − 1) → 0 as n → ∞. (11)

Proof. The limit (11) holds since pn(rn − 1) ≤ ρ−1/3
n → 0, and (10) holds since

(pnrn)
2 pnq

2
nn

logn
> ρ−2/3

n
pnq2nn

logn
=

(pnq2nn)
1/3

(1 + logn)−2/3 logn
>

(
pnq2nn

logn

)1/3

→ ∞

as n → ∞ by (5).

Our next lemma, Lemma 8, will bound the probability P ′ that an initial pile of
size In := O(pqn) will, after rn moves in an sn-threshold process, deviate from its
expected size when sn = qn(1 + o(1)).

Since the number of piles is ≈ (pnqn)−1, the number of r-chunks is ≈ (pnqnrn)−1.
When using Lemma 8 we need the bound P ′ to hold for each chunk during all M
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moves (where M is given by (8)), specifically P ′M/(pnqnrn) → 0 as n → ∞. The
probability in Lemma 8 is therefore bounded by o(pnqnrn/M) = o(p2nqnrn/n

2).
This is also why the pile size deviation εnpnqn is scaled with the number of chunks,
resulting in the deviation (εpnqnn)(pnqnrn) = εp2nq

2
nnrn.

Lemma 8. Let (pn)n and (qn)n be real sequences such that 0 < pn, qn ≤ 1 and
pnqn → 0 as n → ∞. For each n, also let Bn ∼ Bin(Fnsn, (1− pn)rn) where (Fn)n
and (sn)n are real sequences such that

Fn = O(pnqnn) and sn = qn(1 + o(1)), (12)

and Fnsn is an integer for every n. Let (rn)n be the sequence of positive integers
in (9). Then, for all ε > 0 we have

P
(∣∣Bn + Fn(1− sn)− Fn(1− pnqn)

rn
∣∣ > εp2nq

2
nnrn

)
= o(p2nqnrn/n

2).

Proof. Let us abbreviate F = Fn, B = Bn, p = pn, q = qn, r = rn and s = sn.
Thus, we want to prove that

P := P
(∣∣B + F (1− s)− F (1− pq)r

∣∣ > εp2q2nr
)
= o(p2qr/n2).

We first note that the expected value E(B) = Fs(1 − p)r. Using the triangle
inequality |B+F (1−s)−F (1−pq)r| ≤ |B−E(B)|+ |E(B)−F (1−pq)r+F (1−s)|
we obtain

P ≤ P (|B − E(B)| > εp2q2nr − |E(B) − F (1− pq)r + F (1− s)|).

By the Chernoff bound (7) we get

P ≤ 2 exp

(
− (εp2q2nr − |E(B)− F (1− pq)r + F (1− s)|)2

3E(B)

)
. (13)

For the indices n for which r > 1 we have rp ≤ 2(r − 1)p → 0 and hence

(1− p)r = 1− pr + o(pr) and (1− pq)r = 1− pqr + o(pqr). (14)

For the indices n for which r = 1, the relations in (14) are trivially true.

This means

|E(B)−F (1− pq)r + F (1− s)| = |Fs(1− p)r − F (1− pq)r + F (1− s)|
= |Fs(1− pr + o(pr)) − F (1− pqr + o(pqr)) + F (1− s)|

= F
(
pr(q − s) + s · o(pr) + o(pqr)

)

= o(Fpqr) = o(p2q2nr). (by (12))
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Thus the numerator in (13) can be written [(ε+ o(1))p2q2nr]2. By the assumptions
in (12), the denominator in (13) can be written

3E(B) = 3Fs(1− p)r = 3 ·O(pqn) · q(1 + o(1)) · O(1) = O(pq2n).

Putting these together, the bound (13) on P can be written

− 1

logP
= O

(
O(pq2n)

[(ε+ o(1))p2q2nr]2

)
= O

(
1

p3q2nr2

)
= o

(
1

logn

)

where (10) was used in the last step. Since pqnr → ∞ (also by (10)) and pqr → 0
(by (6) and (11)), we have 1

pqr = o(n) and hence log 1
pqr = o(log n). Therefore

− 1

logP
= o

(
1

logn+ log 1
pqr

)
= o

(
1

log n
pqr

)
.

From this follows

logP = o
(
log

pqr

n

)
= o

(
log

p2qr

n2

)
,

and thus P = o(p2qr/n2).

Note that Lemma 8 concerns an s-threshold process, i.e. only r steps. In other
words, it asserts that

P
(∣∣Ar+1 −A1(1− pnqn)

rn
∣∣ > εp2nq

2
nnrn

)
= o(p2nqnrn/n

2), (15)

where A1 = O(pnqnn) is the first pile size in an r-chunk and Ar+1 = (1−sn)A1+Bn

the last (see Figure 4). However, the deviation and the probability were chosen in
such a way that they can be added over all r-chunks. This is done in Lemma 9
which bounds the probability of deviation for the entire union process. Specifically,
we will show that, for any C > 0, the piles in Γ formed at most C

pq moves ago, i.e.

Γk for k ≤ C
pq , will follow an exponential decay with probability tending to one.

The sizes of the piles formed more than C
pq moves ago (k > C

pq ) will be shown to be
sufficiently small to be close enough to the tail in the exponential limit shape.

Lemma 9. Let U1, U2, . . . be the pile sizes in an (rn, sn)-union process correspond-
ing to B(n, pn, qn), where the initial pile size is U1 = O(pnqnn), and rn is given by
(9) and sn = qn(1 + o(1)). Let M = ⌈n2/pn⌉. Then, for all C, ε > 0 and k < C

pnqn
,

P (|Uk+1 − U1(1− pnqn)
k| > εpnqnn) = o(1/M) = o(pn/n

2).

Proof. As in the proof of Lemma 8, for the simplicity of notation we do not indicate
in p, q, r and s the dependence on n. Let C, ε > 0 and ε′ = ε/C. By the triangle
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inequality,

|Uk+r+1 − U1(1 − pq)k+r|
≤ |Uk+1 − U1(1− pq)k|(1 − pq)r + |Uk+r+1 − Uk+1(1− pq)r|
≤ |Uk+1 − U1(1− pq)k|+ |Uk+r+1 − Uk+1(1− pq)r|.

Lemma 8 is now applicable for the first pile in each r-chunk (since U1 ≥ U2 ≥ · · · and
U1 = O(pnqnn)), so by (15), |Uk+r+1 − Uk+1(1− pq)r| < ε′p2q2rn with probability
1− o(p2qr/n2). Thus,

|Uk+r+1 − U1(1 − pq)k+r| < |Uk+1 − U1(1− pq)k|+ ε′p2q2rn (16)

with probability 1− o(p2qr/n2). We now note that the first term in the right hand
side has the same form as the left hand side, only shifted by r piles. Thus, by
induction it follows that, for any positive integer d, we have

|Udr+1 − U1(1− pq)dr| < dε′p2q2rn

with probability 1 − o(dp2qr/n2). Thus, adding the probabilities for deviation for
k = r, 2r, . . . , ηr, where η = ⌊ C

pqr ⌋ we get

P
(
∃k ∈ {r, 2r, . . . , ηr} : |Uk+1 − U1(1− pq)k| > ηε′p2q2rn ≥ εpqn

)

= ηd · o(p2qr/n2) = o(p/n2). (17)

We have thereby proved the claim in the lemma for k = r, 2r, . . . , ηr. If k is not
a multiple of r, suppose dr < k < (d + 1)r for some positive integer d. Then,
since pqr → 0 as n → ∞ (which follows from (5) and (9)), we have (1 − pq)r =
1− pqr + o(pqr) and hence

|U1(1 − pq)(d+1)r − U1(1 − pq)dr| = O(pqn)(1 − pq)dr|pqr + o(pqr)| < εpqn

for sufficiently large n. The lemma then follows by (17) and the fact that Udr ≤
Uk ≤ U(d+1)r.
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6. Proof of Theorem 1

Below follows the proof of Theorem 1, stated in Section 5.

Proof. First, as in the previous section, let us consider B(n, pn, qn) as a process
on W(n) rather than on P(n), and let α(0) ∈ W(n) be the weak composition
representing the initial configuration of cards in the solitaire. Also, let M and D
be given by (8).

Let (rn)n be the sequence of positive integers given by (9) and let (sn)n be
the sequence sn = qn(1 + 2pnrn). By Lemma 3 applied to α(D), all piles present
in α(D) have disappeared in Γ := α(D+M) with probability tending to one. Let
Γk = α(D+M)

k for 1 ≤ k ≤ M be the number of cards in the pile that was formed k
moves ago. By Lemma 5, each of these piles had size O(npnqn) in probability when
they were formed. Let Fn := O(npnqn) be a sequence such that Fnsn is an integer
for each n. Let 0 < ε < 1 and choose Cn such that Cn > pnqn log ε

log(1−pnqn)
.

Let Ǔ1, Ǔ2, . . . be the pile sizes in the (rn, sn)-union process with initial pile size
Γ1. Using the fact that pnqnrn → 0, it is a straightforward calculation to show
that sn = qn(1 + 2pnrn) implies (1 − qn)((1 − pnrn)rn − εpnqnrn) > 1 − sn and
therefore

(1 − qn)
(
A(1 − pnrn)

rn − εApnqnrn
)
> (1 − sn)A for any A > 0.

By Lemma 8, the probability that Ǔ1(1 − pnrn)rn − εǓ1pnqnrn < Ǔrn+1 is P1 :=
1− o(p2nqnrn/n

2). Thus, with probability P1 we have (1− qn)Ǔrn+1 > (1− sn)Ǔ1 ≥
Ǔ1−⌈sǓ1⌉ so by Lemma 6(ii), the pile sizes Ǔ1, Ǔ2, . . . , Ǔrn+1 in the first r-chunk of
the (rn, sn)-process underestimate the pile sizes Γ1,Γ2, . . . ,Γrn+1 with probability
P1. In the next chunk, we have a new absolute threshold sΓrn+2 = sǓrn+2. Since
Γrn+2 ≤ Γ1, we have (1 − qn)Ǔ2rn+2 > (1 − sn)Ǔrn+2 with probability at least
P1, making Lemma 6(ii) applicable also for the second chunk to conclude that
Ǔrn+2, . . . , Ǔ2rn+2 underestimate Γrn+2, . . . ,Γ2rn+2 with probability at least P1.
Continuing in the same manner for the first Cn(pnqnrn)−1 chunks, we conclude
that the (rn, sn)-union process underestimates the solitaire with high probability:

P (Ǔk > Γk for all k <
Cn

pnqn
) < (1− P1)Cn(pnqnrn)

−1 = o(pn/n
2).

Let Û1, Û2, . . . be the pile sizes in the (rn, qn)-union process with initial pile size
Γ1. By Lemma 6(i) (with sn = qn), the (rn, qn)-union process surely overestimates
the solitaire in each chunk.

Taking the results for the (rn, sn)-union process and the (rn, qn)-union process
together we have

P (Ǔk ≤ Γk ≤ Ûk for all k <
Cn

pnqn
) > 1− o(p/n2).
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Now, applying Lemma 9 to both the pile sizes Ǔk and to the pile sizes Ûk and using
the squeeze theorem, we obtain

P (|Γk − Γ1(1− pnqn)
k| > εnpnqn) < o(pn/n

2)

for all ε > 0 and k < Cn
pnqn

. Thus, the probability that |Γk − Γ1(1 − pnqn)k| <
εnpnqn for the first Cn

pnqn
piles throughout all M moves from α(D) to α(D+M) is

1−M · o(1/M) = 1− o(1).

For piles k > Cn
pnqn

, the exponential decrease (with decay factor 1− pnqn) in pile

size will yield piles smaller than npnqn(1 − pnqn)
Cn

pnqn < εnpnqn (by our choice of
Cn). Thus, the pile sizes themselves are below εnpnqn.

In summary, after sufficiently many moves of B(n, pn, qn), the resulting compo-
sition diagram will converge uniformly in probability to the boundary diagram of
the composition α where αk = npnqn(1 − pnqn)k−1 for all k = 1, 2, . . . . The cor-
responding boundary function is ∂α(x) = npnqn(1 − pnqn)⌊x⌋. The corresponding
downscaled boundary function, with the given scaling factor an = (pnqn)−1, is

∂anα(x) = (1− pnqn)
⌊ x
pnqn

⌋ → e−x

uniformly on [0,∞) since pnqn → 0 as n → ∞.

Setting m := D+M , and letting πm
n denote the probability distribution on W(n)

for α(m), we have

lim
n→∞

πm
n {α ∈ W(n) : sup

x>0
|∂anα(x) − e−x| < ε} = 1,

for all ε > 0, in accordance with (2). By virtue of Lemma 2, the same limit shape
holds when configurations in the solitaire B(n, pn, qn) are represented by partitions
P(n).

Since πn,pn,qn is the stationary distribution of the Markov chain (λ(0),λ(1), . . . ), if
we start with a partition λ(0) sampled from πn,pn,qn and play m moves, the resulting
partition λ(m) will also be sampled from πn,pn,qn . Thus, the theorem follows by
choosing λ(0) as a stochastic partition sampled from the stationary distribution.

7. Conjectures

Recall that Theorem 1 was proved with B(n, pn, qn) being considered a process on
W(n), and by virtue of Lemma 2 it also holds in P(n). We imposed the condition
pnq

2
nn

logn → ∞. Here we conjecture that the weaker condition pnq2nn → ∞ suffices in
order for Theorem 1 to hold in P(n).

Conjecture 1. Theorem 1 also holds when the condition npnq2n/logn → ∞ is
replaced by the weaker condition npnq2n → ∞.
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The reason for this conjecture can be understood by considering the example
qn = 1 and pnn = log logn. For this example it is easy to prove that there is no
limit shape when sorting is not performed. Since qn = 1, the number of picked
cards in each move, and thus the expected size of a new pile, is Bin(n, pn), with
expected value npn and standard deviation σ ≈ √

npn. A pile of size npn will,
after 1/pn moves, have the expected size E = npn(1− pn)1/pn , and clearly we have
E/(e−1npn) → 1 as n → ∞.

Thus, the probability of a “visible” deviation (i.e. greater than d =
√
npn stan-

dard deviations) is P (deviation ≥ dσ) = e−npn , so for 1/pn piles, the expected
number of such large deviations is approximately e−npn

pn
= n

logn log(logn) → ∞ as
n → ∞. This makes it impossible to achieve a convergence in probability towards a
limit shape. However, from simulations we have reason to believe that the process
converges towards a limit shape when sorting is performed.

Further, recall from Section 4 the other regimes npnq2n → 0 and npnq2n → C for
some constant C > 0. We conjecture that the limit shapes in the pn-random qn-
proportion Bulgarian solitaire in these regimes are the same as in the deterministic
q-proportion Bulgarian solitaire developed in [3].

Conjecture 2. If pnq2nn → 0 as n → ∞, the limit shape of the pn-random qn-
proportion Bulgarian solitaire is triangular.

Conjecture 3. If pnq2nn → C as n → ∞ for some constant C > 0, the limit shape
of the pn-random qn-proportion Bulgarian solitaire is a piecewise linear shape that
depends on the value of C.
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