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Introduction Theorem (Brooks 1941)

Every graph with A > 3 satisfies x < max{w, A}.

Definition

The Ore-degree of an edge xy in a graph G is

0(xy) = d(x) + d(y). The Ore-degree of a graph G is
0(G) = max,ece(c) O(xy).

o every graph satisfies [£] < A
e greedy coloring (in any order) shows that every graph
satisfies x < LgJ +1
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Theorem (Kierstead and Kostochka 2009)

Every graph with 6 > 12 satisfies x < max {w, LgJ }

Kierstead and Kostochka [2] conjectured that the 12 could be
reduced to 10. That this would be best possible can be seen
from the following example which has § =9, w =4 and x = 5.

Figure: Os, a counterexample with § = 9.
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Rephrasing the problem

let G be a critical graph with y = | 4] +1

it follows that G must satisfy § <2y — 1

if A < x we are done by Brooks' theorem

otherwise we have 8 > 0 + A > 2y — 1 giving § =2y — 1
thus, x = A and no two vertices of max degree in G can
be adjacent
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Definition

Let G be a graph. The low vertex subgraph £(G) is the graph
induced on the vertices of degree x(G) — 1. The high vertex
subgraph #(G) is the graph induced on the vertices of degree
at least x(G).

Problem

Prove that Ka(g)+1 is the only critical graph G with
X(G) > A(G) > 6 such that H(G) is edgeless.
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Kierstead and Kostochka's proof

take a minimal counterexample G and use minimality to
prove some structural properties

H(G) has at most as many components as £(G) by a
result of Stiebitz [7]

since H(G) is edgeless it has at most as many vertices as
L(G) has components

apply Alon and Tarsi's algebraic list coloring theorem to an
auxilliary bipartite graph

do some counting and get a contradiction

it only works for 6 > 12
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In [5] we solved the problem in a more general fashion.

Theorem (Rabern 2010)
Ka(G)+1 is the only critical graph G with x(G) > A(G) > 6
S (o) < 89| o

Problem solved

Proof outline

Mozhan's lemma

The recolring Setting w(H(G)) = 1 proves the conjecture of Kierstead and
Kostochka.
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e take a minimal counterexample G and use minimality to
prove some structural properties

Nz o e run a carefully chosen recoloring algorithm to construct a
proof m "
Problem solved large “dense” subgraph H
Proof outline
SR e inductively A —1 color G — H

algorithm

e use minimality of G to show that the A — 1 coloring can
be completed to H
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Partitioned colorings

Definition

Let G be a vertex critical graph. Let a>1and nr1,...,r; be
such that 14+ . ri = x(G). By a (r1,. .., ra)-partitioned
coloring of G we mean a proper coloring of G of the form

{{X}, L117 L12, cey L1r17 L21, L22, ceey L2r2, ooy Lala La2, cey Lara} ]

Here {x} is a singleton color class and each Lj; is a color class.
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Mozhan's Lemma

Lemma (Mozhan 1983)

Let G be a vertex critical graph. Let a>1 and ny,...,r, be
such that 1+ . ri = x(G). Of all (r1,..., ra)-partitioned
colorings of G pick one minimizing

a r
S IE(6 ULy
i=1 j=1
Remember that {x} is a singleton color class in the coloring.
Put U; =L, Lj and let Z(x) be the component of x in
G[{x} U Ui]. If dz,1(x) = ri, then Zi(x) is complete if r; > 3
and Zj(x) is an odd cycle if rj = 2.
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The recoloring algorithm

take a (| 25|, [£52])-partitioned coloring minimizing
the above function
prove that we may assume that x is a low vertex

by Mozhan's lemma, the neighborhood of x in each part
induces a clique or an odd cycle

swap x with a low vertex xj in the right part
swap x; with a low vertex x» in the left part
continue swapping back and forth until you wrap around

use the fact that you wrapped around to show that there
are many edges between the two induced cliques (odd
cycles)

we have now constructed the desired large “dense”
subgraph
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For 0 < e <1, define A(G) as
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What about
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Note that Ay = A, Ay = [5].

13 /20



An
improvement

on Brooks’ The generalized bound

theorem

Landon

Rabern Theorem (Rabern 2010)

For every 0 < € < 1, there exists t. such that every graph with
A, > t. satisfies

X < max{w, A}

Generalizing

maximum degree . . . .

The generalzed e the proof uses a recoloring algorithm similar to the above
boun

Aggt 2bout e it would be interesting to determine, for each ¢, the

smallest t. that works
e that t; = 3 is smallest is Brooks' theorem
e the graph Os shows that t. = 6 is smallest for % <ex<l1
e we will see below that if P # NP, then ty does not exist
and hence t > o0 ase€ — 0
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e the above proofs only work for € > 0
e what happens when € = 07
e the parameter Ag has already been investigated by Stacho
[6] under the name A,
g

il Dcfinition (Stacho 2001)

The generalized
bound

¥ For a graph G define

No(G) = TR min{d(x), d(y)}.
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o Ay =Ag
e greedy coloring (in any order) shows that every graph
satisfies x < Ap +1
;g‘?g e for any fixed t > 3, the problem of determining whether or
Wi ot not x(G) < Ax(G) for graphs with Ax(G) =t is
o NP-complete (see [6])
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A tempting thought

A tempting thought

There exists t such that every graph with A > t satisfies
X < max{w, Ap}.

e unfortunately, the tempting thought cannot hold for any t
if P£ANP

e to show this, we use Lovdsz's ¥ parameter [1] which can
be appoximated in polynomial time and has the property
that w(G) < ¥(G) < x(G)
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A polynomial-time algorithm

assume the tempting thought holds for some t > 3
take any arbitrary graph with A, >t
first, compute Ay in polynomial time

second, compute x such that x — % <9< x+ % in
polynomial time

ifx2A2+%,thean19>A2 and hence y = Ay +1
if x < Ap+ 3, thenw <9 < Ax+1, and hence w < A,
now, x < max{w, Az} < Ap

we just gave a polynomial time algorithm to determine
whether or not xy < Aj for graphs with Ay > ¢

this is impossible unless P=NP
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Theorem (Rabern 2010)

Every graph with A > 3 satisfies

>
6

Generalizing
maximum degree

(A+1)}.

X < max {w, AT

The generalized
bound

What about
Ag?

e the proof uses a recoloring algorithm similar to the above
e actually, all the above results about A, follow from this

result
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In joint work with Kostochka and Stiebitz [3] similar techniques
were used to improve the bounds further. We give some
highlights.

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph with 6 > 8, except Os, satisfies x < max {w, ng }

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph satisfies

3
X < max {w,Ag, Z(A + 2)} :
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