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Abstract. In diabetic eye screening programme, a special pathway is
designed for those who have received laser photocoagulation treatment.
The treatment leaves behind circular or irregular scars in the retina.
Laser scar detection in fundus images is thus important for automated
DR screening. Despite its importance, the problem is understudied in
terms of both datasets and methods. This paper makes the first attempt
to detect laser-scar images by deep learning. To that end, we contribute
to the community Fundus10K, a large-scale expert-labeled dataset for
training and evaluating laser scar detectors. We study in this new con-
text major design choices of state-of-the-art Convolutional Neural Net-
works including Inception-v3, ResNet and DenseNet. For more effective
training we exploit transfer learning that passes on trained weights of
ImageNet models to their laser-scar counterparts. Experiments on the
new dataset shows that our best model detects laser-scar images with
sensitivity of 0.962, specificity of 0.999, precision of 0.974 and AP of
0.988 and AUC of 0.999. The same model is tested on the public LMD-
BAPT test set, obtaining sensitivity of 0.765, specificity of 1, precision
of 1, AP of 0.975 and AUC of 0.991, outperforming the state-of-the-art
with a large margin. Data is available at https://github.com/li-xirong/
fundus10k/.
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1 Introduction

Diabetic retinopathy (DR) refers to damages occurring to retinal blood vessels
caused by diabetes mellitus. Since the retina is a very vulnerable tissue, such
damages could lead to vision loss or even blindness. DR typically progresses
through four stages, i.e., mild nonproliferative DR (NPDR), moderate NPDR,
severe NPDR and proliferative DR (PDR) [20]. There are 425 million adults
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on the planet that suffer from diabetes! and more than one-third of diabetic
patients are likely to have DR [12]. To fully carry out eye screening programme,
especially for countries of large population, automated screening is an inevitable
trend.

Stability @ stavle

checking [ Unstable
Laser scar
detected?
[ No DR
DR [ Mild NPDR
radin — [ Moderate NPDR
9 9 [ Severe NPDR

[ PDR

Fig. 1. Diagram of a standard DR screening process, according to the Diabetic Eye
Screening Guidance of the NHS, UK [20]. Laser scar detection is an important module
for automated DR screening in a real scenario.

cotton wool spots

(a) No laser scars (b) Fresh laser scars (c) Degenerated laser scars

Fig. 2. Examples of fundus color images of posterior pole, with 45° field of view. Cotton
wool spots in (a) resemble fresh laser scars to some extent, while peripapillary atrophy
looks like degenerated scars. This paper aims for automated classification of fundus
images with and without laser scars. (Color figure online)

Exciting progress is being made on automated DR screening [4,5,14], thanks
to the groundbreaking deep learning algorithms for visual recognition [10] and
the public availability of large-scale DR-graded data such as Kaggle DR [9].
However, there is an (implicit) condition for these systems to be applicable: the

! http://www.diabetesatlas.org.
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person in consideration has not taken any laser photocoagulation. Laser photo-
coagulation is a common treatment for severe NPDR and PDR [1], preventing
further vision loss by destroying abnormal blood vessels in the retina. According
to the Diabetic Eye Screening Guidance of the NHS, UK [20], if there is evidence
of previous photocoagulation, judgement should be made differently, see Fig. 1.
Due to cauterization of the laser, laser treatment leaves behind circular or irreg-
ular scars in the retina, see Fig.2(b) and (c). Therefore, detecting the presence
of laser scars in fundus images is important for automated DR screening in a
real scenario.

Despite its importance, the problem of laser scar detection is largely unex-
plored. Few methods have been developed [3,16,17,19], all relying on hand-
crafted visual features. Although fresh laser scars are clearly visible with regular
shapes, see Fig. 2(b), they degenerate over time, resulting in irregular boundaries
and lower contrast against the background. Moreover, DR lesions such as cotton
wool spots resemble fresh scars to some extent, while peripapillary atrophy looks
like old scars, as exemplified in Fig.2(a). All this makes hand-crafted features
less effective.

Laser scars are local patterns. They might appear anywhere in a fundus
image except for few specific areas including the optic disk, the macular, and
main vessels. Meanwhile, they may scatter around a relatively large area. For
these two properties we consider a deep Convolutional Neural Network (CNN)
appealing for laser scar detection, as the network finds local patterns in its early
layers and perform multi-scale analysis in its deeper layers. Probably due to the
absence of large-scale labeled laser scar data, we see no effort in developing deep
learning techniques for this problem.

In this paper we make the following three contributions.

— First, we present a large-scale dataset consisting of 10,861 fundus images,
with expert labels indicating presence or absence of laser scars in each image.
The previous largest dataset of this kind has 671 images only? [16].

— Second, to the best of our knowledge, this paper is the first deep learning
entry for laser scar detection. To reveal what CNNs are the most suited,
we systematically investigate major design choices of existing CNNs with
good practices identified. In particular, simply and properly adjusting the last
pooling layer allows the CNNs to accept input images of a higher resolution,
without the need of increasing the number of network parameters.

— Lastly, the proposed deep learning based solution outperforms the best result
previously reported on LMD-BAPT [16] (the only public test set). Even
though the performance increase can be arguably expected due to the tremen-
dous success of deep learning in varied applications, the optimal use of the
technique is task-dependent. By proper adaption of the technique, we estab-
lish a new baseline for the task of laser scar detection, which is important for
automated diabetic retinopathy screening.

The rest of the paper is organized as follows. We review related work in
Sect. 2, followed by a description of the newly constructed dataset in Sect. 3. The

2 622 images for training plus 49 images for test [16].
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proposed deep learning approach to laser scar detection is depicted in Sect. 4,
with its effectiveness verified in Sect. 5. We conclude in Sect. 6.

2 Related Work

There is a paucity of literature on laser scar detection. Dias et al. make an initial
attempt [3], building a binary classifier with a set of color, focus, contrast and
illumination features. A 5-fold cross validation experiment is performed on a
dataset composed of 40 fundus images with laser scars and 176 fundus images
without laser scars. Syed et al. [17] and Tahir et al. [19] exploit color, shape and
texture based features, with their experiments conducted on a locally gathered
dataset consisting of 380 images, among which 51 images have laser scars. More
recently, Sousa et al. propose to extract geometric, texture, spatial distribution
and intensity based features [16], and train a decision tree and a random forest
as their laser scar detectors. A common disadvantage of the above methods is
their dependency on hand-crafted features which often do not generalize well.
Extracting the hand-crafted features involves specifying a number of ad-hoc
(and implicit) parameters, making replicability of previous methods extremely
difficult, if not impossible. Moreover, previous studies were performed on private
datasets, except for [16] where the authors have generously made a training set of
622 images (termed LMD-DRS) and a test set of 49 images (termed LMD-BAPT)
publicly accessible. Nevertheless, a large-scale benchmark dataset is missing,
making one difficult to understand the state of the art. Probably due to the lack
of such a dataset, no effort has ever made to investigate deep learning techniques.
We show in Sect.5 that CNN models trained on the small LMD-DRS dataset
do not generalize well.

For deep learning based medical image analysis, some efforts on transfer
learning are made [13,15]. Orlando et al. adopt two CNNs pre-trained on Ima-
geNet, i.e., OverFeat and VggNet, as feature extractors [13] for glaucoma identi-
fication. The CNN weights keep unchanged. For organ localization, Ravishankar
et al. adopt a CaffeNet pre-trained on ImageNet, reporting that adjusting weights
for all layers is better than having weights of some layers fixed [15]. Note that
both [13] and [15] use the network architecture of the pre-trained CNNs as is. By
contrast, we propose to adjust the last pooling layer. This allows us to double
the size of the input, but with the amount of the network parameters unchanged.

3 A Large-Scale Dataset for Laser Scar Detection

In order to construct a large-scale dataset for laser scar detection, we adopted
fundus images used in the Kaggle Diabetic Retinopathy Detection task [9].
The Kaggle dataset contains 88,702 fundus color images of posterior pole (with
45° field of view) provided by EyePACS, a free platform for retinopathy screen-
ing [2]. To make the subsequent manual labeling manageable, the size of the
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Kaggle dataset was reduced to around 11K by random down-sampling. In addi-
tion, we gathered from a local hospital 2K fundus color images of posterior pole
(also with 45° field of view) of diabetic patients.

For ground-truth labeling, we employed a panel of 45 China licensed oph-
thalmologists. Each image was assigned to at least three distinct annotators.
They were asked to provide a binary label indicting either presence or absence
of laser scars in the given image. The number of expert-labeled images was
12,550 in total. As five annotators did not fully complete their assignments, each
image has been labeled 2.5 times, approximately. Excluding 1,317 images that
were labeled by only one annotator and 372 images receiving diverse labels, we
obtained a set of 10,861 expert-labeled images. We term the dataset Fundusi0K.

We split Fundus10K into three disjoint subsets as follows. We first con-
structed a hold-out test set by randomly sampling 20% of the images. The
remaining data is split at random into a training set of 7,602 images and a
validation set of 1,086 images. Table 1 shows data statistics.

Table 1. Laser-scar datasets used in this work. We have constructed a large-scale
dataset of 10,861 fundus images with expert annotations. A hold-out test set is con-
structed by randomly sampling 20% of the images. We term the set Test-2k. In addition,
we include LMD-BAPT [16], the only public test set, as our second test set.

Our contribution (10,861 images) LMD-BAPT from [16]
Training (70%)Validation (10%)|Testing (20%)

No. images 7,602 1,086 2,173 49

No. images with laser scars282 42 80 34

4 Our Approach

We aim to build a CNN that predicts if any laser scar is present in a given
fundus image. For a formal description, let = be a specific image and y € {0, 1}
as a binary label, where y = 1 indicates the image contains laser scars and 0
otherwise. We define p(y = 1|x) as a probabilistic output of the classifier, larger
values indicating higher chances of laser scar occurrence. Such a soft classifica-
tion enables laser scar detection in multiple scenarios. By specifying a particular
operating point on a precision-recall curve, one can aim for either high-recall
(sensitivity) or high-precision detection. We simply use 0.5 as a decision thresh-
old, i.e., test images having p(y = 1|z) > 0.5 will be classified as having laser
scars, unless stated otherwise. Also, one might employ p(y = 1|z) as a ranking
criterion to retrieve laser-scar images from a large unlabeled collection.

4.1 CNNs for Laser Scar Detection
We express a CNN implementation of p(y|x) as
plyl) = softmaz (.- CNN(z)), 1)
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Fig. 3. Diagram of transferring weights from a trained ImageNet CNN model for laser
scar detection. The convolutional layers of our laser scar detector are initialized by the
corresponding weights from a pre-trained (ResNet-18) model. By adjusting the last
pooling layer, we use a double-sized input (448 x 448), without increasing the number
of trainable parameters. Best viewed in color.

where ---CNN indicates stacked CNN layers that take a fix-sized RGB image
as input and sequentially produce an array of feature maps that describe the
visual content at multiple scales. The softmax module employs fully connected
layers to convert the last feature map (and optionally some preceding feature
maps if skip connections are used) to final predictions.

Choices of CNNs. It remains open what CNN architectures are suited for
laser scar detection. Hence, instead of inventing new architectures, we investigate
existing options. We consider Inception-V3 [18], ResNet [7], and DenseNet [8], for
their state-of-the-art performance on the ImageNet visual recognition task. To
reveal the influence of the network depth on the performance, we exploit ResNet-
18, ResNet-34, ResNet-50, DenseNet-121, DenseNet-169 and DenseNet-201. The
three DenseNet networks have nearly the same architecture, with deeper network
repeating a common convolutional block for more times. The case is similar in
ResNet, except that ResNet-50 uses so-called BottleNeck convolutional blocks
which are deeper but with less parameters.

4.2 Transfer Learning

Instead of training CNNs from scratch, we aim for a better starting point
by transferring weights from their counterparts pre-trained on ImageNet. A
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straightforward strategy is to follow exactly the same configuration as the exist-
ing models, by enforcing the size of the input image to be the de facto 224 x 224.
This strategy is unlikely to be optimal, because a fundus image has a much larger
resolution than a consumer picture. Since laser scars are not so big, resolution
may affect the ability of the CNN to distinguish them. However, a double-sized
input means the feature maps will be four times as large as the original ones.
Consequently, the amount of parameters in the first fully connected layer will
increase substantially. We consider a simple yet effective trick: adjusting the last
pooling layer to maintain the size of the last feature map. The adjustment varies
over CNNs. As for ResNet, DenseNet and Inception-v3, they all use global aver-
age pooling as their last pooling layer. So we double the pooling size, from 7 x 7
to 14 x 14 for ResNet and DenseNet and from 12 x 12 to 24 x 24 for Inception-v3.
We refer to Fig. 3 for a conceptual illustration.

5 Evaluation
5.1 Experimental Setup

Training Procedure. We use SGD with a mini-batch of 20, a weight decay
factor of 1 x 10~%, and a momentum of 0.95. The initial learning rate is set to be
1 x 1073. Validation is performed every 800 batches. An early stop occurs when
the validation performance does not improve in 10 consecutive validation steps.
For data augmentation we perform random rotation, crop, flip and changes in
brightness, saturation and contrast. As the two classes are highly imbalanced,
we over sample the laser-scar images to make each batch nearly balanced.

CNN Ensemble. As the SGD based training yields models of slightly different
performance, for each CNN we repeat the training procedure three times and
use model averaging to obtain its final prediction. Considering that CNNs with
varied depth might be complementary to each other, we further investigate two
ensembled CNNs, namely ResNet-Ensemble which equally combines ResNet-18,
ResNet-34 and ResNet-50 and DenseNet-Ensemble which combines the three
variants of DenseNet.

Performance Metrics. We report Sensitivity, Specificity and AUC as com-
monly used as performance metrics of a screening or diagnostic test. In par-
ticular, we consider laser-scar images as positive instances, and images without
laser cars as negatives. As such, Sensitivity is defined as the number of cor-
rectly detected positives divided by the number of true positives. Specificity is
defined as the number of correctly detected negatives divided by the number of
true negatives. AUC is the area under a receiver operating characteristic (ROC)
curve. Given an extremely imbalanced test set, like our Test-2k with only 3.68%
positive examples, AUC and Specificity tend to be high and less discriminative.
Under this circumstance, Precision and Average Precision (AP) are better met-
rics. Precision is defined as the number of correctly detected positives divided
by the number of images detected as positives. AP is a rank-based measure [11].
Higher numbers of the five metrics indicate better performance.
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5.2 Experiments

All models are evaluated on our test set of 2,173 images (which we term Test-2k
for the ease of reference), unless otherwise stated.

Experiment 1. Choice of CNNs. Table2 shows performance of different
CNNs. Concerning the network architecture, DenseNet leads the performance in
terms of AP, followed by ResNet and Inception-v3. Concerning the individual
models, the best overall performance of DenseNet-121 suggests that this CNN
strikes a proper balance between model capability and learnability for laser scar
detection. Its performance can be further improved by model ensembling, as
shown in Table 2 and Fig. 4.
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Fig. 4. ROC curves of ResNet-18, DenseNet-121 and DenseNet-Ensemble on the two
test sets. Best viewed in color.
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Experiment 2. CNN Initialization Strategies. In order to justify the effec-
tiveness of transfer learning described in Sect. 4.2, we compare CNNs trained
with randomly initialized weights and the same models but with their initial
weights transfered from their ImageNet counterparts. For random initialization,
the weights are initialized using Gaussian distribution with zero-mean and vari-
ance calculated according to [6]. We found that when randomly initialized, CNNs
with an input size of 448 x448 did not converge. So this experiment uses a smaller
input size of 224 x 224. To reduce redundancy, we show only the results of the
ResNet series and Inception-v3 in Table 3. DenseNet has similar results. Transfer
learning not only leads to better models but also reduces the training time by
around 50%.

Table 2. Performance of different CNNs. The input size of each CNN is 448 x 448,
with its initial weights transfered from the corresponding ImageNet model.

Model Sensitivity | Specificity | Precision | AP AUC
ResNet-18 0.938 0.998 0.949 0.977 10.998
ResNet-34 0.950 0.998 0.938 0.973 |0.997
ResNet-50 0.950 0.996 0.905 0.976 |0.996
ResNet-Ensemble | 0.950 0.997 0.927 0.977 10.998
Inception-v3 0.938 0.999 0.962 0.968 |0.996
DenseNet-121 0.938 0.999 0.974 0.986 |0.998
DenseNet-169 0.950 0.997 0.916 0.979 |0.998
DenseNet-201 0.962 0.999 0.962 0.987 |0.999
DenseNet-Ensemble | 0.950 0.999 0.974 0.988 | 0.999

Table 3. Performance of CNNs trained with and without transfer learning, respec-
tively. Note that the input size of each CNN is 224 x 224. Weight transferring consis-
tently improves the performance.

Model Initialization | Sensitivity | Specificity | Precision | AP AUC
ResNet-18 Random 0.812 0.991 0.774 0.882 | 0.980
Transfer 0.913 0.994 0.849 0.954 | 0.992
ResNet-34 Random 0.887 0.990 0.780 0.905 | 0.988
Transfer 0.887 0.998 0.947 0.962 | 0.997
ResNet-50 Random 0.850 0.991 0.791 0.888 | 0.989
Transfer 0.900 0.997 0.923 0.957|0.997
Inception-v3 | Random 0.762 0.998 0.938 0.894 |0.977
Transfer 0.887 0.999 0.959 0.969 | 0.998
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Experiment 3. The Influence of CNN Input Size. Table4 shows perfor-
mance of CNNs trained with two input sizes, i.e., 224 x 224 and 448 x 448, sepa-
rately. Using the larger input is more beneficial for less deeper models. Compare
ResNet-18 and ResNet-50 for instance. For ResNet-18, increasing the input size
lifts its AP from 0.954 to 0.977, while the corresponding number of ResNet-50
increases from 0.959 to 0.976. Enlarging the input further, say up to 896 x 896,
gives a marginal improvement at the cost of much increased GPU memory.
Hence, we do not go further in this direction. Additionally, we observe that
among the five performance metrics, Precision and AP are more discriminative
than the other three.

Table 4. Performance of CNNs with two different input sizes. The initial weights of
each CNN is passed from the corresponding ImageNet model. Given the same CNN
architecture, the larger input tends to be more helpful for less deeper models.

Model Input size | Sensitivity | Specificity | Precision | AP AUC
ResNet-18 224 x 224 10.913 0.994 0.849 0.954 |0.992
448 x 448 | 0.938 0.998 0.949 0.977|0.998
ResNet-34 224 x 224 | 0.887 0.998 0.947 0.962 | 0.997
448 x 448 | 0.950 0.998 0.938 0.973|0.997
ResNet-50 224 x 224 1 0.900 0.997 0.923 0.959 | 0.997
448 x 448 | 0.950 0.996 0.905 0.976 | 0.996
ResNet-Ensemble | 224 x 224 | 0.925 0.998 0.937 0.964 | 0.996
448 x 448 | 0.950 0.997 0.927 0.977|0.998
Inception-v3 224 x 224 | 0.887 0.999 0.959 0.969 | 0.998
448 x 448 | 0.938 0.999 0.962 0.968 |0.996
DenseNet-121 224 x 224 10.913 0.998 0.948 0.963 |0.993
448 x 448 | 0.938 0.999 0.974 0.986 | 0.998
DenseNet-169 224 x 224 10.925 0.999 0.961 0.970 |0.994
448 x 448 | 0.950 0.997 0.916 0.979 | 0.998
DenseNet-201 224 x 224 10.913 0.996 0.901 0.973 |0.997
448 x 448 | 0.962 0.999 0.962 0.987 | 0.999
DenseNet-Ensemble | 224 x 224 | 0.913 0.999 0.961 0.970 |0.997
448 x 448 | 0.950 0.999 0.974 0.988 | 0.999

Experiment 4. Comparison to the State-of-the-Art. For existing methods
[3,17,19], their code and data are not publicly available. As they rely heavily on
low-level image processing with implementation details not clearly documented,
it is difficult to replicate the methods with the same preciseness as intended by
their developers. So we do not include them for comparison. Alternatively, we
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Table 5. Laser scar detection performance on LMD-BAPT. High AP indicates the
sensitivity of our CNN models can be further optimized, see also ROC curves in Fig. 4.

Model Sensitivity|Specificity | Precision AP |AUC
Decision tree [16] 0.618 0.933 - — —
Random forest (500 trees) [16] 0.676 0.867 - - -
This paper

Fine-tuned ResNet-18 0.765 0.933 0.963 0.955 |0.878
ResNet-18 0.706 1.0 1.0 0.993/0.984
DenseNet-121 0.765 1.0 1.0 0.989 10.969
DenseNet-Ensemble 0.765 1.0 1.0 0.992 10.975
DenseNet-Ensemble (decision threshold: 0.216)|0.971 1.0 1.0 0.992 0.975

(a) False negative (b) False negative (c) False negative

(d) False negative (e) False positive (f) False positive

Fig. 5. Misclassification by DenseNet-Ensemble on the Test-2k test set. False negative
images (a)—(d) are severely degenerated laser scars. False positive image (e) is peripap-
illary atrophy visually similar to laser scars, while False positive image (f) is affected
by dirty marks from camera lens. Best viewed digitally in close-up.

add a fine-tuning baseline that uses pre-trained ResNet-18 as feature extractor,
as used by [13] for glaucoma identification. To the best of our knowledge, LMD-
DRS and LMD-BAPT from [16] are the only two laser-scar datasets that are
publicly accessible, with LMD-BAPT as a test set. As Table5 shows, our CNN
models surpass the state-of-the-art. Recall that our decision threshold is 0.5.
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As indicated by the ROC curve of DenseNet-Ensemble in Fig.4, an adjusted
threshold of 0.216 would yield sensitivity of 0.941 and specificity of 1.

For a more intuitive understanding, all misclassification by DenseNet-
Ensemble are shown in Figs.5 and 6. In particular, the number of misclassified
images is six and eight on our test set and LMD-BAPT, respectively. Misclassi-
fication is largely due to severe degeneration of laser scars, making them either
mostly invisible or visually similar to peripapillary atrophy.

(b) 0.346 (c) 0.003 (d) 0.478

(e) 0.365 () 0.216 (g) 0.270 (h) 0.290

Fig. 6. Misclassification by DenseNet-Ensemble on the LMD-BAPT test set, all false
negatives given 0.5 as decision threshold. Score below each image is p(y = 1|z) by
DenseNet-Ensemble. Image (a)—(c) are over degenerated, (d)—(f) have large laser scars
visually similar to peripapillary atrophy, (g) is fresh laser scars, while (h) is out of focus
and obscured.

To further justify the necessity of the newly constructed dataset, we have
also trained models using LMD-DRS [16], the only training set that is publicly
accessible. As ROC curves in Fig.7 show, our training data results in better
models on both test sets. Moreover, for the models trained on LMD-DRS, a
clear drop of their AP scores indicate that they do not generalize well across
datasets.

Discussion. As we have noted, given a highly imbalanced test set AUC is less
informative. Despite the high AUC of 0.99, for key metrics such as Sensitivity,
Precision and AP, there remains room for improvement. The number of positive
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Fig. 7. ROC curves of ResNet-18 and DenseNet-121 learned from our dataset and the
LMD-DRS dataset, respectively. Best viewed in color.

images in Test-2k is only 80, meaning the differences shown between compared
methods are only in few misclassified images. This might weaken our conclusion.
To resolve the concern, with much efforts we collected 80 new positive images
from our hospital partners, and added them to Test-2k. On the expanded test
set, which we term Test-2k™, we re-test the previously trained models. The new
results are given in Table 6. Similar conclusions can be drawn as those in Exper-
iment 1. That is, DenseNet performs better than ResNet and Inception-v3 in
terms of the overall performance, which can be further improved by model ensem-
bling. Miss detections of the newly added test images by DenseNet-Ensemble are
shown in Fig. 8.
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() () (h)

Fig. 8. All eight miss detections in the 80 newly added positive examples, made by
DenseNet-Ensemble. Best viewed digitally in close-up.

Table 6. Performance of different CNNs on the expanded Test-2k™ test set. The input
size of each CNN is 448 x 448, with its initial weights transfered from the corresponding
ImageNet model. The default decision threshold of 0.5 is used.

Model Sensitivity | Specificity | Precision | AP AUC
ResNet-18 0.925 0.997 0.974 0.981 |0.998
ResNet-34 0.919 0.993 0.967 0.973 | 0.996
ResNet-50 0.919 0.996 0.948 0.974 |0.995
ResNet-Ensemble | 0.925 0.997 0.974 0.981 |0.998
Inception-v3 0.919 0.999 0.980 0.968 |0.994
DenseNet-121 0.919 0.999 0.987 0.982 |0.998
DenseNet-169 0.931 0.997 0.955 0.977 |0.996
DenseNet-201 0.938 0.999 0.980 0.983 | 0.998
DenseNet-Ensemble | 0.925 0.999 0.987 0.983 | 0.998

6 Conclusions

We present the first deep learning approach to laser scar detection in fundus
images. By performing transfer learning on the recent DenseNet models, a highly
effective laser scar detector is developed. The detector obtains Precision of 1.0
and AP of 0.993 on the public LMD-BAPT test set, and Precision of 0.974 and
AP of 0.988 on the newly built Test-2k test set. The success of our deep learn-
ing approach is largely attributed to the large expert-labeled laser-scar dataset
proposed by this work.
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