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Background



Motivation

Figure 1: Coronal mass ejection photographed by NASA [1]
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Ordinary Fluids

Simplifying assumptions:

• Incompressible

• No viscosity
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Ordinary Fluids

We represent the state of the fluid by a velocity vector field v .
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Incompressibility

Divergence-free vector field (δv = 0).

No regions like this:
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How does the fluid move over time?

Little particles in the fluid move with the flow. This drags our

velocties along the velocity field.

∂v

∂t
= −Lv]v

But this dragging can violate incompressibility. So we

introduce pressure.

∂v

∂t
= −Lv]v − dp
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Euler Equation for incompressible fluids

∂v

∂t
= −Lv]v − dp
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Euler Equation for incompressible fluids

∂v

∂t
= −Lv]v − dp

Change in velocity over time

9



Euler Equation for incompressible fluids

∂v

∂t
= −Lv]v −dp

Change in velocity over time

Fluid pulling along velocity field
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Euler Equation for incompressible fluids

∂v

∂t
= −Lv]v −dp

Change in velocity over time

Fluid pulling along velocity field

Pressure to maintain incompressibility
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Euler Equation for incompressible fluids

∂v

∂t
+ Lv]v + dp = 0

δv = 0
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Ideal MHD

• Again, a simplified model.

• Velocity vector field v and a magnetic ‘vector field’ β.

• Fluid is incompressible (δv = 0).

• Fluid has no viscosity

• No magnetic monopoles (dβ = 0).

• Fluid has no resistance
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Ideal MHD

Velocity equation: very similar to Euler equation

∂v

∂t
+ Lv]v − L(?β)](?β) + dp = 0

Force of magnetic field on charged particles (Lorentz force law)
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Ideal MHD

Magnetic field equation: just carried by velocity field

∂β

∂t
+ Lv]β = 0

Change in magnetic field over time

Fluid pulling along magnetic field
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Ideal MHD Equations

Four equations total

∂v

∂t
+ Lv]v − L(?β)](?β) + dp = 0 (1)

∂β

∂t
+ Lv]β = 0 (2)

δv = 0 (3)

dβ = 0 (4)
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Conservation Laws

• Energy (E )

• Kinetic energy = 1
2

∫
v2

• Potential energy = 1
2

∫
β2 (field strength)

• Total energy = 1
2

∫
v2 + β2

• Cross-helicity (H)

• A measure of how linked v and β are
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Goals



State of Research

• There are already nice, energy-preserving MHD

integrators, e.g. Gawlik et al (2011) [2].

• But this is still an active research area. Kraus and Maj [3]

published a paper about a new approach in July.

• New integrator

• Treats v and β on equal footing

• Good numerical behavior and solid justification

• No proof of conservation laws

• Only worked out in periodic domains
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My Goals

1. Prove conservation laws

2. Implement simulation with boundaries

3. Extend to 3D
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My Contributions



Proof of Conservation Laws

I proved conservation of energy and cross-helicity, but not in

way we expected.

Noether’s theorem only predicts that energy changes at a

constant rate in this case.

Further investigation is needed to understand why the

standard technique didn’t work, and what that means about

this representation of the system.
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Implementation of Boundaries

The new perspective that I developed on the algorithm while

proving the conservation laws made it simple to implement

fixed boundary conditions.
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Implementation of Boundaries
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Experimental Test of Conservation (Energy)

20 40 60 80 100
framenumber

-1.×10-8

-5.×10-9

5.×10-9

energy-meanenergy

meanenergy

Energy error vs time

Figure 2: Energy drift of the Alfvén wave simulation
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Experimental Test of Conservation (Cross-helicity)

20 40 60 80 100
framenumber

-2.×10-8

-1.×10-8

1.×10-8

crosshelicity-meancrosshelicity

meancrosshelicity

Cross helicity error vs time

Figure 3: Cross-helicity drift of the Alfvén wave simulation
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Extension to 3D

I did not have time to work on the algorithm in 3D.

Conceptually, it should not be very different from 2D. But

there may be subtle differences that prove tricky to handle.
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Future Research Directions

• Is the integrator symplectic?

• Investigate topological properties of the magnetic field

• Extend to 3D
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