
graph theory notes∗

The combinatorial nullstellensatz and Schauz’s
coefficient formula

In [2], Alon and Tarsi introduced a beautiful algebraic technique for proving the existence
of list colorings. Alon [1] further developed this technique into the Combinatorial Nullstel-
lensatz. Fix an arbitrary field F. We write fk1,...,kn for the coefficient of xk11 · · ·xknn in the
polynomial f ∈ F[x1, . . . , xn].

Combinatorial Nullstellensatz (Alon). Suppose f ∈ F[x1, . . . , xn] and k1, . . . , kn ∈ N
with

∑
i∈[n] ki = deg(f). If fk1,...,kn 6= 0, then for any A1, . . . , An ⊆ F with |Ai| ≥ ki + 1,

there exists (a1, . . . , an) ∈ A1 × · · · × An with f(a1, . . . , an) 6= 0.

Micha lek [5] gave a very short proof of the Combinatorial Nullstellensatz just using long
division. Schauz [6] sharpened the Combinatorial Nullstellensatz by proving the following
coefficient formula. Versions of this result were also proved by Hefetz [3] and Lasoń [4]. Our
presentation is similar to Lasoń’s.

Coefficient Formula (Schauz). Suppose f ∈ F[x1, . . . , xn] and k1, . . . , kn ∈ N with
∑

i∈[n] ki =

deg(f). For any A1, . . . , An ⊆ F with |Ai| = ki + 1, we have

fk1,...,kn =
∑

(a1,...,an)∈A1×···×An

f(a1, . . . , an)

N(a1, . . . , an)
,

where
N(a1, . . . , an) :=

∏
i∈[n]

∏
b∈Ai\{ai}

(ai − b).

We first give Micha lek’s proof of the Combinatorial Nullstellensatz and use this to derive
the coefficient formula.

Proof of Combinatorial Nullstellensatz. Suppose the result is false and choose f ∈ F[x1, . . . , xn]
for which it fails minimizing deg(f). Then deg(f) ≥ 2 and we have k1, . . . , kn ∈ N with∑

i∈[n] ki = deg(f) and A1, . . . , An ⊆ F with |Ai| ≥ ki + 1 such that f(a1, . . . , an) = 0 for all

(a1, . . . , an) ∈ A1 × · · · × An. By symmetry, we may assume that k1 > 0. Fix a ∈ A1 and
divide f by x1 − a to get f = (x1 − a)Q+ R where the degree of x1 in R is zero. Then the
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coefficient of xk1−11 xk22 · · ·xknn in Q must be non-zero and deg(Q) < deg(f). So, by minimality
of deg(f) there is (a1, . . . , an) ∈ (A1 \ {a}) × · · · × An such that Q(a1, . . . , an) 6= 0. Since
0 = f(a1, . . . , an) = (a1 − a)Q(a1, . . . , an) + R(a1, . . . , an) we must have R(a1, . . . , an) 6= 0.
But x1 has degree zero in R, so R(a, . . . , an) = R(a1, . . . , an) 6= 0. Finally, this means that
f(a, . . . , an) = (a− a)Q(a, . . . , an) +R(a, . . . , an) 6= 0, a contradiction.

Proof of Coefficient Formula. Let f ∈ F[x1, . . . , xn] and k1, . . . , kn ∈ N with
∑

i∈[n] ki =

deg(f). Also, let A1, . . . , An ⊆ F with |Ai| = ki +1. For each (a1, . . . , an) ∈ A1×· · ·×An, let
χ(a1,...,an) be the characteristic function of the set {(a1, . . . , an)}; that is χ(a1,...,an) : A1×· · ·×
An → F with χ(a1,...,an)(x1, . . . , xn) = 1 when (x1, . . . , xn) = (a1, . . . , an) and χ(a1,...,an)(x1, . . . , xn) =
0 otherwise. Consider the function

F =
∑

(a1,...,an)∈A1×···×An

f(a1, . . . , an)χ(a1,...,an).

Then F agrees with f on all of A1× · · · ×An and hence f −F is zero on A1× · · · ×An. We
will apply the Combinatorial Nullstellensatz to f − F to conclude that (f − F )k1,...,kn = 0
and hence fk1,...,kn = Fk1,...,kn where Fk1,...,kn will turn out to be our desired sum. To apply
the Combinatorial Nullstellensatz, we need to represent F as a polynomial, we can do so by
representing each χ(a1,...,an) as a polynomial as follows. For (a1, . . . , an) ∈ A1 × · · · × An, let

N(a1, . . . , an) :=
∏
i∈[n]

∏
b∈Ai\{ai}

(ai − b).

Then it is readily verified that

χ(a1,...,an)(x1, . . . , xn) =

∏
i∈[n]

∏
b∈Ai\{ai}(xi − b)

N(a1, . . . , an)
.

Using this to define F we get

F (x1, . . . , xn) =
∑

(a1,...,an)∈A1×···×An

f(a1, . . . , an)

∏
i∈[n]

∏
b∈Ai\{ai}(xi − b)

N(a1, . . . , an)
.

Now deg(F ) =
∑

i∈[n](|Ai| − 1) =
∑

i∈[n] ki = deg(f). Since f − F is zero on A1 × · · · × An,
applying the Combinatorial Nullstellensatz to f−F with k1, . . . , kn and sets A1, . . . , An gives
(f − F )k1,...,kn = 0 and hence

fk1,...,kn = Fk1,...,kn =
∑

(a1,...,an)∈A1×···×An

f(a1, . . . , an)

N(a1, . . . , an)
.

1 Applications to graph coloring

Let G be a loopless multigraph with vertex set V := {x1, . . . , xn} and edge multiset E. The
graph polynomial of G is

pG(x1, . . . , xn) :=
∏

{xi,xj}∈E
i<j

(xi − xj).
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To each orientation ~G of G, there is a corresponding monomial m ~G(x1, . . . , xn) given by

choosing either xi or −xj from each factor (xi − xj) according to ~G. Precisely, given an

orientation ~G of G with edge multiset ~E, put

m ~G(x1, . . . , xn) :=

 ∏
(xi,xj)∈ ~E

i<j

xi


 ∏

(xj ,xi)∈ ~E
i<j

−xj

 .

Then pG(x1, . . . , xn) =
∑

~Gm ~G(x1, . . . , xn), where the sum is over all orientations ~G of G.
Each m ~G(x1, . . . , xn) has coefficient either 1 or −1. We are interested in collecting up

all monomials of the form xk11 · · · xknn . Let DEk1,...,kn(G) be the orientations of G where
m ~G(x1, . . . , xn) = xk11 · · ·xknn and DOk1,...,kn(G) the orientations of G where m ~G(x1, . . . , xn) =
−xk11 · · ·xknn . Write pk1,...,kn(G) for the coefficient of xk11 · · ·xknn in pG(x1, . . . , xn). Then we
have

pk1,...,kn(G) = |DEk1,...,kn(G)| − |DOk1,...,kn(G)|.
This gives a combinatorial interpretation of the coefficients of pG, but unfortunately it quan-
tifies over all orientations of G. For applying the Combinatorial Nullstellensatz, it is useful
to have a single orientation of G as a certificate that pk1,...,kn(G) 6= 0. This can be achieved in
terms of Eulerian subgraphs. A digraph is Eulerian if the in-degree and out-degree are equal
at every vertex. Let EE(~G) be the spanning Eulerian subgraphs of ~G with an even number

of edges and let EO(~G) be the spanning Eulerian subgraphs of ~G with an odd number of
edges.

Eulerian Reduction. If ~G is an orientation of G, then we have∣∣∣|EE(~G)| − |EO(~G)|
∣∣∣ =

∣∣∣|DEd+
~G
(x1),...,d

+
~G
(xn)

(G)| − |DOd+
~G
(x1),...,d

+
~G
(xn)

(G)|
∣∣∣ .

Proof. For D ∈ DEd+
~G
(x1),...,d

+
~G
(xn)

(G) ∪ DOd+
~G
(x1),...,d

+
~G
(xn)

(G), let ~G ⊕ D be the spanning

subgraph of ~G with edge set{
(xi, xj) ∈ E(~G) | (xj, xi) ∈ E(D)

}
.

Then ~G ⊕ D is Eulerian since all vertices have the same out-degree in ~G and D. If ~G
is even, this gives bijections between DEd+

~G
(x1),...,d

+
~G
(xn)

(G) and EE(~G) as well as between

DOd+
~G
(x1),...,d

+
~G
(xn)

(G) andEO(~G). When ~G is odd, the bijections are betweenDEd+
~G
(x1),...,d

+
~G
(xn)

(G)

and EO(~G) as well as between DOd+
~G
(x1),...,d

+
~G
(xn)

(G) and EE(~G). In either case, we have∣∣∣|EE(~G)| − |EO(~G)|
∣∣∣ =

∣∣∣|DEd+
~G
(x1),...,d

+
~G
(xn)

(G)| − |DOd+
~G
(x1),...,d

+
~G
(xn)

(G)|
∣∣∣ .

Therefore, if ~G is an orientation of G with d+~G(xi) = ki for all i ∈ [n], then

|pk1,...,kn(G)| =
∣∣∣|EE(~G)| − |EO(~G)|

∣∣∣ .
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