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ABSTRACT

This paper describes our solution for the Hulu Content-based Video
Relevance Prediction Challenge. Noting the deficiency of the origi-
nal features, we propose feature re-learning to improve video rel-
evance prediction. To generate more training instances for super-
vised learning, we develop two data augmentation strategies, one
for frame-level features and the other for video-level features. In
addition, late fusion of multiple models is employed to further boost
the performance. Evaluation conducted by the organizers shows
that our best run outperforms the Hulu baseline, obtaining rela-
tive improvements of 26.2% and 30.2% on the TV-shows track and
the Movies track, respectively, in terms of recall@100. The results
clearly justify the effectiveness of the proposed solution.
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1 INTRODUCTION

Video recommendation, by helping users discover videos of interest,
is a very useful feature for online video services such as YouTube
and Hulu. When new videos are uploaded to the services, user-
interaction information such as browsing, commenting and rating
is unavailable. This is known as the cold-start problem [9]. How to
effectively recommend videos in a cold-start scenario is challenging.

This paper attacks the cold-start problem in the context of the
Hulu Content-based Video Relevance Prediction Challenge [10]. In
this challenge, participants are asked to rank a list of pre-specified
videos in terms of their relevance with respect to a given video,
where the relevance is exclusively computed based on the visual
content. Notice that we as participants have no access to original
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(b) Feature space re-learned by this work

Figure 1: Original feature space versus re-learned feature
space. We randomly select 15 query videos and their corre-
sponding relevant videos from the validation set of the TV-
shows track [10], and use t-SNE [14] to visualize their distri-
bution in (a) the original feature space and (b) the re-learned
feature space obtained by our proposed model. Dots with the
same color indicate videos relevant to a specific query. The
plots reveal that relevant videos stay closer in the re-learned
feature space than in the original feature space. Original fea-
ture: Inception-v3. Best viewed in color.

video data. Instead, the organizers provide two visual features, ex-
tracted from individual frames and frame sequences by pre-trained
Inception-v3 and C3D models, respectively.

Although the deeply learned features are known to be powerful
representations of visual content [3], we argue that they are subop-
timal for this challenge. For the purpose of video recommendation,
the computation of relevance between two videos shall reflect user’s
implicit feedback, e.g., watch and search history. As Fig. 1(a) shows,
relevant videos (denoted by the same colored dots) tend to scatter
in the provided feature space. The features have to be re-learned.

It is well recognized that the more data a deep learning model
has access to, the more effective it can be. However, collecting
many video data for training a content-based video recommenda-
tion model is not easy, especially for TV-shows or movies as they
have copyright issues. As aforementioned, the challenge does not
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Figure 2: Data augmentation for frame-level features. Skip
sampling with a stride of s = 2 yields s new sequences of
frame-level features, and consequently s new training in-
stances for the subsequent supervised learning.

provide original videos. Consequently, existing data augmentation
strategies such as flipping, rotating, zooming in/out, are inappli-
cable. We develop data augmentation strategies for features. For
answering the Hulu challenge, this paper makes the following con-
tributions.

e We propose feature re-learning with data augmentation. In par-
ticular, we introduce two data augmentation strategies that work
for frame-level and video-level features, respectively. Combined
with data augmentation strategies, a feature re-learning solution
is developed.

For both TV-shows and Movies tracks, the proposed solution
outperforms the Hulu baseline with a large margin. In particular,
we obtain recall@100 of 0.178 on the TV-shows track and 0.151
on the Movie track, while the corresponding numbers of the
baseline are 0.141 and 0.116, respectively. Code is available at
https://github.com/danieljf24/cbvr.

2 PROPOSED SOLUTION

Given a query video, we recommend relevant videos by retrieving
its k nearest neighbors from a pre-specified video collection. To
simplify our notation, let v indicate a video and a d-dimensional
visual feature vector that describes the video content. Given two
videos v and v’, we measure their similarity in terms of the co-
sine similarity between the corresponding features, ie., c¢s(v, v’).
We propose feature re-learning, expressed as ¢(v), such that the
relevance between two videos is better reflected by cs(¢(v), p(v”)).

Next, we introduce our data augmentation strategies in Section
2.1, followed by a description of our feature re-learning model 2.2.

2.1 Data Augmentation for Features

Data augmentation is one of the effective ways to improve the
performance of deep learning based models, especially when the
training data are inadequate. Due to legal and copyright issue, the
organizers do not provide original videos. Instead, they provide
two precomputed features, i.e., a 2,048-dim Inception-v3 feature
per frame [1] and a 512-dim C3D feature per video [13]. We refer
the interested reader to [10] for more details about the features.
The unavailability of video data means common data augmentation
strategies such as flipping, rotating, zooming in/out, are inapplica-
ble. In what follows, we introduce two data augmentation strategies
that work for frame-level and video-level features, respectively, with
no need of original videos.
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Figure 3: Data augmentation for video-level features,
achieved by selectively adding Gaussian noise.

2.1.1 Augmentation for frame-level features. Inspired by the fact
that humans could grasp the video topic after watching only several
sampled video frames in order, we augment data by skip sampling.
Figure 2 demonstrates the augmentation strategy for frame-level
features. Given a video of n frames, let f; be the feature vector of
the i-th frame. We perform skip sampling with a stride of s over
the frame sequence. In this way, s new sequences of frame-level
features are generated. Accordingly, mean pooling is employed to
obtain s new features at the video level, that is

|3
b

vs,1 = mean-pooling{ fi, fi+s, fi+2s ...

vs,2 = mean-pooling{ f2, fa+s, fo+2s, .. (1)
vs,s = mean-pooling{ fs, fas, f3s, ...},

Together with the feature obtained by mean pooling over the full

sequence, skip sampling with a stride of s produces s + 1 training

instances for the subsequent supervised learning.

Notice that the skip sampling strategy is inapplicable for video-
level features. To cope with the situation where only video-level
features are provided, we devise another data augmentation strategy
as follows.

2.1.2  Augmentation for video-level features. Adding tiny pertur-
bations to image pixels are imperceptible to humans. In a similar
spirit, we want our video recommendation system to ignore minor
perturbations unconsciously introduced during feature extraction.
To that end, we introduce perturbation-based data augmentation,
as illustrated in Fig. 3. Given a d-dimensional video-level feature
v eRY, tiny Gaussian noises are randomly generated and selec-
tively injected into the individual elements of the vector. More
precisely, the perturbed feature v* is generated by:

m ~ Bernoulli(p),

e~ Nd(.u’ UZId)’
v =v4+e-moe,

()

where m, as a mask, is a vector of independent Bernoulli random
variables each of which has probability p = 0.5 of being 1, which
controls how many elements in the video-level feature are per-
turbed. The variable e is a noise vector sampled from a multivariate
Gaussian, parameterized by mean y and covariance matrix oI,
where I; is a d X d identity matrix. The mean and the standard de-
viation are estimated from the dataset. We use € = 1 to control the
noise intensity. The symbol o indicates element-wise multiplication.
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Notice that we perform the first data augmentation strategy on
the Inception-v3 feature and the second strategy on the C3D feature.
Both are conducted only in the training phase.

2.2 Feature Re-Learning

We devise a re-learning model to learn a new feature vector per
video. Video recommendation for a given video is performed in
the new feature space, where all candidate videos are sorted in
descending order in terms of their cosine similarity to the given
video.

2.2.1 Model structure. Before feeding videos to the re-learning
model, we choose to first represent each video as a video-level
feature vector. As the number of frame features varies over video,
we employ mean pooling, which is simple yet consistently found
to be effective in multiple content-based tasks [2, 3, 10-12]. We
utilize a fully connected layer to map the original features into a
new space. More formally, the new feature vector is represented as:

¢(v) =Wou+b, 3)

where W is affine matrix and b indicates a bias term. We empirically
find that the model performance is insensitive to the dimensionality
of the re-learned feature space. This dimensionality is set to be 1,024
in our experiments.

2.2.2 Model training. As we wish to make the relevant video pairs
near and irrelevant video pairs far away in the re-learned feature
space, we consider to utilize the common triplet ranking loss [5, 7]
to train the feature re-learning model. Concretely, we first construct
a set of triplets 7 = {(v,v*, v™)} from training set, where v* and
v~ indicate videos relevant and irrelevant with respect to video v.
The triplet ranking loss for a triplet of (v, v",v7) is defined as:

L(v,v", 07 W,b) = max(0, a — csqg(v, o)+ sy (v, v7)), (4)

where csy (v, v’) denotes the cosine similarity between ¢(v) and
¢(v’), and « represents the margin, empirically set to be 0.2. No-
tice that other losses that exploit the negative samples exist. In
our preliminary experiments, we have tried two other such losses,
namely Contrastive Loss [6] and an improved triplet ranking loss
[4]. We found them perform worse than the standard triplet ranking
loss. Finally, we train the re-learning model to minimize the overall
triplet ranking loss on a triplet set 7, and the overall objective
function of the model is as:

L(v, v, 07; W, b).

(v, 0%, 07)eT

®)

argmin
w,b

We solve Eq. 5 using stochastic gradient descent with Adam [8],

and empirically set the initial learning rate to be 0.001 and batch

size to be 32. We adopt a learning schedule as described in [3].

Once the validation loss does not decrease in three consecutive

epochs, we divide the learning rate by 2. The early stop occurs if

the validation performance does not improve in ten consecutive
epochs. The maximal number of epochs is 50.

3 EVALULATION
3.1 Experimental Setup

The challenge provides two video collections, corresponding to TV-
shows and movies, respectively. Each collection has been divided
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Table 1: Performance of feature re-learning with different
loss. No data augmentation. Triplet ranking loss performs
the best. Feature: Inception-v3.

Loss TV-shows Movies
Triplet ranking loss 0.199 0.163
Improved Triplet ranking loss [4] 0.181 0.125
Contrastive loss [6] 0.194 0.160

Table 2: Effectiveness of data augmentation. The model with
data augmentation gives better performance.

Feature Data augmentation TV-shows Movies
. X 0.199 0.163
Inception-v3
v 0.244 0.191
.1 .1
3D X 0.185 0.155
v 0.196 0.163

Table 3: Effectiveness of feature re-learning.

Feature Re-Learning TV-shows Movies
. X 0.124 0.099
Inception-v3
v 0.244 0.191
0.145 0.112
C3D x
v 0.196 0.163

into three disjoint subsets for training, validation and test. Detailed
data split is as follows: training / validation / test of 3,000 / 864
/ 3,000 videos for the TV-shows track and 4,500 / 1,188 / 4,500
videos for the Movies track. For each video in the training and
the validation set, it is associated with a list of relevant videos as
ground truth.

Following the evaluation protocol of the challenge, we report
two rank-based performance metrics, i.e., hit@k (k = 5, 10, 20, 30)
and recall@k (k = 50, 100, 200, 300). Since recall@100 is the official
metric, it is the default metric in the following experiments unless
stated otherwise.

3.2 Ablation Study

Each participant is allowed to submit five runs at maximum, making
an ablation study on the test set unpractical. So we conduct the
ablation study on the validation set as follows.

3.2.1 Choice of loss functions. Table 1 shows performance of our
re-learning model with different losses. Triplet ranking loss con-
sistently outperforms the other two loss functions on both two
datasets.

3.2.2  Effectiveness of data augmentation. Figure 4(a) shows the
performance curves of feature re-learning with data augmentation
as the stride increases. The rising curves justify the effectiveness of
data augmentation for the frame-level feature. Best performance is
reached with stride = 8. So we use this parameter in the rest of the
ablation study.
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Table 4: Performance comparison on the test set. Our runs outperform the Hulu’s best baseline with a large margin. The
number in the bracket indicates the relative improvement over the Hulu baseline.

Track 1: TV-shows

Track 2: Movies

hit@k recall@k hit@k recall@k
k=5 k=10 k=20 k=30 k=50 k=100 k=200 k=300 k=5 k=10 k=20 k=30 k=50 k=100 k=200 k=300
Hulu 0249 0356 0461 0.525 0.085 0.141 0.219  0.269 0.190 0.242 0320 0.373 0.081 0.116 0.168  0.206
runl 0274 0365 0488 0.542 0.099  0.160 (T 13.5%) 0.248  0.302 0.210 0272 0355 0.412 0.092  0.133(T 14.7%)  0.192  0.237
run2 0.287 0381 0492 0.550 0.104 0.167 (T 18.4%) 0.257  0.314 0.211  0.278 0.368  0.427 0.095 0.139 (1 19.8%) 0.201  0.248
run3 0.288 0391 0484 0.539 0.099 0.162 (T 14.9%) 0.249  0.305 0.215 0.278 0.359 0.422 0.096  0.138 (1 19.0%)  0.198  0.244
rund 0309 0.411 0506 0.567 0.109 0.173 (1 22.7%)  0.266  0.323 0.234 0298 0.390 0.448 0104 0.148 (1 27.6%) 0.210  0.258
run5 0308 0408 0.522 0589  0.112 0.178 (1 26.2%) 0.273 0.331 0232 0302 0389 0441  0.105 0.151(730.2%) 0.215 0.263
0.26—. ‘ ‘ ‘ ‘ 3.3 Challenge Results
0.25} 0.241 0.244 We submitted the following five runs.
------- © . . . .
S 0241 0232 __-- © 1 e run 1: Feature re-learning with data augmentation of stride s = 8
— - .
® 9231 . © 1 performed on the Inception-v3 feature.
© 0.22F 0209 .~ . 1 e run 2: Late fusion (with uniform weights) of the following eight
£ o021 190 .o 1 models. Four models are separately trained with data augmen-
020 o--" E tation of stride s = 6,s = 8, s = {2,4,6} and s = {2,4,6,8} on
0.19— 5 : < 5 the Inception-v3 feature. The setting s = {2,4, 6} means new
stride instances generated by skip sampling with the varied value of
s are exploited together. We train another four models in a sim-
(a) TV-shows ilar manner as the aboves models, but add the tanh activation
0,20 function after the fully connected layer.
' ‘ ‘ ‘ ‘ 0.191 e run 3: Similar to run 2, but using the concatenation of Inception-
0.19} 0186 - o V3 and C3D as the input feature.
§ 0.18 0176 _.-=" © e run 4: Late fusion of the sixteen models from run 2 and run 3.
O} .0~ e run 5: Based on run 4, we additionally include four models
© 0.17} 163 0165 _ .-~ trained using the Contrastive Loss and with their validation
9] - . ..
Sl O o performance exceeding an empirical threshold of 0.22 on the
' TV-shows track.
0.].: L L L L L .
0 2 4 6 8 The performance of our submitted runs, evaluated by the chal-
stride lenge organizers, is summarized in Table 4. All our runs are notice-
(b) Movies ably better than the Hulu’s best baseline, justifying the effectiveness

Figure 4: Performance curves of feature re-learning with
data augmentation performed on the Inception-V3 feature.
The starting point, s = 0, means no data augmentation.

As for data augmentation on the video-level feature, i.e., C3D,
this strategy also works. As Table 2 shows, our model obtains
recall@100 of 0.196 and 0.163 on the TV-shows and Movies tracks,
while the scores of its counterpart without data augmentation are
0.185 and 0.155, respectively.

3.2.3 Effectiveness of feature re-learning. Table 3 shows perfor-
mance of video recommendation with and without feature re-
learning. For both Inception-v3 and C3D features, re-learning brings
in substantial performance gain. These results show the importance
of feature re-learning for content-based video recommendation.
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of our solution. Among them, runs using late fusion consistently
outperform the single-model run. This result suggests that late
fusion is quite helpful for boosting the performance.

4 CONCLUSIONS

We answer the Hulu challenge by proposing feature re-learning
with data augmentation. The proposed solution is superior to the
Hulu baseline: 0.178 versus 0.141 on the test set of TV-shows and
0.151 versus 0.116 on the test set of Movies in terms of recall@100.
We attribute the good performance to the following three factors,
i.e., 1) data augmentation on features to generate more training
instances, 2) feature re-learning with the marginal ranking loss,
and 3) late fusion of multiple models.
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