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Abstract. We prove that if G is a vertex-critical graph with χ(G) ≥ ∆(G) + 1 − p ≥ 4

for some p ∈ N and ω(H(G)) ≤ χ(G)+1
p+1 − 2, then G = Kχ(G) or G = O5. Here H(G) is the

subgraph of G induced on the vertices of degree at least χ(G). This simplifies the proofs
and improves the results in the paper of Kostochka, Rabern and Stiebitz [8].

1. Introduction

Our notation follows Diestel [6] unless otherwise specified. The natural numbers include
zero; that is, N := {0, 1, 2, 3, . . .}. We also use the shorthand [k] := {1, 2, . . . , k}. The
complete graph on t vertices is indicated by Kt and the edgeless graph on t vertices by Et.
A vertex v ∈ V (G) is called universal in G if it is adjacent to every other vertex of G. We
write H(G) for the subgraph of G induced on the vertices of degree at least χ(G).

The classical theorem of Brooks [4] gives the necessary and sufficient conditions for a graph
G to be ∆(G)-colorable.

Theorem 1.1 (Brooks [4] 1941). If G is a graph with χ(G) ≥ ∆(G)+1 ≥ 4 then G contains
Kχ(G).

In [7] Kierstead and Kostochka investigated the same question with the Ore-degree θ(G)
in place of ∆(G).

Definition 1. The Ore-degree of an edge xy in a graph G is θ(xy) := d(x) + d(y). The
Ore-degree of a graph G is θ(G) := maxxy∈E(G) θ(xy).

Theorem 1.2 (Kierstead and Kostochka [7] 2010). If G is a graph with χ(G) ≥
⌊
θ(G)

2

⌋
+1 ≥

7 then G contains Kχ(G).

This statement about Ore-degree is equivalent to the following statement about vertex-
critical graphs.

Theorem 1.3 (Kierstead and Kostochka [7] 2010). The only vertex-critical graph G with
χ(G) ≥ ∆(G) ≥ 7 such that H(G) is edgeless is Kχ(G).

In [12], we improved the 7 to 6 by proving the following generalization.

Theorem 1.4 (Rabern [12] 2012). The only vertex-critical graph G with χ(G) ≥ ∆(G) ≥ 6

and ω(H(G)) ≤
⌊

∆(G)
2

⌋
− 2 is Kχ(G).

This result and those in [11] were improved by Kostochka, Rabern and Stiebitz in [8]. In
particular, the following was proved.
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Theorem 1.5 (Kostochka, Rabern and Stiebitz [8] 2012). The only vertex-critical graphs G
with χ(G) ≥ ∆(G) ≥ 5 such that H(G) is edgeless are Kχ(G) and O5.

Kn−2
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Figure 1. The graph On.

Here On is the graph formed from the disjoint union of Kn−xy and Kn−1 by joining
⌊
n−1

2

⌋
vertices of the Kn−1 to x and the other

⌈
n−1

2

⌉
vertices of the Kn−1 to y (see Figure 1). In this

paper we prove a result which implies all of the results in [8]. The proof replaces an algorithm
of Mozhan [10] with the original, more general, algorithm of Catlin [5] on which it is based.
This allows for a considerable simplification. Moreover, we prove two preliminary partitioning
results that are of independent interest. All coloring results follow from the first of these,
the second is a generalization of a lemma due to Borodin [2] (and independently Bollobás
and Manvel [1]) about partitioning a graph into degenerate subgraphs. The following is the
main coloring result in this paper.

Corollary 3.3. Let G be a vertex-critical graph with χ(G) ≥ ∆(G) + 1 − p ≥ 4 for some

p ∈ N. If ω(H(G)) ≤ χ(G)+1
p+1

− 2, then G = Kχ(G) or G = O5.

2. Partitioning

An ordered partition of a graph G is a sequence (V1, V2, . . . , Vk) where the Vi are pairwise
disjoint and cover V (G). Note that we allow the Vi to be empty. When there is no possibility
of ambiguity, we call such a sequence a partition. For a vector r ∈ Nk we take the coordinate
labeling r = (r1, r2, . . . , rk) as convention. Define the weight of a vector r ∈ Nk as w (r) :=∑

i∈[k] ri. Let G be a graph. An r-partition of G is an ordered partition P := (V1, . . . , Vk) of

V (G) minimizing

f(P ) :=
∑
i∈[k]

(‖G[Vi]‖ − ri |Vi|) .

It is a fundamental result of Lovász [9] that if P := (V1, . . . , Vk) is an r-partition of G with
w (r) ≥ ∆(G) + 1 − k, then ∆(G[Vi]) ≤ ri for each i ∈ [k]. As Catlin [5] showed, with the
stronger condition w (r) ≥ ∆(G) + 2− k, a vertex of degree ri in G[Vi] can always be moved
to some other part while maintaining f(P ). Since G is finite, a well-chosen sequence of such
moves must always “wrap back on itself” in a sense that will become clear in the proofs.
Many authors, including Catlin [5], Bollobás and Manvel [1] and Mozhan [10] have used such
techniques to prove coloring results. We generalize these techniques by taking into account
the degree in G of the vertex to be moved—a vertex of degree less than the maximum needs
a weaker condition on w (r) to be moved.
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For x ∈ V (G) and D ⊆ V (G) we use the notation ND(x) := N(x) ∩ D and dD(x) :=
|ND(x)|. Let C(G) be the components of G and c(G) := |C(G)|. For an induced subgraph
H of G, define δG(H) := minv∈V (H) dG(v).

Definition 2. Let G be a graph and H an induced subgraph of G. For d ∈ N, we let HG,d

be the subgraph of G induced on {v ∈ V (H) | dG(v) = d and H − v is connected}. When
the containing graph G is clear from context, we just write Hd.

Note that when H is 2-connected, V (Hd) is just {v ∈ V (H) | dG(v) = d}. In the proof
of Theorem 2.1, the H’s for which we use Hd will be complete graphs or odd cycles and
hence 2-connected. In the proof of Theorem 2.2 we need the more general definition. We
prove two partition theorems of similar form. All of our coloring results will follow from the
first theorem, the second theorem is a degeneracy result from which Borodin’s result in [2]
follows. For unification purposes, define a t-obstruction as an odd cycle when t = 2 and a
Kt+1 when t ≥ 3.

Theorem 2.1. Let G be a graph, k, d ∈ N with k ≥ 2 and r ∈ Nk
≥2. If w (r) ≥ max {∆(G) + 1− k, d},

then at least one of the following holds:

(1) w (r) = d and G contains an induced subgraph Q with |Q| = d + 1 which can be
partitioned into k cliques F1, . . . , Fk where
(a) |F1| = r1 + 1, |Fi| = ri for i ≥ 2,
(b)

∣∣F d
1

∣∣ ≥ 2,
∣∣F d

i

∣∣ ≥ 1 for i ≥ 2,

(c) for i ∈ [k], each v ∈ V (F d
i ) is universal in Q;

(2) there exists an r-partition P := (V1, . . . , Vk) of G such that if C is an ri-obstruction
in G[Vi], then δG(C) ≥ d and Cd is edgeless.

Proof. For i ∈ [k], call a connected graph C i-bad if C is an ri-obstruction such that Cd has
an edge. For a graph H and i ∈ [k], let bi(H) be the number of i-bad components of H. For
an r-partition P := (V1, . . . , Vk) of G let

b(P ) :=
∑
i∈[k]

bi(G[Vi]).

Let P := (V1, . . . , Vk) be an r-partition of V (G) minimizing b(P ).
Let i ∈ [k] and x ∈ Vi with dVi(x) ≥ ri. Suppose dG(x) = d. Then, since w (r) ≥ d, for

every j 6= i we have dVj(x) ≤ rj. Moving x from Vi to Vj gives a new partition P ∗ with
f(P ∗) ≤ f(P ). Note that if dG(x) < d we would have f(P ∗) < f(P ) contradicting the
minimality of P .

Supppose (2) fails to hold. Then b(P ) > 0. By symmetry, we may assume that there is a
1-bad component A1 of G[V1]. Put P1 := P and V1,i := Vi for i ∈ [k]. Since A1 is 1-bad we
have x1 ∈ V (Ad1) which has a neighbor in V (Ad1). By the above we can move x1 from V1,1 to
V1,2 to get a new partition P2 := (V2,1, V2,2, . . . , V2,k) where f(P2) = f(P1). Since removing
x1 from A1 decreased b1(G[V1]), minimality of b(P1) implies that x1 is in a 2-bad component
A2 in V2,2. Now, we may choose x2 ∈ V (Ad2) − {x1} having a neighbor in Ad2 and move x2

from V2,2 to V2,1 to get a new partition P3 := (V3,1, V3,2, . . . , V3,k) where f(P3) = f(P1). We
continue on this way to construct sequences A1, A2, . . ., P1, P2, P3, . . . and x1, x2, . . ..
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This process can be defined recursively as follows. For t ∈ N, put jt := 1 for odd t and
jt := 2 for even t. Put P1 := P and V1,i := Vi for i ∈ [k]. Pick x1 ∈ V (Ad1) which has a
neighbor in V (Ad1). Move x1 from V1,1 to V1,2 to get a new partition P2 := (V2,1, V2,2, . . . , V2,k)
where f(P2) = f(P1) and let A2 be the 2-bad component in V2,2 containing x1. Then for
t ≥ 2, pick xt ∈ V (Adt − xt−1) which has a neighbor in V (Adt ). Move xt from Vt,jt to Vt,3−jt
to get a new partition Pt+1 := (Vt+1,1, Vt+1,2, . . . , Vt+1,k) where f(Pt+1) = f(Pt) and let At+1

be the (3− jt)-bad component in Vt+1,3−jt containing xt.
Since G is finite, at some point we will need to reuse a leftover component; that is, there

is a smallest t such that At+1 − xt = As − xs for some s < t. Let j ∈ [2] be such that in
V (As) ⊆ Vs,j. Then V (At) ⊆ Vt,3−j.

Claim 1. N(xt) ∩ V (As − xs) = N(xs) ∩ V (As − xs).
This is immediate since As is rj-regular.
Claim 2. s = 1, t = 2, both As and At are complete, Ads is joined to At − xt−1 and Adt is

joined to As − xs.
Subclaim 2a. N(xs) ∩ V (Ads) 6= ∅.
In the construction of the sequence, xs was chosen such that it had a neighbor in Ads.
Subclaim 2b. For any z ∈ N(xs)∩V (Ads) we have N(z)∩V (At−xt−1) = N(xt−1)∩V (At−

xt−1). Moreover, if xs is adjacent to xt, then N(xs)∩V (At−xt−1) = N(xt−1)∩V (At−xt−1)
and xs = xt−1.

In Ps, move z to Vs,3−j to get a new partition P γ := (Vγ,1, Vγ,2, . . . , Vγ,k). Then z must
create an r3−j-obstruction with At − xt−1 in Vγ,3−j since z is adjacent to xt by Claim 1. In
particular, N(z) ∩ V (At − xt−1) = N(xt−1) ∩ V (At − xt−1). If xs is adjacent to xt, the same
argument (with xs in place of z) gives N(xs) ∩ V (At − xt−1) = N(xt−1) ∩ V (At − xt−1) and
xs = xt−1.

Subclaim 2c. As is complete and xs is adjacent to xt.
By Subclaim 2a, N(xs)∩V (Ads) 6= ∅. Pick z ∈ N(xs)∩V (Ads) and let P γ be as in Subclaim

2b. In P γ, move xt to Vγ,j to get a new partition P γ∗ := (Vγ∗,1, Vγ∗,2, . . . , Vγ∗,k). Since xs has
at least two neighbors in As, by Claim 1, xt has a neighbor in As − z. Hence xt must create
an rj-obstruction with As− z in Vγ∗,j. In particular, N(z)∩V (As− z) = N(xt)∩V (As− z).
Thus xs is adjacent to xt and we have N [z]∩ V (As) = N [xs]∩ V (As). Thus, if As is an odd
cycle, it must be a triangle. Hence As is complete.

Subclaim 2d. Ads is joined to N(xt−1) ∩ V (At − xt−1) and xs = xt−1.
Since As is complete by Subclaim 2c, we have N(xs) ∩ V (Ads) = V (Ads − xs). Since xs is

adjacent to xt by Subclaim 2c, applying Subclaim 2b shows that Ads is joined to N(xt−1) ∩
V (At − xt−1) and xs = xt−1.

Subclaim 2e. s = 1 and t = 2.
Suppose s > 1. Then, since xs−1 ∈ V (Ads), Subclaim 2d shows that xs−1 is joined to

N(xt−1)∩V (At−xt−1) and hence At−xt−1 = As−1−xs−1 violating minimality of t. Whence,
s = 1 and t = 2.

Subclaim 2f. At is complete and Ads is joined to At − xt−1.
Pick z ∈ N(xs) ∩ V (Ads). Then z is joined to At − xt by Subclaim 2d. In Pt+1, move

z to Vt+1,3−j to get a new partition P β := (Vβ,1, Vβ,2, . . . , Vβ,k). Then z must create an
r3−j-obstruction with At − xt in Vβ,3−j. In particular, V (At − xt) = N(z) ∩ V (At − xt) =
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N(xt)∩V (At−xt). Thus, if At is an odd cycle, it must be a triangle. Hence At is complete.
Now Subclaim 2d gives that Ads is joined to At − xt−1.

Subclaim 2g. Adt is joined to As − xs.
Since xs = xt−1, the statement is clear for xt−1. Pick y ∈ V (Adt − xt−1) and z ∈ V (Ads). In

Pt, move y to Vt,j. Since y is adjacent to z by Subclaim 2f, y must create an rj-obstruction
with As − xs and since As is complete, y must be joind to As − xs. Hence Adt is joined to
As − xs.

Claim 3. (1) holds.
We can play the same game with V1 and Vi for any 3 ≤ i ≤ k as we did with V1 and V2

above. Let B1 := A1, B2 := A2 and for i ≥ 3, let Bi be the ri-obstruction made by moving
x1 into Vi. Then Bi is complete for each i ∈ [k]. Applying Claim 2 to all pairs Bi, Bj shows
that for any distinct i, j ∈ [k], Bd

i is joined to Bj − x1. Put F1 = B1 and Fi = Bi − x1

for i ≥ 2. Let Q be the union of the Fi. Then (a), (b) and (c) of (1) are satisfied. Note
that |Q| = w (r) + 1 and since any v ∈ Bd

1 is universal in Q, |Q| ≤ d + 1. By assumption
w (r) ≥ d, whence w (r) = d. Hence, (1) holds. �

The following result generalizes a lemma due to Borodin [2]. This lemma of Borodin was
generalized in another direction in [3]. The proof that follows is basically the same as that
of Theorem 2.1. For a reader that is only interested in the coloring results, this theorem can
be safely skipped.

Theorem 2.2. Let G be a graph, k, d ∈ N with k ≥ 2 and r ∈ Nk
≥1 where at most one of the

ri is one. If w (r) ≥ max {∆(G) + 1− k, d}, then at least one of the following holds:

(1) w (r) = d and G contains a Kt ∗Ed+1−t where t ≥ d+ 1− k, for each v ∈ V (Kt) we
have dG(v) = d and for each v ∈ V (Ed+1−t) we have dG(v) > d; or,

(2) there exists an r-partition P := (V1, . . . , Vk) of G such that if C is an ri-regular
component of G[Vi], then δG(C) ≥ d and there is at most one x ∈ V (Cd) with
dCd(x) ≥ ri − 1. Moreover, P can be chosen so that either:
(a) for all i ∈ [k] and ri-regular component C of G[Vi], we have

∣∣Cd
∣∣ ≤ 1; or,

(b) for some i ∈ [k] and some ri-regular component C of G[Vi], there is x ∈ V (Cd)
such that {y ∈ NC(x) | dG(y) = d} is a clique.

Proof. For i ∈ [k], call a connected graph C i-bad if C is ri-regular and there are at least two
x ∈ V (Cd) with dCd(x) ≥ ri− 1. We say that such an x witnesses the i-badness of C. For a
graph H and i ∈ [k], let bi(H) be the number of i-bad components of H. For an r-partition
P := (V1, . . . , Vk) of G let

c(P ) :=
∑
i∈[k]

c(G[Vi]),

b(P ) :=
∑
i∈[k]

bi(G[Vi]).

Let P := (V1, . . . , Vk) be an r-partition of V (G) minimizing c(P ) and subject to that b(P ).
Let i ∈ [k] and x ∈ Vi with dVi(x) ≥ ri. Suppose dG(x) = d. Then, since w (r) ≥ d, for

every j 6= i we have dVj(x) ≤ rj. Moving x from Vi to Vj gives a new partition P ∗ with



6 LANDON RABERN

f(P ∗) ≤ f(P ). Note that if dG(x) < d we would have f(P ∗) < f(P ) contradicting the
minimality of P .

Suppose b(P ) > 0. By symmetry, we may assume that there is a 1-bad component A1

of G[V1]. Put P1 := P and V1,i := Vi for i ∈ [k]. Since A1 is 1-bad we have x1 ∈ V (Ad1)
with dAd

1
(x) ≥ r1 − 1. By the above we can move x1 from V1,1 to V1,2 to get a new partition

P2 := (V2,1, V2,2, . . . , V2,k) where f(P2) = f(P1). By the minimality of c(P1), x1 is adjacent
to only one component C2 in G[V1,2]. Let A2 := G[V (C2) ∪ {x1}]. Since removing x1 from
A1 decreased b1(G[V1]), minimality of b(P1) implies that A2 is 2-bad. Now, we may choose
x2 ∈ V (Ad2)−{x1} with dAd

2
(x) ≥ r2− 1 and move x2 from V2,2 to V2,1 to get a new partition

P3 := (V3,1, V3,2, . . . , V3,k) where f(P3) = f(P1).
Continue on this way to construct sequences A1, A2, . . ., P1, P2, P3, . . . and x1, x2, . . .. Since

G is finite, at some point we will need to reuse a leftover component; that is, there is a smallest
t such that At+1−xt = As−xs for some s < t. Let j ∈ [2] be such that in V (As) ⊆ Vs,j. Then
V (At) ⊆ Vt,3−j. Note that, since As is rj-regular, N(xt)∩V (As− xs) = N(xs)∩V (As− xs).

We claim that s = 1, t = 2, both As and At are complete, Ads is joined to At − xt−1 and
Adt is joined to As − xs.

Put X := N(xs) ∩ V (Ads). Since xs witnesses the j-badness of As, |X| ≥ max {1, rj − 1}.
Pick z ∈ X. In Ps, move z to Vs,3−j to get a new partition P γ := (Vγ,1, Vγ,2, . . . , Vγ,k). Then
z must create an r3−j-regular component with At − xt−1 in Vγ,3−j since z is adjacent to xt.
In particular, N(z) ∩ V (At − xt−1) = N(xt−1) ∩ V (At − xt−1). Since z is adjacent to xt, so
is xt−1.

Suppose rj ≥ 2. In P γ, move xt to Vγ,j to get a new partition P γ∗ := (Vγ∗,1, Vγ∗,2, . . . , Vγ∗,k).
Then xt must create an rj-regular component withAs−z in Vγ∗,j. In particular, N(z)∩V (As−
z) = N(xt)∩V (As−z). Thus xs is adjacent to xt and we have N [z]∩V (As) = N [xs]∩V (As).
Put K := X ∪ {xs}. Then |K| ≥ rj and K induces a clique. If |K| > rj, then As = K
is complete. Otherwise, the vertices of K have a common neighbor y ∈ V (As) − K and
again As is complete. Also, since xs is adjacent to xt, using xs in place of z in the previous
paragraph, we conclude that K is joined to N(xt−1) ∩ V (At − xt−1) and xs = xt−1.

Suppose s > 1. Then xs−1 is joined to N(xt−1) ∩ V (At − xt−1) and hence At − xt−1 =
As−1 − xs−1 violating minimality of t. Whence, if rj ≥ 2 then s = 1.

Note that K = V (Ads) and hence if rj ≥ 2 then As is complete and Ads is joined to
N(xt−1) ∩ V (At − xt−1). If r3−j = 1, then At is a K2 and N(xt−1) ∩ V (At − xt−1) =
V (At − xt−1) = {xt}. We already know that xt is joined to As − xs. Thus the cases when
rj ≥ 2 and r3−j = 1 are taken care of. By assumption, at least one of rj or r3−j is at least
two. Hence it remains to handle the cases with r3−j ≥ 2.

Suppose r3−j ≥ 2. In Pt+1, move z to Vt+1,3−j to get a new partition P β := (Vβ,1, Vβ,2, . . . , Vβ,k).
Then z must create an r3−j-regular component with At − xt in Vβ,3−j. In particular,
N(z)∩V (At−xt) = N(xt)∩V (At−xt). Since N(z)∩V (At−xt−1) = N(xt−1)∩V (At−xt−1),
we have N [xt−1] ∩ V (At) = N(z) ∩ V (At) = N [xt] ∩ V (At). Put W := N [xt] ∩ V (Adt ). Each
w ∈ W is adjacent to z and running through the argument above with w in place of xt
shows that W is a clique joined to z. Moreover, since xt witnesses the (3− j)-badness of At,
|W | ≥ r3−j. As with As above, we conclude that At is complete. Since xs ∈ Vt+1,3−j and xs
is adjacent to z, it must be that xs ∈ V (At − xt). Thence xs is joined to W and xs = xt−1.
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Suppose that rj ≥ 2 as well. We know that s = 1, As is complete and Ads is joined to
N(xt−1) ∩ V (At − xt−1) = At − xt−1. Also, we just showed that At is complete and Adt is
joined to As − xs.

Thus, we must have rj = 1 and r3−j ≥ 2. Then, since As is a K2, by the above, As is
joined to W . Since W = Adt , it only remains to show that s = 1. Suppose s > 1. Then xs−1

is joined to W and hence At − xt−1 = As−1 − xs−1 violating minimality of t.
Therefore s = 1, t = 2, both As and At are complete, Ads is joined to At − xt−1 and Adt is

joined to As− xs. But we can play the same game with V1 and Vi for any 3 ≤ i ≤ k as well.
Let B1 := A1, B2 := A2 and for i ≥ 3, let Bi be the ri-regular component made by moving
x1 into Vi. Then Bi is complete for each i ∈ [k]. Applying what we just proved to all pairs
Bi, Bj shows that for any distinct i, j ∈ [k], Bd

i is joined to Bj − x1. Since
∣∣Bd

i

∣∣ ≥ ri and

x1 ∈ V (Bd
i ) for each i, this gives a Kt ∗Ew(r)+1−t in G where t ≥ w (r) + 1 − k. Take such

a subgraph Q maximizing t. Since all the Bi are complete, any vertex of degree d will be in
Bd
i ; therefore, for each v ∈ V (Kt) we have dG(v) = d and for each v ∈ V (Ew(r)+1−t) we have

dG(v) > d. Note that |Q| = w (r) + 1 and since dG(v) = d for any v ∈ V (Kt), |Q| ≤ d + 1.
By assumption w (r) ≥ d, whence w (r) = d. Thus if (1) fails, then the first part of (2) holds.

It remains to prove that we can choose P to satisfy one of (a) or (b). Suppose that (1)
fails and P cannot be chosen to satisfy either (a) or (b). For i ∈ [k], call a connected graph
C i-ugly if C is ri-regular and

∣∣Cd
∣∣ ≥ 2 let ui(H) be the number of i-ugly components of H.

Note that if C is i-bad, then it is i-ugly. For an r-partition P := (V1, . . . , Vk) of G let

u(P ) :=
∑
i∈[k]

ui(G[Vi]).

Choose an r-partition Q := (V1, . . . , Vk) of G first minimizing c(Q), then subject to that
requiring b(Q) ≤ 1 and then subject to that minimizing u(Q). Since Q does not satisfy
(a), at least one of b(Q) = 1 or u(Q) ≥ 1 holds. By symmetry, we may assume that G[V1]
contains a component D1 which is either 1-bad or 1-ugly (or both). If D1 is 1-bad, pick
w1 ∈ V (Dd

1) witnessing the 1-badness of D1; otherwise pick w1 ∈ V (Dd
1) arbitrarily. Move

w1 to V2, to form a new r-partition. This new partition still satisfies all of our conditions
on Q. As above we construct a sequence of vertex moves that will wrap around on itself.
This can be defined recursively as follows. For t ≥ 2, if Dt is bad pick wt ∈ V (Dd

t − wt−1)
witnessing the badness of Dt; otherwise, if Dt is ugly pick wt ∈ V (Dd

t − wt−1) arbitrarily.
Now move wt to the part from which wt−1 came to form Dt+1. Let Q1 := Q,Q2, Q3, . . . be
the partitions created by a run of this process. Note that the process can never create a
component which is not ugly lest we violate the minimality of u(Q).

Since G is finite, at some point we will need to reuse a leftover component; that is, there
is a smallest t such that Dt+1 − xt = Ds − xs for some s < t. First, suppose Ds is not
bad, but merely ugly. Then Dt+1 is not bad and hence b(Qt+1) = 0 and u(Qt+1) < u(Q), a
contradiction. Hence Ds is bad.

Suppose Dt is not bad. As in the proof of the first part of (2), we can conclude that
xs = xt−1. Pick z ∈ N(xs) ∩ V (Dd

s). Since z is adjacent to xt, by moving z to the part
containing xt in Ps we conclude N(z) ∩ V (Dt − xs) = N(xs) ∩ V (Dt − xs). Put T :=
{y ∈ NDt(xs) | dG(y) = d}. Suppose T is not a clique and let w1, w2 ∈ T be nonadjacent.
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Now, in Pt, since z is adjacent to both w1 and w2, swapping w1 and w2 with z contradicts
minimality of f(Q). Hence T is a clique and (b) holds, a contradiction.

Thus we may assume that Dt is bad as well. Now we may apply the same argument as in
the proof of the first part of (2) to show that (1) holds. This final contradiction completes
the proof. �

Corollary 2.3 (Borodin [2]). Let G be a graph not containing a K∆(G)+1. If r1, r2 ∈ N≥1 with
r1 + r2 ≥ ∆(G) ≥ 3, then V (G) can be partitioned into sets V1, V2 such that ∆(G[Vi]) ≤ ri
and col(G[Vi]) ≤ ri for i ∈ [2].

Proof. Apply Theorem 2.2 with r := (r1, r2) and d = ∆(G). Since G doesn’t contain a
K∆(G)+1 and no vertex in G has degree larger than d, (1) cannot hold. Thus (2) must hold.
Let P := (V1, V2) be the guaranteed partition and suppose that for some j ∈ [2], G[Vj]
contains an rj-regular component H. Then every vertex of H has degree d in G and hence
Hd contains all noncutvertices of H. But H has maximum degree rj and thus contains at
least rj noncutvertices. If rj = 1, then H is K2 and hence has 2 noncutvertices. In any
case, we have

∣∣Hd
∣∣ ≥ 2. Hence (a) cannot hold for P . Thus, by (b), we have i ∈ [2], an

ri-regular component C of G[Vi] and x ∈ V (C) such that NC(x) is a clique. But then C is
Kri+1 violating (2), a contradiction.

Therefore, for i ∈ [2], each component of G[Vi] contains a vertex of degree at most ri − 1.
Whence col(G[Vi]) ≤ ri for i ∈ [2]. �

3. Coloring

Using Theorem 2.1, we can prove coloring results for graphs with only small cliques among
the vertices of high degree. To make this precise, for d ∈ N define ωd(G) to be the cardinality
of the largest clique in G containing only vertices of degree larger than d; that is, ωd(G) :=
ω (G [{v ∈ V (G) | dG(v) > d}]).

Corollary 3.1. Let G be a graph, k, d ∈ N with k ≥ 2 and r ∈ Nk. If w (r) ≥ max {∆(G) + 1− k, d}
and ri ≥ ωd(G) + 1 for all i ∈ [k], then at least one of the following holds:

(1) w (r) = d and G contains an induced subgraph Q with |Q| = d + 1 which can be
partitioned into k cliques F1, . . . , Fk where
(a) |F1| = r1 + 1, |Fi| = ri for i ≥ 2,
(b)

∣∣F d
i

∣∣ ≥ |Fi| − ωd(G) for i ∈ [k],

(c) for i ∈ [k], each v ∈ V (F d
i ) is universal in Q;

(2) χ(G) ≤ w (r).

Proof. Apply Theorem 2.1 to conclude that either (1) holds or there exists an r-partition
P := (V1, . . . , Vk) of G such that if C is an ri-obstruction in G[Vi], then δG(C) ≥ d and
Cd is edgeless. Since ∆(G[Vi]) ≤ ri for all i ∈ [k], it will be enough to show that no
G[Vi] contains an ri-obstruction. Suppose otherwise that we have an ri-obstruction C in
some G[Vi]. First, if ri ≥ 3, then C is Kri+1 and hence C contains a Kωd(G)+2. But Cd

is edgeless, so ωd(G) ≥ ωd(C) ≥ ω(C) − 1 ≥ ωd(G) + 1, a contradiction. Thus ri = 2
and C is an odd cycle. Since Cd is edgeless and ωd(C) ≤ ωd(G) ≤ 1, we have a 2-coloring{
V (Cd), V (C − Cd)

}
of the odd cycle C, a contradiction. �
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For a vertex-critical graph G, call v ∈ V (G) low if d(v) = χ(G) − 1 and high otherwise.
Let H(G) be the subgraph of G induced on the high vertices of G.

Corollary 3.2. Let G be a vertex-critical graph with χ(G) = ∆(G) + 2− k for some k ≥ 2.

If k ≤ χ(G)−1
ω(H(G))+1

, then G contains an induced subgraph Q with |Q| = χ(G) which can be

partitioned into k cliques F1, . . . , Fk where

(1) |F1| = χ(G)− (k − 1)(ω(H(G)) + 1), |Fi| = ω(H(G)) + 1 for i ≥ 2;
(2) for each i ∈ [k], Fi contains at least |Fi|−ω(H(G)) low vertices which are all universal

in Q.

Proof. Suppose k ≤ χ(G)−1
ω(H(G))+1

. Put ri := ω(H(G)) + 1 for i ∈ [k] − {1} and r1 := χ(G) −
1− (k − 1)(ω(H(G)) + 1). Set r := (r1, r2, . . . , rk). Then w (r) = χ(G)− 1 = ∆(G) + 1− k.
Now applying Corollary 3.1 with d := χ(G)− 1 proves the corollary. �

Corollary 3.3. Let G be a vertex-critical graph with χ(G) ≥ ∆(G) + 1 − p ≥ 4 for some

p ∈ N. If ω(H(G)) ≤ χ(G)+1
p+1

− 2, then G = Kχ(G) or G = O5.

Proof. Suppose not and choose a counterexample G minimizing |G|. Put χ := χ(G), ∆ :=
∆(G) and h := ω(H(G)). Then p ≥ 1 and h ≥ 1 by Brooks’ theorem. Hence χ ≥ 5. By
assumption, we have h ≤ χ+1

p+1
− 2 = χ−2p−1

p+1
≤ χ−p−2

p+1
since p ≥ 1. Thus p + 1 ≤ χ−1

h+1
and we

may apply Corollary 3.2 with k := p + 1 to get an induced subgraph Q of G with |Q| = χ
which can be partitioned into p+ 1 cliques F1, . . . , Fp+1 where

(1) |F1| = χ− p(h+ 1), |Fi| = h+ 1 for i ≥ 2;
(2) for each i ∈ [p+ 1], Fi contains at least |Fi| − h low vertices which are all universal

in Q.

Let T be the low vertices in Q, put H := Q − T and t := |T |. Then Q = Kt ∗H and
t ≥ χ− p(h+ 1) + p(h+ 1)− (p+ 1)h = χ− (p+ 1)h.

Take any (χ−1)-coloring π of G−Q and let L be the resulting list assignment on Q; that
is, for v ∈ V (Q) we put L(v) := [χ− 1]−π(N(v)∩V (G−Q)). Then |L(v)| = dQ(v) for each
v ∈ T and |L(v)| ≥ dQ(v)− p for each v ∈ V (H). Since t ≥ χ− (p+ 1)h ≥ 2p+ 1 ≥ p + 1,
if there are nonadjacent x, y ∈ V (H) and c ∈ L(x) ∩ L(y), then we may color x and y both
with c and then greedily complete the coloring to the rest of H and then greedily to all of
Q, a contradiction. Hence any nonadjacent pair in H have disjoint lists.

Let I be a maximal independent set in H. If there is an induced P3 in H with ends in I,
set oI := 1, otherwise set oI := 0. Since each pair of vertices in I have disjoint lists, we must
have

χ− 1 ≥
∑
v∈I

|L(v)|

≥
∑
v∈I

t+ dH(v)− p

= (t− p) |I|+
∑
v∈I

dH(v)

≥ (t− p) |I|+ |H| − |I|+ oI
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= (t− (p+ 1)) |I|+ χ− t+ oI .

Hence |I| ≤ t−1−oI
t−(p+1)

= 1 + p−oI
t−(p+1)

≤ 1 + p−oI
2p+1−(p+1)

≤ 2 as t ≥ 2p+ 1. Since G is not Kχ, we

must have |I| = 2 and thus t = 2p + 1 and oI = 0. Thence H is the disjoint union of two

complete subgraphs. We then have χ−2p−1
p+1

≥ h ≥ |H|
2

= χ−2p−1
2

. Hence p = 1, h = χ−3
2

and
Q = K3 ∗ 2Kh.

Let x, y ∈ V (H) be nonadjacent. Then dQ(x) + dQ(y) = χ+ 1. Let A be the subgraph of
G induced on V (G−Q)∪{x, y}. Then dA(x) +dA(y) ≤ 2∆− (χ+ 1) = χ− 1. Let A′ be the
graph obtained by collapsing {x, y} to a single vertex vxy. If χ(A′) ≤ χ− 1, then we have a
(χ− 1)-coloring of A in which x and y receive the same color. This is impossible as then we
could complete the (χ− 1)-coloring to all of G greedily as above. Hence χ(A′) = χ and thus
we have a vertex-critical subgraph Z of A′ with χ(Z) = χ. We must have vxy ∈ V (Z) and
since dA(x) + dA(y) ≤ χ− 1, vxy is low. Hence, by minimality of |G|, Z = Kχ or Z = O5.

First, suppose χ ≥ 6. Then h ≥ 2 and thus we have z ∈ V (H) − {x, y} nonadjacent to
x. Apply the previous paragraph to both pairs {x, y} and {x, z}. The case Z = O5 cannot
happen, for then we would have χ = χ(Z) = 5, a contradiction. Put X1 := N(x)∩V (G−Q),
X2 := N(y) ∩ V (G − Q), X3 := N(z) ∩ V (G − Q). Then |Xi| = χ−1

2
for i ∈ [3] and X1 is

joined to both X2 and X3. Since |Xi| − h > 0, each Xi contains a low vertex vi. But then
N(v1) = X1 ∪ X2 ∪ {x} and we must have X3 = X2. Whence N(v2) = X1 ∪ X2 ∪ {y, z}
giving d(v2) ≥ χ, a contradiction.

Therefore χ = 5, h = 1 and V (H) = {x, y}. If Z = K5, then N [x] ∪ N [y] induces an O5

in G and hence G = O5, a contradiction. Thus Z = O5. But h = 1, so all of the neighbors
of both x and y are low and hence all of the neighbors of vxy in Z are low. But O5 has no
such low vertex vxy with all low neighbors, so this is impossible. �

Question. The condition on k needed in Corollary 3.2 is weaker than that in Corollary 3.3.
What do the intermediate cases look like? What are the extremal examples?
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