A NOTE ON VERTEX PARTITIONS
LANDON RABERN

ABSTRACT. We prove a general lemma about partitioning the vertex set of a graph into
subgraphs of bounded degree. This lemma extends a sequence of results of Lovasz, Catlin,
Kostochka and Rabern.

1. INTRODUCTION

In the 1960’s Lovasz [4] proved the following decomposition lemma for graphs by consid-
ering a partition minimizing a certain function.

Lovasz’s Decomposition Lemma. Let G be a graph andry, ..., 1, € N such that Zle r; >
A(G)+1—k. Then V(G) can be partitioned into sets Vi, ..., Vi such that A(G[V;]) < r; for
each i € [k].

A decade later, Catlin [1] showed that bumping the A(G) + 1 to A(G) + 2 allowed for
shuffling vertices from one partition set to another and thereby proving stronger decompo-
sition results. A few years later Kostochka [3] modified Catlin’s algorithm to show that
every triangle-free graph GG can be colored with at most %A(G) + 2 colors. Around the same
time, Mozhan [5] used a different, but related, function minimization and vertex shuffling
procedure to prove coloring results. In [6], we generalized Kostochka’s modification to prove
the following.

Lemma 1. Let G be a graph and ry,...,r, € N such that Zle ri > A(G)+2—k. Then
V(G) can be partitioned into sets Vi, ..., Vi such that A(G[V;]) < r; and G[V;] contains no
non-complete r;-reqular components for each i € [k].

In fact, we proved a stronger lemma allowing us to forbid a larger class of components
coming from any so-called r-permissible collection. The purpose of this note is to simplify
and generalize this latter result. The definition of an r-height function will be given in the
following section.

Main Lemma. Let G be a graph and 1, ..., 7, € N such that S5 r; > A(G) +2 — k. If
h; is an r;-height function for each i € [k], then V(G) can be partitioned into sets Vi, ..., Vj
such that for each i € [k], A(G[V;]) < r; and hy(D) =0 for each component D of G[Vj].

2. THE PROOF

Our notation follows Diestel [2] unless otherwise specified. The natural numbers include
zero; that is, N :={0,1,2,3,...}. We also use the shorthand [k] := {1,2,... k}. Let G be
the collection of all finite simple connected graphs.
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Definition 1. For h: G — N and G € G, a vertex z € V(G) is called h-critical in G if
G —z €@ and h(G —x) < h(Q).

Definition 2. For h: G — N and G € G, a pair of vertices {z,y} C V(G) is called an
h-critical pair in G if G — {x,y} € G and z is h-critical in G — y and y is h-critical in G — z.

Definition 3. For r € N a function h: G — N is called an r-height function if it has each of
the following properties:

(1) if A(G) > 0, then G contains an h-critical vertex = with d(z) > r;

(2) if G € G and = € V(G) is h-critical with d(x) > r, then h(G — z) = h(G) — 1;

(3) if G € G and = € V(@) is h-critical with d(z) > r, then G contains an h-critical
vertex y & {z} U N(z) with d(y) > r;

(4) it G € Gand {z,y} C V(G) is an h-critical pair in G with dg_,(z) > r and dg_,(y) >
r, then there exists z € N(z) N N(y) with d(z) > r + 1.

For r > 2, the function h: ¢ — N which gives 1 for all non-complete r-regular graphs and
0 for everything else is an r-height function. Applying the Main Lemma using this height
function proves Lemma 1.

The proof of the Main Lemma uses ideas similar to those in [3] and [6]. For a graph G,
x € V(G) and D C V(G) we use the notation Np(x) := N(z) N D and dp(x) := |Np(x)|.
Let C(G) be the components of G and ¢(G) := |C(G)|. If h: G — N, we define h for any
graph as h(G) == > pceiq) MD).

Proof of Main Lemma. For a partition P := (Vi,..., V) of V(G) let

F(P) = (IGVill = |Vil) .

i=1

Let P := (Vi,..., Vi) be a partition of V(G) minimizing f(P), and subject to that ¢(P),
and subject to that h(P).

Let i € [k] and = € V; with dy, (z) > r;. Since S35 7; > A(G) + 2 — k there is some j # i
such that dy,(z) < r;. Moving x from V; to V; gives a new partition P* with f(P*) < f(P).
Note that if dy,(x) > r; we would have f(P*) < f(P) contradicting the minimality of P.
This proves that A(G[V;]) < r; for each i € [k].

Now suppose that for some iy there is a component A; of G[V;,] with h; (A;) > 0. Put
P, = P and Vj,; :=V, for i € [k]. By property 1 of height functions, we have an h;,-
critical vertex x; € V(A;) with da,(z1) > r;,. By the above we have iy # i; such that
moving x; from Vi, to Vi, gives a new partition P := (Va1, Vao,..., Vay) where f(P) =
f(P1). By the minimality of ¢(P;), x; is adjacent to only one component Cy in G[Va,,]. Let
Ay == G[V(Cy) U {x1}]. Since xy is h,,-critical, by the minimality of h(P;), it must be that
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hi,(A2) > h;,(Cy). By property 2 of height functions we must have h;,(As) = hy,(Cs) + 1.
Hence h(P,) is still minimum. Now, by property 3 of height functions, we have an h,-critical
vertex xg € V(Ag) — ({1} U Na, (1)) with da,(x2) > 14,.

Continue on this way to construct sequences i1, is, . .., A1, As, ..., P, Py, P3,...and x1, 7, . . ..
Since G is finite, at some point we will need to reuse a leftover component; that is, there is
a smallest ¢ such that A,y — 2 = Ay — x5 for some s < t. In particular, {4, x4} is an
h;,-critical pair in Q := G [{z¢1} UV (AS)] where dg_s,,, (25) > i, and dg—g, (Te41) > 74,
Thus, by property 4 of height functions, we have z € Ng(z5) N Ng(xe41) with dg(z) > r;, +1.

We now modify P; to contradict the minimality of f(P). At step t+ 1, x; was adjacent to
exactly r;, vertices in V;4q,,. This is what allowed us to move x; into V4q,,. Our goal is to
modify P; so that we can move z; into the i part without moving z, out. Since z is adjacent
to both x4 and z;, moving z out of the ¢, part will then give us our desired contradiction.

So, consider the set X of vertices that could have been moved out of V;; between step s
and step ¢ + 1; that is, X := {@s1,Tsy2,..., 21} N Vi, For z; € X, since da,(7;) > 14,
and z; is not adjacent to x;_, we see that dy,, (z;) > r;,. Similarly, dy,, (v¢) > ry,. Also,
by the minimality of £, X is an independent set in G. Thus we may move all elements of X
out of Vi, to get a new partition P* := (V. 1,..., Vi) with f(P*) = f(P).

Since z; is adjacent to exactly r;, vertices in Viyq,, and the only possible neighbors of x;
that were moved out of V;; between steps s and ¢ + 1 are the elements of X, we see that
dy,, (v¢) = ry,. Since dy, ., (x) > r;, we can move z; from Vi ;, to Vi, to get a new partition
P = (Vien, ..., Viug) with f(P**) = f(P*). Now, recall that z € V,, ;.. Since z is adjacent
to x; we have dy,,, (#) > r;, + 1. Thus we may move z out of Vi, ;. to get a new partition

EER P

P with f(P*™*) < f(P**) = f(P). This contradicts the minimality of f(P). O
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