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Part 1:

Introduction to End-to-end Autonomous Driving
Setup / Metric / Motivation



Preliminary | Problem Setup

Bounding . .
boxes Waypoints Trajectory @

Perception

—_—

Prediction Planning

5

I

What are around? How will they go Where should | go?
in the future?

Challenge | Various weathers,
illuminations, and scenarios



End-to-end | Definition

(a) Classical Approach Bounding box Trajectory

Perception ————> ————>

(b) End-to-end Paradigm backpropagation

_ : A?v Prediction '\\A ’
——P Module X \ /v Module Y — Planning
b -

End-to-end autonomous driving system - A suite of fully differentiable programs that:

e takeraw sensor dataasinput
e produce a plan and/or low-level control actions as output



Note:

pre"minary | Datasets and Evaluation https://github.com/autonomousvision/navsim
/blob/main/docs/metrics.md

Planning Task Evaluation

Behavior &
Dataset .
Interaction :
Strategy Metrics
nuScenes 55h
. w - Open-loop - L2 Error
Real-world Waymo WAY MO 11h Realistic ( Log-replay) - Collision Rate
Collected Argoverse2* 42h
ARGO
- Average Displacement Error (ADE)
f Closed-Ioo - Final Displacement Error (FDE)
nuPlan* nuPlan EEPAYS ML-based oop - Collision Rate
— (Interactive)
- Comfort Score
- PDM Score [Note]

*Perception subset (with visual inputs)


https://github.com/autonomousvision/navsim/blob/main/docs/metrics.md
https://github.com/autonomousvision/navsim/blob/main/docs/metrics.md

Note:

pre"minary | Datasets and Evaluation https://github.com/autonomousvision/navsim
/blob/main/docs/metrics.md

Planning Task Evaluation

Dataset Behavior &
Interaction .
Strategy Metrics
nuScenes 55h
. ' 4 - Open-loop - L2Error
Real-world Waymo 1h Realistic ( Log-replay) - Collision Rate
Collected Argoverse2* 42h
ARGO
- Average Displacement Error (ADE)
P ) Closed-loop - Final Displacement Error (FDE)
nuPlan* LAl | 120 h ML-based . - Collision Rate
— (Interactive)
- Comfort Score
- PDM Score [Note]
. DriveSim @g - N/A
Synthetlc NVIDIA. Unlimited Handcrafted & Closed-loop
generated Carla ML-based (Interactive) = Driving Score =
Route Completion * TT Infraction Penalty
CARLA

*Perception subset (with visual inputs)


https://github.com/autonomousvision/navsim/blob/main/docs/metrics.md
https://github.com/autonomousvision/navsim/blob/main/docs/metrics.md

Motivation | Why end to end?

+ Global optimization: when perception
fails/inferior, planning still could work.

BEV Feature Form W HEN \ Asentlevel = s ] )
7 Feature
B Track @ T a | 4 /
il Motion
- & > Bormer -0 o I OccFormer ] — [ Planner ]
Map @ i ] 1 n
Bird’s eye view & |
Fe [C 94
- == o M Motion @

o ! pti ! L Prediction ——— L Planning —!

Hu et al. Planning-oriented Autonomous Driving. CVPR 2023.

< Planning
Attention

@ X

Advantages

+ Scaling law: massive amount of data +
infra/compute —> strong

generalization
8.0
6.0
‘@ .
- Hu et al. GAIA-1: A Generative
é T World Model for Autonomous
— ntan Driving.
2.04 — 0.1x (650M)
—— GAIA-1 (6.5B)
10" 107 10" 10 10%

Compute (FLOPs)

Performance

/N

E2E Approach

Human Expert

Z Non E2E System

N

Credit to Dr. Yue Cao Time/Readiness


https://arxiv.org/abs/2309.17080
https://arxiv.org/abs/2309.17080
https://arxiv.org/abs/2309.17080

Motivation | Why end to end?

- Lack of interpretability, due to the e2e neural network.

- [Ref]Lietal,lIs Ego Status AII You Need for Open-Loop End-to-End Autonomous Driving?
CVPR 2024

—tlackofdataSimulation{simzreab+ete= X



Classic algorithm: TransFuser (1/2) - Motivation
I

LIDAR View LiDAR Point Cloud RGB Camera C]

- 3D information - Trafficlight state _ “Tatfic | ights

Camera View

- Robustness for - Long-range perception
weather variations

Situation

Whole-scene understanding
for safe driving

Prakash et al. Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. CVPR 2021.



Classic algorithm: TransFuser (2/2)

RGB 176 x 40 x 64 88x20x 128 44 x 10 x 256 22x5x512 ResNet34

o =

LiDAR

T
g Ly Ly By =

64x 64 x 64 32x32x 128 16x 16 x 256 8x8x512 ResNet18

e Dual-stream network to extract modality-specific features

Prakash et al. Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. CVPR 2021.



Classic algorithm: TransFuser (2/2)

RGB
Image

TransFuser

176 x 40 x 64

88x20x 128

44x10x 256

22x5x512

ResNet34

S,

LiDAR
BEV

p=)
i

N

]

’\'@r\ m @r\
\/ u o

—

AvgPool
+
Flatten

Self-Attention

Transformer Transformer

Transformer

Transformer

=

—

.

e Dual-stream network to extract modality-specific features

o

64x64x6

b
S
4

S
L

32x32x 128

\//@CJ

16 x 16 x 256

N
L

ugk

8x8x512

AvgPool
+

Flatten

ResNet18

e Transformer to effectively fuse feature across modalities

Prakash et al. Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. CVPR 2021.




Classic algorithm: TransFuser (2/2)

TransFuser

176 x 40 x 64 88x20x 128 44x10x 256 22x 5 X512 ResNet34

Self-Attention

/AR

I 5 e T Y
=

2 OfD e

ow, 5w, Sws Swy
t t t t
; Transformer Transformer Transformer Transformer — MLP I GRU || GRU
LiDAR toot ot
BEV 0, 0‘) w, E w2‘: w;;
,\‘ fan y\‘ N ’\‘ N an GRU Head
u@ NIE u@ S U§ \SEZ \/Jg L7 Flaten
64 x 64 x 64 32x32x 128 16 x 16 x 256 8x8x512 ResNet18
. . Method Driving Score 1
e Dual-stream network to extract modality-specific features Late Fusion 2214  ceRem
e Transformer to effectively fuse feature across modalities Geometric F(US“J” i1
. . . TransFuser (Ours) 47+ 6
e Simple GRU head to convert global context into waypoints  — - -2 H——

Prakash et al. Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. CVPR 2021.




Classic algorithm: ST-P3 (1/2)

I
T-step N-view Camera Backbone Aligned Scene . SDV
Bz Network BEV Features Representations Trajectories
I w—
t=1 @ N‘
= \ S N\ — e ——— TR L
— — - —
Y=l
' : g - | - : \
““ ~ | Perception : Prediction | [ | | Planning - N
12— — A - = -
- | = :
\ J . v < F _Z_ . o
High-level Command Front-view A
Vision Features H horizons ] Front-view g a
“Go Straight ” Vision Features ‘

e Incorporate perception and prediction tasks to enrich feature learning

Hu et al. ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning. ECCV 2022.



Classic algorithm: ST-P3 (2/2)
I

Scene

Representations
e

ﬂ

Predicted
Future States

Xt+1
Xt+2

Xt+H

_|, | Protocols | —

Learning-based

High-level Command

‘Go Straight”

Aggregated
Cost Map

S
Rule-based m
| - Z

H horizons

Sampler

M

= GRU
2 > | Refinement| |~ %
—

|

I
Front-view

Vision Features

Incorporate perception and prediction tasks to enrich feature learning
Plan safe routes with cost optimization

Hu et al. ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning. ECCV 2022.



Classic algorithm: ST-P3 (2/2)

High-level Command
Scene P P
Representations Go Straight
— ' i ~N
Sampler
[ 1> Protocols | — Aggregated
_— S Cost Map
Rulebased 3 g v \ T* (a) Input Images
7 GRU o
Predicted 2 > | Refinement| |
Future States § q = A
QHI = / H horizons
~ >
Xt+2
: Learning-based
X, |
Lt Front-view

a Vision Features PR

e Incorporate perception and prediction tasks to enrich feature learning
e Plansafe routes with cost optimization
e End-to-enddriving with interpretable scene representations

Hu et al. ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning. ECCV 2022.

(©) Occ{xpancy

[ Drivable Area
I Lanes

[ Vehicles

[l Pedestrians
| SDV

__ Planned
Trajectory




Classic algorithm: UniAD
I

e Track agents °
across time

A O Ego-vehicle Query

Multi-view

Vision-only Input

L Backbone I I

Perception

e Segment map elements

Hu et al. Planning-oriented Autonomous Driving. CVPR 2023.

Predict long-term e Planfinal trajectory
trajectory ° Avoid collision
/-\\
Agent-level
. Feature
. O
Motion
Former | ~ O—| OccFormer |[—
‘ | I
Occ Q Scene-level
Feature
I Motion Q
.. ]
I Prediction L Planmng

e Scene-level representation



Classic algorithm: UniAD

A O Ego-vehicle Query

o\

Motion

Track Q
—Y- =

Multi-view

Vision-only Input

L Backbone I I

Former

Entire pipeline connected by queries
Tasks coordinated with queries

Perception

D )
MapF -0 - ‘
E—— e . B Motion Q@
—_—

1 '

Agent-level
Feature

-O-—
KV

OccFormer

|

—

Prediction

Occ Q Scene-level
Feature

%
|

L Planmng

LIS TSN X1 First time to unify
e Interactions modeled by attention e - full-stack AD tasks!

Hu et al. Planning-oriented Autonomous Driving. CVPR 2023.



Core in UniAD: Planning-oriented, not a MTL framework.

Tasks benefit # each other and contribute to safe planning

D Modules Tracking Mapping Motion Forecasting Occupancy Prediction Planning
Track Map Motion Occ. Plan | AMOTAT AMOTP| IDS| | IoU-laneT IoU-roadf minADE] minFDE| MR| | IoU-n.t IoU-f.1 VPQ-n.t VPQ-f.1 | avg.L2| avg.Col.}

0| v v v v v/ | 0356 1.328 893 | 0.302 0675 | 0858 1.270 0.186 | 559 34.6 478 264 | 1.154 0.941
1 v 0.348 12333 791 - - - - - - - - - - -

2 v - - - 0.305 0.674 - - - - - - - - -

3 v v 0.355 1.336 785 0.301 0.671 - - - - - - - - -

4 v - - - - - 0.815 1.224 0.182 - - - - - -

5 v v 0.360 1.350 919 - - 0.751 1.109 0.162 - - - - - -

6 v v v 0.354 1:339 820 0.303 0.672 0.736(-9.7%)) 1.066(-12.9%) 0.158 - - - - - -

7 v - - - - - - - - 60.5 37.0 524 29.8 - -

8 v v 0.360 1.322 809 - - - - 62.1 38.4 522 32.1 - -

9 v v v v 0.359 1.359 1057 0.304 0.675 I0.710(-3.5%)I 1.005(-5.8%)  0.146 62.3 39.4 53.1 8522 - -
10 v - - - - - - - - - - - 1.131 0.773
11 v v v v 0.366 1.337 889 0.303 0.672 0.741 1.077 0.157 - - - - 1.014 0.717
12 v v v v v 0.358 1.334 641 0.302 0.672 0.728 1.054 0.154 62.3 39.5 52.8 32.3 1.004 0.430

Task Synergy Effect:

ID. 4-6: Track & Map — Motion+’

ID. 7-9: Motion%’ < Occupancy+’

ID. 10-12: Motion & Occupancy — Planning %’

Hu et al. Planning-oriented Autonomous Driving. CVPR 2023.



Why mention these Classic algorithms?

Table 2. Open-Loop Evaluation on nuScenes. FeD achieves

state-of-the-art open-loop evaluation performance on nuScenes [5]

validation set compared with both none-LLM based methods and NMP [94] = = 231 = - = LYZ =
LLM-based GPT-Driver [58]. We evaluate FeD on two different SA-NMP [94] - - 205 - - - 159 -
measures of metrics for fair comparison'. FF [33] 0.55 1.20 2.54 1.43]0.06 0.17 1.07 0.43
. L2 (m) | Collision (%) | UniAD|| EO [43] 0.67 1.36 2.78 1.60(0.04 0.09 0.88 0.33
etrics Method
B % S| le % 09 A UniAD [35]  |0.48 0.96 1.65 1.03[0.05 0.17 0.71 0.31
ST-P3 [34] 1.33 2.11 2,90 2.11[0.23 0.62 1.27 0.71 GPT-Driver [58]]0.27 0.74 1.52 0.84|0.07 0.15 1.10 0.44
1.3 || VAD [40] 0.17 0.34 0.60 0.37[0.07 0.10 0.24 0.14
GPT-Driver [58]]0.20 0.40 0.70 0.44|0.04 0.12 0.36 0.17 | FeD 0.27 0.53 0.94 0.580.00 0.04 0.52 0.19

|FeD

‘0.21 0.33 0.49 0.34|0.00 0.03 0.15 0.06

Baselines of Today’s Literature in End—to-end autonomous driving

Snapshot from Zhang et al., Feedback-Guided Autonomous Driving, CVPR 2024.



Industry Credit: Openpilot (~2016)

comma.al

27 @ P osnm e Openpilot is an open source driver assistance
el Cabrillo Road System.

e Openpilot performs the functions of
Automated Lane Centering (ALC) and
Adaptive Cruise Control (ACC) for 250+
supported car makes and models.

11:00am 1min 0.8 mi

openpilot
i T A minor (yet respectful) technical report by our team:
https://arxiv.org/abs/2206.08176

Li et al. Level 2 Autonomous Driving on a Single Device: Diving into the
Devils of Openpilot.


https://arxiv.org/abs/2206.08176

Openﬂ riveLab

Part 2:

Research Panorama
Past / Present / Future



Size indicates data scale
Research Panorama on End-to-end Autonomy O
Future

What’s the key/missing ingredients?
(data, arch/formulation (VLM/video prediction), infra)

@

A
Goal
(performance)
MPI/L4/L5 <A NVIDIA.
Carla DS Dec 2023 v WAY VE
nuScenes L2 :
- o
as out to customers
Industry,
Present (2/2)

Data scale helps.
VLMs shoulddo  Present (1/2
GAIA / Vista

better. \
GenAD / Prism / Lingo

Academia

UniAD

End-to-end
Paradigm
(formulation), no

scale of data OR% rz}%rgvogé?rs. - /| GPT

ALVINN TCP (NeurlPS 22)
"o0" TransFuser '
d8 Time
a ST-P3 2023 1H 2023 2H / 2024 2025 onwards

sl 2016-2022



Size indicates data scale
Research Panorama on End-to-end Autonomy O

Goal |
(performance)
MPI/L4/L5
Carla DS
out to customers
Past Present (2/
GAIA / Vista
______________ Academia
UniAD L. ] ]
What'’s the key/missing ingredients?
T - Data
ALVINN TCP (NeurlPS 22) - Algorithm: arch/formulation (VLM/video
LYY TransFuser 2023 1H prediction/...)
A ST-P3 - Infra/ platform (to achieve scalability...)
... 2016-2022 - Deployment (efficiency/etc)




Our Take on Generalizable End-to-end Autonomy Systems
https://github.com/OpenDrivelLab/DriveAGI EP‘.#‘E

I veAGHH
-'I'- |
GenAD/ACO |Data -"_ﬁn-"-"lil
Massive
Data Collection .
Demonstration
Reward Collection
Feedback

Effective [ = = Interactive '
Action (policy) Learning R/ & . Closed-loop Simulation 0

Vista/UniSim/NeuRAD | Algorithm

Algorithm

@Safe Deployment
Interpretable ' %

Causal Reasoning &
DriveLM/Lingo | Algorithm



https://github.com/OpenDriveLab/DriveAGI

Taking it seriously: Roadmap | End-to-end Autonomous Driving

I
CARLA Launched CARLA CARLA CARLA CARLA v2 Launched
DS: 8.94 DS: 24.98 DS: 47.65 DS:79.95 DS:0.01
_ i y nuPlan Launched

Reinforcement Policy Modality / Data Score: 0.90

Learning (RL) Distillation Advanced Structure Generation

CIRL, MaRLn, GRI WOR, Roach, TCP InterFuser, ThinkTwice Advsnm L2C

Al VINY Drive in A Day LBC Transfuser

Direction

o%o Agent / Reward Expert —» ﬁ E\Transformer ::::
rz O / I "% Cntlcal
i .

Privileged = Sensorimotor Scenario

Input Agent Agent
1988 2016 2019 | | 2020 2021 \ 2022 | 2023 2024
T | | | | j—
Expert =
Drive b ﬁDXPe S At—tention/@ ?ﬁ - x| Tracking |~
5 Hveby i Critical | SamPple | on-poli } Poli | |
o= s 0 Learned States | * "Dats Cazead T B \Ofﬁ;ts ?+ i m N 7 Ponner
interface |0 li =
Command - g auery Segmentation Downstream
CNN E2E CIL DARB NEAT PPGeo UniAD
BDDV CILRS AgileAD, SafeDAgger NMP, BDD-X, PlanT SelfD, ACO P3, MP3, ST-P3
Imitation Conditional 5 & i Policy Modular End-to-end
: Generalization Interpretability et .
Learning (IL) IL Pretraining Planning

Chen et al. End-to-end Autonomous Driving: Challenges and Frontiers
https://arxiv.org/abs/2306.16927



https://arxiv.org/abs/2306.16927

Openﬂ riveLab

Concurrent Work
GenAD / Vista/ GAIA / etc.

30



Poster Session
Thu, 5: 15- 6:45 p.m

Arch 4A-E #5

Openﬂ riveLab

N
ificial el !

g

|

How to scale up the autonomous driving models?

GenAD: Generalized Predictive Model
for Autonomous Driving

CVPR 2024, Highlight

arxiv.2403.09630



Poster Session

Motivation (1/3) | What Makes for Generalized AD Model? et
—

Data Distinction:

+ LLMs pretrained on trillions of unlabeled text tokens exhibit
strong generalization in a variety of domains and applications

- However, existing AD models are established on limited labeled
data, which hampers their generalization

Existing AD Models

Unlabeled Text Data Labeled Driving Data
;%ﬂ\:u ) \ ) . j
Q) X ww| (W L, MEE
Internet scale: World % Small scale: Limited
knowledge. domain knowledge.
A ing: Intricate labeli
Free of labeling: Easy to ¥ Intrica .e abeling —
collect and scale up. process: Unscalable.
[ 1 1

N~ e Bbox, HD map, etc.
Strong generalization Poor generalization

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



Motivation (2/3) | What Makes for Generalized AD Model?

Lea rning ObjeCtive: No accessible labeled data

» Supervised by 3D labels TP ILN
Model -___x__

Y Hard toscale without oce v

sufficient labeled data

’ Model-XL

» Supervised by expert features
Scalable with developed expert models (e.g., DINOv2)
Focusing on specific objects (e.g., centered or large ones)
¥ Ignoring critical details (e.g., small objects)

e Feature map visualization from DINOv2

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024

Poster Session
Thu, 5: 15- 6:45 p.m
Arch 4A-E #5

Undesirable for

modeling challenging
driving scenes




Poster Session

Motivation (3/3) | What Makes for Generalized AD Model? Thu, 5: 15-6:45 p.m

Arch 4A-E #5

Our Initiative: T b

R

Data: ﬂ

Learning Objective:
« Supervised by “pixels of future frames” — Video Prediction

Scalable Data (easy to collect from the web)

No 3D labeling needed

Better detail preservation

Learning world knowledge and how to drive inherently

SISISIS

Strong generalization
, collected worldwide

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



Poster Session
Thu, 5: 15- 6:45 p.m
GenAD | At a Glance Ry
I
Summary: A billion-scale video prediction model trained on web-scale driving videos,
demonstrating strong generalization across a wide spectrum of domains and tasks.

Q
() OpenDV-2K °% GenAD Ba) Tasks
2 e D 4 - W N s
2000+ hours Multimodal Driving Data Generalized Predictive Model ,—— 1.Zero-Shot Generalization ————————
p “ t t1 2 Observed Imagined
ﬂﬁi . ‘I' Diverse
- Paired
YouTube Driving Videos “Texts”
e L [
L = y, Tj
[ publicDiving | >
L Datasets ) mEmEs St >
L VLM / LLM y Iterative & joint denoising )
——— 2. Llanguage-conditioned Prediction ——— ,——— 3. Action-conditioned Prediction - 4. Planning

__, Control with high-
level command

e

“Turn left towards &
the mountain”

5 Control with different ) » Control with different .
" texts (command/context) _l Imagine future —l Imagine
3 . . rrm « i e 7 ‘) ‘g < g

“Change to

the left | i i «

€ left lane . .

‘ Lightweight  __  predicted
Planner Trajectory

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



GenAD - Overview

Data

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024

Tasks



GenAD | Dataset

l (>) YouTube Video Pool

v
YouTuber Selection @ Discarded Data
o0 \ : '
Video Selection
@ VLM (:LIP -2)
Inside-car view Video transition
Context Anno.
Sensitive
Keywords?
& | Yes Black frames Distorted frames
Sanity
Check
@} CI055|f‘ er
Command Anno. Driving tour intro. Subscription note
v

OpenDV-YouTube

= .-

Hilly area, --- Dublin, rainy, ---  Dark tunnel, ---
Turn right Left turn Go straight

e Rigorous data collection and
filtering strategy

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024

Poster Session
Thu, 5: 15- 6:45 p.m
Arch 4A-E #5



GenAD | Dataset
—

l (>) YouTube Video Pool

v
YouTuber Selection @ Discarded Data
. \ :
Video Selection
@ VLM (:LIP -2)
Inside-car view Video transition
Context Anno.
Sensitive
Keywords?
& | Yes Black frames Distorted frames
Sanity
Check
@} CI055|f‘ ier 2
Command Anno. Driving tour intro. Subscription note
v

OpenDV- YouTube

Hilly area., - Dublin, rainy, ---  Dark tunnel, ---
Turn right Left turn Go straight

e Rigorous data collection and
filtering strategy

Poster Session
Thu, 5: 15- 6:45 p.m
Arch 4A-E #5

GPTrefine @
|

Traj. to cmd. Public Datasets

() BLIP-2

—>
YouTube Video Classifier

OpenDV-2K

(" Y
Decelerate.

YouTube | A person walking on a
beach at sunset.

Keep the direction.

nuscenes Rain, cross bridge, truck.
Talk2Car | Move into the same lane
as the Jeep.

Y
Make a left turn.

nUPIan | koliowing lane with slow
lead.

Turn right.

HAD Keep going until you reach
ared light.

Deviate from the path.

HDD | The ego vehicle deviates
from its original path to
avoid the parked car.

Multi-modal and Multi-source Nature
- Sourced from both online videos and public datasets for diversity
- Paired with textual context and command

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



GenAD | Dataset KITTI m== OpenDV (full data)
HEE OpenDV-YouTube
Argoverse V2 Bl Other Datasets
Waymo
* Largest public dataset for autonomous driving g HondaHDD
og e S Honda-HAD
e 22059 hours, = 244 cities s
ONCE
nuScenes
Duration  Front-view | Geographic Diversity Sensor
Blatasst (hours) Frames Countries Cities Setup nUFE0
OpenDV
X KITTI [30] 1.4 15k 1 1 fixed , , — , ] |
X Cityscapes [21] 0.5 25k 3 50 fixed 0 150 300 1200 1500 1800 2100
X Waymo Open* [97] 11 390k 1 3 fixed Duration (hours)
X Argoverse 2* [109] 42 300k 1 6 fixed
v nuScenes [12] 55 241k 2 2 fixed KT W OpenDV (full data)
# nuPlan* [13] 120 4.0M 2 4 fixed Argoverse V2 — gp:”DS"YWT“be
v Talk2Car [24] 47 - 2 2 fixed Wavrmo SN [Other Datasels
& ONCE [72] 144 ™ 1 ; fixed y
v Honda-HAD [51] 32 1.2M 1 - fixed . Honda-HDD
v | Honda-HDD-Action [84] 104 1.IM 1 - fixed 2 Honda-HAD < 40x S
v | Honda-HDD-Cause [84] 32 - 1 - fixed & -~ T
ONCE
v | OpenDV-YouTube (Ours) 1747 60.2M >40f >2447 uncalibrated
. OpenDV-2K (Ours) 2059 65.1M >401 >244" | uncalibrated Rt
nuPlan
OpenDV-2K (Ours) %’ Opendy
/ /L
0 10 20 re 160 200 240 280

Number of cities

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



Poster Session

GenAD | Dataset Thu 5:15-645pm
@ Private Data

e Comparison of the data consumption for predictive driving models @ Public Data

T ©

WAYVE

General GAIA-|
World Model 1

|
@g ? 4700 | [ﬂ@]]ﬂf 9
DriveGAN | o E AD"Qver"
2 ? I | ~200 |
Learning a | unknown : ' hours 1
Driving Simulator 1 160 \ : :
| hours I I :
, 7 hours | | [ I
2016/08 2021/04 2023/06 2023/09 2023/11 2023/12  2024/03

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



Poster Session

GenAD | Dataset Thu, 5: 15- 6:45 pm

Arch 4A-E #5
@ Private Data 5
e Comparison of the data consumption for predictive driving models @ Public Data
T ©
General GAIA-|
World Model L
|
@a ¢ 4700 | MEGVIILIgE
h : ADriver-|
DriveGAN : o : n@ver
, ? unknown I ' ~200 1 ST
Learning a | : Oigadl hours 1 (A
Driving Simulator ; 160 I DriveDreamer Drive-WM WoVoGen
| hours I | i
" 7 hours I I 5 hours q I : QS hours ? 5 hours
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Poster Session

Thu, 5: 15- 6:45 p.
GenAD | Dataset 4 5 15- 645 pm
I @ Private Data

e Comparison of the data consumption for predictive driving models @ Public Data

Training Data (hours) =
—_— @ kS ”\;
X ' ) A . E . .

***** o GenAD (Ouirs)
General GAIA-] ? »
World Model ° 244
@g ¢ 4700 | MEGVII LI CINeS
hours | iver-
DriveGAN | o AD"QVG’ |
% ? nknown I I ~200 1
| Learninga | e OigaAl hours 1 (A - :
T Driving Simulator | 160 : DriveDreamer Drlve-WM WoVoGen I
| hours I | I
. 7 hours I I Shours Q I I @5 hours ? S hours I
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Algorithm | Video Prediction Model for Driving
[

7 a.1 Stage One

Image Domain Transfer

a.2 Stage Two
Video Prediction Pre-training

1 W ; 4 B

Video-level Denoising *

Per-image Denoising ]

Temporal Reasoning Blocks

(a) GenAD: Two-Stage Learning ]
Temporal Spatial Temporal Conditional Temporal
Reasoning Self Reasoning Cross Reasoning FFN
Block Attn. Block Attn. Block

Language

(b) GenAD Transformer Block Architecture i

e Two-stage Training:

o Tuning the image generation model (SDXL) into a highly-capable video prediction model

e Model Specializations for Driving:

. \
\

Decou

pled SA

A\ %4 | | N

fa
9

—N
Decoupled SA

a
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—
[

m

Causal TA

Il

Poster Session

Thu, 5: 15- 6:45 p.m

Ya

o
=—>t
[

v X

19

Attention
Direction

Causal
Masking

993

t 2

(c) Temporal Reasoning Block

o Causal Temporal Attention: coherent and consistent future prediction

o Decoupled Spatial Attention: efficient long-range modeling

o Interleaved temporal blocks: sufficient spatiotemporal interaction

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024
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Poster Session

Result on Tasks (1/4) | Zero-shot Generalization (Video Prediction) et

YouTube

12VGen-XL S
e Zero-shotvideo

prediction on unseen
datasets including
Waymo, KITTI and
Cityscapes

VideoCrafter] fese g

.
DMVFN

GenAD B
(Ours) &

e Outperforming
competitive general
video generation
models

12VGen-XL
VideoCrafterl

DMVFN

GenAD
(Ours)

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



Poster Session

Result on Tasks (2/4) | Language-conditioned Prediction [T
—

~—— 2. Language-conditioned Prediction ——

Control with different )
texts (command/context) —l Imagine

“Change to
the left lane”

Controlling the future evolvement
with language

~ “Turn right, some parked cars, a parking lot”

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



Poster Session

Result on Tasks (3/4) | Action-conditioned Prediction (Simulation) Thu, 5: 13- 8:45p.m
o

BEVTraj. Observed Cd I Imagined T
35r 1 ~ —

. nuScenes 301
Method ‘ Sondition Action Prediction Error (]) 25]
Ground truth 0.9 -
GenAD text 2.54 &
GenAD-act text + traj. 2.02 101

Table 4. Task on Action-conditioned prediction. Compared to o1
GenAD with text conditions only, GenAD-act enables more pre- 0
cise future predictions that follow the action condition. =
30
25
20
15
. . . 10
Simulating the future with ;

. . LI R T
user-specified trajectory

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



Poster Session

Result on Tasks (4/4) | Planning Thu, 5 15- 6:45 pm

Control with high- Method # Trainable nuScenes
iy level command etho Params. | ADE(]) FDE (})
e ST-P3* [20] 10.9M 2.11 2.90
¢I¢ UniAD* [22] 58.8M 1.03 1.65
[ GenAD ]
\ GenAD (Ours) | 0.8M | 1.23 2.31
i Q_, Table 5. Task on Planning. A lightweight MLP with frozen
Lightweight Predicted GenAD gets competitive planning results with 73 x fewer train-
Planner Trajectory able parameters and front-view image alone. *: multi-view inputs.

e Speeding up training by 3400 times (vs. UniAD)
e Demonstrating the effectiveness of the learned
spatiotemporal representations

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



Poster Session

Thu, 5: 15- 6:45 p.m
Su mma ry Arch 4A-E #5

e Largest Public Driving Dataset:
o OpenDV-2K provides 2059 hours of worldwide driving videos.
e Generalized Predictive Model for Autonomous Driving:

o GenAD can predict plausible futures with language conditions
and generalize to unseen datasets in a zero-shot manner.

e Broad Applications:

o GenAD can readily adapt to planning and simulation.

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



Openﬂ riveLab

b
i

2 II

How to build a generally applicable driving world model?

Vista: A Generalizable Driving World

Model with High Fidelity and
Versatile Controllability

Open Release arxiv.2405.17398



Limitations of Existing Driving World Models
[

e Generalization: limited data scale and geographical coverage

E . .-

Open Reléase

5h

within Singapore & Boston
nuScenes

e Representation capacity: low resolution and low frame rate

256x256 256448 256x448 288x512
80x160 128x192 192x384
Dxivesim DriveDreamer - " :
(2016/08) ™ (5023/09) Dosan) DriveGAN ey o —

(2021/04)

(2023/12) (2024/03) (2023/09)

e Control flexibility: single modality, incompatible with planning algorithms

-
= > ;,:
re PRI S 15 § SO0

’

Gao et al., Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability



Our Investigation: A Generalizable Driving World Model
E— p

5h

within Singapore & Boston §
nuScenes

e Representation capacity: high spatiotemporal resolution

256x256 256x448 256x448 288x512
80x160 128x192 l 92x34
Dxivesim DriveDreamer - " ‘
(2016/08) ™ (5023/09) Dosan) DriveGAN ey o —

(2021/04) (2023/12) (2024/03) (2023/09)

e Control flexibility: multi-modal action inputs

%,

Gao et al., Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability



Capability of Vista

° H|gh ﬁdellty future predlctlon

Gao et al., Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability



Capability of Vista

e
Open Release
e Zero-shot action controllability

turn left g0 straiht turnright stop

Reward: 0.815 Reward: 0.849  Reward: 0.832 Reward: 0.860
e Provide reward without ground truth actions ’ %

Gao et al., Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability



Summary

O a

Open Re;t.ease

e Vistais ageneralizable driving world model that can:
o Predict high-fidelity futures in open-world scenarios.
o Extend its predictions to continuous and long horizons.
o Execute multi-modal actions (steering angles, speeds, commands, trajectories, goal points).

o Provide rewards for different actions without accessing ground truth actions.

Gao et al., Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability



Openﬂ riveLab

Part 3:

Challenges & Closing Remarks
Data / Methodology / Compute / Goal



Challenges | End-to-end Autonomy

Task / Goal

Dimension

L4/L5, with driving comfort / experience considered
(Goals should be the same from two domains)

/

Research (“academia”)

™\

Engineering (“industry”)

Data High quality.
Large-scale

Algorithm/Methodology

Efficient and
scalable

Compute/infra

Details:

High-quality / controllable
Simulation Unlimited
- Neural rendering
- 3DGS/AIGC (e.g. CVPR/
Siggraph 2024)

Gray area
Paradigm shift

Closed-loop Feedback /  (dichotomy?)
Long-horizon Planning ‘

- World Model / SATEON
- Video generation (e.g. A BRIEF HISTORY
Sora) / etc.. OF INTELLIGENCE

MAX BENNETT

~50-200 GPUs
Stable Training / fast 1/0

Chen et al. End-to-end Autonomous Driving: Challenges and Frontiers

https://arxiv.org/abs/2306.16927

Scalable collection /
Sanity check

- Data Flywheel

At least 10k of hours?
C.f. nuScenes 4.5h

Efficiency / Deployment

- Dual system (Sys1/Sys2)
- Model compression / etc.
- Perception ...

500+ GPUs
preferably 10k? / I’'ve no idea


https://arxiv.org/abs/2306.16927

Research Panorama on End-to-end Autonomy :

Goal

A

(performance)

ALVINN

Direction

TransFuser

‘Tesla FSD Beta v12.12 rolls
out to customers

Present (2/2)

Present (1/2)

GAIA |/ Vista

2023 2H / 2024 2025 onwards Time

2016-2022

2023 1H

Takeaways - The key/missing ingredients

Data as world engine (simulation/real-world)
Algorithm (on world model / closed-loop)
Infra / platform: a must to achieve scalability
Deployment: dual system / onboard-chip




Kudos to Our Fantastic Members / Collaborators Open;@ riveLab
I Also the slide credit

> Team :Meetiuﬁf’;
@ Mt. Everest

8BS 4 ' -~ Tibet, China

Meet our team in

Seattle @CVPR 2024!!! £
Q | ti;\
{,‘ -
Jiazhi Yang Shenyuan Gao Li Chen Chonghao Sima Huijie Wang Zetong Yang Yunsong Zhou
GenAD Vista UniAD DrivelLM OpenLane ViDAR ELM
T .
And many
others
remote... w)

Yihang Qiu Tianvu | i Kashyap Chitta



End-of-Talk
Questions?



