Abstract
We study the phenomenology of models of electroweak symmetry breaking where the Higgs potential is destabilized by a tadpole arising from the coupling to an “auxiliary” Higgs sector. The auxiliary Higgs sector can be either perturbative or strongly coupled, similar to technicolor models. Since electroweak symmetry breaking is driven by a tadpole, the cubic and quartic Higgs couplings can naturally be significantly smaller than their values in the standard model. The theoretical motivation for these models is that they can explain the 125 GeV Higgs mass in supersymmetry without fine-tuning. The auxiliary Higgs sector contains additional Higgs states that cannot decouple from standard model particles, so these models predict a rich phenomenology of Higgs physics beyond the standard model. In this paper we analyze a large number of direct and indirect constraints on these models. We present the current constraints after the 8 TeV run of the LHC, and give projections for the sensitivity of the upcoming 14 TeV run. We find that the strongest constraints come from the direct searches A 0 → Zh, \( {A}^0\to t\overline{t} \), with weaker constraints from Higgs coupling fits. For strongly-coupled models, additional constraints come from ρ + → WZ where ρ + is a vector resonance. Our overall conclusion is that a significant parameter space for such models is currently open, allowing values of the Higgs cubic coupling down to 0.4 times the standard model value for weakly coupled models and vanishing cubic coupling for strongly coupled models. The upcoming 14 TeV run of the LHC will stringently test this scenario and we identify several new searches with discovery potential for this class of models.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
ATLAS collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2014-009 (2014) [INSPIRE].
ATLAS collaboration, Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 112015 [arXiv:1408.7084] [INSPIRE].
CMS collaboration, Precise determination of the mass of the Higgs boson and studies of the compatibility of its couplings with the standard model, CMS-PAS-HIG-14-009 (2014) [INSPIRE].
A. Azatov, J. Galloway and M.A. Luty, Superconformal Technicolor, Phys. Rev. Lett. 108 (2012) 041802 [arXiv:1106.3346] [INSPIRE].
A. Azatov, J. Galloway and M.A. Luty, Superconformal Technicolor: models and phenomenology, Phys. Rev. D 85 (2012) 015018 [arXiv:1106.4815] [INSPIRE].
J. Galloway, M.A. Luty, Y. Tsai and Y. Zhao, Induced Electroweak Symmetry Breaking and Supersymmetric Naturalness, Phys. Rev. D 89 (2014) 075003 [arXiv:1306.6354] [INSPIRE].
J.M. Cornwall, A. Kusenko, L. Pearce and R.D. Peccei, Can supersymmetry breaking lead to electroweak symmetry breaking via formation of scalar bound states?, Phys. Lett. B 718 (2013) 951 [arXiv:1210.6433] [INSPIRE].
Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].
H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].
J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].
A. Brignole, Radiative corrections to the supersymmetric neutral Higgs boson masses, Phys. Lett. B 281 (1992) 284 [INSPIRE].
M.S. Carena, J.R. Espinosa, M. Quirós and C.E.M. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].
A. Birkedal, Z. Chacko and Y. Nomura, Relaxing the upper bound on the mass of the lightest supersymmetric Higgs boson, Phys. Rev. D 71 (2005) 015006 [hep-ph/0408329] [INSPIRE].
P. Batra, A. Delgado, D.E. Kaplan and T.M.P. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].
A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].
J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs Bosons in a Nonminimal Supersymmetric Model, Phys. Rev. D 39 (1989) 844 [INSPIRE].
J.R. Espinosa and M. Quirós, Upper bounds on the lightest Higgs boson mass in general supersymmetric Standard Models, Phys. Lett. B 302 (1993) 51 [hep-ph/9212305] [INSPIRE].
G.L. Kane, C.F. Kolda and J.D. Wells, Calculable upper limit on the mass of the lightest Higgs boson in any perturbatively valid supersymmetric theory, Phys. Rev. Lett. 70 (1993) 2686 [hep-ph/9210242] [INSPIRE].
L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].
J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].
S. Samuel, Bosonic technicolor, Nucl. Phys. B 347 (1990) 625 [INSPIRE].
M. Dine, A. Kagan and S. Samuel, Naturalness in Supersymmetry, or Raising the Supersymmetry Breaking Scale, Phys. Lett. B 243 (1990) 250 [INSPIRE].
A. Kagan and S. Samuel, The Family mass hierarchy problem in bosonic technicolor, Phys. Lett. B 252 (1990) 605 [INSPIRE].
A. Kagan and S. Samuel, Renormalization group aspects of bosonic technicolor, Phys. Lett. B 270 (1991) 37 [INSPIRE].
A. Kagan and S. Samuel, Bosonic technicolor in strings, Phys. Lett. B 284 (1992) 289 [INSPIRE].
C.D. Carone, J. Erlich and J.A. Tan, Holographic Bosonic Technicolor, Phys. Rev. D 75 (2007) 075005 [hep-ph/0612242] [INSPIRE].
A. Kagan, Colored resonances from low scale bosonic technicolor, http://online.itp.ucsb.edu/online/lhc08/kagan/.
T. Gherghetta and A. Pomarol, A distorted MSSM Higgs sector from low-scale strong dynamics, JHEP 12 (2011) 069 [arXiv:1107.4697] [INSPIRE].
D.S.M. Alves, P.J. Fox and N. Weiner, Supersymmetry with a Sister Higgs, arXiv:1207.5522 [INSPIRE].
U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].
M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].
J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].
F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs Boson self-coupling measurements using ratios of cross sections, JHEP 06 (2013) 016 [arXiv:1301.3492] [INSPIRE].
A. Falkowski, C. Grojean, A. Kaminska, S. Pokorski and A. Weiler, If no Higgs then what?, JHEP 11 (2011) 028 [arXiv:1108.1183] [INSPIRE].
M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Is the ρ meson a dynamical gauge boson of hidden local symmetry?, Phys. Rev. Lett. 54 (1985) 1215 [INSPIRE].
M. Bando, T. Kugo and K. Yamawaki, Nonlinear realization and hidden local symmetries, Phys. Rept. 164 (1988) 217 [INSPIRE].
R. Casalbuoni, S. De Curtis, D. Dominici and R. Gatto, Effective Weak Interaction Theory with Possible New Vector Resonance from a Strong Higgs Sector, Phys. Lett. B 155 (1985) 95 [INSPIRE].
ALEPH, DELPHI, L3, OPAL collaborations and the LEP Electroweak Working Group, S. Schael et al., Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].
S. Dawson, A. Gritsan, H. Logan, J. Qian, C. Tully et al., Higgs Working Group Report of the Snowmass 2013 Community Planning Study, arXiv:1310.8361 [INSPIRE].
CMS collaboration, Search for charged Higgs bosons with the H + → τν decay channel in the fully hadronic final state at \( \sqrt{s}=8 \) TeV, CMS-PAS-HIG-14-020 (2014) [INSPIRE].
ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].
CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].
CMS collaboration, Search for a pseudoscalar boson A decaying into a Z and an h boson in the \( \ell \ell b\overline{b} \) final state, CMS-PAS-HIG-14-011 (2014) [INSPIRE].
CMS collaboration, 2HDM scenario, H to hh and A to Zh, CMS-PAS-HIG-13-025 (2013) [INSPIRE].
ATLAS collaboration, Search for a dijet resonance produced in association with a leptonically decaying W or Z boson with the ATLAS detector at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2013-074 (2013) [INSPIRE].
CMS collaboration, Search for resonant HH production in 2γ + 2b channel, CMS-PAS-HIG-13-032 (2014) [INSPIRE].
CMS collaboration, Search for di-Higgs resonances decaying to 4 bottom quarks, CMS-PAS-HIG-14-013 (2014) [INSPIRE].
CMS collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2013) [INSPIRE].
CMS collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, JHEP 01 (2014) 096 [arXiv:1312.1129] [INSPIRE].
CMS collaboration, Searches for new physics using the \( t\overline{t} \) invariant mass distribution in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 111 (2013) 211804 [Erratum ibid. 112 (2014) 119903] [arXiv:1309.2030] [INSPIRE].
ATLAS collaboration, Search for WZ resonances in the fully leptonic channel using pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 737 (2014) 223 [arXiv:1406.4456] [INSPIRE].
CMS collaboration, Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at \( \sqrt{s}=8 \) TeV, arXiv:1408.2745 [INSPIRE].
ATLAS collaboration, Search for new particles in events with one lepton and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 09 (2014)037 [arXiv:1407.7494] [INSPIRE].
G. Salam and A. Weiler, Collider Reach, http://collider-reach.web.cern.ch/collider-reach/.
T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B}\to {X}_s\gamma \) in the Two Higgs Doublet Model up to Next-to-Next-to-Leading Order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].
H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].
Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
A. Freitas and Y.-C. Huang, Electroweak two-loop corrections to \( { \sin}^2{\theta}_{eff}^{b\overline{b}} \) and R b using numerical Mellin-Barnes integrals, JHEP 08 (2012) 050 [Erratum ibid. 05 (2013) 074] [arXiv:1205.0299] [INSPIRE].
A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].
R.V. Harlander and W.B. Kilgore, Production of a pseudoscalar Higgs boson at hadron colliders at next-to-next-to leading order, JHEP 10 (2002) 017 [hep-ph/0208096] [INSPIRE].
R.D. Ball, M. Bonvini, S. Forte, S. Marzani and G. Ridolfi, Higgs production in gluon fusion beyond NNLO, Nucl. Phys. B 874 (2013) 746 [arXiv:1303.3590] [INSPIRE].
M. Bonvini, R.D. Ball, S. Forte, S. Marzani and G. Ridolfi, Updated Higgs cross section at approximate N 3 LO, J. Phys. G 41 (2014) 095002 [arXiv:1404.3204] [INSPIRE].
LHC Higgs Cross section Working Group, S. Heinemeyer et al., Handbook of LHC Higgs Cross sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].
A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1411.6023
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Chang, S., Galloway, J., Luty, M.A. et al. Phenomenology of induced electroweak symmetry breaking. J. High Energ. Phys. 2015, 17 (2015). https://doi.org/10.1007/JHEP03(2015)017
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2015)017