PARTITIONING AND COLORING GRAPHS WITH DEGREE
CONSTRAINTS

LANDON RABERN

ABSTRACT. We prove that if G is a vertex-critical graph with x(G) > A(G)+1—p > 4
for some p € N and w(H(G)) < % —2, then G = K, (@) or G = Os. Here H(G) is the
subgraph of G induced on the vertices of degree at least x(G). This simplifies the proofs
and improves the results in the paper of Kostochka, Rabern and Stiebitz [8].

1. INTRODUCTION

Our notation follows Diestel [6] unless otherwise specified. The natural numbers include
zero; that is, N := {0,1,2,3,...}. We also use the shorthand [k] := {1,2,...,k}. The
complete graph on ¢ vertices is indicated by K; and the edgeless graph on t vertices by Ej.
A vertex v € V(G) is called universal in G if it is adjacent to every other vertex of G. We
write H(G) for the subgraph of G induced on the vertices of degree at least x(G).

The classical theorem of Brooks [4] gives the necessary and sufficient conditions for a graph
G to be A(G)-colorable.

Theorem 1.1 (Brooks [4] 1941). If G is a graph with x(G) > A(G)+1 > 4 then G contains
Kxo-

In [7] Kierstead and Kostochka investigated the same question with the Ore-degree §(G)
in place of A(G).

Definition 1. The Ore-degree of an edge xy in a graph G is 0(xy) = d(z) + d(y). The
Ore-degree of a graph G is 0(G) := max,yecpq) 0(xy).

2

Theorem 1.2 (Kierstead and Kostochka [7] 2010). If G is a graph with x(G) > LMJ +1>
7 then G contains K, q).

This statement about Ore-degree is equivalent to the following statement about vertex-
critical graphs.

Theorem 1.3 (Kierstead and Kostochka [7] 2010). The only vertez-critical graph G with
X(G) > A(G) > 7 such that H(G) is edgeless is Ky ).
In [12], we improved the 7 to 6 by proving the following generalization.

Theorem 1.4 (Rabern [12] 2012). The only vertez-critical graph G with x(G) > A(G) > 6
and w(H(G)) < {MJ —2is Kyq).

2

This result and those in [11] were improved by Kostochka, Rabern and Stiebitz in [8]. In

particular, the following was proved.
1
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Theorem 1.5 (Kostochka, Rabern and Stiebitz [8] 2012). The only vertex-critical graphs G
with x(G) > A(G) > 5 such that H(G) is edgeless are Ky )y and Os.

/

FiGURE 1. The graph O,.

Here O,, is the graph formed from the disjoint union of K,, —zy and K,,_; by joining [”T_IJ
vertices of the K,_; to x and the other ("T_q vertices of the K,,_; to y (see Figure 1). In this
paper we prove a result which implies all of the results in [8]. The proof replaces an algorithm
of Mozhan [10] with the original, more general, algorithm of Catlin [5] on which it is based.
This allows for a considerable simplification. Moreover, we prove two preliminary partitioning
results that are of independent interest. All coloring results follow from the first of these,
the second is a generalization of a lemma due to Borodin [2] (and independently Bollobés
and Manvel [1]) about partitioning a graph into degenerate subgraphs. The following is the
main coloring result in this paper.

Corollary 3.3. Let G be a vertex-critical graph with x(G) > A(G) + 1 —p > 4 for some
peN. Ifw(H(G)) < X — 9 then G = Ky(q) or G = Os.

2. PARTITIONING

An ordered partition of a graph G is a sequence (Vi, Vs, ..., Vi) where the V; are pairwise
disjoint and cover V(G). Note that we allow the V; to be empty. When there is no possibility
of ambiguity, we call such a sequence a partition. For a vector r € N¥ we take the coordinate
labeling r = (71, 79,..., 7)) as convention. Define the weight of a vector r € N¥ as w (r) :=
Zie[k] ri. Let G be a graph. An r-partition of G is an ordered partition P := (V;,..., V) of
V(G) minimizing

FP) =Y (IGWVill = i [Vil) .
i€[k]

It is a fundamental result of Lovész [9] that if P := (V,...,V}) is an r-partition of G with
w(r) > A(G) + 1 — k, then A(G[V;]) < r; for each i € [k]. As Catlin [5] showed, with the
stronger condition w (r) > A(G) + 2 — k, a vertex of degree r; in G[V;] can always be moved
to some other part while maintaining f(P). Since G is finite, a well-chosen sequence of such
moves must always “wrap back on itself” in a sense that will become clear in the proofs.
Many authors, including Catlin [5], Bollobds and Manvel [1] and Mozhan [10] have used such
techniques to prove coloring results. We generalize these techniques by taking into account
the degree in GG of the vertex to be moved—a vertex of degree less than the maximum needs
a weaker condition on w (r) to be moved.
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For x € V(G) and D C V(G) we use the notation Np(x) := N(z) N D and dp(x) :=
|Np(x)|. Let C(G) be the components of G and ¢(G) := |C(G)|. For an induced subgraph
H of G, define 6¢(H) := minyev(m) da(v).

Definition 2. Let G be a graph and H an induced subgraph of G. For d € N, we let H%4
be the subgraph of G induced on {v € V(H) | dg(v) = d and H — v is connected}. When

the containing graph G is clear from context, we just write H<.

Note that when H is 2-connected, V (H?) is just {v € V(H) | dg(v) = d}. In the proof
of Theorem 2.1, the H’s for which we use H? will be complete graphs or odd cycles and
hence 2-connected. In the proof of Theorem 2.2 we need the more general definition. We
prove two partition theorems of similar form. All of our coloring results will follow from the
first theorem, the second theorem is a degeneracy result from which Borodin’s result in [2]
follows. For unification purposes, define a t-obstruction as an odd cycle when ¢t = 2 and a
Ky 1 when t > 3.

Theorem 2.1. Let G be a graph, k,d € N withk > 2 andr € N&,. Ifw (r) > max {A(G) + 1
then at least one of the following holds:

(1) w(r) = d and G contains an induced subgraph @ with |Q| = d + 1 which can be
partitioned into k cliques F, ..., Fy where
(a) |Fi| =m+1, |F| =r; fori>2,
(b) |F| =2, |FY > 1 fori>2,
(c) fori € [k], each v € V(F?) is universal in Q;
(2) there exists an r-partition P := (Vi,..., Vi) of G such that if C is an r;-obstruction
in G[Vj], then dg(C) > d and C?¢ is edgeless.

Proof. For i € [k], call a connected graph C i-bad if C is an r;-obstruction such that C? has
an edge. For a graph H and ¢ € [k], let b;(H) be the number of i-bad components of H. For
an r-partition P := (Vi,..., V) of G let

b(P) =Y bi(GVi]).

1€[k]

Let P := (Vi,...,Vk) be an r-partition of V(G) minimizing b(P).

Let i € [k] and = € V; with dy,(z) > r;. Suppose dg(x) = d. Then, since w (r) > d, for
every j # i we have dy,(r) < r;. Moving x from V; to V; gives a new partition P* with
f(P*) < f(P). Note that if dg(z) < d we would have f(P*) < f(P) contradicting the
minimality of P.

Supppose (2) fails to hold. Then b(P) > 0. By symmetry, we may assume that there is a
1-bad component A; of G[V4]. Put P, := P and Vi, ==V, for i € [k]. Since A, is 1-bad we
have z; € V(A¢) which has a neighbor in V(A{). By the above we can move z; from V; ; to
Vi2 to get a new partition Py := (Vaq, Voo, ..., Vaoy) where f(P2) = f(P1). Since removing
xq from Ay decreased by (G[V1]), minimality of b(F;) implies that z; is in a 2-bad component
Ay in Vs Now, we may choose x5 € V(A2) — {x,} having a neighbor in A and move
from V55 to Vo1 to get a new partition Ps := (V51,V39,...,Vay) where f(P3) = f(P1). We
continue on this way to construct sequences Ay, As, ..., P, P, P3,... and x1, 2o, .. ..

- k7d}7
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This process can be defined recursively as follows. For t € N, put j, := 1 for odd ¢ and
ji == 2 for even t. Put P, :== P and Vy; :==V, for i € [k]. Pick z; € V(A¢) which has a
neighbor in V(A¢). Move z; from Vi to V; 2 to get a new partition Py := (Vo 1, Vao, ..., Vay)
where f(P) = f(P1) and let Ay be the 2-bad component in V55 containing x;. Then for
t > 2, pick 7, € V(A? — x,_;) which has a neighbor in V(A¢). Move z; from V, j, to Vi3,
to get a new partition Py := (Vir11, Vitr2, - -+, Vigrk) where f(Puyq) = f(FP) and let Ay
be the (3 — j;)-bad component in V,;;3_;, containing ;.

Since G is finite, at some point we will need to reuse a leftover component; that is, there
is a smallest ¢ such that A;; — 2y = Ag — x4 for some s < t. Let j € [2] be such that in
V(AS) Q ‘/s,j' Then V(At) Q ‘/;5’3_]‘.

Claim 1. N(x;) NV (As —x5) = N(zs) NV (As — x5).

This is immediate since A is 7;-regular.

Claim 2. s =1, t = 2, both A, and A; are complete, A? is joined to Ay — x4y and Al is
joined to Ay — .

Subclaim 2a. N(z,) N V(AY) # 0.

In the construction of the sequence, z, was chosen such that it had a neighbor in A%

Subclaim 2b. For any z € N(z,)NV (A?) we have N(2)NV (Ay—x;_1) = N(z;_1)NV (A —
x—1). Moreover, if x4 is adjacent to x;, then N(xs) NV (A;—xi_1) = N(z4-1) NV (Ar —2-1)
and Ty = Ti_q.

In P;, move z to Vs3_; to get a new partition P? := (V,1,V,2,...,V,%). Then z must
create an rs_j-obstruction with A, —x;_; in V, 3_; since z is adjacent to z; by Claim 1. In
particular, N(z) NV (A; —x4-1) = N(x¢—1) NV (A; — 24-1). If x4 is adjacent to x;, the same
argument (with z, in place of z) gives N(zs) NV (A; — x4-1) = N(z4-1) NV (A; — 24-1) and
Tsg = Tp—1-

Subclaim 2c. A, is complete and x4 is adjacent to w;.

By Subclaim 2a, N(z,)NV (A9) # (). Pick z € N(z,)NV(A9) and let P? be as in Subclaim
2b. In P7, move z; to V,, ; to get a new partition P7* := (Vi 1, Viso, ..., Vouk). Since x4 has
at least two neighbors in A,, by Claim 1, x; has a neighbor in A, — z. Hence z; must create
an rj-obstruction with A, — z in V., ;. In particular, N(2) NV (A; —2) = N(x;) NV (A5 — 2).
Thus z, is adjacent to z; and we have N[z] NV (A;) = N|zs| NV (As). Thus, if A, is an odd
cycle, it must be a triangle. Hence A, is complete.

Subclaim 2d. A? is joined to N(x;_1) NV (A; —x4_1) and x5 = 14_1.

Since A, is complete by Subclaim 2c, we have N(x,) NV (Ad) = V(A? — ;). Since x; is
adjacent to z; by Subclaim 2c, applying Subclaim 2b shows that A¢ is joined to N(z;_1) N
V(A — 2, 1) and 3 = x4_1.

Subclaim 2e. s =1 and t = 2.

Suppose s > 1. Then, since z,_; € V(A?), Subclaim 2d shows that z, ; is joined to
N(z;—1)NV(A;—24-1) and hence Ay — x4y = As_1 —xs_1 violating minimality of . Whence,
s=1andt=2.

Subclaim 2f. A; is complete and A? is joined to Ay — ;.

Pick z € N(x,) N V(A%). Then z is joined to A; — z; by Subclaim 2d. In P, ;, move
z to Viy13-; to get a new partition P? := (V31,Vsa,...,Vsx). Then z must create an
r3_;-obstruction with A; — x; in V3_;. In particular, V(A; —x;) = N(2) N V(A — x1) =
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N(z) NV (A; — ;). Thus, if A; is an odd cycle, it must be a triangle. Hence A; is complete.
Now Subclaim 2d gives that Ag is joined to A; — z;_1.

Subclaim 2g. A? is joined to Ay — x.

Since x, = z;_;, the statement is clear for z; ;. Pick y € V(AY —z; ;) and z € V(A%). In
P;, move y to V; ;. Since y is adjacent to z by Subclaim 2f, y must create an r;-obstruction
with A, — 2, and since A, is complete, y must be joind to A, — x,. Hence A{ is joined to
A, — x,.

Claim 3. (1) holds.

We can play the same game with V; and V; for any 3 < ¢ < k as we did with V; and V;
above. Let By := Ay, By :== A, and for i > 3, let B; be the r;-obstruction made by moving
x1 into V;. Then B; is complete for each i € [k]. Applying Claim 2 to all pairs B;, B; shows
that for any distinct 7,5 € [k], B? is joined to B; — z;. Put Fy = By and F, = B; — x;
for i > 2. Let @ be the union of the F;. Then (a), (b) and (c) of (1) are satisfied. Note
that |Q| = w (r) + 1 and since any v € B{ is universal in Q, |Q| < d + 1. By assumption
w (r) > d, whence w (r) = d. Hence, (1) holds. O

The following result generalizes a lemma due to Borodin [2]. This lemma of Borodin was
generalized in another direction in [3]. The proof that follows is basically the same as that
of Theorem 2.1. For a reader that is only interested in the coloring results, this theorem can
be safely skipped.

Theorem 2.2. Let G be a graph, k,d € N with k > 2 andr € Ngl where at most one of the
r; is one. If w (r) > max{A(G) + 1 — k,d}, then at least one of the following holds:

(1) w(r) =d and G contains a K;* Eg.1— wheret > d+ 1 —k, for each v € V(K;) we
have dg(v) = d and for each v € V(E411-+) we have dg(v) > d; or,

(2) there ezists an r-partition P := (Vi,..., Vi) of G such that if C is an r;-reqular
component of G[V;], then d6q(C) > d and there is at most one x € V(C?) with
dca(x) > r; — 1. Moreover, P can be chosen so that either:

(a) for alli € [k] and ri-reqular component C' of G[V;], we have |C?¢| < 1; or,
(b) for some i € [k] and some r;-regqular component C of G[Vi], there is x € V(C?)
such that {y € No(z) | da(y) = d} is a clique.

Proof. For i € [k], call a connected graph C' i-bad if C' is r;-regular and there are at least two
x € V(C?) with dea(x) > r; — 1. We say that such an x witnesses the i-badness of C. For a
graph H and i € [k], let b;(H) be the number of i-bad components of H. For an r-partition
P:=(V,.... V) of G let

i€lk]

b(P) =Y bi(GVi]).
i€ k]
Let P := (Vi,..., Vi) be an r-partition of V(G) minimizing ¢(P) and subject to that b(P).
Let ¢ € [k] and = € V; with dy,(xz) > r;. Suppose dg(z) = d. Then, since w (r) > d, for
every j # i we have dy,(v) < r;. Moving z from V; to V; gives a new partition P* with
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f(P*) < f(P). Note that if dg(z) < d we would have f(P*) < f(P) contradicting the
minimality of P.

Suppose b(P) > 0. By symmetry, we may assume that there is a 1-bad component A;
of G[Vi]. Put P, :== P and Vy,; :=V; for i € [k]. Since A; is 1-bad we have z; € V(A9)
with dA% (x) > ry — 1. By the above we can move z; from V;; to V42 to get a new partition
Py = (Va1,Van,...,Voy) where f(P2) = f(Py). By the minimality of ¢(Fy), x; is adjacent
to only one component Cy in G[V)2]. Let Ay := G[V(Cs) U {z1}]. Since removing z; from
A decreased by (G[V4]), minimality of b(P;) implies that A is 2-bad. Now, we may choose
19 € V(AY) — {2} with daa(z) > 12 —1 and move x from Va5 to Va1 to get a new partition
P3 = (VE’),I, ‘/:372, ceey VE’),k) where f<P3> = f(Pl)

Continue on this way to construct sequences Ay, Asg, ..., Pi, Py, P5,...and xq,xs,.... Since
G is finite, at some point we will need to reuse a leftover component; that is, there is a smallest
t such that A, —x = Ay—x, for some s < t. Let j € [2] be such that in V/(A) C V; ;. Then
V(A;) C Vis—j. Note that, since A; is rj-regular, N(z;) NV (As —x5) = N(xs) NV (A5 — ).

We claim that s = 1, t = 2, both A, and A; are complete, A? is joined to A; — ;1 and
A‘f is joined to A, — x.

Put X := N(z,) NV (A?). Since z, witnesses the j-badness of Ay, |X| > max{1,r; — 1}.
Pick z € X. In P;, move z to V;3_; to get a new partition P? := (V,1,V,9,...,V, ). Then
z must create an rs_j;-regular component with A; — x;_; in V, 3_; since z is adjacent to z;.
In particular, N(z) N V(A; — 24-1) = N(x4—1) NV (A; — x4-1). Since z is adjacent to x, so
1S Ty_1.

Suppose r; > 2. In P7, move z; to V,, ; to get a new partition P := (Vyu1, Viso, ..., Voui)-
Then x, must create an r;-regular component with A,—z in V., ;. In particular, N(2)NV (A;—
z) = N(z;)NV(As—2). Thus x; is adjacent to x; and we have N[z]|NV (As) = Nz )NV (Ay).
Put K := X U {z,}. Then |K| > r; and K induces a clique. If |K| > r;, then A, = K
is complete. Otherwise, the vertices of K have a common neighbor y € V(A;) — K and
again A, is complete. Also, since x, is adjacent to x;, using x, in place of z in the previous
paragraph, we conclude that K is joined to N(x;_1) NV (A; — x4—1) and x5 = z4_;.

Suppose s > 1. Then x4 is joined to N(xy;_1) N V(A; — x4—1) and hence A; — xy_1 =
As_1 — xs_; violating minimality of t. Whence, if r; > 2 then s = 1.

Note that K = V(A?) and hence if r; > 2 then A, is complete and A¢ is joined to
N(xi—) N V(A — z4—q). I rs; = 1, then A4; is a Ky and N(xp—q) N V(A — 24-1) =
V(A — x41) = {z;}. We already know that z; is joined to Ay — xs. Thus the cases when
r; > 2 and r3_; = 1 are taken care of. By assumption, at least one of r; or r5_; is at least
two. Hence it remains to handle the cases with r3_; > 2.

Suppose r3_; > 2. In Py, move 2 to Vi1 3_; to get a new partition P? := (Vs1, Vs, ..., Vag).
Then z must create an 73_j-regular component with A, — z; in Vz3_;. In particular,
NEz)NV(A;—z¢) = N(z) NV (As—x). Since N(2)NV(A;—x4-1) = N(x—1) NV (A —24-1),
we have N[z, ;] NV (4;) = N(z) NV (4;) = N[z;] NV (4;). Put W := Nz, NV (AY). Each
w € W is adjacent to z and running through the argument above with w in place of x;
shows that W is a clique joined to z. Moreover, since x; witnesses the (3 — j)-badness of A;,
|W| > rs_;. As with A, above, we conclude that A; is complete. Since x; € Viy1 3—; and z;
is adjacent to z, it must be that z, € V(A; — x;). Thence z, is joined to W and =, = z;_;.
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Suppose that r; > 2 as well. We know that s = 1, A is complete and A? is joined to
N(x; ) NV(A; —x;1) = Ay — x4_1. Also, we just showed that A; is complete and A¢ is
joined to A, — x.

Thus, we must have r; = 1 and r3_; > 2. Then, since A, is a K5, by the above, A; is
joined to W. Since W = A%, it only remains to show that s = 1. Suppose s > 1. Then x,_;
is joined to W and hence A; — x;_ 1 = A;_1 — x5 violating minimality of t.

Therefore s = 1, t = 2, both A, and A; are complete, Aff is joined to A; — x;_1 and A‘tj is
joined to As — z,. But we can play the same game with V} and V; for any 3 <1 < k as well.
Let By := Ay, By := A, and for i > 3, let B; be the r;-regular component made by moving
x1 into V;. Then B; is complete for each i € [k]. Applying what we just proved to all pairs
B;, B; shows that for any distinct 4, j € [k], BY is joined to B; — z;. Since |Bf| > r; and
z1 € V(BY) for each 4, this gives a K;* Eyp)11-¢ in G where ¢ > w (r) + 1 — k. Take such
a subgraph ) maximizing t. Since all the B; are complete, any vertex of degree d will be in
B¢; therefore, for each v € V(K;) we have dg(v) = d and for each v € V(Ey()4+1-¢) we have
dg(v) > d. Note that |@Q| = w (r) + 1 and since dg(v) = d for any v € V(K;), |Q| < d+ 1.
By assumption w (r) > d, whence w (r) = d. Thus if (1) fails, then the first part of (2) holds.

It remains to prove that we can choose P to satisfy one of (a) or (b). Suppose that (1)
fails and P cannot be chosen to satisfy either (a) or (b). For i € [k], call a connected graph
C 1-ugly if C' is r;-regular and ‘C’d| > 2 let u;(H) be the number of i-ugly components of H.
Note that if C' is i-bad, then it is i-ugly. For an r-partition P := (Vq,..., V) of G let

u(P) =Y u(GVi]).

i€k]

Choose an r-partition @ := (V,...,V,) of G first minimizing ¢(Q), then subject to that
requiring b(Q)) < 1 and then subject to that minimizing u(@)). Since ) does not satisfy
(a), at least one of b(Q) = 1 or u(Q) > 1 holds. By symmetry, we may assume that G[V/]
contains a component D; which is either 1-bad or 1-ugly (or both). If D; is 1-bad, pick
wy € V(DY) witnessing the 1-badness of D;; otherwise pick w; € V(D{) arbitrarily. Move
wy to V5, to form a new r-partition. This new partition still satisfies all of our conditions
on (). As above we construct a sequence of vertex moves that will wrap around on itself.
This can be defined recursively as follows. For ¢ > 2, if D, is bad pick w; € V(Df — wy_1)
witnessing the badness of D;; otherwise, if D; is ugly pick w; € V(D — w;_,) arbitrarily.
Now move w; to the part from which w;_; came to form D;,;. Let Q) := Q,Q2,Q3,... be
the partitions created by a run of this process. Note that the process can never create a
component which is not ugly lest we violate the minimality of u(Q).

Since G is finite, at some point we will need to reuse a leftover component; that is, there
is a smallest ¢ such that D,y — 2, = D; — x, for some s < t. First, suppose D is not
bad, but merely ugly. Then D;,; is not bad and hence b(Q;11) = 0 and u(Q41) < u(Q), a
contradiction. Hence D, is bad.

Suppose D, is not bad. As in the proof of the first part of (2), we can conclude that
T, = ;1. Pick 2 € N(zs) NV(D?). Since z is adjacent to z;, by moving 2 to the part
containing x; in Ps; we conclude N(z) N V(D; — z5) = N(zs) N V(Dy — xs). Put T =
{y € Np,(zs) | da(y) = d}. Suppose T is not a clique and let wy, ws € T be nonadjacent.
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Now, in P, since z is adjacent to both w; and ws, swapping w; and w, with z contradicts
minimality of f(Q). Hence T is a clique and (b) holds, a contradiction.

Thus we may assume that D; is bad as well. Now we may apply the same argument as in
the proof of the first part of (2) to show that (1) holds. This final contradiction completes
the proof. O

Corollary 2.3 (Borodin [2]). Let G be a graph not containing a Kacy41- If r1,rs € Nxq with
r1+ 19y > A(G) > 3, then V(G) can be partitioned into sets Vi,V such that A(G[V;]) < r;
and col(G[Vi]) < r; fori € [2].

Proof. Apply Theorem 2.2 with r := (ry,r2) and d = A(G). Since G doesn’t contain a
Ka(e)+1 and no vertex in G has degree larger than d, (1) cannot hold. Thus (2) must hold.
Let P := (V4,V2) be the guaranteed partition and suppose that for some j € [2], G[V]]
contains an r;-regular component H. Then every vertex of H has degree d in G’ and hence
H? contains all noncutvertices of H. But H has maximum degree r; and thus contains at
least 7; noncutvertices. If r; = 1, then H is K5 and hence has 2 noncutvertices. In any
case, we have |H?| > 2. Hence (a) cannot hold for P. Thus, by (b), we have i € [2], an
ri-regular component C' of G[V;] and x € V(C') such that N¢(x) is a clique. But then C'is
K, 41 violating (2), a contradiction.

Therefore, for i € [2], each component of G[V;] contains a vertex of degree at most r; — 1.

Whence col(G[V;]) < r; for i € [2]. O

3. COLORING

Using Theorem 2.1, we can prove coloring results for graphs with only small cliques among
the vertices of high degree. To make this precise, for d € N define wy(G) to be the cardinality
of the largest clique in G containing only vertices of degree larger than d; that is, wy(G) =
w (G [{v € V(G) | dg(v) > d}]).

Corollary 3.1. Let G be a graph, k,d € N withk > 2 andr € N*. Ifw (r) > max {A(G) + 1 — k,d}
and r; > wa(G) + 1 for all i € [k], then at least one of the following holds:

(1) w(r) = d and G contains an induced subgraph @ with |Q| = d + 1 which can be
partitioned into k cliques F, ..., Fy where
(a) |[Fi|=ri+ 1, |Ei| =71 fori>2,
() |F| > |F| — walG) fori € K],
(c) fori € [k], each v € V(F?) is universal in Q;
(2) X(G) < w(r).

Proof. Apply Theorem 2.1 to conclude that either (1) holds or there exists an r-partition
P = (Vi,..., Vi) of G such that if C' is an r;-obstruction in G[V;], then 04(C) > d and
C? is edgeless. Since A(G[V;]) < r; for all 4 € [k], it will be enough to show that no
G[V;] contains an r;-obstruction. Suppose otherwise that we have an r;-obstruction C' in
some G[V;|. First, if r; > 3, then C is K, 4; and hence C' contains a K, g)4+2. But ok
is edgeless, s0 wy(G) > wy(C) > w(C) — 1 > wye(G) + 1, a contradiction. Thus r; = 2
and C is an odd cycle. Since C? is edgeless and wq(C) < wy(G) < 1, we have a 2-coloring
{V(C?),V(C — C%)} of the odd cycle C, a contradiction. O
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For a vertex-critical graph G, call v € V(G) low if d(v) = x(G) — 1 and high otherwise.
Let H(G) be the subgraph of G induced on the high vertices of G.

Corollary 3.2. Let G be a vertex-critical graph with x(G) = A(G) + 2 — k for some k > 2.

Ifk < %, then G contains an induced subgraph Q with |Q| = x(G) which can be
partitioned into k cliques Fy, ..., Fy where

(1) [Fi] = X(G) — (k — D@(H(G)) + 1), || = w(H(G) + 1 fori > 2,
(2) for eachi € [k], F; contains at least | F;|—w(H(G)) low vertices which are all universal
mn Q.

Proof. Suppose k < % Put r; := w(H(G)) + 1 for i € [k] — {1} and r; := x(G) —
1—(k—1)(w(H(G))+1). Set r := (r1,72,...,7r%). Then w(r) = x(G) —1=A(G) + 1 — k.
Now applying Corollary 3.1 with d := x(G) — 1 proves the corollary. U
Corollary 3.3. Let G be a vertex-critical graph with x(G) > A(G) + 1 —p > 4 for some
peN. Ifw(H(G)) < X — 9 then G = Ky(q) or G = Os.

Proof. Suppose not and choose a counterexample G minimizing |G|. Put x := x(G), A =
A(G) and h := w(H(G)). Then p > 1 and h > 1 by Brooks’ theorem. Hence X > 5. By

assumption, we have h < X+1 —2= X‘pipl_l < X;ﬁ;z since p > 1. Thus p+1 < 30 L and we
may apply Corollary 3.2 with k£ := p 4+ 1 to get an induced subgraph @ of G with |Q| = x
which can be partitioned into p + 1 cliques Fi, ..., Fj,41 where

(1) |Fil=x—ph+1),|F|=h+1fori>2;
(2) for each i € [p+ 1], F; contains at least |F;| — h low vertices which are all universal
in Q.
Let T be the low vertices in @, put H :== Q — T and ¢ := |T|. Then Q = K;* H and
t>2x—ph+1)+ph+1)—@P+Dh=x—(p+1)h
Take any (y — 1)-coloring 7 of G — @ and let L be the resulting list assignment on @); that
is, for v € V(Q) we put L(v) := [y — 1] —7(N(v)NV (G —Q)). Then |L(v)| = dg(v) for each
v e T and |L(v)| > dg(v) — p for each v € V(H). Sincet > x — (p+1)h >2p+1>p+1,
if there are nonadjacent z,y € V(H) and ¢ € L(z) N L(y), then we may color z and y both
with ¢ and then greedily complete the coloring to the rest of H and then greedily to all of
(@, a contradiction. Hence any nonadjacent pair in H have disjoint lists.
Let I be a maximal independent set in H. If there is an induced P5 in H with ends in I,
set oy 1= 1, otherwise set o; := 0. Since each pair of vertices in I have disjoint lists, we must
have

X—12) |L(v)]
> Zt—i—dH(U) —p
—p) [+ du(v)

vel

> (t=p) I+ |H] = [I] + o1
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={t—(p+1)|I|+x—t+or.

Hence |I| < 220 =1 4 291 <] P29l - <2 a5 ¢ > 2p+ 1. Since G is not K,, we

—(p+1) t=(p+1) 2p+1—(p+1)
must have |I| = 2 and thus ¢ = 2p 4+ 1 and oy = 0. Thence H is the disjoint union of two
—2p—1 |H| _ x—2p—1 _ x-3
complete subgraphs. We then have % > h > 15 =X Hence p=1, h = %> and
Q = K3 * 2Kh

Let z,y € V(H) be nonadjacent. Then dg(x) + dg(y) = x + 1. Let A be the subgraph of
G induced on V(G — Q) U{z,y}. Then da(z)+da(y) <2A —(x+1) = x—1. Let A" be the
graph obtained by collapsing {x,y} to a single vertex v,,. If x(A’) < x — 1, then we have a
(x — 1)-coloring of A in which x and y receive the same color. This is impossible as then we
could complete the (x — 1)-coloring to all of G greedily as above. Hence x(A’) = x and thus
we have a vertex-critical subgraph Z of A" with x(Z) = x. We must have v,,, € V(Z) and
since da(x) + da(y) < x — 1, vgy is low. Hence, by minimality of |G|, Z = K,, or Z = Os.

First, suppose x > 6. Then h > 2 and thus we have z € V(H) — {z,y} nonadjacent to
x. Apply the previous paragraph to both pairs {z,y} and {z, z}. The case Z = O3 cannot
happen, for then we would have y = x(Z) = 5, a contradiction. Put X; := N(z)NV(G-Q),
Xo:=Ny)NV(G—-Q), Xz :=N(z)NV(G—Q). Then |X;| = X! for i € [3] and X is
joined to both X5 and Xj3. Since | X;| — h > 0, each X; contains a low vertex v;. But then
N(v1) = X7 U Xo U {z} and we must have X3 = X5. Whence N(vy) = X; U Xy U {y, 2z}
giving d(ve) > x, a contradiction.

Therefore x =5, h =1 and V(H) = {z,y}. If Z = K5, then N[z] U N[y] induces an Oj
in G and hence G = Oj, a contradiction. Thus Z = Os. But h = 1, so all of the neighbors
of both x and y are low and hence all of the neighbors of v,, in Z are low. But Os has no
such low vertex v,, with all low neighbors, so this is impossible. 0

Question. The condition on k needed in Corollary 3.2 is weaker than that in Corollary 3.3.
What do the intermediate cases look like? What are the extremal examples?
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