

Not yet...

Could Foundation Models really resolve End-to-end Autonomy?

Hongyang Li

Research Scientist, **Shanghai AI Lab** /
Assistant Professor, **University of Hong Kong**

June 18, 2024

Outline

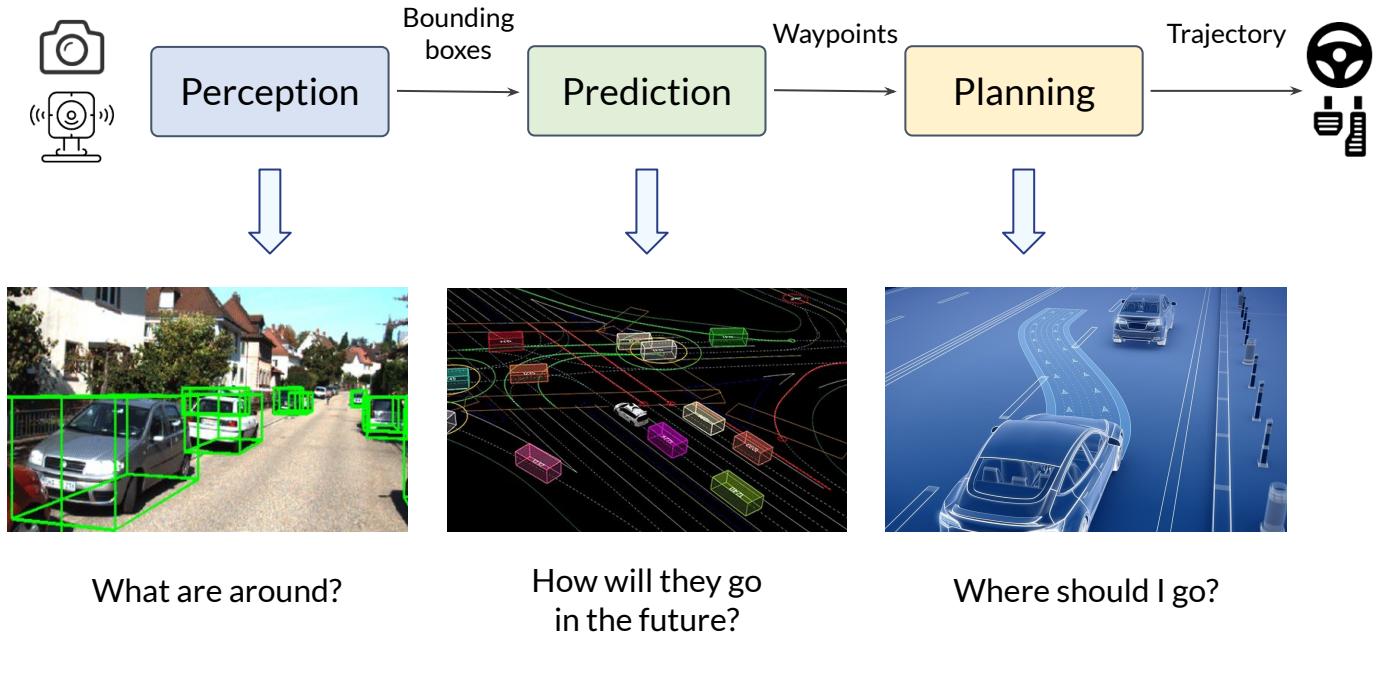
- **Introduction to End-to-end Autonomous Driving (E2E AD)**
 - Setup / Definition
 - Datasets and Evaluation
 - Motivation
 - Classical Approaches Walkthrough
- **Research Panorama**
 - Past / Present / Future
 - Concurrent Work and Future
 - GenAD (CVPR 2024 Highlight)
 - Vista (in arXiv)
- **Challenges and Closing Remarks**
 - Data / Methodology / Compute / Goal

Part 1:

Introduction to End-to-end Autonomous Driving

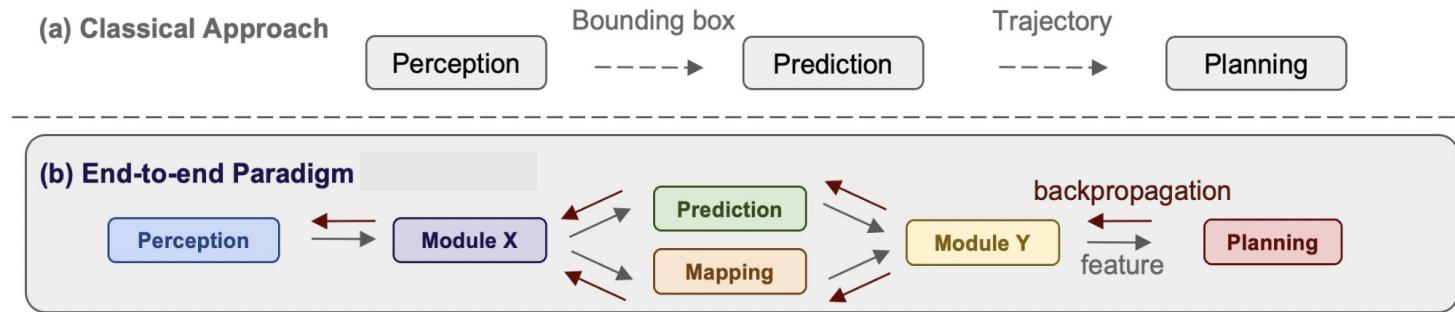
Setup / Metric / Motivation

Preliminary | Problem Setup



Challenge | Various weathers, illuminations, and scenarios

End-to-end | Definition



End-to-end autonomous driving system - A suite of fully differentiable programs that:

- take raw sensor data as input
- produce a plan and/or low-level control actions as output

Preliminary | Datasets and Evaluation

Note:

[https://github.com/autonomousvision/navsim
/blob/main/docs/metrics.md](https://github.com/autonomousvision/navsim/blob/main/docs/metrics.md)

Dataset	Scale	Behavior & Interaction	Planning Task Evaluation	
			Strategy	Metrics
nuScenes		5.5 h	Realistic	<ul style="list-style-type: none">- Open-loop (Log-replay)
Waymo*		11 h		
Argoverse2*		4.2 h		
nuPlan*		120 h	ML-based	<ul style="list-style-type: none">- Closed-loop (Interactive)- Average Displacement Error (ADE)- Final Displacement Error (FDE)- Collision Rate- Comfort Score- PDM Score [Note]

Real-world
Collected

*Perception subset (with visual inputs)

Preliminary | Datasets and Evaluation

Note:

[https://github.com/autonomousvision/navsim
/blob/main/docs/metrics.md](https://github.com/autonomousvision/navsim/blob/main/docs/metrics.md)

Dataset	Scale	Behavior & Interaction	Planning Task Evaluation	
			Strategy	Metrics
nuScenes	5.5 h	Realistic	Open-loop (Log-replay)	<ul style="list-style-type: none"> - L2 Error - Collision Rate
Waymo*	11 h			
Argoverse2*	4.2 h			
nuPlan*	120 h	ML-based	Closed-loop (Interactive)	<ul style="list-style-type: none"> - Average Displacement Error (ADE) - Final Displacement Error (FDE) - Collision Rate - Comfort Score - PDM Score [Note]
DriveSim	Unlimited	Handcrafted & ML-based	Closed-loop (Interactive)	<ul style="list-style-type: none"> - N/A
Carla				<ul style="list-style-type: none"> - Driving Score = Route Completion * \prod Infraction Penalty

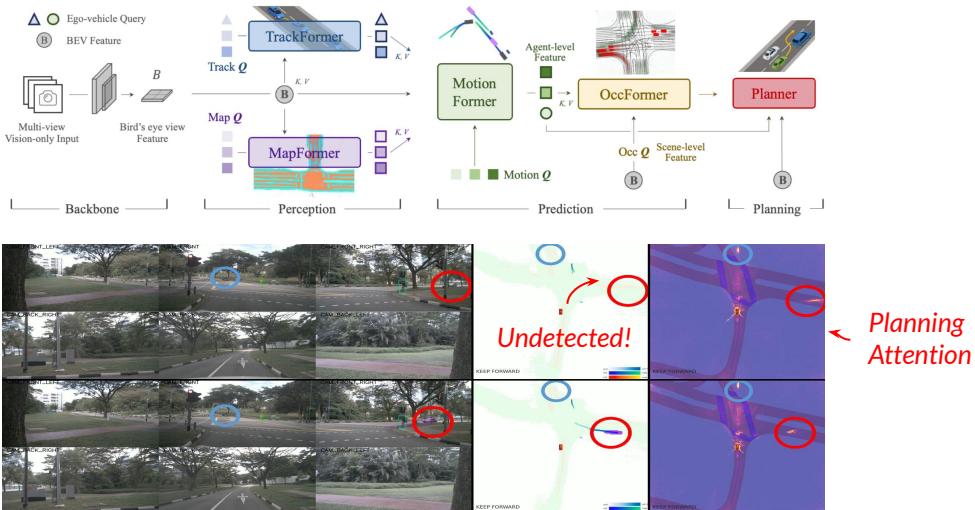
Real-world
Collected

Synthetic
generated

*Perception subset (with visual inputs)

Motivation | Why end to end?

- + **Global optimization:** when perception fails/inferior, planning still could work.

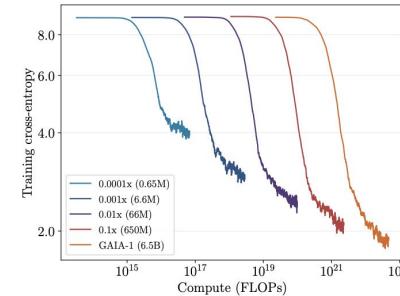


Hu et al. Planning-oriented Autonomous Driving. CVPR 2023.

- + “Efficiency” / faster due to one single net?

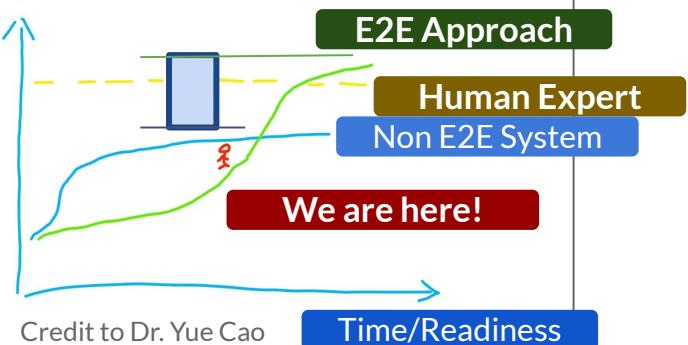
Advantages

- + **Scaling law:** massive amount of data + infra/compute \rightarrow strong generalization



Hu et al. GAIA-1: A Generative World Model for Autonomous Driving.

Performance



Time/Readiness

- **Lack of interpretability**, due to the e2e neural network.
- ~~- Unfair evaluation? E.g. open loop L2 metric~~
 - [Ref] Li et.al, Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving?
CVPR 2024
- ~~- Lack of data / Simulation (sim2real) / etc..~~

Classic algorithm: TransFuser (1/2) - Motivation

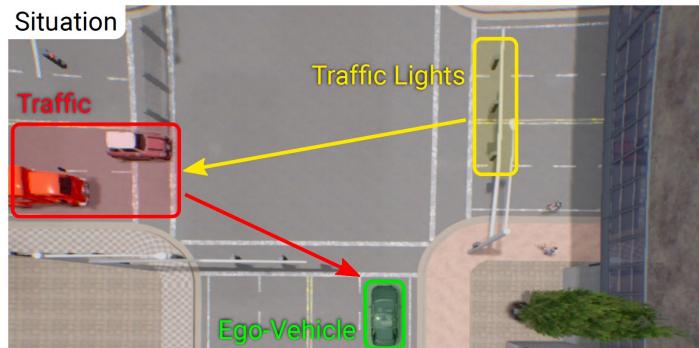
LiDAR Point Cloud

- 3D information
- Robustness for weather variations

RGB Camera

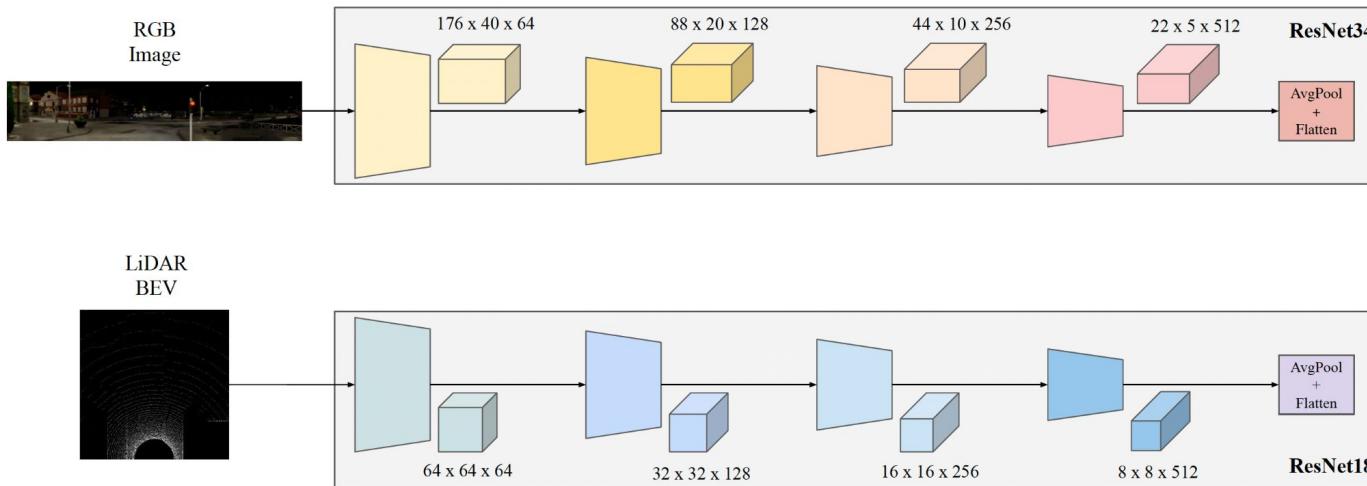
- Traffic light state
- Long-range perception

Combine the best of both worlds



Whole-scene understanding
for safe driving

Classic algorithm: TransFuser (2/2)

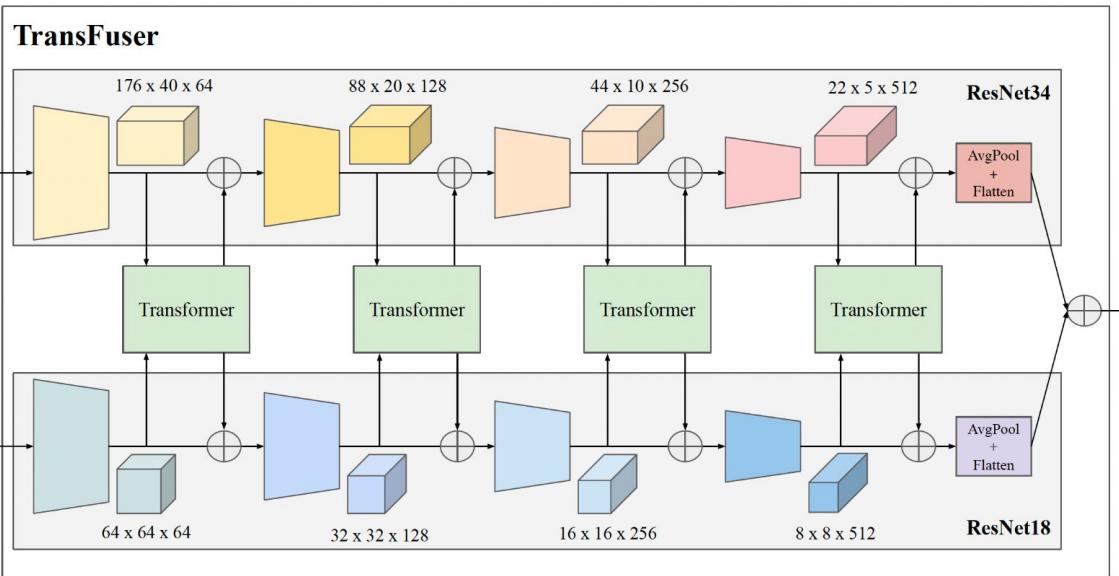
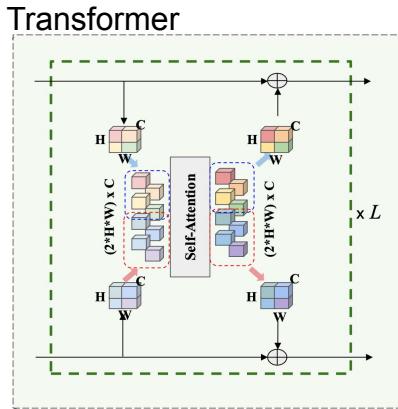


- **Dual-stream network** to extract modality-specific features

Classic algorithm: TransFuser (2/2)

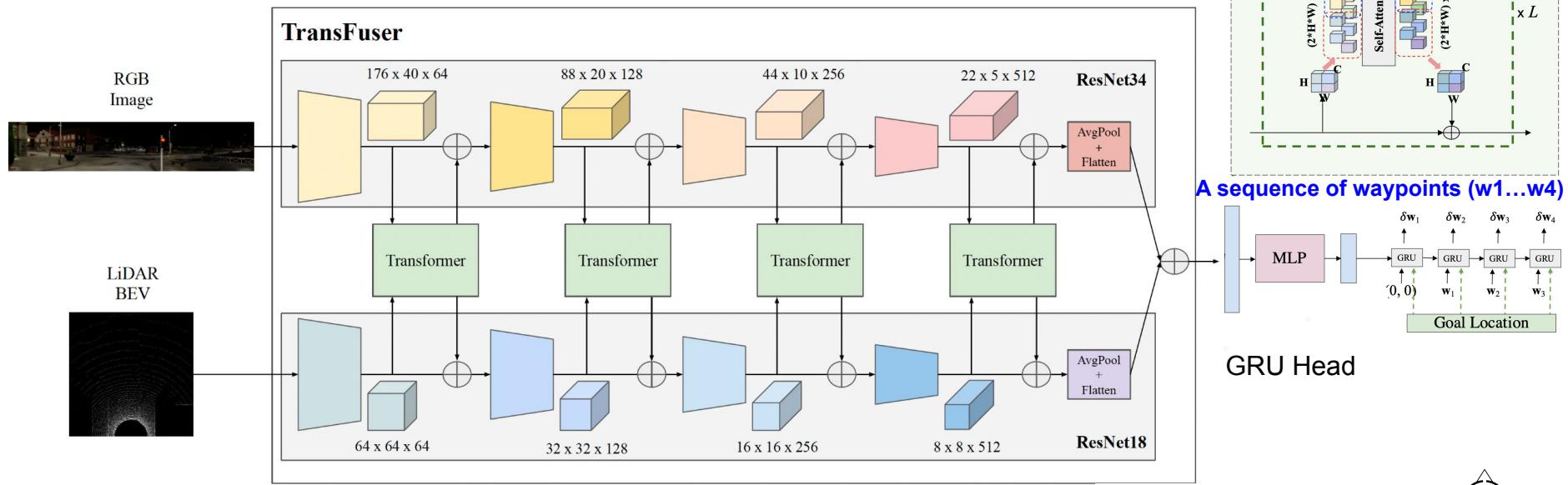
RGB Image

LiDAR BEV



- **Dual-stream network** to extract modality-specific features
- **Transformer** to effectively fuse feature across modalities

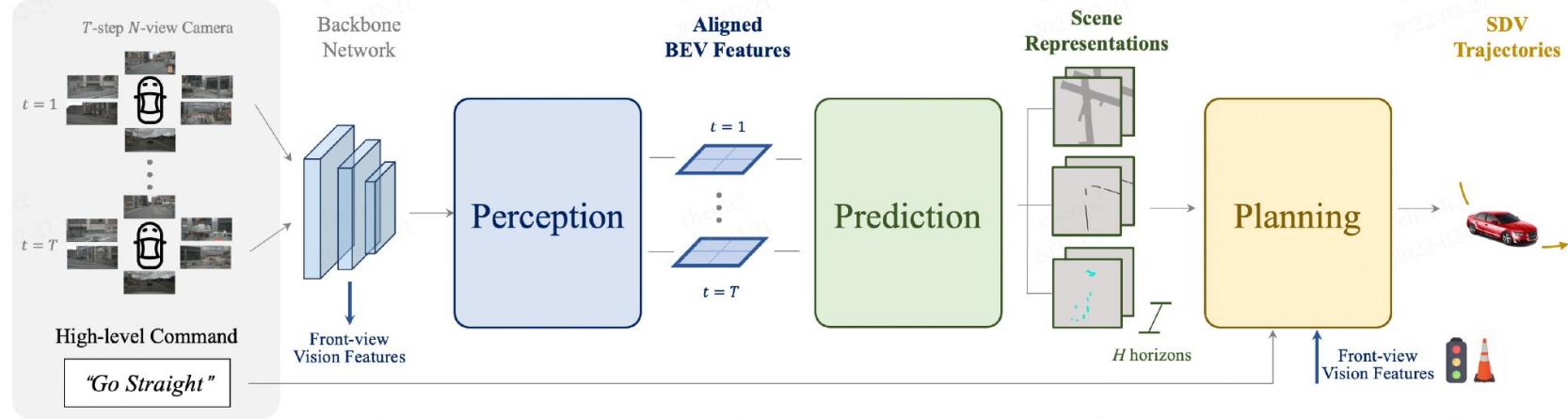
Classic algorithm: TransFuser (2/2)



- **Dual-stream network** to extract modality-specific features
- **Transformer** to effectively fuse feature across modalities
- **Simple GRU head** to convert global context into waypoints

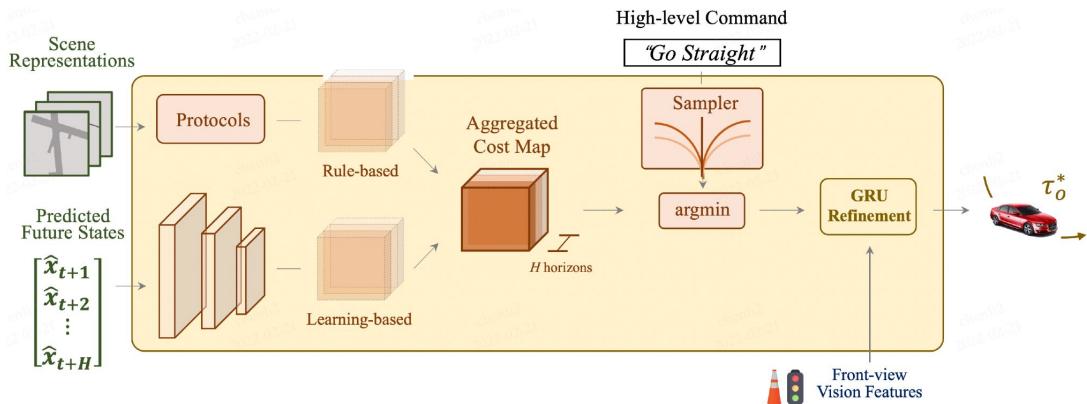
Method	Driving Score ↑
Late Fusion	22 ± 4
Geometric Fusion	27 ± 1
TransFuser (Ours)	47 ± 6
Privileged Expert	77 ± 2

Classic algorithm: ST-P3 (1/2)



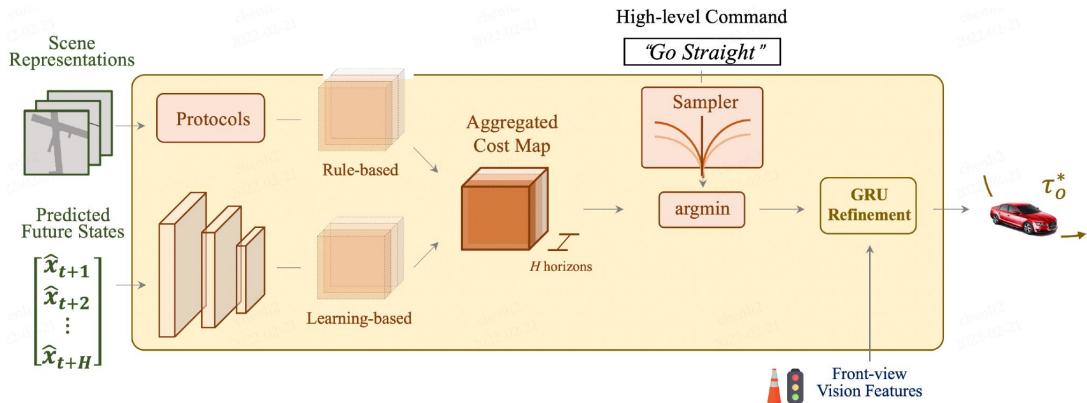
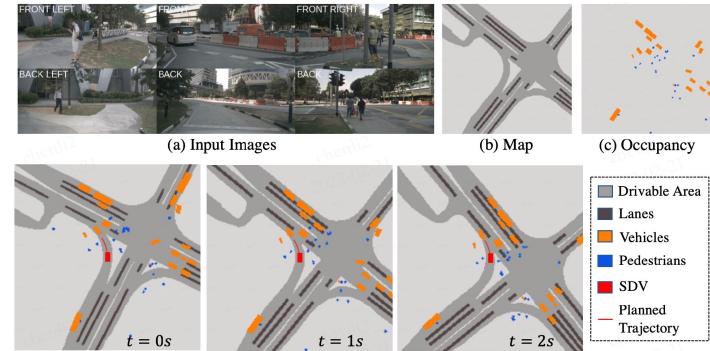
- Incorporate perception and prediction tasks to **enrich feature learning**

Classic algorithm: ST-P3 (2/2)



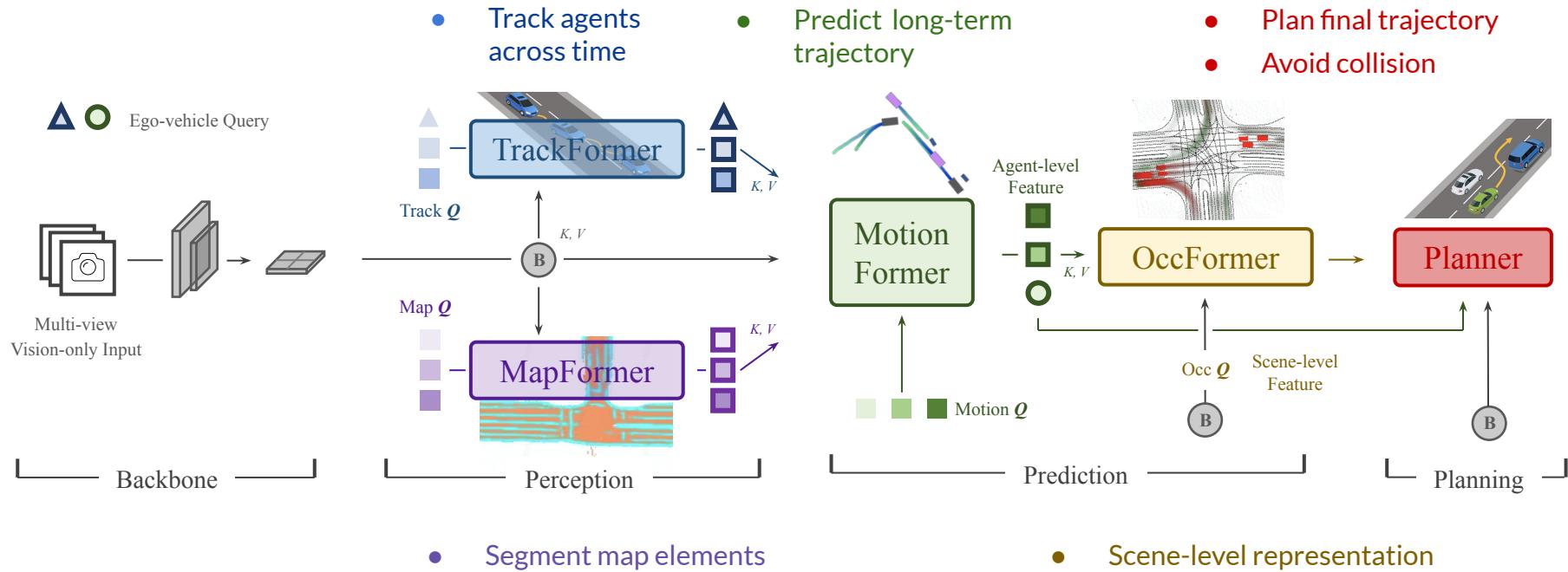
- Incorporate perception and prediction tasks to **enrich feature learning**
- Plan safe routes with **cost optimization**

Classic algorithm: ST-P3 (2/2)

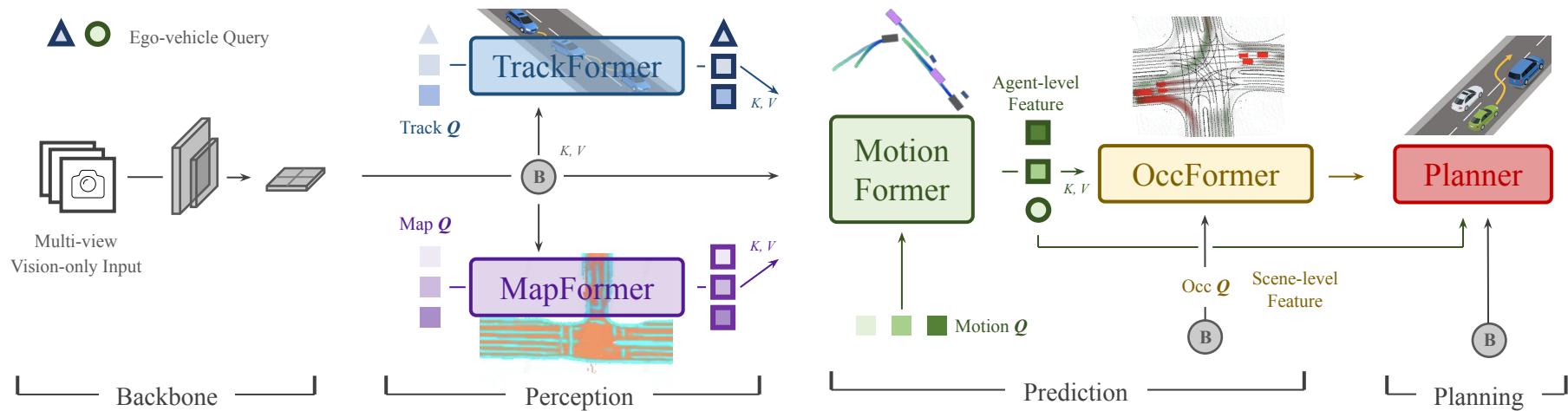


- Incorporate perception and prediction tasks to **enrich feature learning**
- Plan safe routes with **cost optimization**
- End-to-end driving with **interpretable scene representations**

Classic algorithm: UniAD



Classic algorithm: UniAD



- Entire pipeline connected by queries
- Tasks coordinated with queries
- Interactions modeled by attention

Unified Query

Transformer-based

First time to unify
full-stack AD tasks!

Core in UniAD: Planning-oriented, not a MTL framework.

Tasks benefit each other and contribute to safe planning

ID	Modules					Tracking			Mapping		Motion Forecasting			Occupancy Prediction				Planning	
	Track	Map	Motion	Occ.	Plan	AMOTA↑	AMOTP↓	IDS↓	IoU-lane↑	IoU-road↑	minADE↓	minFDE↓	MR↓	IoU-n.↑	IoU-f.↑	VPQ-n.↑	VPQ-f.↑	avg.L2↓	avg.Col.↓
0*	✓	✓	✓	✓	✓	0.356	1.328	893	0.302	0.675	0.858	1.270	0.186	55.9	34.6	47.8	26.4	1.154	0.941
1	✓					0.348	1.333	791	-	-	-	-	-	-	-	-	-	-	
2		✓				-	-	-	0.305	<u>0.674</u>	-	-	-	-	-	-	-	-	
3	✓	✓				0.355	1.336	<u>785</u>	0.301	0.671	-	-	-	-	-	-	-	-	
4			✓			-	-	-	-	-	0.815	1.224	0.182	-	-	-	-	-	
5	✓		✓			<u>0.360</u>	1.350	919	-	-	0.751	1.109	0.162	-	-	-	-	-	
6	✓	✓	✓			0.354	1.339	820	0.303	0.672	0.736(-9.7%)	1.066(-12.9%)	0.158	-	-	-	-	-	
7				✓		-	-	-	-	-	-	-	-	60.5	37.0	52.4	29.8	-	
8	✓			✓		<u>0.360</u>	1.322	809	-	-	-	-	-	62.1	38.4	52.2	32.1	-	
9	✓	✓	✓	✓	✓	0.359	1.359	1057	<u>0.304</u>	0.675	0.710(-3.5%)	1.005(-5.8%)	0.146	62.3	<u>39.4</u>	53.1	<u>32.2</u>	-	-
10					✓	-	-	-	-	-	-	-	-	-	-	-	1.131	0.773	
11	✓	✓	✓		✓	0.366	1.337	889	0.303	0.672	0.741	1.077	0.157	-	-	-	-	1.014	0.717
12	✓	✓	✓	✓	✓	0.358	<u>1.334</u>	641	0.302	0.672	<u>0.728</u>	<u>1.054</u>	<u>0.154</u>	62.3	39.5	<u>52.8</u>	32.3	1.004	0.430

Task Synergy Effect:

- ID. 4-6: Track & Map → Motion
- ID. 7-9: Motion ↔ Occupancy
- ID. 10-12: Motion & Occupancy → Planning

Why mention these Classic algorithms?

Table 2. **Open-Loop Evaluation on nuScenes.** FeD achieves state-of-the-art open-loop evaluation performance on nuScenes [5] validation set compared with both none-LLM based methods and LLM-based GPT-Driver [58]. We evaluate FeD on two different measures of metrics for fair comparison¹.

Metrics	Method	L2 (m) ↓				Collision (%) ↓			
		1s	2s	3s	Avg.	1s	2s	3s	Avg.
ST-P3	ST-P3 [34]	1.33	2.11	2.90	2.11	0.23	0.62	1.27	0.71
ST-P3	VAD [40]	0.17	0.34	0.60	0.37	0.07	0.10	0.24	0.14
ST-P3	GPT-Driver [58]	0.20	0.40	0.70	0.44	0.04	0.12	0.36	0.17
	FeD	0.21	0.33	0.49	0.34	0.00	0.03	0.15	0.06

UniAD	NMP [94]	-	-	2.31	-	-	-	1.92	-
UniAD	SA-NMP [94]	-	-	2.05	-	-	-	1.59	-
UniAD	FF [33]	0.55	1.20	2.54	1.43	0.06	0.17	1.07	0.43
UniAD	EO [43]	0.67	1.36	2.78	1.60	0.04	0.09	0.88	0.33
UniAD	UniAD [35]	0.48	0.96	1.65	1.03	0.05	0.17	0.71	0.31
UniAD	GPT-Driver [58]	0.27	0.74	1.52	0.84	0.07	0.15	1.10	0.44
	FeD	0.27	0.53	0.94	0.58	0.00	0.04	0.52	0.19

Baselines of Today's Literature in End-to-end autonomous driving

Industry Credit: Openpilot (~2016)

- Openpilot is an open source driver assistance system.
- Openpilot performs the functions of Automated Lane Centering (ALC) and Adaptive Cruise Control (ACC) for 250+ supported car makes and models.

A minor (yet respectful) technical report by our team:
<https://arxiv.org/abs/2206.08176>

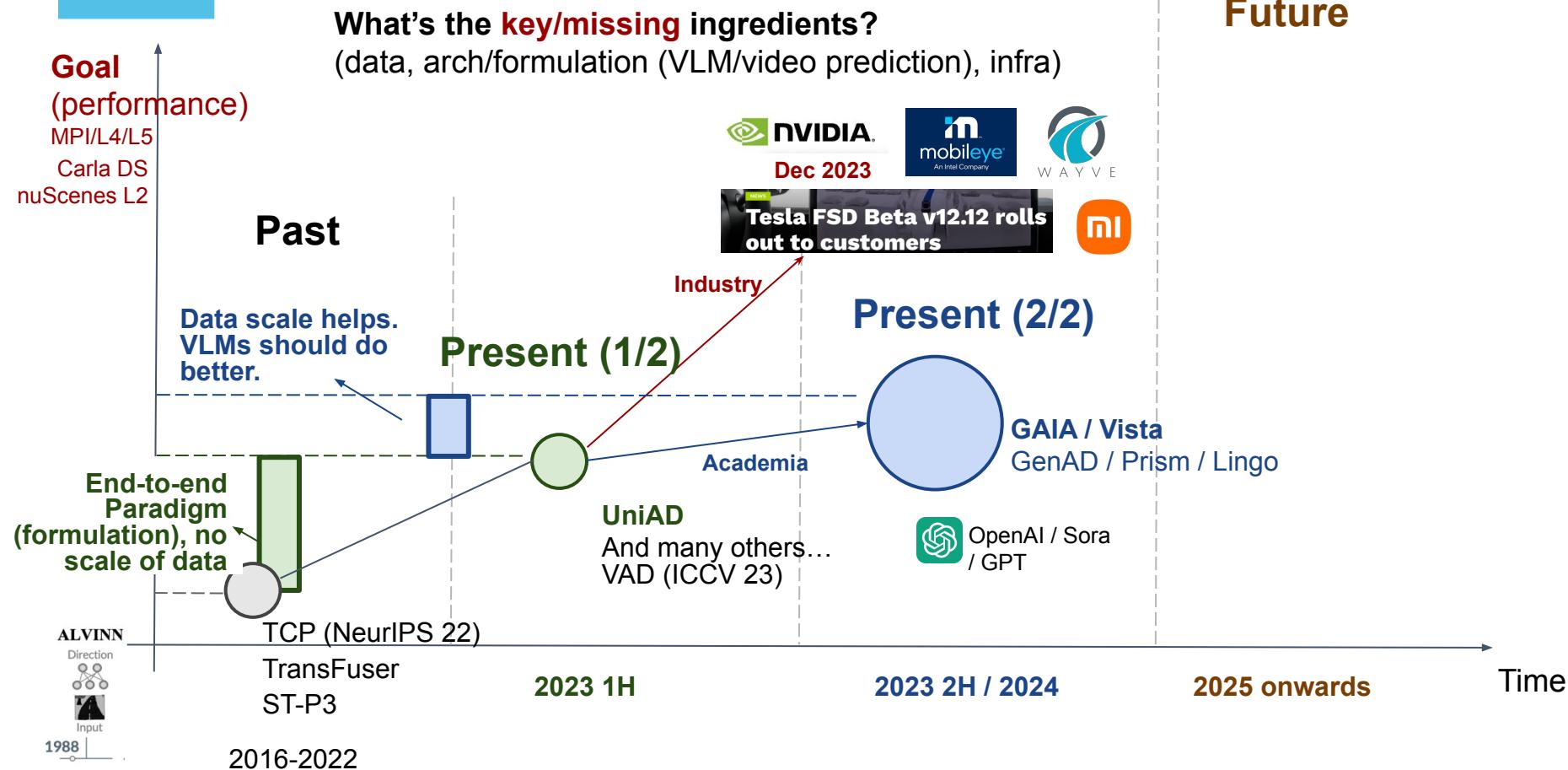
Li et al. Level 2 Autonomous Driving on a Single Device: Diving into the Devils of Openpilot.

Part 2: Research Panorama

Past / Present / Future

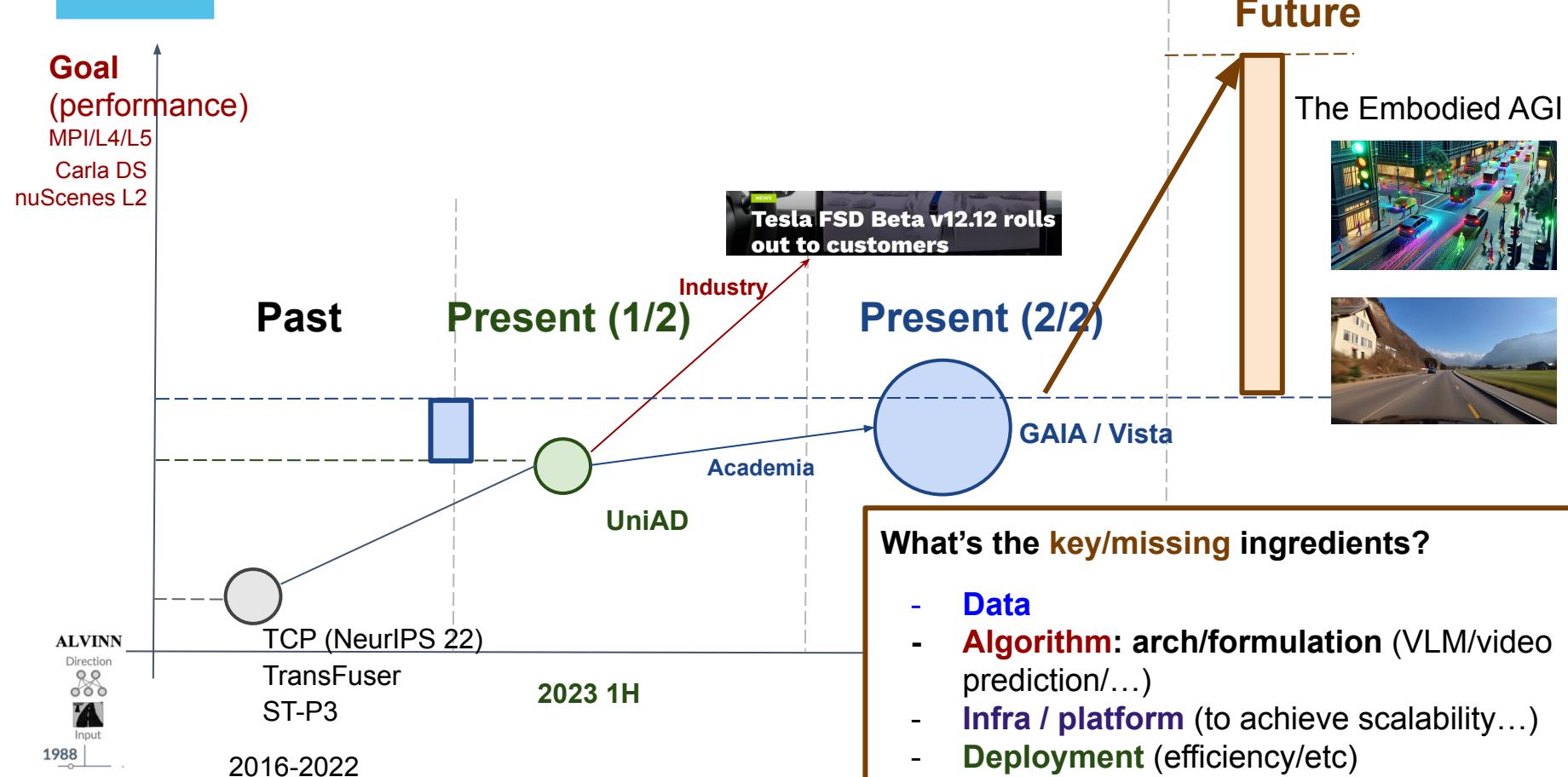
Research Panorama on End-to-end Autonomy

Size indicates data scale



Research Panorama on End-to-end Autonomy

Size indicates data scale



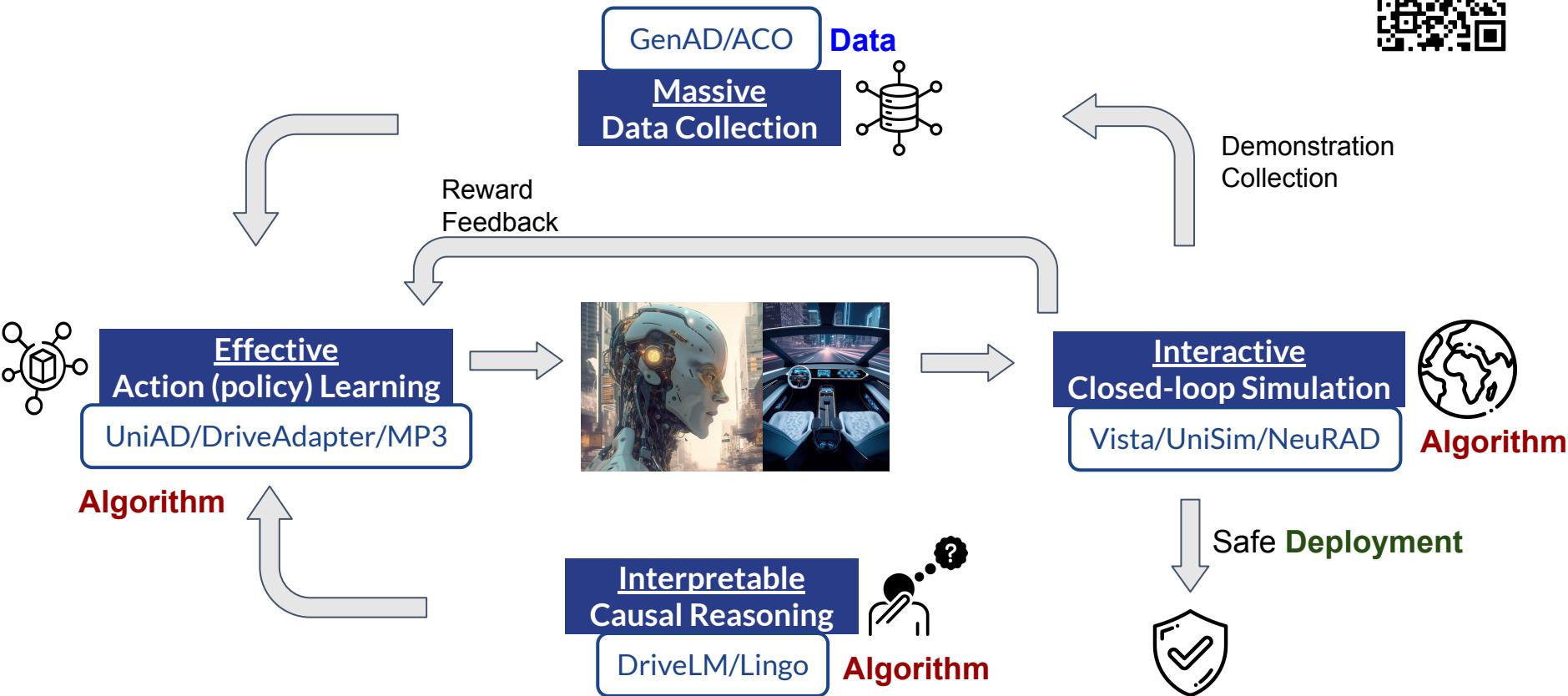
What's the key/missing ingredients?

- **Data**
- **Algorithm: arch/formulation** (VLM/video prediction/...)
- **Infra / platform** (to achieve scalability...)
- **Deployment** (efficiency/etc)

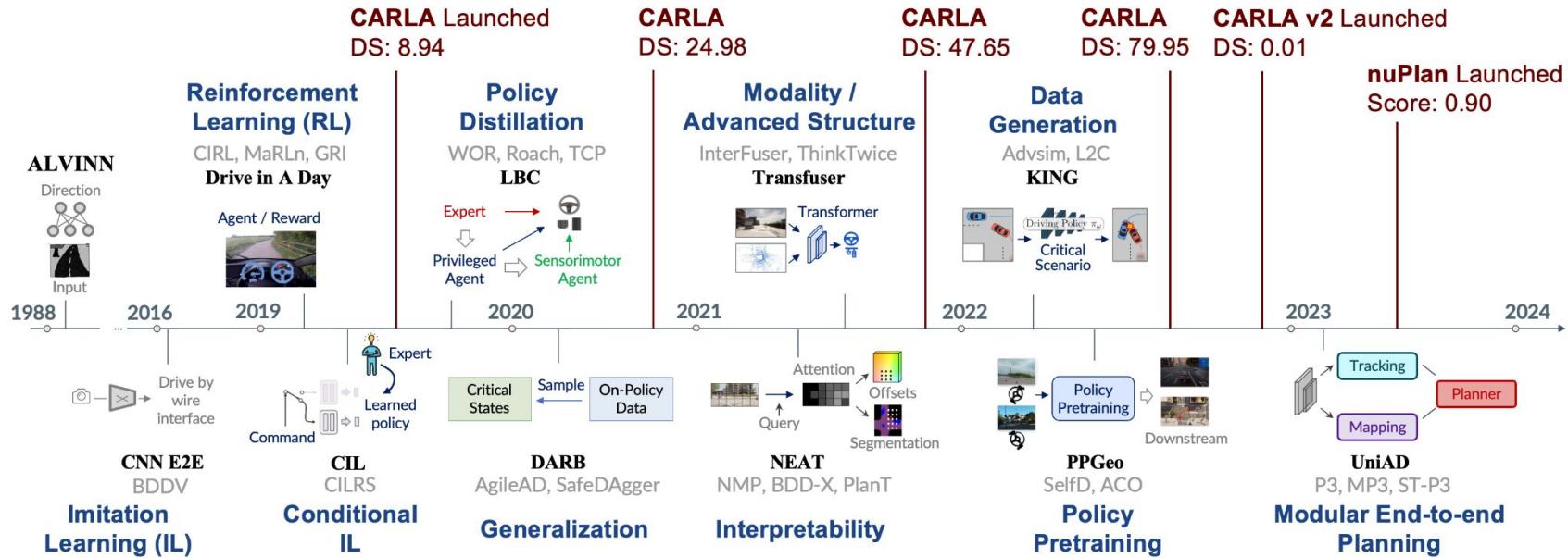
Our Take on Generalizable End-to-end Autonomy Systems

<https://github.com/OpenDriveLab/DriveAGI>

DriveAGI



Taking it seriously: Roadmap | End-to-end Autonomous Driving



Chen et al. End-to-end Autonomous Driving: Challenges and Frontiers
<https://arxiv.org/abs/2306.16927>

Concurrent Work

GenAD / Vista / GAIA / etc.

How to scale up the autonomous driving models?

GenAD: Generalized Predictive Model for Autonomous Driving

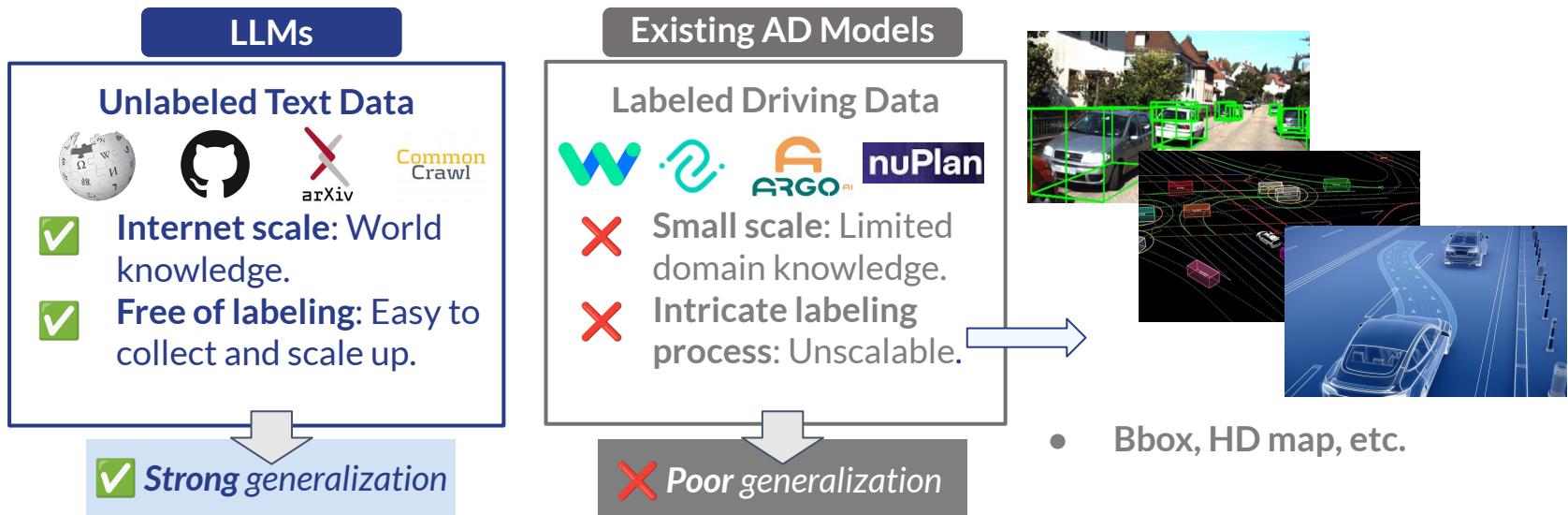
CVPR 2024, Highlight

arxiv.2403.09630

Motivation (1/3) | What Makes for Generalized AD Model?

Data Distinction:

- + LLMs pretrained on **trillions of unlabeled text tokens** exhibit strong generalization in a variety of domains and applications
- However, existing AD models are established on **limited labeled data**, which hampers their generalization

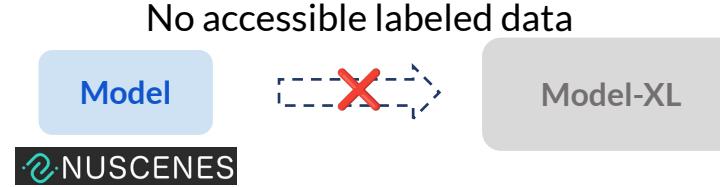


Motivation (2/3) | What Makes for Generalized AD Model?

Learning Objective:

- Supervised by 3D labels

 Hard to scale without sufficient labeled data



- Supervised by **expert features**

- Scalable with developed expert models (e.g., DINOv2)
- Focusing on specific objects (e.g., centered or large ones)
- Ignoring critical details (e.g., small objects)

- Feature map visualization from DINOv2

 Undesirable for modeling challenging driving scenes

Motivation (3/3) | What Makes for Generalized AD Model?

Our Initiative:

Data: **Massive online driving videos**

Learning Objective:

- Supervised by “pixels of future frames” → **Video Prediction**

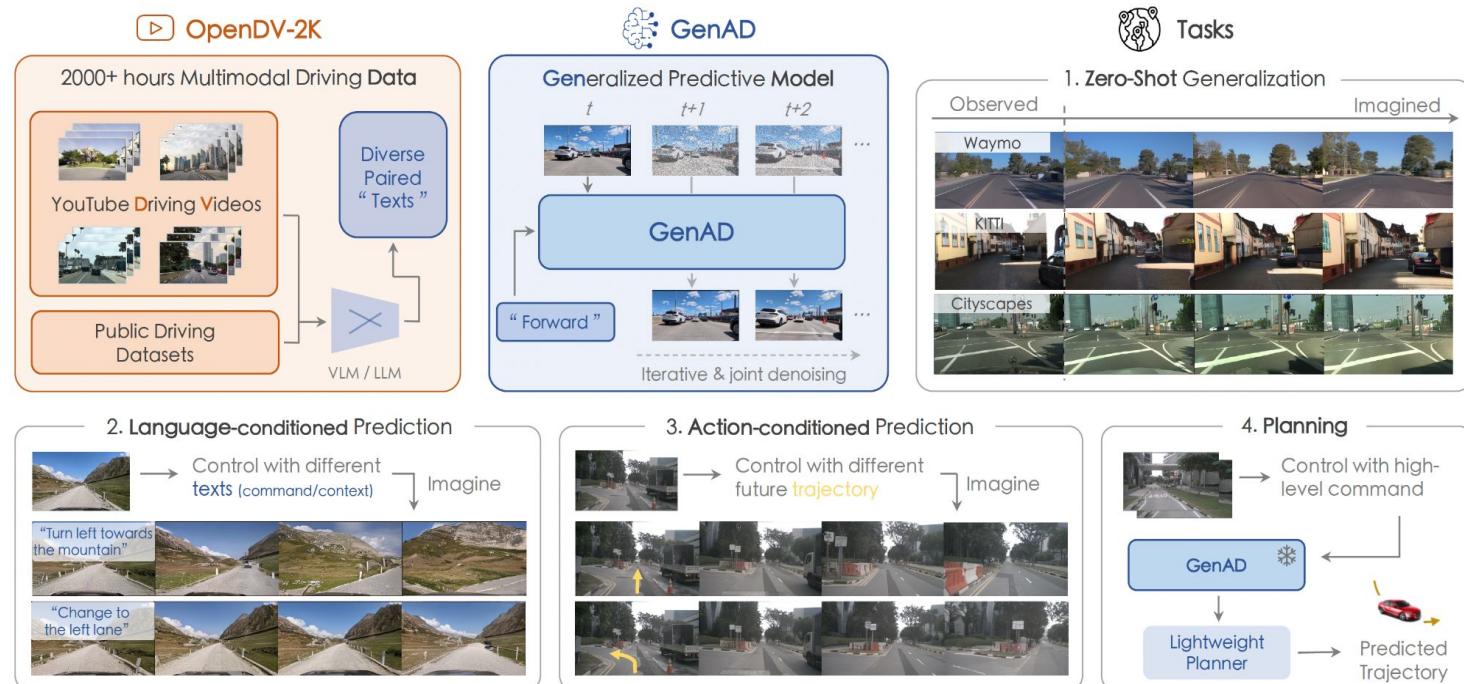
- ✓ Scalable Data (easy to collect from the web)
- ✓ No 3D labeling needed
- ✓ Better detail preservation
- ✓ Learning world knowledge and how to drive inherently

Strong generalization

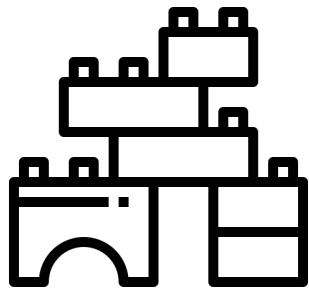
▶ **Massive YouTube videos**, collected worldwide

GenAD | At a Glance

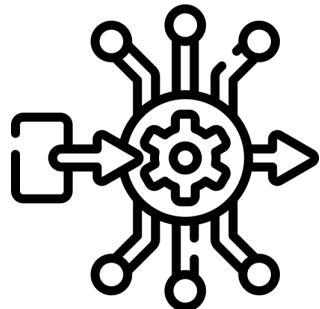
Summary: A billion-scale video prediction model trained on web-scale driving videos, demonstrating strong generalization across a wide spectrum of domains and tasks.



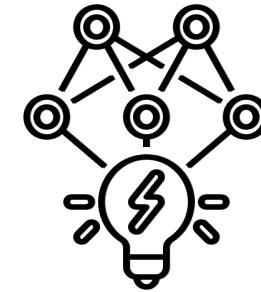
GenAD - Overview



Data

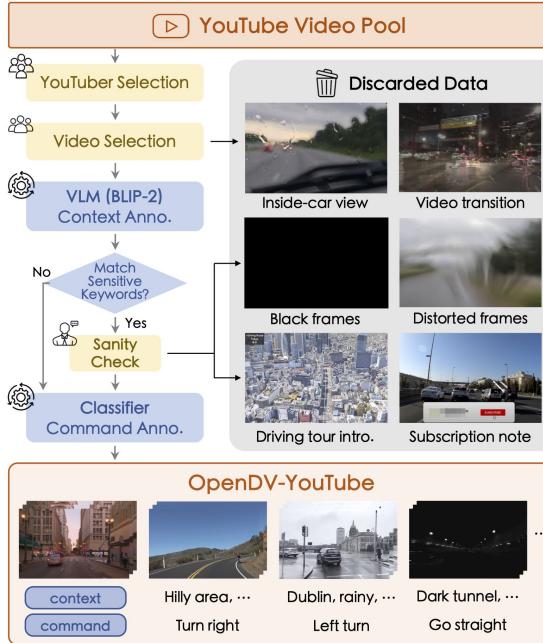


Model



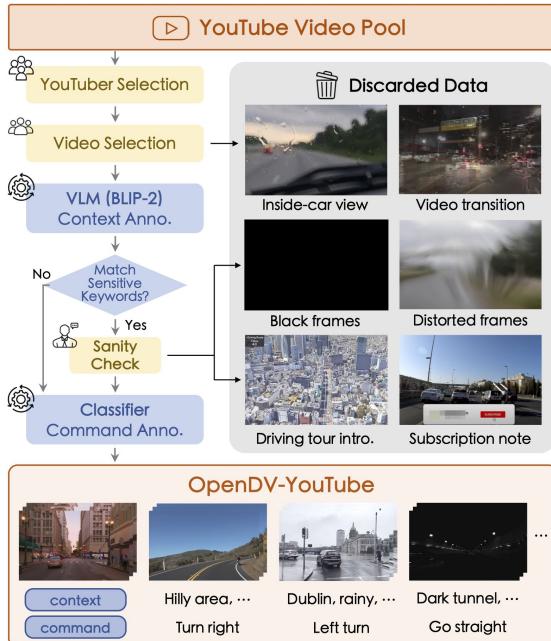
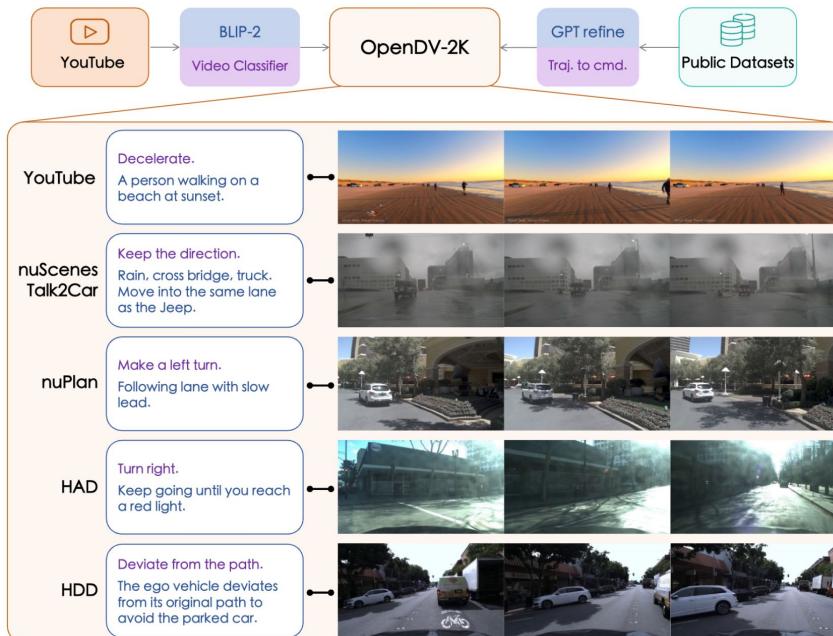
Tasks

GenAD | Dataset



- Rigorous data collection and filtering strategy

GenAD | Dataset



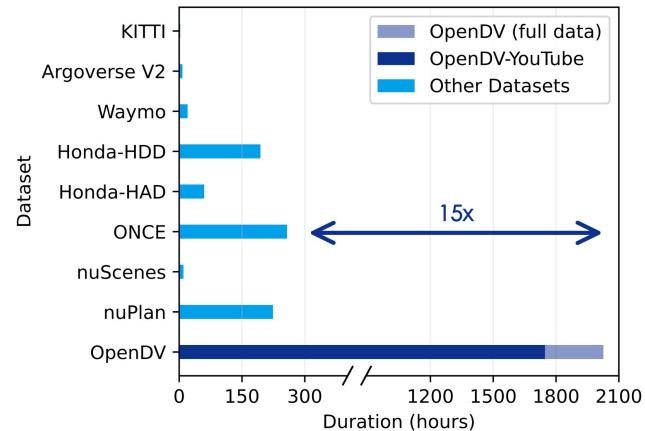
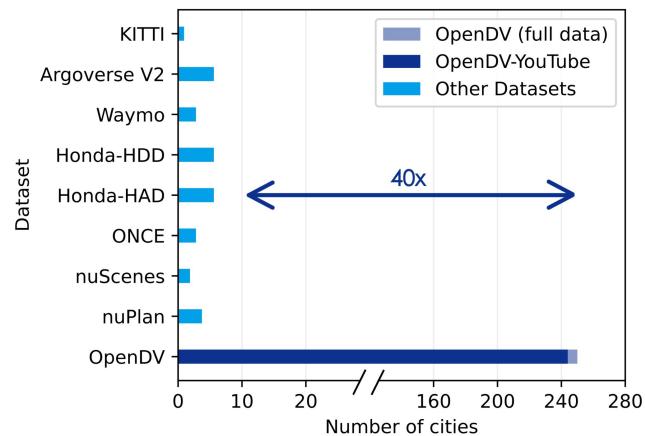
- Rigorous data collection and filtering strategy
- Multi-modal and Multi-source Nature
 - Sourced from both **online videos** and **public datasets** for diversity
 - Paired with textual **context** and **command**

GenAD | Dataset

- **Largest public dataset** for autonomous driving
- ≥ 2059 hours, ≥ 244 cities

	Dataset	Duration (hours)	Front-view Frames	Geographic Diversity Countries	Geographic Diversity Cities	Sensor Setup
X	KITTI [30]	1.4	15k	1	1	fixed
X	Cityscapes [21]	0.5	25k	3	50	fixed
X	Waymo Open* [97]	11	390k	1	3	fixed
X	Argoverse 2* [109]	4.2	300k	1	6	fixed
✓	nuScenes [12]	5.5	241k	2	2	fixed
✓	nuPlan* [13]	120	4.0M	2	4	fixed
✓	Talk2Car [24]	4.7	-	2	2	fixed
✓	ONCE [72]	144	7M	1	-	fixed
✓	Honda-HAD [51]	32	1.2M	1	-	fixed
✓	Honda-HDD-Action [84]	104	1.1M	1	-	fixed
✓	Honda-HDD-Cause [84]	32	-	1	-	fixed
✓	OpenDV-YouTube (Ours)	1747	60.2M	$\geq 40^\dagger$	$\geq 244^\dagger$	uncalibrated
-	OpenDV-2K (Ours)	2059	65.1M	$\geq 40^\dagger$	$\geq 244^\dagger$	uncalibrated

OpenDV-2K (Ours)



GenAD | Dataset

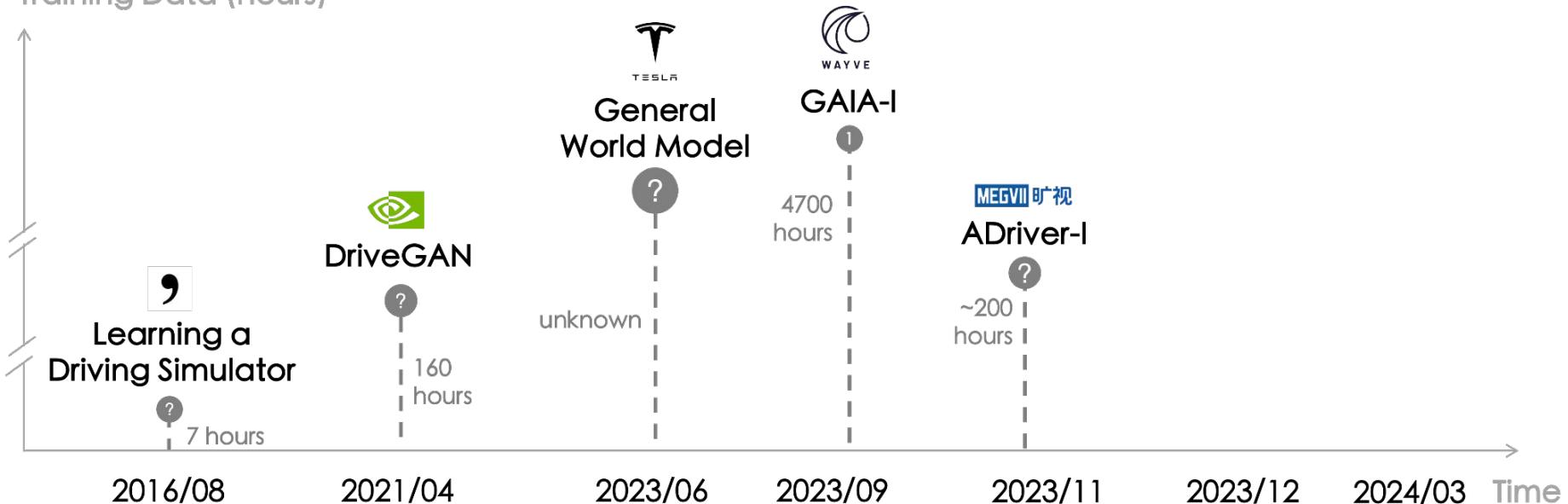
Poster Session
Thu, 5: 15- 6:45 p.m
Arch 4A-E #5

- Comparison of the data consumption for predictive driving models

● Private Data

● Public Data

Training Data (hours)

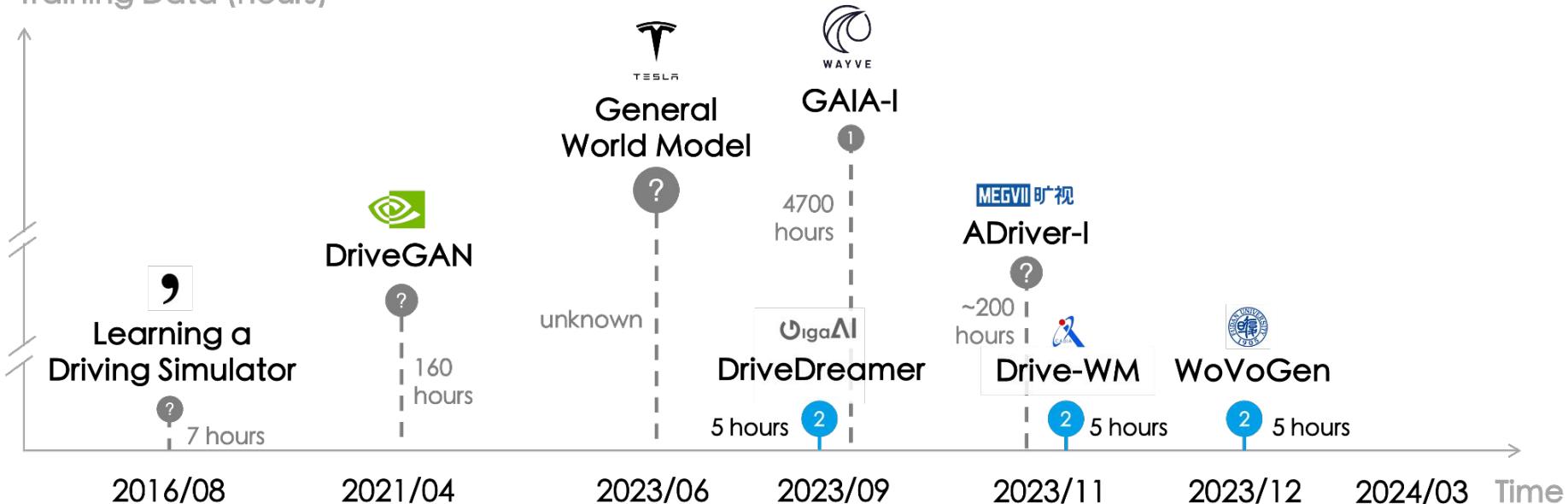


GenAD | Dataset

- Comparison of the data consumption for predictive driving models

● Private Data
 ● Public Data

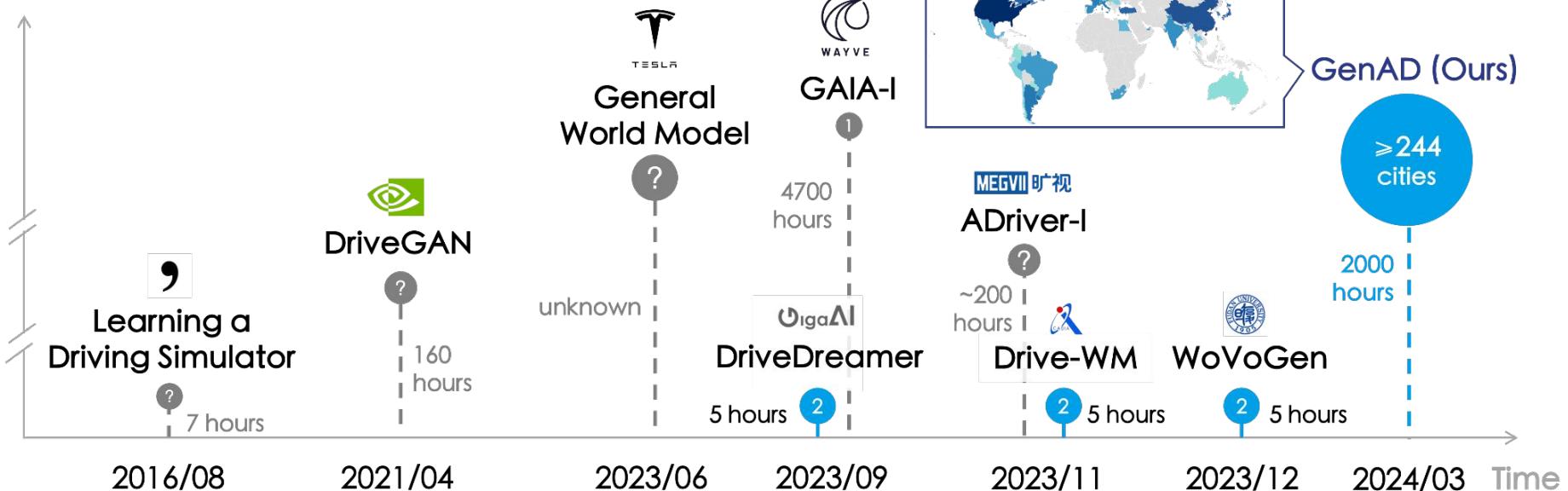
Training Data (hours)



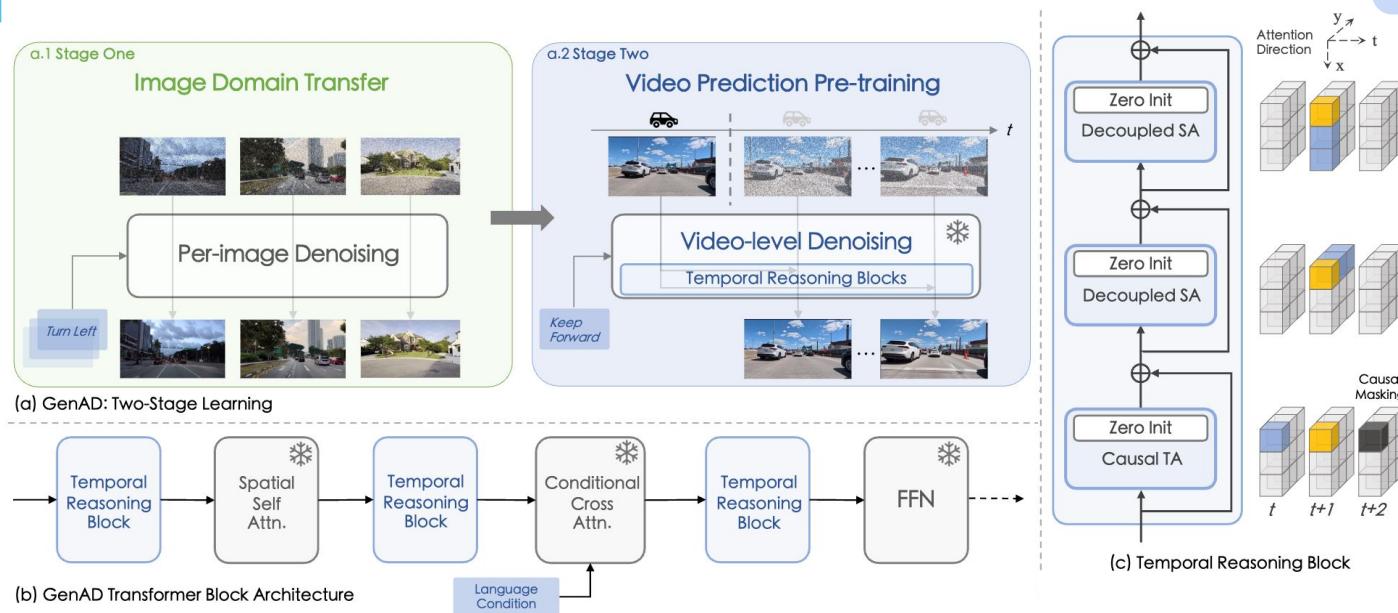
GenAD | Dataset

- Comparison of the data consumption for predictive driving models

Training Data (hours)

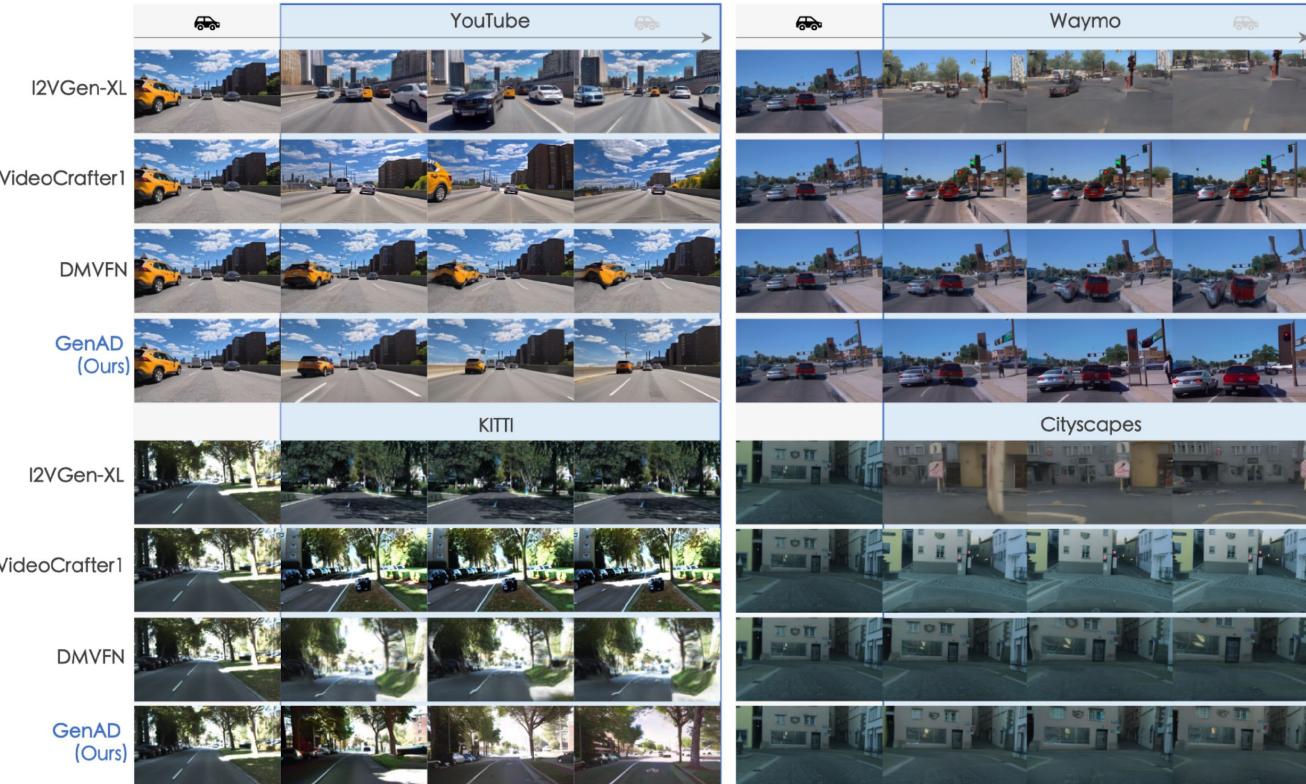


Algorithm | Video Prediction Model for Driving



- **Two-stage Training:**
 - Tuning the **image generation model (SDXL)** into a highly-capable **video prediction model**
- **Model Specializations for Driving:**
 - Causal Temporal Attention: coherent and consistent future prediction
 - Decoupled Spatial Attention: efficient long-range modeling
 - Interleaved temporal blocks: sufficient spatiotemporal interaction

Result on Tasks (1/4) | Zero-shot Generalization (Video Prediction)



- Zero-shot video prediction on unseen datasets including Waymo, KITTI and Cityscapes
- Outperforming competitive general video generation models

Result on Tasks (2/4) | Language-conditioned Prediction

2. Language-conditioned Prediction

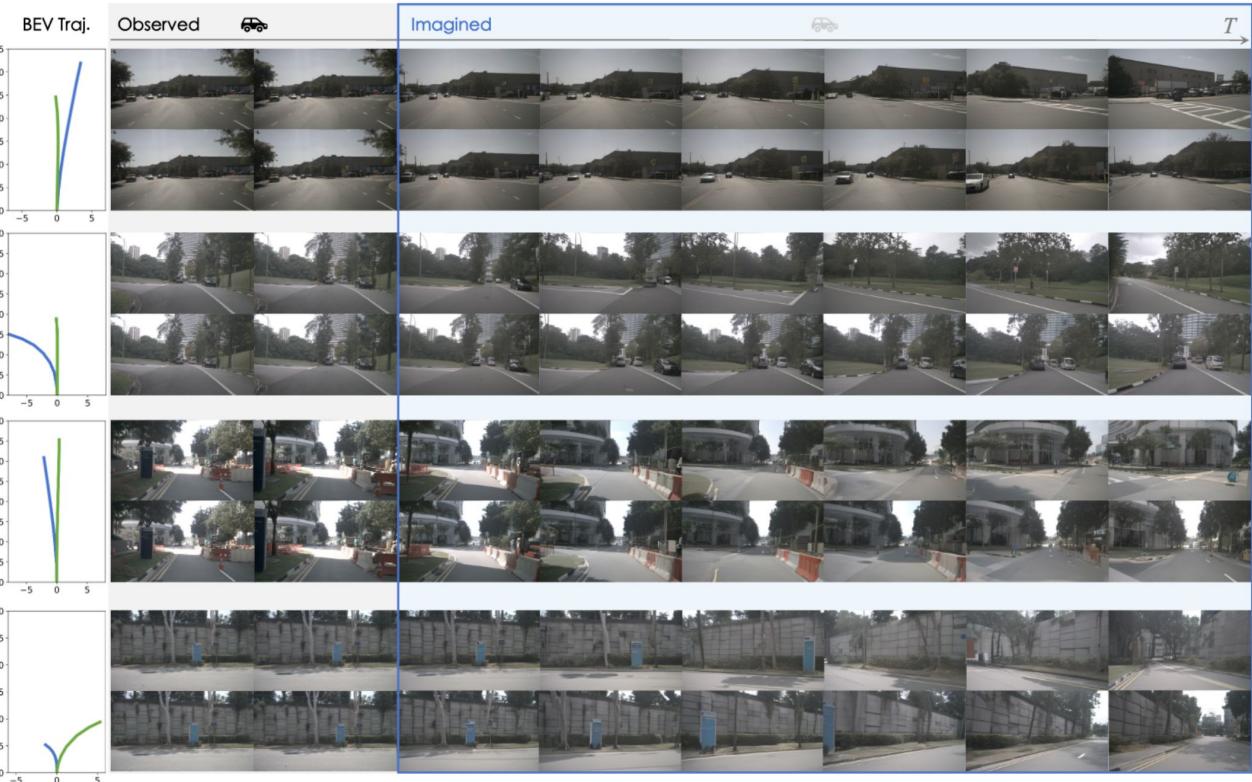
Controlling the future evolvement with language

Result on Tasks (3/4) | Action-conditioned Prediction (Simulation)

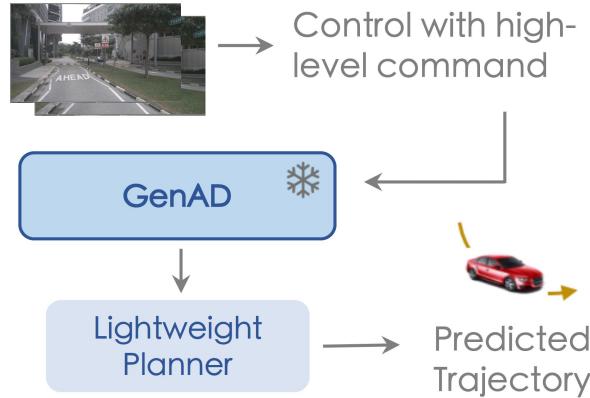
Method	Condition	nuScenes
		Action Prediction Error (↓)
Ground truth	-	0.9
GenAD	text	2.54
GenAD-act	text + traj.	2.02

Table 4. **Task on Action-conditioned prediction.** Compared to GenAD with text conditions only, GenAD-act enables more precise future predictions that follow the action condition.

Simulating the future with user-specified trajectory



Result on Tasks (4/4) | Planning



Method	# Trainable Params.	nuScenes	
		ADE (↓)	FDE (↓)
ST-P3* [20]	10.9M	2.11	2.90
UniAD* [22]	58.8M	1.03	1.65
GenAD (Ours)	0.8M	1.23	2.31

Table 5. **Task on Planning.** A lightweight MLP with *frozen* GenAD gets competitive planning results with $73\times$ fewer trainable parameters and front-view image alone. *: multi-view inputs.

- Speeding up training by **3400 times (vs. UniAD)**
- Demonstrating the **effectiveness of the learned spatiotemporal representations**

- **Largest Public Driving Dataset:**
 - OpenDV-2K provides **2059 hours** of **worldwide** driving videos.
- **Generalized Predictive Model for Autonomous Driving:**
 - GenAD can predict plausible futures with **language** conditions and generalize to **unseen** datasets in a **zero-shot** manner.
- **Broad Applications:**
 - GenAD can readily adapt to **planning** and **simulation**.

How to build a generally applicable driving world model?

Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability

Open Release

arxiv.2405.17398

Open Release

Limitations of Existing Driving World Models

- **Generalization:** limited data scale and geographical coverage

5h
within Singapore & Boston
nuScenes

- **Representation capacity:** low resolution and low frame rate

- **Control flexibility:** single modality, incompatible with planning algorithms

Our Investigation: A Generalizable Driving World Model

Open Release

- **Generalization:** largest driving video dataset

5h
within Singapore & Boston
nuScenes



1740h
worldwide

- **Representation capacity:** high spatiotemporal resolution

80x160
DriveSim
(2016/08)

128x192
DriveDreamer
(2023/09)

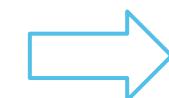
192x384
Drive-WM
(2023/11)

256x256
DriveGAN
(2021/04)

256x448
WoVoGen
(2021/12)

256x448
GenAD
(2023/03)

288x512
GAIA-1
(2023/09)



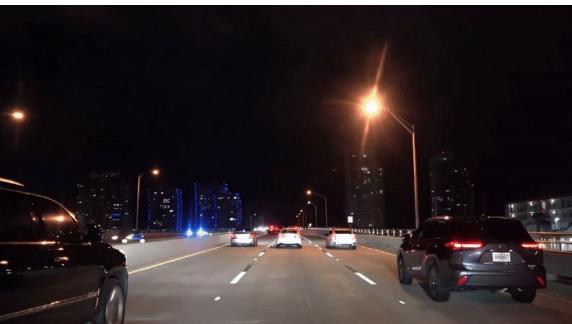
- **Control flexibility:** multi-modal action inputs

Capability of Vista

Open Release

- High-fidelity future prediction

- Continuous long-horizon rollout (15 seconds)



Capability of Vista

Open Release

- Zero-shot action controllability

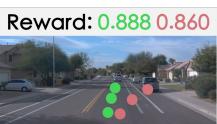
turn left

go straight

turn right

stop

- Provide reward without ground truth actions



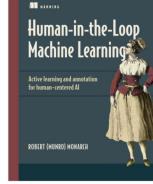
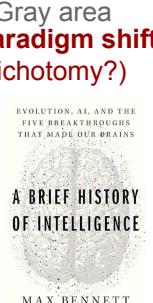
Open Release

- **Vista is a generalizable driving world model that can:**
 - *Predict high-fidelity futures in open-world scenarios.*
 - *Extend its predictions to continuous and long horizons.*
 - *Execute multi-modal actions (steering angles, speeds, commands, trajectories, goal points).*
 - *Provide rewards for different actions without accessing ground truth actions.*

Part 3: Challenges & Closing Remarks

Data / Methodology / Compute / Goal

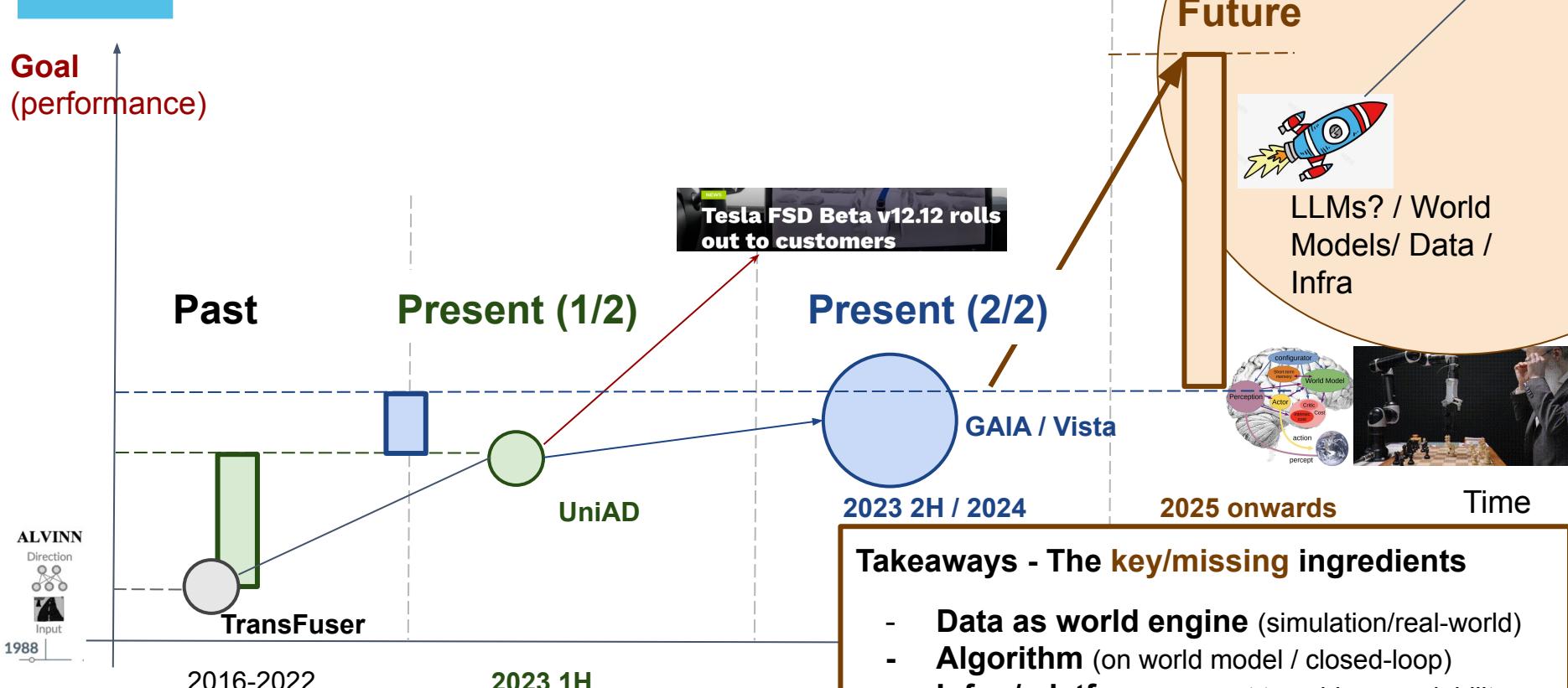
Challenges | End-to-end Autonomy

Task / Goal	L4/L5, with driving comfort / experience considered (Goals should be the same from two domains)		
Dimension	Research ("academia")	Engineering ("industry")	
Data High quality. Large-scale	High-quality / controllable Simulation Unlimited <ul style="list-style-type: none">- Neural rendering- 3DGS / AIGC (e.g. CVPR / Siggraph 2024)	Scalable collection / Sanity check <ul style="list-style-type: none">- Data Flywheel At least 10k of hours? C.f. nuScenes 4.5h	
Algorithm/Methodology Efficient and scalable	Closed-loop Feedback / Long-horizon Planning <ul style="list-style-type: none">- World Model /- Video generation (e.g. Sora) / etc..	Gray area Paradigm shift (dichotomy?) 	Efficiency / Deployment <ul style="list-style-type: none">- Dual system (Sys1/Sys2)- Model compression / etc.- Perception ...
Compute/Infra	~50-200 GPUs Stable Training / fast I/O	500+ GPUs preferably 10k? / I've no idea	

Details:

Chen et al. End-to-end Autonomous Driving: Challenges and Frontiers
<https://arxiv.org/abs/2306.16927>

Research Panorama on End-to-end Autonomy



Kudos to Our Fantastic Members / Collaborators

Also the slide credit

Meet our team in
Seattle @CVPR 2024!!!

Jiazheng Yang

GenAD

Shenyuan Gao

Vista

Li Chen

UniAD

Chonghao Sima

DriveLM

Huijie Wang

OpenLane

Zetong Yang

ViDAR

Yunsong Zhou

ELM

Yihang Qiu

Tianyu Li

Kashyap Chitta



Jia Zeng

Andreas Geiger

And many
others
remote...

End-of-Talk
Questions?