

# graph theory notes\*

## The combinatorial nullstellensatz and Schauz's coefficient formula

In [2], Alon and Tarsi introduced a beautiful algebraic technique for proving the existence of list colorings. Alon [1] further developed this technique into the *Combinatorial Nullstellensatz*. Fix an arbitrary field  $\mathbb{F}$ . We write  $f_{k_1, \dots, k_n}$  for the coefficient of  $x_1^{k_1} \cdots x_n^{k_n}$  in the polynomial  $f \in \mathbb{F}[x_1, \dots, x_n]$ .

**Combinatorial Nullstellensatz** (Alon). *Suppose  $f \in \mathbb{F}[x_1, \dots, x_n]$  and  $k_1, \dots, k_n \in \mathbb{N}$  with  $\sum_{i \in [n]} k_i = \deg(f)$ . If  $f_{k_1, \dots, k_n} \neq 0$ , then for any  $A_1, \dots, A_n \subseteq \mathbb{F}$  with  $|A_i| \geq k_i + 1$ , there exists  $(a_1, \dots, a_n) \in A_1 \times \cdots \times A_n$  with  $f(a_1, \dots, a_n) \neq 0$ .*

Michałek [5] gave a very short proof of the Combinatorial Nullstellensatz just using long division. Schauz [6] sharpened the Combinatorial Nullstellensatz by proving the following coefficient formula. Versions of this result were also proved by Hefetz [3] and Łasów [4]. Our presentation is similar to Łasów's.

**Coefficient Formula** (Schauz). *Suppose  $f \in \mathbb{F}[x_1, \dots, x_n]$  and  $k_1, \dots, k_n \in \mathbb{N}$  with  $\sum_{i \in [n]} k_i = \deg(f)$ . For any  $A_1, \dots, A_n \subseteq \mathbb{F}$  with  $|A_i| = k_i + 1$ , we have*

$$f_{k_1, \dots, k_n} = \sum_{(a_1, \dots, a_n) \in A_1 \times \cdots \times A_n} \frac{f(a_1, \dots, a_n)}{N(a_1, \dots, a_n)},$$

where

$$N(a_1, \dots, a_n) := \prod_{i \in [n]} \prod_{b \in A_i \setminus \{a_i\}} (a_i - b).$$

We first give Michałek's proof of the Combinatorial Nullstellensatz and use this to derive the coefficient formula.

*Proof of Combinatorial Nullstellensatz.* Suppose the result is false and choose  $f \in \mathbb{F}[x_1, \dots, x_n]$  for which it fails minimizing  $\deg(f)$ . Then  $\deg(f) \geq 2$  and we have  $k_1, \dots, k_n \in \mathbb{N}$  with  $\sum_{i \in [n]} k_i = \deg(f)$  and  $A_1, \dots, A_n \subseteq \mathbb{F}$  with  $|A_i| \geq k_i + 1$  such that  $f(a_1, \dots, a_n) = 0$  for all  $(a_1, \dots, a_n) \in A_1 \times \cdots \times A_n$ . By symmetry, we may assume that  $k_1 > 0$ . Fix  $a \in A_1$  and divide  $f$  by  $x_1 - a$  to get  $f = (x_1 - a)Q + R$  where the degree of  $x_1$  in  $R$  is zero. Then the

---

\*clarifications, errors, simplifications  $\Rightarrow$  [landon.rabern@gmail.com](mailto:landon.rabern@gmail.com)

coefficient of  $x_1^{k_1-1}x_2^{k_2}\cdots x_n^{k_n}$  in  $Q$  must be non-zero and  $\deg(Q) < \deg(f)$ . So, by minimality of  $\deg(f)$  there is  $(a_1, \dots, a_n) \in (A_1 \setminus \{a\}) \times \cdots \times A_n$  such that  $Q(a_1, \dots, a_n) \neq 0$ . Since  $0 = f(a_1, \dots, a_n) = (a_1 - a)Q(a_1, \dots, a_n) + R(a_1, \dots, a_n)$  we must have  $R(a_1, \dots, a_n) \neq 0$ . But  $x_1$  has degree zero in  $R$ , so  $R(a_1, \dots, a_n) = R(a_1, \dots, a_n) \neq 0$ . Finally, this means that  $f(a_1, \dots, a_n) = (a_1 - a)Q(a_1, \dots, a_n) + R(a_1, \dots, a_n) \neq 0$ , a contradiction.  $\square$

*Proof of Coefficient Formula.* Let  $f \in \mathbb{F}[x_1, \dots, x_n]$  and  $k_1, \dots, k_n \in \mathbb{N}$  with  $\sum_{i \in [n]} k_i = \deg(f)$ . Also, let  $A_1, \dots, A_n \subseteq \mathbb{F}$  with  $|A_i| = k_i + 1$ . For each  $(a_1, \dots, a_n) \in A_1 \times \cdots \times A_n$ , let  $\chi_{(a_1, \dots, a_n)}$  be the characteristic function of the set  $\{(a_1, \dots, a_n)\}$ ; that is  $\chi_{(a_1, \dots, a_n)}: A_1 \times \cdots \times A_n \rightarrow \mathbb{F}$  with  $\chi_{(a_1, \dots, a_n)}(x_1, \dots, x_n) = 1$  when  $(x_1, \dots, x_n) = (a_1, \dots, a_n)$  and  $\chi_{(a_1, \dots, a_n)}(x_1, \dots, x_n) = 0$  otherwise. Consider the function

$$F = \sum_{(a_1, \dots, a_n) \in A_1 \times \cdots \times A_n} f(a_1, \dots, a_n) \chi_{(a_1, \dots, a_n)}.$$

Then  $F$  agrees with  $f$  on all of  $A_1 \times \cdots \times A_n$  and hence  $f - F$  is zero on  $A_1 \times \cdots \times A_n$ . We will apply the Combinatorial Nullstellensatz to  $f - F$  to conclude that  $(f - F)_{k_1, \dots, k_n} = 0$  and hence  $f_{k_1, \dots, k_n} = F_{k_1, \dots, k_n}$  where  $F_{k_1, \dots, k_n}$  will turn out to be our desired sum. To apply the Combinatorial Nullstellensatz, we need to represent  $F$  as a polynomial, we can do so by representing each  $\chi_{(a_1, \dots, a_n)}$  as a polynomial as follows. For  $(a_1, \dots, a_n) \in A_1 \times \cdots \times A_n$ , let

$$N(a_1, \dots, a_n) := \prod_{i \in [n]} \prod_{b \in A_i \setminus \{a_i\}} (a_i - b).$$

Then it is readily verified that

$$\chi_{(a_1, \dots, a_n)}(x_1, \dots, x_n) = \frac{\prod_{i \in [n]} \prod_{b \in A_i \setminus \{a_i\}} (x_i - b)}{N(a_1, \dots, a_n)}.$$

Using this to define  $F$  we get

$$F(x_1, \dots, x_n) = \sum_{(a_1, \dots, a_n) \in A_1 \times \cdots \times A_n} f(a_1, \dots, a_n) \frac{\prod_{i \in [n]} \prod_{b \in A_i \setminus \{a_i\}} (x_i - b)}{N(a_1, \dots, a_n)}.$$

Now  $\deg(F) = \sum_{i \in [n]} (|A_i| - 1) = \sum_{i \in [n]} k_i = \deg(f)$ . Since  $f - F$  is zero on  $A_1 \times \cdots \times A_n$ , applying the Combinatorial Nullstellensatz to  $f - F$  with  $k_1, \dots, k_n$  and sets  $A_1, \dots, A_n$  gives  $(f - F)_{k_1, \dots, k_n} = 0$  and hence

$$f_{k_1, \dots, k_n} = F_{k_1, \dots, k_n} = \sum_{(a_1, \dots, a_n) \in A_1 \times \cdots \times A_n} \frac{f(a_1, \dots, a_n)}{N(a_1, \dots, a_n)}.$$

$\square$

## 1 Applications to graph coloring

Let  $G$  be a loopless multigraph with vertex set  $V := \{x_1, \dots, x_n\}$  and edge multiset  $E$ . The *graph polynomial* of  $G$  is

$$p_G(x_1, \dots, x_n) := \prod_{\substack{\{x_i, x_j\} \in E \\ i < j}} (x_i - x_j).$$

To each orientation  $\vec{G}$  of  $G$ , there is a corresponding monomial  $m_{\vec{G}}(x_1, \dots, x_n)$  given by choosing either  $x_i$  or  $-x_j$  from each factor  $(x_i - x_j)$  according to  $\vec{G}$ . Precisely, given an orientation  $\vec{G}$  of  $G$  with edge multiset  $\vec{E}$ , put

$$m_{\vec{G}}(x_1, \dots, x_n) := \left( \prod_{\substack{(x_i, x_j) \in \vec{E} \\ i < j}} x_i \right) \left( \prod_{\substack{(x_j, x_i) \in \vec{E} \\ i < j}} -x_j \right).$$

Then  $p_G(x_1, \dots, x_n) = \sum_{\vec{G}} m_{\vec{G}}(x_1, \dots, x_n)$ , where the sum is over all orientations  $\vec{G}$  of  $G$ .

Each  $m_{\vec{G}}(x_1, \dots, x_n)$  has coefficient either 1 or  $-1$ . We are interested in collecting up all monomials of the form  $x_1^{k_1} \cdots x_n^{k_n}$ . Let  $DE_{k_1, \dots, k_n}(G)$  be the orientations of  $G$  where  $m_{\vec{G}}(x_1, \dots, x_n) = x_1^{k_1} \cdots x_n^{k_n}$  and  $DO_{k_1, \dots, k_n}(G)$  the orientations of  $G$  where  $m_{\vec{G}}(x_1, \dots, x_n) = -x_1^{k_1} \cdots x_n^{k_n}$ . Write  $p_{k_1, \dots, k_n}(G)$  for the coefficient of  $x_1^{k_1} \cdots x_n^{k_n}$  in  $p_G(x_1, \dots, x_n)$ . Then we have

$$p_{k_1, \dots, k_n}(G) = |DE_{k_1, \dots, k_n}(G)| - |DO_{k_1, \dots, k_n}(G)|.$$

This gives a combinatorial interpretation of the coefficients of  $p_G$ , but unfortunately it quantifies over all orientations of  $G$ . For applying the Combinatorial Nullstellensatz, it is useful to have a single orientation of  $G$  as a certificate that  $p_{k_1, \dots, k_n}(G) \neq 0$ . This can be achieved in terms of Eulerian subgraphs. A digraph is Eulerian if the in-degree and out-degree are equal at every vertex. Let  $EE(\vec{G})$  be the spanning Eulerian subgraphs of  $\vec{G}$  with an even number of edges and let  $EO(\vec{G})$  be the spanning Eulerian subgraphs of  $\vec{G}$  with an odd number of edges.

**Eulerian Reduction.** *If  $\vec{G}$  is an orientation of  $G$ , then we have*

$$| |EE(\vec{G})| - |EO(\vec{G})| | = | |DE_{d_{\vec{G}}^+(x_1), \dots, d_{\vec{G}}^+(x_n)}(G)| - |DO_{d_{\vec{G}}^+(x_1), \dots, d_{\vec{G}}^+(x_n)}(G)| |.$$

*Proof.* For  $D \in DE_{d_{\vec{G}}^+(x_1), \dots, d_{\vec{G}}^+(x_n)}(G) \cup DO_{d_{\vec{G}}^+(x_1), \dots, d_{\vec{G}}^+(x_n)}(G)$ , let  $\vec{G} \oplus D$  be the spanning subgraph of  $\vec{G}$  with edge set

$$\left\{ (x_i, x_j) \in E(\vec{G}) \mid (x_j, x_i) \in E(D) \right\}.$$

Then  $\vec{G} \oplus D$  is Eulerian since all vertices have the same out-degree in  $\vec{G}$  and  $D$ . If  $\vec{G}$  is even, this gives bijections between  $DE_{d_{\vec{G}}^+(x_1), \dots, d_{\vec{G}}^+(x_n)}(G)$  and  $EE(\vec{G})$  as well as between  $DO_{d_{\vec{G}}^+(x_1), \dots, d_{\vec{G}}^+(x_n)}(G)$  and  $EO(\vec{G})$ . When  $\vec{G}$  is odd, the bijections are between  $DE_{d_{\vec{G}}^+(x_1), \dots, d_{\vec{G}}^+(x_n)}(G)$  and  $EO(\vec{G})$  as well as between  $DO_{d_{\vec{G}}^+(x_1), \dots, d_{\vec{G}}^+(x_n)}(G)$  and  $EE(\vec{G})$ . In either case, we have

$$| |EE(\vec{G})| - |EO(\vec{G})| | = | |DE_{d_{\vec{G}}^+(x_1), \dots, d_{\vec{G}}^+(x_n)}(G)| - |DO_{d_{\vec{G}}^+(x_1), \dots, d_{\vec{G}}^+(x_n)}(G)| |.$$

□

Therefore, if  $\vec{G}$  is an orientation of  $G$  with  $d_{\vec{G}}^+(x_i) = k_i$  for all  $i \in [n]$ , then

$$|p_{k_1, \dots, k_n}(G)| = | |EE(\vec{G})| - |EO(\vec{G})| |.$$

## References

- [1] N. Alon, *Combinatorial nullstellensatz*, Combinatorics Probability and Computing **8** (1999), no. 1–2, 7–29.
- [2] N. Alon and M. Tarsi, *Colorings and orientations of graphs*, Combinatorica **12** (1992), no. 2, 125–134.
- [3] Dan Hefetz, *On two generalizations of the Alon–Tarsi polynomial method*, Journal of Combinatorial Theory, Series B **101** (2011), no. 6, 403–414.
- [4] Michał Lasoń, *A generalization of combinatorial nullstellensatz*, The Electronic Journal of Combinatorics **17** (2010), no. 1, N32.
- [5] Mateusz Michałek, *A short proof of combinatorial nullstellensatz*, The American Mathematical Monthly **117** (2010), no. 9, 821–823.
- [6] Uwe Schauz, *Algebraically solvable problems: describing polynomials as equivalent to explicit solutions*, Electron. J. Combin **15** (2008), no. 1.