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Theorem (Brooks 1941)

Every graph with ∆ ≥ 3 satisfies χ ≤ max{ω,∆}.

Definition

The Ore-degree of an edge xy in a graph G is
θ(xy) = d(x) + d(y). The Ore-degree of a graph G is
θ(G ) = maxxy∈E(G) θ(xy).

• every graph satisfies
⌊
θ
2

⌋
≤ ∆

• greedy coloring (in any order) shows that every graph
satisfies χ ≤

⌊
θ
2

⌋
+ 1
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Theorem (Kierstead and Kostochka 2009)

Every graph with θ ≥ 12 satisfies χ ≤ max
{
ω,
⌊
θ
2

⌋}
.

Kierstead and Kostochka [2] conjectured that the 12 could be
reduced to 10. That this would be best possible can be seen
from the following example which has θ = 9, ω = 4 and χ = 5.

4
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4 4

4 4

5

Figure: O5, a counterexample with θ = 9.
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Rephrasing the problem

• let G be a critical graph with χ =
⌊
θ
2

⌋
+ 1

• it follows that G must satisfy θ ≤ 2χ− 1

• if ∆ < χ we are done by Brooks’ theorem

• otherwise we have θ ≥ δ + ∆ ≥ 2χ− 1 giving θ = 2χ− 1

• thus, χ = ∆ and no two vertices of max degree in G can
be adjacent
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Definition

Let G be a graph. The low vertex subgraph L(G ) is the graph
induced on the vertices of degree χ(G )− 1. The high vertex
subgraph H(G ) is the graph induced on the vertices of degree
at least χ(G ).

Problem

Prove that K∆(G)+1 is the only critical graph G with
χ(G ) ≥ ∆(G ) ≥ 6 such that H(G ) is edgeless.
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Kierstead and Kostochka’s proof

• take a minimal counterexample G and use minimality to
prove some structural properties

• H(G ) has at most as many components as L(G ) by a
result of Stiebitz [7]

• since H(G ) is edgeless it has at most as many vertices as
L(G ) has components

• apply Alon and Tarsi’s algebraic list coloring theorem to an
auxilliary bipartite graph

• do some counting and get a contradiction

• it only works for θ ≥ 12
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In [5] we solved the problem in a more general fashion.

Theorem (Rabern 2010)

K∆(G)+1 is the only critical graph G with χ(G ) ≥ ∆(G ) ≥ 6

and ω(H(G )) ≤
⌊

∆(G)
2

⌋
− 2.

Setting ω(H(G )) = 1 proves the conjecture of Kierstead and
Kostochka.
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Proof outline

• take a minimal counterexample G and use minimality to
prove some structural properties

• run a carefully chosen recoloring algorithm to construct a
large “dense” subgraph H

• inductively ∆− 1 color G − H

• use minimality of G to show that the ∆− 1 coloring can
be completed to H
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Partitioned colorings

Definition

Let G be a vertex critical graph. Let a ≥ 1 and r1, . . . , ra be
such that 1 +

∑
i ri = χ(G ). By a (r1, . . . , ra)-partitioned

coloring of G we mean a proper coloring of G of the form

{{x}, L11, L12, . . . , L1r1 , L21, L22, . . . , L2r2 , . . . , La1, La2, . . . , Lara} .

Here {x} is a singleton color class and each Lij is a color class.
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Mozhan’s Lemma

Lemma (Mozhan 1983)

Let G be a vertex critical graph. Let a ≥ 1 and r1, . . . , ra be
such that 1 +

∑
i ri = χ(G ). Of all (r1, . . . , ra)-partitioned

colorings of G pick one minimizing

a∑
i=1

∣∣∣∣∣∣E
G

 ri⋃
j=1

Lij

∣∣∣∣∣∣ .
Remember that {x} is a singleton color class in the coloring.
Put Ui =

⋃ri
j=1 Lij and let Zi (x) be the component of x in

G [{x} ∪ Ui ]. If dZi (x)(x) = ri , then Zi (x) is complete if ri ≥ 3
and Zi (x) is an odd cycle if ri = 2.
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The recoloring algorithm

• take a (
⌊

∆−1
2

⌋
,
⌈

∆−1
2

⌉
)-partitioned coloring minimizing

the above function

• prove that we may assume that x is a low vertex

• by Mozhan’s lemma, the neighborhood of x in each part
induces a clique or an odd cycle

• swap x with a low vertex x1 in the right part

• swap x1 with a low vertex x2 in the left part

• continue swapping back and forth until you wrap around

• use the fact that you wrapped around to show that there
are many edges between the two induced cliques (odd
cycles)

• we have now constructed the desired large “dense”
subgraph
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Generalizing maximum degree

Definition

For 0 ≤ ε ≤ 1, define ∆ε(G ) as

⌊
max

xy∈E(G)
(1− ε) min{d(x), d(y)}+ εmax{d(x), d(y)}

⌋
.

Note that ∆1 = ∆, ∆ 1
2

=
⌊
θ
2

⌋
.
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The generalized bound

Theorem (Rabern 2010)

For every 0 < ε ≤ 1, there exists tε such that every graph with
∆ε ≥ tε satisfies

χ ≤ max{ω,∆ε}.

• the proof uses a recoloring algorithm similar to the above

• it would be interesting to determine, for each ε, the
smallest tε that works

• that t1 = 3 is smallest is Brooks’ theorem

• the graph O5 shows that tε = 6 is smallest for 1
2 ≤ ε < 1

• we will see below that if P 6= NP, then t0 does not exist
and hence tε →∞ as ε→ 0
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What about ∆0?

• the above proofs only work for ε > 0

• what happens when ε = 0?

• the parameter ∆0 has already been investigated by Stacho
[6] under the name ∆2

Definition (Stacho 2001)

For a graph G define

∆2(G ) = max
xy∈E(G)

min{d(x), d(y)}.
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Facts about ∆2

• ∆2 = ∆0

• greedy coloring (in any order) shows that every graph
satisfies χ ≤ ∆2 + 1

• for any fixed t ≥ 3, the problem of determining whether or
not χ(G ) ≤ ∆2(G ) for graphs with ∆2(G ) = t is
NP-complete (see [6])
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A tempting thought

A tempting thought

There exists t such that every graph with ∆2 ≥ t satisfies
χ ≤ max{ω,∆2}.

• unfortunately, the tempting thought cannot hold for any t
if P 6=NP

• to show this, we use Lovász’s ϑ parameter [1] which can
be appoximated in polynomial time and has the property
that ω(G ) ≤ ϑ(G ) ≤ χ(G )
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A polynomial-time algorithm

• assume the tempting thought holds for some t ≥ 3

• take any arbitrary graph with ∆2 ≥ t

• first, compute ∆2 in polynomial time

• second, compute x such that x − 1
2 < ϑ < x + 1

2 in
polynomial time

• if x ≥ ∆2 + 1
2 , then χ ≥ ϑ > ∆2 and hence χ = ∆2 + 1

• if x < ∆2 + 1
2 , then ω ≤ ϑ < ∆2 + 1, and hence ω ≤ ∆2

• now, χ ≤ max{ω,∆2} ≤ ∆2

• we just gave a polynomial time algorithm to determine
whether or not χ ≤ ∆2 for graphs with ∆2 ≥ t

• this is impossible unless P=NP
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What we can prove about ∆0 (aka
∆2)

Theorem (Rabern 2010)

Every graph with ∆ ≥ 3 satisfies

χ ≤ max

{
ω,∆2,

5

6
(∆ + 1)

}
.

• the proof uses a recoloring algorithm similar to the above

• actually, all the above results about ∆ε follow from this
result
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In joint work with Kostochka and Stiebitz [3] similar techniques
were used to improve the bounds further. We give some
highlights.

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph with θ ≥ 8, except O5, satisfies χ ≤ max
{
ω,
⌊
θ
2

⌋}
.

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph satisfies

χ ≤ max

{
ω,∆2,

3

4
(∆ + 2)

}
.
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