LISTCOLORING WITHLARGE MAXIMUM DEGREE
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A PRISON CONJECTURE

Suppose you are a warden in a prison with eight
large cells. You need to put all the prisoners into
the cells, but to prevent fighting you cannot put a
pair of prisoners that have fought before into the
same cell. Each prisoner in the prison has fought
with at most nine other prisoners. Under what
conditions can you complete your task?

Conjecture 1 (Borodin and Kostochka 1977 [1]).
You can complete your task as long as there is no group
of nine prisoners who have mutually fought one an-
other.

This problem can be modeled by a graph
where the prisoners are the vertices and there
is an edge between each pair of prisoners who
have fought each other. The minimum number
of cells that can be used corresponds to the chro-
matic number x and the most experienced fighter
has fought with the maximum degree A others. A
group of prisoners who have mutually fought one
another form a cligue. In this parlance, the conjec-
ture says that a graph with A =9 has y < A -1
if it doesn’t contain a clique on A vertices. If true,
it follows (see [7], [9] and [5]) that the same result
holds for all A > 9. For A = §, the conjecture fails
due to the following example.

In 1999, Reed [12] proved the conjecture for
A > 10 using probabilistic methods. Using a
similar method, we prove the same result for list
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PICKY PRISONERS

Now suppose your prison has infinitely many
cells, but each prisoner has a list of the A — 1
cells he can occupy. When, for every possible as-
signment of lists to the prisoners, can you put the
prisoners into the cells so that each is in a cell on
his list and no former rivals are in the same cell?
This is the [list coloring problem and we write x;
for the minimum prisoner list size that will work.
In graph theory parlance the big conjecture here
says that a graph with A > 9 has y; < A — 1if it
doesn’t contain a clique on A vertices. We prove
this for very large A.

01015 has X1 <

Theorem 2. Every graph with A > 1
A — 11f it doesn’t contain a clique on A vertices.

PROCEED RANDOMLY

We analyze the following simple random process.
e put each prisoner into a randomly chosen
cell from his list
e send all prisoners who were put in a cell
with a former rival to the yard
We show that with nonzero probability it is possi-
ble to put the prisoners in the yard back into cells
in a way that works. It follows that there is at least
one way to complete the task.

SAFE PRISONERS

Suppose Atticus is a prisoner who was sent to the
yard after the random cell selection. If there are
two different cells which each contain at least two
of Atticus’ former rivals, then no matter how the
rest of the prisoners are put back in the cells, At-
ticus will have a legal cell available. Similarly, if
there are two different cells, neither of which are
on Atticus’ list, each containing one of Atticus’
former rivals, then a legal cell will always remain
for Atticus. If either of these two situations or a
combination of the two occur, then Atticus is safe.
We don’t need to worry about safe prisoners, they
can just hang out in the yard until we have placed
the rest.

A STRUCTURAL DECOMPOSITION

The prisoners in no big cliques can be shown to be
safe with very high probability. The prisoners in
big cliques need special care. Basically, we show
that each prisoner that is in a big clique is in ex-
actly one big clique. To prove the decomposition,
we use many small graphs that were proved to be
reducible configurations in [3].

HANDLING BIG CLIQUES

With the above structural decomposition, we may
proceed as follows. We show that with high prob-
ability each big clique has two safe prisoners in
the yard. By leaving these two prisoners in the
yard until the rest of the prisoners in their clique
are placed, each other prisoner will always have
a legal cell available.

FIVE BAD EVENTS

We’ve mentioned two bad events so far: a pris-
oner in no big clique that isn’t safe and a big
clique that doesn’t have two safe prisoners in the
yard. In fact, to get all the details right, there
are three other bad events our analysis uses. We
show that each of these events happens with low
probability. Since the events are not independent,
this is not enough to conclude that the probabil-
ity that none of the events happen is nonzero. To
reach this conclusion we apply the Lovasz Local
Lemma.

Lovasz Local Lemma. If there is a collection of
events each occuring with probability at most p such
that each event is independent of all but at most d oth-

1

ers and pd < 3, then the probability that none of the

events happen is nonzero.

FUTURE DIRECTIONS

If we add the assumption that none of the prison-
ers who have fought with A others have fought
with each other, then in the regular coloring case
we can complete our task when A > 6 so long as
there is no clique of A prisoners (see [4], [10], [8],

[11] and [6]). What of the same question for list
coloring?

The result proved here was independently
proved by Choi and Reed, our merged prootf im-

proving the bound on A to A > 10%° will appear
in [2].
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