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Graphs

A graph is a collection of dots we call vertices some of which are
connected by curves we call edges. The relative location of the dots
and the shape of the curves are not relevant, we are only concerned
with whether or not a given pair of dots is connected by a curve.
Initially, we forbid edges from a vertex to itself and multiple edges
between two vertices. If G is a graph, then V(G) is its set of vertices
and E(G) its set of edges. We write |G| for the number of vertices
in V(G) and ‖G‖ for the number of edges in E(G). Two vertices
are adjacent if they are connected by an edge. The set of vertices to
which v is adjacent is its neighborhood, written N(v). For the size of
v’s neighborhood |N(v)|, we write d(v) and call this the degree of v.
We write E(v) for the set of edges containing v, these are the edges
incident to v.

We use the shorthand [k] := {1, 2, . . . , k}. A path in G is a sequence
of different vertices x1, x2, . . . , xr such that xi is adjacent to xi+1 for
all i ∈ [r− 1]. We say this is a path from x1 to xr. If xr is adjacent
to x1 as well, then we have a cycle. A graph G is connected if for all
x, y ∈ V(G), there is a path from x to y. Figure 1 shows all the
connected graphs with at most five vertices.

Figure 1: The connected graphs with at
most five vertices.



Coloring vertices

Figure 2: These are crayons.

The entire book concerns one simple task: we want to color the
vertices of a given graph so that adjacent vertices receive different
colors. With sufficiently many crayons and no preferences about
what the coloring should look like, this is easy, we just use a different
crayon for each vertex. Things get interesting when we ask how few
different crayons we can use. We are definitely going to need an
empty box of crayons and that will only do for the graph with no
vertices at all. Given one crayon, we can handle all graphs with no
edges. With two crayons, we can do any path and any cycle with an
even number of vertices. But, we can’t handle a triangle or any other
cycle with an odd number of vertices. Figure 3: A graph with no vertices

needs no crayons at all.

Figure 4: An edgeless graphs needs
only one crayon.

In fact, odd cycles are really the only thing that will prevent us
from using just two crayons. A graph H is a subgraph of a graph G,
written H ⊆ G if V(H) ⊆ V(G) and E(H) ⊆ E(G). When H ⊆ G,
we say that G contains H. If v ∈ V(G), then G − v is the graph we
get by removing v and all edges incident to v from G. A graph is k-
colorable if we can color its vertices with (at most) k colors such that
adjacent vertices receive different colors. A 0-colorable graph is empty,
a 1-colorable graph is edgeless and a 2-colorable graph is bipartite.

Figure 5: An even cycle needs two
crayons.

Figure 6: An odd cycle needs three
crayons.

Theorem 1. A graph is 2-colorable just in case it contains no odd cycle.

Proof. A graph containing an odd cycle clearly can’t be 2-colored. For
the other implication, suppose there is a graph that is not 2-colorable
and doesn’t contain an odd cycle. Then we may pick such a graph G
with |G| as small as possible. Surely, |G| > 0 and there is v ∈ V(G)

with d(v) ≥ 2. If x, y ∈ N(v), then x is not adjacent to y since then
xyz would be an odd cycle. So we can construct a graph H from G by
removing v and identifying all of N(v) to a new vertex xv. Any odd
cycle in H would contain xv and hence give rise to an odd cycle in
G passing through v. So H contains no odd cycle. Since |H| < |G|,
applying the theorem to H gives a 2-coloring of H, say with red and
blue where xv gets colored red. But this gives a 2-coloring of G by
coloring all vertices in N(v) red and v blue, a contradiction.

Since detecting odd cycles is easy, this means 2-coloring is easy.
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Things get more interesting when we move up to three colors.

Theorem 2. For k ≥ 3, determining whether or not a graph has a k-coloring
is a hard problem (supposing other problems we think are hard are, in fact,
hard).

Basic estimates

Figure 7: All vertices must get different
colors in a complete graph.

Even though finding the minimum number of colors needed to color
a graph is hard in general (supposing it is), we can still look for lower
and upper bounds on this value. The chromatic number χ(G) of a
graph G is the smallest k for which G is k-colorable. The simplest
thing we can do is give each vertex a different color.

Theorem 3. If G is a graph, then χ(G) ≤ |G|.

The only graphs that attain the upper bound in Theorem 3 are the
complete graphs; those in which any two vertices are adjacent. We
write Kr for the complete graph with r vertices. We can usually do
much better by just arbitrarily coloring vertices, reusing colors when
we can. The maximum degree ∆(G) of a graph G is the largest degree
of any vertex in G; that is

∆(G) := max
v∈V(G)

d(v).

Theorem 4. If G is a graph, then χ(G) ≤ ∆(G) + 1.

Proof. Suppose there is a graph G that is not (∆(G) + 1)-colorable.
Then we may pick such a graph G with |G| as small as possible.
Surely, |G| > 0, so we may pick v ∈ V(G). Then |G− v| < |G|
and ∆(G − v) ≤ ∆(G), so applying the theorem to G − v gives a
(∆(G− v) + 1)-coloring of G− v. But v has at most ∆(G) neighbors,
so there is some color, say red, not used on N(v), coloring v red gives
a (∆(G) + 1)-coloring of G, a contradiction.

Both complete graphs and odd cycles attain the upper bound in
Theorem 4. Theorem 1 says we can do better for graphs that don’t
contain odd cycles. A complete bipartite graph consists of two disjoint
independent sets (which we call parts) and all edges between them,
we write Ka,b for the complete bipartite graph with parts of size a
and b. Theorem 4 gives a poor upper bound for complete bipartite
graphs.

Figure 8: The graph K3,3.

We can also do better for graphs that don’t contain large complete
subgraphs. A set of vertices S in a graph G is a clique if the vertices
in S are pairwise adjacent. The clique number of a graph G, written
ω(G), is the number of vertices in a largest clique in G.
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Theorem 5. If G is a graph, then χ(G) ≥ ω(G).

A set of vertices S in a graph G is independent if the vertices in S
are pairwise non-adjacent. The independence number of a graph G,
written α(G), is the number of vertices in a largest independent set in
G.

Brooks’ theorem

x1

x2

y1

y2

G

X

y1

y2

H

Figure 9: Removing X and adding y1y2
to get H.

Theorem 6. If G is a graph with ∆(G) ≥ 3 and ω(G) ≤ ∆(G), then
χ(G) ≤ ∆(G).

Proof. Suppose there is a graph G with ∆(G) ≥ 3 and ω(G) ≤ ∆(G)

that is not ∆(G)-colorable. Then we may pick such a graph G with
|G| as small as possible. Let S be a maximal independent set in G.
Since S is maximal, every vertex in G − S has a neighbor in S, so
∆(G) > ∆(G− S). If red is an unused color in a χ(G− S)-coloring of
G− S, then by coloring all vertices in S red we get a (χ(G− S) + 1)-
coloring of G. So, ∆(G) + 1 ≤ χ(G) ≤ χ(G − S) + 1. We conclude
χ(G − S) > ∆(G − S) and thus ∆(G) = χ(G − S) = ∆(G − S) + 1
by Theorem 4. Since |G− S| < |G|, applying the theorem to G − S
shows that ∆(G − S) < 3 or ∆(G − S) < ω(G − S). So, either
χ(G− S) = ∆(G) = 3 or ω(G− S) ≥ ∆(G). In the former case, let X
be the vertex set of an odd cycle in G− S guaranteed by Theorem 1. In
the latter case, let X be a ∆(G)-clique in G− S.

w

x1 z

x2

y1

y2

Figure 10: Right after coloring w, note
that z has two blue neighbors.

Since S is maximal and ω(G) ≤ ∆(G), there are x1, x2 ∈ X and
y1, y2 ∈ S such that x1 is adjacent to y1 and x2 is adjacent to y2.
Construct a graph H from G − X by adding the edge y1y2. Since
|H| < |G|, applying the theorem to H shows that ω(H) > ∆(G) or
χ(H) ≤ ∆(G).

Suppose χ(H) ≤ ∆(G). Then there is a ∆(G)-coloring of G − X
where y1 and y2 receive different colors, say red and blue respectively.
Pick the first vertex z in a shortest path P from x1 to x2 in X that
has a blue colored neighbor in V(H). Each vertex in X has ∆(G)− 1
neighbors in X and hence at most one neighbor in V(H). So, z 6= x1

since x1 already has a red colored neighbor in V(H). Let w be be the
vertex preceding z on P (it could be that w = x1). Then w has no blue
colored neighbor. Since X is the vertex set of a cycle or a complete
graph, there is a path Q from w to z passing through every vertex of
X. Color w blue and then proceed along Q, coloring one vertex at a
time. Since each vertex we encounter before we get to z has at most
∆(G)− 1 colored neighbors, we always have an available color to use.
But, z is adjacent to both w and another blue colored vertex in V(H),
so there is an available color for z as well. This gives a ∆(G)-coloring
of G, a contradiction.



coloring vertices 9

So, ω(H) > ∆(G). In particular, y1 and y2 each have exactly
one neighbor in X and ∆(G) − 1 neighbors in the same ∆(G) − 1
clique A in G − X. Since S is maximal and |X| ≥ 3, there must be
adjacent x3 ∈ X \ {x1, x2} and y3 ∈ S \ {y1, y2}. Applying the same
argument with x3, y3 in place of x2, y2 shows that y1 and y3 each
have exactly one neighbor in X and ∆(G)− 1 neighbors in the same
∆(G)− 1 clique B in G − X. Now |A ∩ B| = |A| + |B| − |A ∪ B| ≥
2(∆(G) − 1) − d(y1) ≥ ∆(G) − 2 > 0. But there can’t be a vertex
in A ∩ B since it would be adjacent to y1, y2, y3 as well as ∆(G)− 2
vertices in A and thus have degree greater than ∆(G), a contradiction.

y2 y1 y3

A A, B B

Figure 11: The final contradiction when
∆ = 3.

Exercise 1. Show that if each vertex of a cycle is assigned a list of two colors,
then the vertices can be colored from their lists so that adjacent vertices get
different colors, unless the lists are all the same.

Exercise 2. Show that if each vertex of Kr is assigned a list of r− 1 colors,
then the vertices can be colored from their lists so that adjacent vertices get
different colors, unless the lists are all the same.

Exercise 3. Use the previous two exercises to replace the penultimate
paragraph in the proof Theorem 6.

List coloring

When attempting to k-color a graph G, it will often be convenient to
first k-color G[S] for some S ⊂ V(G) and then try to k-color G− S in
a compatible manner. To make this precise, think of each vertex in G
starting with a list of k permissible colors, say [k]. When we k-color
G[S], the colors used on N(v) ∩ S are no longer permissible for each
v ∈ V(G− S). For v ∈ V(G− S), let L(v) be the permissible colors for
v after k-coloring G[S]. Now our problem is to pick cv ∈ L(v) for each
v ∈ V(G− S) such that cx 6= cy whenever xy ∈ E(G− S). This is the
list coloring problem.

The list coloring problem arose as a subproblem in our attempt
to k-color a graph. By taking it out of this context and viewing list
coloring as a first-class problem in its own right, we will be able to
prove more general theorems while also simplifying proofs. A list
assignment on a graph G gives a set of colors L(v) to each v ∈ V(G).
If there is cv ∈ L(v) for each v ∈ V(G) such that cx 6= cy whenever
xy ∈ E(G), then G is L-colorable.

Theorem 7. If L is a list assignment on a graph G such that |L(v)| > d(v)
for all v ∈ V(G), then G is L-colorable.

Proof. Color each vertex in turn using a color in its list not appearing
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on any of its colored neighbors. This succeeds since each vertex has
more permissible colors than neighbors.

The requirement |L(v)| > d(v) in Theorem 7 is quite strong, in the
algorithm we really only need L(v) to have more colors than colored
neighbors rather than more colors than neighbors. We can encode
this extra information by orienting the edges of G; that is, turning
each edge into an arrow pointed one way or the other. If G is an
oriented graph, the out-degree of a vertex v ∈ V(G), written d+(v), is
the number of arrows pointing away from v. An oriented graph is
acyclic if there is no sequence of arrows that ends where it starts. An
oriented graph is L-colorable just in case its underlying undirected
graph is L-colorable.

Theorem 8. If L is a list assignment on an acyclic oriented graph G such
that |L(v)| > d+(v) for all v ∈ V(G), then G is L-colorable.

Proof. Suppose there is a list assignment L on an acyclic oriented
graph G such that |L(v)| > d+(v) for all v ∈ V(G), but G is not
L-colorable. Then we may pick such an L and G with |G| as small
as possible. Plainly, |G| ≥ 2. Since |G| is finite and G is acyclic,
there must be w ∈ V(G) with d+(w) = 0. Since |L(w)| > d+(w),
we may choose c ∈ L(w) and color w with c. Now let L′ be the list
assignment on G − w where L′(v) = L(v) \ {c} if v is adjacent to
w and L′(v) = L(v) otherwise. Since d+(w) = 0, for any vertex
v of G − w that lost c from its list, we have d+G−w(v) = d+(v) − 1,
so |L′(v)| > d+G−w(v) for all v ∈ V(G − w). Since |G− w| < |G|
and G− w is also acyclic, applying the theorem shows that G− w is
L′-colorable, but then we have an L-coloring of G, a contradiction.

Theorem 8 is no longer true if we drop “acyclic” from the hypothe-
ses; take a cyclically directed triangle for example. But there are ways
to replace “acyclic” with weaker hypotheses and still get a true the-
orem. In outline-form, the proof of Theorem 8 went like this: find a
vertex w we can color with some color c such that G− w is still acyclic
and any vertex in G−w that loses c from its list also has its out-degree
go down. This can be generalized in a couple natural ways. First, we
could color an independent set I of vertices with c instead of just a
single vertex. Second, we could replace “acyclic” with some other
property of oriented graphs, say a made-up property “agliplic”, and
require that G− I remain agliplic.

It will be convenient to work with an equivalent dual version of
list assignments. Instead of assigning a list of colors to each vertex,
we assign a set of vertices to each color. Given a set of colors P, a P-
assignment on a graph G is a function from P to the subsets of V(G).
For a list assignment L on G and S ⊆ V(G), put L(S) :=

⋃
v∈S L(v).
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Then L gives rise to the L(V(G))-assignment CL given by CL(c) :=
{v ∈ V(G) : c ∈ L(v)}.

Observation 1. G is L-colorable just in case there are independent sets
Ic ⊆ CL(c) for each c ∈ L(V(G)) that together cover V(G).

Viewing a list assignment in this dual fashion, there is a natural
candidate for a choice of I to color with c when trying to prove
Theorem 8 for agliplic oriented graphs. We want to find independent
I ⊆ CL(c) such that every v ∈ CL(c) \ I has an out-neighbor in I. Such
an I is a kernel in G [CL(c)]. So, we could try taking agliplic to mean
“G [CL(c)] has a kernel Ic for all c ∈ L(V(G))”. That almost works,
but we have no way of guaranteeing that G − Ic is still agliplic. We
can fix that by requiring that G[S] have a kernel for every S ⊆ V(G).
Instead of agliplic, we call an oriented graph with this property
kernel-perfect.

Theorem 9. If L is a list assignment on a kernel-perfect oriented graph G
such that |L(v)| > d+(v) for all v ∈ V(G), then G is L-colorable.

Proof. Suppose there is a list assignment L on a kernel-perfect orien-
ted graph G such that |L(v)| > d+(v) for all v ∈ V(G), but G is not
L-colorable. Then we may pick such an L and G with |G| as small
as possible. Pick c ∈ L(V(G)) and let I be a kernel in G [CL(c)].
Color all vertices in I with c and let L′ be the list assignment on
G − I where L′(v) = L(v) \ {c} if v ∈ CL(c) and L′(v) = L(v) ot-
herwise. Since every v ∈ CL(c) has an out-neighbor in I, we have
d+G−I(v) ≤ d+(v)− 1 , so |L′(v)| > d+G−I(v) for all v ∈ V(G− I). Since
|G− I| < |G| and G− I is also kernel-perfect, applying the theorem
shows that G− I is L′-colorable, but then we have an L-coloring of G,
a contradiction.

Given an oriented graph G that is not kernel-perfect, it is always
possible to add arrows (possibly going the opposite way as a current
arrow, forming a directed digon) to get what we’ll call a superoriented
graph that is kernel-perfect. One way is just to add back arrows for
each arrow, then any maximal independent set is a kernel. Theorem 9

holds for superoriented graphs by a nearly identical proof. This can
be useful as it gives us a way to trade in some slack in the |L(v)| >
d+(v) bounds for kernel-perfection by adding some extra arrows.

Theorem 10. If L is a list assignment on a kernel-perfect superoriented
graph G such that |L(v)| > d+(v) for all v ∈ V(G), then G is L-colorable.

Lemma 1. If G is a superoriented graph with an independent set I such that
all edges in G− I have back arrows, then G is kernel-perfect.

Proof. Suppose there is a non-kernel-perfect superoriented graph G
with independent set I such that all edges in G− I have back arrows.
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Then we may pick such a G with |G| as small as possible. Since G is
not kernel-perfect, there is X ⊆ V(G) such that G[X] has no kernel. If
|X| < |G|, then we could apply the theorem to G[X] to get a kernel,
so we must have X = V(G). So I is not a kernel in G and hence there
is v ∈ V(G − I) with none of its incident arrows pointing into I.
Remove v and all its neighbors from G to get a superoriented graph
H. Since |H| < |G|, we may apply the theorem to H to get a kernel S
in H. But then S ∪ {v} is a kernel in G since any vertex other than v
in G− H is either in I and hence has an arrow to v or is in G− I and
hence has a back arrow to v, a contradiction.

An acylic oriented graph is plainly kernel-perfect, so Theorem 9

generalizes Theorem 8. But this is not the only possible generaliza-
tion of acylic that works, in the Combinatorial nullstellensatz chapter
we’ll find another such generalization.

Question 1. Lemma 1 says that if we take a graph G with an independent
set I and direct all the edges of G − I both ways and the edges between
I and V(G − I) arbitrarily, we get a kernel-perfect superoriented graph.
Can we classify the pairs (G, F) where G is a graph and F ⊆ E(G) such
that every superorientation of G in which all edges in F are bidirected are
kernel-perfect?

Exercise 4. Show that if G is a graph and F ⊆ E(G), then every supero-
rientation of G in which G− F is acyclic and all edges in F are bidirected is
kernel-perfect.

Exercise 5. Show that if G is a graph and each odd cycle of G contains at
least two edges in F ⊆ E(G), then every superorientation of G in which all
edges in F are bidirected is kernel-perfect.

Coloring with prescribed list sizes

Suppose we are attempting to k-color a graph G and have already
k-colored G[S] for some S ⊂ V(G). If L is the list assignment of
remaining permissible colors on G − S, then we don’t really know
much about L, except that |L(v)| ≥ k− |N(v) ∩ S| for all S ⊆ V(G).
So, we really want to know that G − S is colorable from every list
assignment of that size.

Definition 1. For a graph G, a G-numbering is a function f : V(G)→ Z

such that f (v) ≤ dG(v) + 1 for all v ∈ V(G).

Lemma 2. If f is a G-numbering and H is an induced subgraph of G,
then fH : V(H) → Z given by fH(v) := f (v) − ‖v, G− H‖ is an
H-numbering.
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Proof. For v ∈ V(H),

fH(v) = f (v)− ‖v, G− H‖
≤ dG(v) + 1− ‖v, G− H‖
= dG(v) + 1− (dG(v)− dH(v))

= dH(v) + 1.

Definition 2. Let G be a graph and f a G-numbering. For a nonempty
induced subgraph H of G, we say that G is f -reducible to H if H is fH-
choosable. If G is not f -reducible to any nonempty induced subgraph, then
G is f -irreducible.

Lemma 3. If G is f -irreducible, then f (v) ≤ dG(v) for all v ∈ V(G). In
particular, 2 ‖G‖ ≥ f (V(G)).

Proof. If there is v ∈ V(G) with f (v) > dG(v), then G is f -reducible
to G [{v}].

A natural next question is what happens when f (V(G)) = 2 ‖G‖,
can G be f -irreducible in this case? The examples in Figure [insert
me] show that the answer is yes. We will understand the case of
equality completely in the Kernel magic chapter using a tool that
improves Lemma 3 in terms of the “maximum independent cover
number”.

Historical notes

Figure 12: The Petersen graph.



List coloring complete graphs

The following gives a sufficient condition for a graph G to be L-
colorable that is extremely useful in many different contexts. Since
any coloring of Kr must use r colors, this condition is also necessary
when G is complete.

Lemma 4. If L is a list assignment on a graph G such that |L(S)| ≥ |S| for
all S ⊆ V(G), then G is L-colorable.

Proof.

Hall’s theorem can be expressed in many forms, here is a more
standard way that is readily seen to be equivalent to Lemma 4. A
transversal in a collection of finite sets {Ai}i∈[k] is a set X ⊆ ⋃

i∈[k] Ai

with |X| = k such that |X ∩ Ai| = 1 for all i ∈ [k]. Equivalently, X
is formed by picking one element from each Ai where the chosen
elements are pairwise distinct.

Hall’s theorem. {Ai}i∈[k] has a transversal just in case |
⋃

i∈I Ai| ≥ |I| for
all I ⊆ [k].

Corollary 1. If
∣∣∣⋃i∈[k] Ai

∣∣∣ ≥ k, then there is nonempty I ⊆ [k] such that
{Ai}i∈I has a transversal X where X ∩ Ai = ∅ for all i ∈ [k] \ I.

Proof.



Kernel magic

Definition 3. The maximum independent cover number of a graph G is
the maximum mic(G) of ‖I, V(G) \ I‖ over all independent sets I of G.

Lemma 5. If G is f -irreducible, then 2 ‖G‖ > f (V(G)) + mic(G)− |G|.

Brooks’ theorem for list coloring

Triangle-free graphs

Historical notes



Combinatorial nullstellensatz

Figure 13: Hilbert had good taste in
hats.

Fix an arbitrary field F. We write fk1,...,kn for the coefficient of
xk1

1 · · · x
kn
n in the polynomial f ∈ F[x1, . . . , xn].

Lemma 6. Suppose f ∈ F[x1, . . . , xn] and k1, . . . , kn ∈N with ∑i∈[n] ki =

deg( f ). If fk1,...,kn 6= 0, then for any A1, . . . , An ⊆ F with |Ai| ≥ ki + 1,
there exists (a1, . . . , an) ∈ A1 × · · · × An with f (a1, . . . , an) 6= 0.

Proof. Suppose the result is false and choose f ∈ F[x1, . . . , xn] for
which it fails minimizing deg( f ). Then deg( f ) ≥ 2 and we have
k1, . . . , kn ∈ N with ∑i∈[n] ki = deg( f ) and A1, . . . , An ⊆ F with
|Ai| ≥ ki + 1 such that f (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ A1 ×
· · · × An. By symmetry, we may assume that k1 > 0. Fix a ∈ A1 and
divide f by x1 − a to get f = (x1 − a)Q + R where the degree of
x1 in R is zero. Then the coefficient of xk1−1

1 xk2
2 · · · x

kn
n in Q must be

non-zero and deg(Q) < deg( f ). So, by minimality of deg( f ) there is
(a1, . . . , an) ∈ (A1 \ {a})× · · · × An such that Q(a1, . . . , an) 6= 0. Since
0 = f (a1, . . . , an) = (a1 − a)Q(a1, . . . , an) + R(a1, . . . , an) we must
have R(a1, . . . , an) 6= 0. But x1 has degree zero in R, so R(a, . . . , an) =

R(a1, . . . , an) 6= 0. Finally, this means that f (a, . . . , an) = (a −
a)Q(a, . . . , an) + R(a, . . . , an) 6= 0, a contradiction.

The graph polynomial

Let G be a loopless multigraph with vertex set V := {x1, . . . , xn} and
edge multiset E. The graph polynomial of G is

pG(x1, . . . , xn) := ∏
{xi ,xj}∈E

i<j

(xi − xj).

To each orientation ~G of G, there is a corresponding monomial
m~G(x1, . . . , xn) given by choosing either xi or −xj from each fac-
tor (xi − xj) according to ~G. Precisely, given an orientation ~G of G
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with edge multiset ~E, put

m~G(x1, . . . , xn) :=

 ∏
(xi ,xj)∈~E

i<j

xi


 ∏

(xj ,xi)∈~E
i<j

−xj

 .

Then pG(x1, . . . , xn) = ∑~G m~G(x1, . . . , xn), where the sum is over all
orientations ~G of G.

Each m~G(x1, . . . , xn) has coefficient either 1 or −1. We are inte-

rested in collecting up all monomials of the form xk1
1 · · · x

kn
n . Let

DEk1,...,kn(G) be the orientations of G where m~G(x1, . . . , xn) =

xk1
1 · · · x

kn
n and DOk1,...,kn(G) the orientations of G where m~G(x1, . . . , xn) =

−xk1
1 · · · x

kn
n . Write pk1,...,kn(G) for the coefficient of xk1

1 · · · x
kn
n in

pG(x1, . . . , xn). Then we have

pk1,...,kn(G) = |DEk1,...,kn(G)| − |DOk1,...,kn(G)|.

This gives a combinatorial interpretation of the coefficients of pG, but
unfortunately it quantifies over all orientations of G. For applying the
Combinatorial Nullstellensatz, it is useful to have a single orientation
of G as a certificate that pk1,...,kn(G) 6= 0. This can be achieved in
terms of Eulerian subgraphs. A digraph is Eulerian if the in-degree
and out-degree are equal at every vertex. Let EE(~G) be the spanning
Eulerian subgraphs of ~G with an even number of edges and let
EO(~G) be the spanning Eulerian subgraphs of ~G with an odd number
of edges.

If ~G is an orientation of G, then we have∣∣∣|EE(~G)| − |EO(~G)|
∣∣∣ = ∣∣∣∣|DEd+~G (x1),...,d+~G (xn)

(G)| − |DOd+~G (x1),...,d+~G (xn)
(G)|

∣∣∣∣ .

Proof. For D ∈ DEd+~G (x1),...,d+~G (xn)
(G) ∪ DOd+~G (x1),...,d+~G (xn)

(G), let ~G⊕ D

be the spanning subgraph of ~G with edge set{
(xi, xj) ∈ E(~G) : (xj, xi) ∈ E(D)

}
.

Then ~G⊕ D is Eulerian since all vertices have the same out-degree in
~G and D. If ~G is even, this gives bijections between DEd+~G (x1),...,d+~G (xn)

(G)

and EE(~G) as well as between DOd+~G (x1),...,d+~G (xn)
(G) and EO(~G).

When ~G is odd, the bijections are between DEd+~G (x1),...,d+~G (xn)
(G) and

EO(~G) as well as between DOd+~G (x1),...,d+~G (xn)
(G) and EE(~G). In either

case, we have∣∣∣|EE(~G)| − |EO(~G)|
∣∣∣ = ∣∣∣∣|DEd+~G (x1),...,d+~G (xn)

(G)| − |DOd+~G (x1),...,d+~G (xn)
(G)|

∣∣∣∣ .
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Therefore, if ~G is an orientation of G with d+~G (xi) = ki for all
i ∈ [n], then

|pk1,...,kn(G)| =
∣∣∣|EE(~G)| − |EO(~G)|

∣∣∣ .

A coefficient formula

Lemma 7. Suppose f ∈ F[x1, . . . , xn] and k1, . . . , kn ∈N with ∑i∈[n] ki =

deg( f ). For any A1, . . . , An ⊆ F with |Ai| = ki + 1, we have

fk1,...,kn = ∑
(a1,...,an)∈A1×···×An

f (a1, . . . , an)

N(a1, . . . , an)
,

where
N(a1, . . . , an) := ∏

i∈[n]
∏

b∈Ai\{ai}
(ai − b).

Proof. Let f ∈ F[x1, . . . , xn] and k1, . . . , kn ∈ N with ∑i∈[n] ki =

deg( f ). Also, let A1, . . . , An ⊆ F with |Ai| = ki + 1. For each
(a1, . . . , an) ∈ A1 × · · · × An, let χ(a1,...,an) be the characteristic
function of the set {(a1, . . . , an)}; that is χ(a1,...,an) : A1 × · · · × An → F

with χ(a1,...,an)(x1, . . . , xn) = 1 when (x1, . . . , xn) = (a1, . . . , an) and
χ(a1,...,an)(x1, . . . , xn) = 0 otherwise. Consider the function

F = ∑
(a1,...,an)∈A1×···×An

f (a1, . . . , an)χ(a1,...,an).

Then F agrees with f on all of A1 × · · · × An and hence f − F is zero
on A1 × · · · × An. We will apply the Combinatorial Nullstellensatz to
f − F to conclude that ( f − F)k1,...,kn = 0 and hence fk1,...,kn = Fk1,...,kn

where Fk1,...,kn will turn out to be our desired sum. To apply the Com-
binatorial Nullstellensatz, we need to represent F as a polynomial, we
can do so by representing each χ(a1,...,an) as a polynomial as follows.
For (a1, . . . , an) ∈ A1 × · · · × An, let

N(a1, . . . , an) := ∏
i∈[n]

∏
b∈Ai\{ai}

(ai − b).

Then it is readily verified that

χ(a1,...,an)(x1, . . . , xn) =
∏i∈[n] ∏b∈Ai\{ai}(xi − b)

N(a1, . . . , an)
.

Using this to define F we get

F(x1, . . . , xn) = ∑
(a1,...,an)∈A1×···×An

f (a1, . . . , an)
∏i∈[n] ∏b∈Ai\{ai}(xi − b)

N(a1, . . . , an)
.

Now deg(F) = ∑i∈[n](|Ai| − 1) = ∑i∈[n] ki = deg( f ). Since f − F is
zero on A1 × · · · × An, applying the Combinatorial Nullstellensatz to
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f − F with k1, . . . , kn and sets A1, . . . , An gives ( f − F)k1,...,kn = 0 and
hence

fk1,...,kn = Fk1,...,kn = ∑
(a1,...,an)∈A1×···×An

f (a1, . . . , an)

N(a1, . . . , an)
.

Uniquely colorable graphs

Adding edges to simplify coefficient computation

AT preserving operations

Historical notes



Independent transversals

Let H be a graph and V1, . . . , Vr a partition of V(H). An independent
transversal of V1, . . . , Vr is an independent set I in H with I ∩ Vi 6= ∅
for all i ∈ [r].

Corollary 2. Let H be a graph and V1, . . . , Vr a partition of V(H). If |Vi| ≥
2∆(H) for each i ∈ [r], then V1, . . . , Vr has an independent transversal.

With a more technical statement, we can account for non-uniform
|Vi|. Corollary 2 follows from the case when t = 0 and S = ∅.

Theorem 11. Let H be a graph and V1 ∪ · · · ∪ Vr a partition of V(H).
Suppose there exists t ≥ 1 such that for each i ∈ [r] and each v ∈ Vi

we have d(v) ≤ min {t, |Vi| − t}. For any S ⊆ V(H) with |S| <
min {|V1| , . . . , |Vr|}, there is an independent transversal I of V1, . . . , Vr

with I ∩ S = ∅.

In fact, an even more general statement holds and the strengthe-
ned induction hypothesis simplifies the proof. First we need some
definitions and notation. Write f : A � B for a surjective (onto)
function from A to B. Let G be a graph. A set of vertices S ⊆ V(G)

dominates G if each v ∈ V(G) \ S has a neighbor in S. A set of vertices
S ⊆ V(G) totally dominates G if each v ∈ V(G) has a neighbor in S.
A set of edges M ⊆ E(G) is a matching of G if e1 ∩ e2 = ∅ for all
e1, e2 ∈ M. A matching is induced if ‖G[e1 ∪ e2]‖ = 2 for all e1, e2 ∈ M.
For a k-coloring π : V(G) � [k] of G and a subgraph H of G we say
that I := {x1, . . . , xk} ⊆ V(H) is an H-independent transversal of π if
I is an independent set in H and π(xi) = i for all i ∈ [k].

Lemma 8. Let G be a graph and π : V(G) � [k] a proper k-coloring of G.
Suppose that π has no G-independent transversal, but for every e ∈ E(G),
π has a (G− e)-independent transversal. Then for every xy ∈ E(G) there
is J ⊆ [k] with π(x), π(y) ∈ J and an induced matching M of G

[
π−1(J)

]
with xy ∈ M such that:

1.
⋃

M totally dominates G
[
π−1(J)

]
,

2. the multigraph with vertex set J and an edge between a, b ∈ J for each
uv ∈ M with π(u) = a and π(v) = b is a (simple) tree. In particular
|M| = |J| − 1.
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Proof. Suppose the lemma is false and choose a counterexample
G with π : V(G) � [k] so as to minimize k. Let xy ∈ E(G). By
assumption π has a (G− xy)-independent transversal T. Note that we
must have x, y ∈ T lest T be a G-independent transversal of π.

By symmetry we may assume that π(x) = k− 1 and π(y) = k. Put
X := π−1(k − 1), Y := π−1(k) and H := G − N({x, y})− E(X, Y).
Define ζ : V(H) � [k− 1] by ζ(v) := min {π(v), k− 1}. Note
that since x, y ∈ T, we have

∣∣ζ−1(i)
∣∣ ≥ 1 for each i ∈ [k− 2]. Put

Z := ζ−1(k − 1). Then Z 6= ∅ for otherwise M := {xy} totally
dominates G[X ∪Y] giving a contradiction.

Suppose ζ has an H-independent transversal S. Then we have
z ∈ S ∩ Z and by symmetry we may assume z ∈ X. But then S ∪ {y} is
a G-independent transversal of π, a contradiction.

Let H′ ⊆ H be a minimal spanning subgraph such that ζ has
no H′-independent transversal. Now d(z) ≥ 1 for each z ∈ Z for
otherwise T − {x, y} ∪ {z} would be an H′-independent transversal
of ζ. Pick zw ∈ E(H′). By minimality of k, we have J ⊆ [k− 1]
with ζ(z), ζ(w) ∈ J and an induced matching M of H′

[
ζ−1(J)

]
with

zw ∈ M such that

1.
⋃

M totally dominates H′
[
ζ−1(J)

]
,

2. the multigraph with vertex set J and an edge between a, b ∈ J for
each uv ∈ M with ζ(u) = a and ζ(v) = b is a (simple) tree.

Put M′ := M ∪ {xy} and J′ := J ∪ {k}. Since H′ is a spanning
subgraph of H,

⋃
M totally dominates H

[
ζ−1(J)

]
and hence

⋃
M′

totally dominates G
[
π−1(J′)

]
. Moreover, the multigraph in (2) for M′

and J′ is formed by splitting the vertex k− 1 ∈ J into two vertices and
adding an edge between them and hence it is still a tree. This final
contradiction proves the lemma.

Proof of Theorem 11. Suppose the lemma fails for such an S ⊆ V(H).
Put H′ := H − S and let V′1, . . . , V′r be the induced partition of H′.
Then there is no independent transversal of V′1, . . . , V′r and

∣∣V′i ∣∣ ≥ 1
for each i ∈ [r]. Create a graph Q by removing edges from H′ until it
is edge minimal without an independent transversal. Pick yz ∈ E(Q)

and apply Lemma 8 on yz with the induced partition to get the
guaranteed J ⊆ [r] and the tree T with vertex set J and an edge
between a, b ∈ J for each uv ∈ M with u ∈ V′a and v ∈ V′b . By
our condition, for each uv ∈ E(Vi, Vj), we have |NH(u) ∪ NH(v)| ≤
min

{
|Vi| ,

∣∣Vj
∣∣}.

Choose a root c of T. Traversing T in leaf-first order and for each
leaf a with parent b picking |Va| from min {|Va|, |Vb|} we get that the
vertices in M together dominate at most ∑i∈J\{c} |Vi| vertices in H.
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Since |S| < |Vc|, M cannot totally dominate
⋃

i∈J V′i , a contradiction.

The condition on S can be weakened slightly. Suppose we have
ordered the Vi so that |V1| ≤ |V2| ≤ · · · ≤ |Vr|. Then for any
S ⊆ V(H) with |S| < |V2| such that V1 6⊆ S, there is an independent
transversal I of V1, . . . , Vr with I ∩ S = ∅. The proof is the same except
when we choose our root c, choose it so as to maximize |Vc|. Since
|J| ≥ 2, we get |Vc| ≥ |V2| > |S| at the end.

Lists with low degree color graphs

Hitting all maximum cliques

Theorem 12. If G is a graph with ω(G) > 2
3 (∆(G) + 1), then G contains

an independent set I such that ω(G− I) < ω(G).

Let G be a graph. For a collection of cliques Q in G, let XQ be the
intersection graph of Q; that is, the vertex set of XQ is Q and there
is an edge between Q1, Q2 ∈ Q just in case Q1 6= Q2 and Q1 and Q2

intersect. When Q is a collection of maximum cliques, we get a lot of
information about XQ.

Lemma 9. If G is a graph and Q is a non-empty collection of maximum
cliques in G, then

∣∣∣⋃Q∣∣∣+ ∣∣∣⋂Q∣∣∣ ≥ 2ω(G). (1)

Proof. Suppose there is a graph G and collection Q of maximum
cliques in G for which (1) fails. Then we may pick such a Q with |Q|
as small as possible. Put r := |Q| and suppose Q = {Q1, . . . , Qr}.
Consider the set

W := (Q1 ∩
r⋃

i=2

Qi) ∪
r⋂

i=2

Qi.
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Plainly, W is a clique. Thus

ω(G) ≥ |W|

=

∣∣∣∣∣(Q1 ∩
r⋃

i=2

Qi) ∪
r⋂

i=2

Qi

∣∣∣∣∣
=

∣∣∣∣∣Q1 ∩
r⋃

i=2

Qi

∣∣∣∣∣+
∣∣∣∣∣ r⋂
i=2

Qi

∣∣∣∣∣−
∣∣∣∣∣ r⋂
i=1

Qi ∩
r⋃

i=2

Qi

∣∣∣∣∣
= |Q1|+

∣∣∣∣∣ r⋃
i=2

Qi

∣∣∣∣∣−
∣∣∣∣∣ r⋃
i=1

Qi

∣∣∣∣∣+
∣∣∣∣∣ r⋂
i=2

Qi

∣∣∣∣∣−
∣∣∣∣∣ r⋂
i=1

Qi

∣∣∣∣∣
= ω(G) +

∣∣∣∣∣ r⋃
i=2

Qi

∣∣∣∣∣+
∣∣∣∣∣ r⋂
i=2

Qi

∣∣∣∣∣−
∣∣∣∣∣ r⋃
i=1

Qi

∣∣∣∣∣−
∣∣∣∣∣ r⋂
i=1

Qi

∣∣∣∣∣
≥ ω(G) + 2ω(G)−

(∣∣∣∣∣ r⋃
i=1

Qi

∣∣∣∣∣+
∣∣∣∣∣ r⋂
i=1

Qi

∣∣∣∣∣
)

> ω(G),

a contradiction. Here the final inequality comes from the failure of
(1) and the penultimate inequality comes from minimality of |Q| by
applying the lemma to {Q2, . . . , Qr}.

Lemma 10. If Q is a non-empty collection of maximum cliques in a graph G
with ω(G) > 2

3 (∆(G) + 1) such that XQ is connected, then ∩Q 6= ∅.

Proof. Suppose there is a graph G with ω(G) > 2
3 (∆(G) + 1) and

collection Q of maximum cliques in G for which XQ is connected and
∩Q = ∅. Then we may pick such a Q with |Q| as small as possible.
Then |Q| ≥ 2 since ∩Q = ∅. Let A be a noncutvertex in XQ and
B a neighbor of A. Put Z := Q \ {A}. Then Z is non-empty, XZ
is connected and |Z| < |Q|. Hence, by minimality of |Q|, we may
apply the lemma to Z which gives ∩Z 6= ∅. Since a vertex in ∩Z is
adjacent to all other vertices in ∪Z , we conclude |∪Z| ≤ ∆(G) + 1. By
assumption, ∩Q = ∅, so

|∩Q|+ |∪Q| ≤ 0 + (|∪Z|+ |A \ B|)
≤ (∆(G) + 1) + (∆(G) + 1−ω(G))

= 2(∆(G) + 1)−ω(G)

< 2ω(G),

contradicting Lemma 9. Here the final inequality holds because
ω(G) > 2

3 (∆(G) + 1).

Proof of Theorem 12. Let Q be all the maximum cliques in G and
Q1, . . . ,Qk the vertex sets of the components of XQ. For i ∈ [k], put
Fi := ∩Qi and Di := ∪Qi. Since the components of XQ satisfy the
hypotheses of Lemma 10, we have Fi 6= ∅ for all i ∈ [k].
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Put t := 1
3 (∆(G) + 1). Fix i ∈ [k]. Each v ∈ Fi has at most

dG(v) + 1− |Di| ≤ ∆(G) + 1− |Di|
≤ ∆(G) + 1−ω(G)

< t,

neighbors in the rest of the Fj.
Applying Lemma 9 gives |Fi|+ |Di| ≥ 2ω(G) > 4

3 (∆(G) + 1). Thus
each v ∈ Fi also has at most

dG(v) + 1− |Di| ≤ ∆(G) + 1− |Di|

< ∆(G) + 1−
(

4
3
(∆(G) + 1)− |Fi|

)
= |Fi| − t,

neighbors in the rest of the Fj.
Consider the subgraph H of G with vertex set

⋃
j∈[k] Fj formed by

making each Fj edgeless. Applying Theorem 11 to H with partition
F1, . . . , Fk and S = ∅ gives an independent set I intersecting each Fi

and hence every maximum clique in G. So, we have ω(G− I) < ω(G)

as desired.

Historical notes



Vertex partitions and shuffling
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Coloring edges

It is also useful to consider coloring the edges of a graph so that
incident edges receive different colors. This appears to be at odds
with our previous claim that this book was only about coloring
vertices of graph; fortunately, edge coloring is just a special case of
vertex coloring. If G is a graph, the line graph of G, written L(G) is
the graph with vertex set E(G) where two edges of G are adjacent in
L(G) if they are incident in G. Coloring the edges of G is equivalent
to coloring the vertices of L(G).

For graphs with maximum degree zero (that is, no edges at all),
we can get by with zero colors. With just one color we can edge color
any graph with maximum degree at most one. We will definitely
always need at least ∆(G) colors to edge color a graph G. Could we
be so fortunate that the pattern continues and we can edge color
any graph G with only ∆(G)-colors? Not quite, but we can do so
for bipartite (2-colorable) graphs. A graph is k-edge-colorable if we
can color its edges with (at most) k colors such that incident edges
receive different colors. A color c us used at a vertex v of G if an edge
incident to v in G is colored with c. Otherwise, c is available at v. A
path in G is a sequence of pairwise distinct vertices x1x2 · · · xk such
that xi is adjacent to xi+1 for i ∈ [k− 1].

Theorem 13. If G is a bipartite graph, then G is ∆(G)-edge-colorable.

Proof. Suppose there is a graph G that is not ∆(G)-edge-colorable.
Then we may pick such a graph G with ‖G‖ as small as possible.
Now ‖G‖ > 0, since we can surely edge color a graph with zero
edges using zero colors. Let xy be an edge in G. Since ‖G− xy‖ <

‖G‖, applying the theorem to G− xy gives an edge coloring of G− xy
using at most ∆(G) colors. Now each of x and y are incident to at
most ∆(G)− 1 edges in G− xy and G has no ∆(G)-edge-coloring, so
there is a color red available at x and a different color blue available
at y. There is a unique maximal path P starting at x with edges
alternately colored blue and red. If P does not end at y, then we
get a ∆(G)-edge-coloring of G by swapping the colors red and blue
along P and coloring xy blue, a contradiction. Since P ends at y and
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alternates between red and blue, it has even length. But then P + xy is
an odd cycle in G, violating Theorem 1.

It may come as a surpise that even though we might need more
than ∆(G) colors to edge color a graph G, we will only ever need
at most one extra color. For bipartite graphs we were able to repair
an almost correct coloring by swapping colors along a path because
we had control over where this path ended. In the general case we
don’t have the same control over a path between two vertices, but we
can exert some measure of control over paths leaving and entering
a larger structure. The larger structure we use here is the whole
neighborhood of a vertex.

Theorem 14. If G is a graph, then G is (∆(G) + 1)-edge-colorable.

Proof. Suppose there is a graph G that is not (∆(G) + 1)-edge-
colorable. Then we may pick such a graph G with |G| as small as
possible. Now |G| > 0, since we can surely edge color a graph with
zero vertices using at most one color. Let x be a vertex in G. Call
S ⊆ N(x) acceptable for an edge coloring π of G− x if {π̄(v)}v∈S has a
transversal TS such that |π̄(v) \ TS| ≥ 2 for all v ∈ N(x) \ S.

Since |G− x| < |G|, applying the theorem to G− x gives an edge
coloring ζ of G− x using at most ∆(G) + 1 colors. Note that the empty
set is acceptable for ζ. So, we may choose an edge coloring π of G− x
using at most ∆(G) + 1 colors and S ⊆ N(x) that is acceptable for π

so as to maximize |S| and subject to that to maximize |CS|, where

CS :=
⋃

v∈N(x)\S
π̄(v) \ TS.

Now S 6= N(x) for otherwise we can extend π to all of G using TS.
Suppose |CS| ≥ |N(x) \ S|. Then, by Corollary 1, there is nonempty
A ⊆ N(x) \ S such that {π̄(v) \ TS}v∈A has a transversal X where
X ∩ π̄(v) = ∅ for all v ∈ N(x) \ (S ∪ A). But then S ∪ A is acceptable
for π, contradicting maximality of |S|.

So, |CS| < |N(x) \ S| and hence |CS ∪ TS| < |N(x)| ≤ ∆(G). Pick
τ ∈ [∆(G)] \ (CS ∪ TS). Since S is acceptable for π, |π̄(v) \ TS| ≥ 2
for all v ∈ N(x) \ S. Hence there are v1, v2, v3 ∈ N(x) \ S and γ ∈ CS

such that γ ∈ π̄(vi) \ TS for all i ∈ [3]. There is a unique maximal
path P starting at v1 with edges alternately colored τ and γ. Let ζ be
the edge coloring made from π by swapping τ and γ on P. Then ζ

violates the maximality of |CS| since S is acceptable for ζ and⋃
v∈N(x)\S

ζ̄(v) \ TS = {τ} ∪ CS.
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hardness

We now know that every graph G can be edge colored with either
∆(G) or ∆(G) + 1 colors. So, edge coloring is basically trivial, right?
Furtunately, no it isn’t, the collection of graphs requiring ∆(G) +

1 colors is very rich. Another way to say this, is that it is a hard
problem to decide whether or not edge coloring a given graph G
requires ∆(G) + 1 colors.

Theorem 15. Deciding whether or not edge coloring a given graph G
requires ∆(G) + 1 colors is hard supposing other things we think are hard are
actually hard.

Historical notes

This is not Vizing’s proof.



Maximum flows versus minimum cuts

Let V be a finite set. A network on V is a function f : V × V → Q≥0.
For a network f and X, Y ⊆ V, put

|X, Y| f := ∑
(x,y)∈X×Y

f (x, y).

If f and g are networks on V, then f ≤ g just in case f (u, v) ≤ g(u, v)
for all (u, v) ∈ V ×V. Let s, t ∈ V be two distinguished vertices. The
capacity of a network f , written | f |, is the minimum of |X, V \ X| f
over all X ⊆ V \ {t} with s ∈ X.

We call a network f a flow if |{v} , V| f = |V, {v}| f for all v ∈
V \ {s, t}. The value of a flow f is ‖ f ‖ := |{s} , V| f − |V, {s}| f .

Lemma 11. If f is a flow, then ‖ f ‖ = |X, V| f − |V, X| f for every X ⊆
V \ {t} with s ∈ X.

Proof.

|X, V| f − |V, X| f = |{s} , V| f + |X \ {s} , V| f − |V, {s}| f − |V, X \ {s}| f
= ‖ f ‖+ |X \ {s} , V| f − |V, X \ {s}| f
= ‖ f ‖ .

Lemma 12. If f ≤ g where f is a flow on V and g is a network on V, then
‖ f ‖ ≤ |g|.

Proof. Pick X ⊆ V \ {t} with s ∈ X such that |X, V \ X|g = |g|. Then,
by Lemma 11,

‖ f ‖ = |X, V| f − |V, X| f
= |X, V \ X| f + |X, X| f − |V \ X, X| f − |X, X| f
= |X, V \ X| f − |V \ X, X| f
≤ |X, V \ X|g
= |g| .
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Theorem 16. If g is a network on V, then there exists a flow f on V with
f ≤ g such that ‖ f ‖ = |g|. Moreover, if g takes only integer values, then
the flow f can be chosen to as well.

Proof. Let g be a network on V and choose a flow f ≤ g maximizing
‖ f ‖. By Lemma 12, ‖ f ‖ ≤ |g|. Let X ⊆ V be the set of all v ∈ V for
which there is a sequence of distinct vertices s = x0, x1, x2, . . . , xn = v
such that for each 0 ≤ i < n, either f (xi, xi+1) < g(xi, xi+1) or
f (xi+1, xi) > 0. Plainly s ∈ X.

Suppose t ∈ X and let s = x0, x1, x2, . . . , xn = t be a sequence
witnessing this fact. Choose ε > 0 such that for each 0 ≤ i < n, either
f (xi, xi+1) ≤ g(xi, xi+1)− ε or f (xi+1, xi) ≥ ε. Modify f to get f ′ by
setting f ′(xi, xi+1) = f (xi, xi+1) + ε if f (xi, xi+1) ≤ g(xi, xi+1)− ε and
f ′(xi+1, xi) = f (xi+1, xi)− ε otherwise. Then f ′ is a flow with f ′ ≤ g
and ‖ f ′‖ > ‖ f ‖, violating maximality of ‖ f ‖.

So, t 6∈ X. Since v ∈ V \ X is not in X, we must have f (x, v) =

g(x, v) and f (v, x) = 0 for all x ∈ X. Hence

‖ f ‖ = |X, V| f − |V, X| f
= |X, X| f + |X, V \ X| f − |X, X| f − |V \ X, X| f
= |X, V \ X| f − |V \ X, X| f
= |X, V \ X|g
≥ |g| .

Hall’s theorem

As our first application of Theorem 16, we give a sufficient condition
for a graph G to be L-colorable. This condition is also necessary
when G is complete.

Lemma 13. If L is a list assignment on a graph G such that |L(S)| ≥ |S|
for all S ⊆ V(G), then G is L-colorable.

Proof. Let L be a list assignment on a graph G such that |L(S)| ≥ |S|
for all S ⊆ V(G). We define a network g on the set Z := {s, t} ∪
V(G) ∪ L(V(G)) by

g(a, b) :=


1 a = s and b ∈ V(G)

1 a ∈ V(G) and b ∈ L(a),

1 a ∈ L(V(G)) and b = t,

0 otherwise.
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First, we compute the capacity of g. Let X ⊆ Z \ {t} with s ∈ X. If
P = X ∩ L(V(G)) and Q = X ∩V(G), then

|X, Z \ X|g = |P, Z \ X|g + |Q, Z \ X|g + |{s} , Z \ X|g
= |P|+ |Q, Z \ X|g + |V(G) \Q|

≥ |P|+ |L(Q) \ P|+ |V(G) \Q|
≥ |L(Q)|+ |G| − |Q|
≥ |G| .

The final inequality holds due to our assumption |L(S)| ≥ |S| for all
S ⊆ V(G). Hence |g| ≥ |G|. By Theorem 16, there is a flow f on Z
with f ≤ g such that ‖ f ‖ = |g|. But then

|{s} , V(G)| f = |{s} , Z| f
= |{s} , Z| f − |Z, {s}| f
= ‖ f ‖
= |g|
≥ |G| .

Hence f (s, v) = 1 for all v ∈ V(G). Since f is a flow, for each
v ∈ V(G), there is cv ∈ L(V(G)) such that g(v, cv) ≥ f (v, cv) = 1
and hence cv ∈ L(v). Coloring each v ∈ V(G) with cv gives an
L-coloring of G since if cv = cw, the fact that f is a flow implies
|Z, {cv}| f = |{cv} , Z| f = f (cv, t) = 1 and hence v = w.

Hall’s theorem can be expressed in many forms, here is a more
standard way that is readily seen to be equivalent to Lemma 13. A
transversal in a collection of finite sets {Ai}i∈[k] is a set X ⊆ ⋃

i∈[k] Ai

with |X| = k such that |X ∩ Ai| = 1 for all i ∈ [k].

Hall’s theorem. {Ai}i∈[k] has a transversal just in case |
⋃

i∈I Ai| ≥ |I| for
all I ⊆ [k].

Orientations with prescribed degrees

If G is an oriented graph, the in-degree of a vertex v ∈ V(G), written
d−(v), is the number of arrows pointing into v. For h : A → N and
S ⊆ A, put h(S) := ∑x∈S h(x).

Lemma 14. If G is a graph and h : V(G) → N, then G has an orientation
such that d−(v) ≥ h(v) for all v ∈ V(G) just in case

‖S‖+ ‖S, V(G) \ S‖ ≥ h(S), (2)

for every S ⊆ V(G).
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Proof. An easy computation shows that if G has an orientation with
d−(v) ≥ h(v) for all v ∈ V(G), then (1) holds.

For the other implication, we define a network g on the set Z :=
{s, t} ∪V(G) ∪ E(G) by

g(a, b) :=


h(b) a = s and b ∈ V(G)

1 a ∈ V(G) and b ∈ E(a),

1 a ∈ E(G) and b = t,

0 otherwise.

First, we compute the capacity of g. Let X ⊆ Z \ {t} with s ∈ X. If
P = X ∩ E(G) and Q = X ∩V(G), then

|X, Z \ X|g = |P, Z \ X|g + |Q, Z \ X|g + |{s} , Z \ X|g
= |P|+ |Q, Z \ X|g + h (V(G) \Q)

≥ |P|+ 2 ‖Q‖+ ‖Q, V(G) \Q‖ − 2 |E(Q) ∩ P| − |E(Q, V(G) \Q) ∩ P|+ h (V(G) \Q)

≥ |P|+ 2 ‖Q‖+ ‖Q, V(G) \Q‖ − ‖Q‖ − |P|+ h (V(G) \Q)

= ‖Q‖+ ‖Q, V(G) \Q‖+ h (V(G) \Q)

≥ h(Q) + h (V(G) \Q)

= h(V(G)).

The penultimate inequality holds due to (1). Hence |g| ≥ h(V(G)).
By Theorem 16, there is a flow f on Z with f ≤ g such that ‖ f ‖ = |g|.
But then

|{s} , V(G)| f = |{s} , Z| f
= |{s} , Z| f − |Z, {s}| f
= ‖ f ‖
= |g|
≥ h(V(G)).

Hence f (s, v) = h(v) for all v ∈ V(G). Since f is a flow, for each
v ∈ V(G), there is I(v) ⊆ E(G) with |I(v)| = h(v) such that f (v, e) =
1 for all e ∈ I(v). Now I(v) ∩ I(w) = ∅ for different v, w ∈ V(G)

since otherwise, e ∈ I(v) ∩ I(w) would have f (e, t) ≥ 2 > g(e, t). So,
we can define our desired orientation of G by directing all edges in
I(v) into v for all v ∈ V(G) and then directing any unoriented edges
arbitrarily.

Exercise 6. Carry out the computation mentioned at the start of the proof of
Lemma 14.

The proofs of Lemma 13 and Lemma 14 look so similar we might
suspect there is some relation between the two lemmas.



maximum flows versus minimum cuts 33

Exercise 7. Show that Lemma 14 follows from Lemma 13. Hint: split each
b ∈ V(G) into h(b) copies of itself.

Exercise 8. Prove Lemma 13 without using flows.

Exercise 9. Give another proof of Lemma 14 by starting with an arbitrary
orientation and repeatedly reversing paths that “improve” the orientation.
Note the similarity to the proof of Theorem 16.

Historical notes


	Graphs
	Coloring vertices
	Basic estimates
	Brooks' theorem
	List coloring
	Coloring with prescribed list sizes
	Historical notes

	List coloring complete graphs
	Kernel magic
	Brooks' theorem for list coloring
	Triangle-free graphs
	Historical notes

	Combinatorial nullstellensatz
	The graph polynomial
	A coefficient formula
	Uniquely colorable graphs
	Adding edges to simplify coefficient computation
	AT preserving operations
	Historical notes

	Independent transversals
	Lists with low degree color graphs
	Hitting all maximum cliques
	Historical notes

	Vertex partitions and shuffling
	Historical notes

	Coloring edges
	Historical notes

	Maximum flows versus minimum cuts
	Hall's theorem
	Orientations with prescribed degrees
	Historical notes


